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ABSTRACT: In order to meet increasing safety standards and technological requirements for
underground construction, the estimation of Earth models is needed to characterize the subsurface.
This can be achieved via near-surface or standard Full-Waveform Inversion (FWI) velocity model
building, which reconstructs the Earth model parameters (compressional and shear wave veloc-
ities, density) via recordings obtained on the field. The wave function characterizing the Earth
model parameters is inherently non-linear, rendering this optimization problem complex. With
advances in computational power, including graphics processing units (GPUs) computing, data
driven approaches to solve FWI via Deep Neural Networks (DNN) are increasing in popularity
due to its ability to solve the FWI problem accurately. In this paper, we leverage on DNN-based
FWI applied to field data, to demonstrate that instead of depending on observed data collected
from multiple boreholes across a large distance, it is possible to obtain accurate Earth model
parameters for areas with varied geotechnical characteristics by using geotechnical data as prior
knowledge and constraining the training models according to a single borehole to map the large
geological earth cross section. Also we propose a methodology to simulate acoustic recordings
indirectly from laboratory tests on soil samples obtained from boreholes, which were analysed for
compressive strength of intact rock and Geological Strength Index. Layers’ geometry and prop-
erties for a section of total 3.0 km are used for simulating 15 2D elastic spaces of 200 m width
and 50m depth assuming receivers and Ricker-wavelet sources. We adopt a Fully Convolutional
Neural Network for Velocity Model Building, previously shown to work well with synthetic data,
to generate the 2D predicted Earth model. The results of this study show that the velocity model
can be accurately predicted via DNN through the appropriate training with minimum demands for
borehole data. The performance is evaluated through both metrics focused on image quality and
on velocity values giving a multifaceted understanding of the model’s true ability to predict the
subsurface.

1 INTRODUCTION

Extensive geophysical research is often carried out on large-scale construction projects, such as
tunnels, to investigate the complex and changing subsurface. Usual applications may include the
estimation of bedrock and groundwater levels, imaging of various subsurface layers, or detection
of “weak” material as peat or slide planes (Niederleithinger et al., 2016). Geophysical surveys
enable Earth model information (such as velocity of compressional waves Vp, velocity of shear
waves Vs and density ρ) to be obtained for large volumes of ground that cannot be investigated
by direct methods (McDowell et al., 2002). Specially for tunnel design, in cases when the soil
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overburden above the tunnel crown is of great height which means that the required depth of
an exploratory borehole will be quite large and so making boreholes will be difficult, the geo-
physical methods can provide an alternative solution of significant importance. This can be done
in addition to the application of the pilot tunnel method where a small-diameter tunnel is con-
structed, in parallel to the axis of a much larger main tunnel to explore ground conditions, assist
final excavation and overcome the difficult ground conditions. Thus, the need for better and stable
performance of geophysical methods in subsurface imaging with a limited number of available
auxiliary boreholes is a task of great interest in tunnel construction.

The study of the properties of the subsoil is mainly based on the application of seismic methods
both for historical and practical reasons since seismic methods use strong natural (earthquakes)
or artificial sources (explosions)(K. & V. Papazahos, 2008). The problem that describes the def-
inition of the Earth Model from observed data d (seismic recordings), is finding a non-linear
operator G which when applied to the Earth model m (representing the parameters that describe
the Earth model e.g., compressional wave velocities, shear wave velocities, density), will produce
the observed data d= G(m) (Bogiatzis, 2006). But solving equation for m̂ = G−1d, that is finding
a solution for the Earth Model parameters, is significantly difficult due to the non linear mapping
of the wave equation to the measured data and so is often handled through iterative methods.
Full waveform inversion (FWI) is a method for solving this problem, that takes advantage from
the full shape of the waveform and nowadays is one of the most preferred methods for Velocity
Model Building (VMB), that ensure solutions of high accuracy. In recent years, tackling the FWI
problem is implemented through deep learning neural network (DNN) architectures and many
successful examples can be found in the literature.

Mao et al., (2019), proposed a deep learning-based data assimilation method for tackling VMB
which can be considered as similar to the FWI, and they used a convolutional neural network
(CNN) in order to predict the prior velocity information with two 2D convolutional layers, four
fully connected layers and an activation function that uses hyperbolic tangent (Tanh). The input
is a zero – offset seismic gather, the output is the subsurface velocity structure and the presented
training dataset is consisted of 5000 synthetic velocity models with 3 to 6 layers of random veloc-
ity layers in the range of [2,4] km/s with their corresponding zero-offset gather. They presented
test results for a velocity model containing a salt structure.

Zheng et al., (2019), presented two case studies from which the second one was concerning
elastic VMB through supervised deep learning approach. They trained a CNN to make predictions
of 1D velocity (Vp and Vs) and density profiles. The CNN consists of multiple 2D convolutional
layers with 3x3 filter kernels, while between the sets of convolutional layers, a max-pooling layer
and a dropout layer are used for downsampling and to control overfitting. They trained their
network with 10000 synthetic data while they tested the prediction capabilities of the network on
both synthetic and on field data after making simplifying assumptions that the field data present
only vertical variation and are horizontally homogeneous.

Li et al., (2020), addressed the mapping of time series to spatial image via the proposed Seis-
mInvNet. The network adopts an encoder-decoder architecture for VMB and tackles the weak
spatial correspondence (when a reflected wave exists on the seismic data on a specific position for
which the velocity model does not contain an interface and vice versa) and the uncertain reflec-
tion – reception relationship between velocity model and seismic data as well as the time varying
property of seismic data. The main components of the network are an embedding encoder, a spa-
tially aligned feature generator, a velocity model decoder and a loss function composed by the
mean squared error and multiscale structural similarity while the presented experiment consisted
of 12000 synthetic training velocity models with their corresponding seismic pairs.

Another implementation is the Fully Convolutional Network named FCNVMB for Velocity
Model Building (Yang et al., 2019) which uses a U-Net encoder decoder architecture with skip-
ping layers. The network learns the non linear law between the parameters of the wave equation
with training on physical models. In the original paper the authors tested the network for recon-
structing Earth Model parameters and in particular P-waves velocity. The 1600 synthetic training
models that they used presented salt bodies positioned on constant multilayer velocity back-
ground and 130 models from the original Society of Exploration Geophysicists (SEG) model.
The encoder is composed by 10 2D convolutional layers while they used a rectified linear unit
activation function (RELU). The decoder includes eight 2D convolutional layers connected with
the corresponding deconvolutional layers. The authors presented their results in comparison with
physics based FWI results for smoothed starting velocity models for two experiments. The first
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Figure 1. a)Longitudinal Geological Section from field data. Specially for tunnel construction projects,
dense boreholes are usually implemented. b)Training velocity models used for the network are generated on
known geotechnical area. Subsequently the training velocity models are constrained to single borehole data
in every 200m longitudinal distance of the investigated 200m x 50m areas and the new models are added to
the initial models forming in total 9000 training models as described in paragraph 2.3.

experiment was on predicting synthetic salt bodies and the second used the pretrained network of
the first experiment with addition of 130 SEG models to predict parts of the SEG model.

In this paper we handle the near surface Full waveform Inversion problem through FCN-
VMB for reconstruction of the P-waves velocity image of the subsurface with application to field
data. All the pairs of velocity and corresponding shot are created through Devito (Louboutin et
al., 2019) which is a domain-specific language for implementing high-performance finite differ-
ence partial differential equation solvers. The contributions of this paper concern the following:
1)We provide a training methodology for predicting large geological sections based on prior
geotechnical knowledge and constraints on sparse density sampling boreholes. 2)We provide a
methodology for simulating seismic shots from geotechnical lab data. 3)We present a step by step
comprehensive schematic representation of the overall procedure.

2 METHODOLOGY

Here we describe our proposed methodology from generation of acoustic measurements that com-
prise d, inclusion of elastic displacements to augment the training set, generation of velocity
models that comprise m and the experimental setup for the FCNVMB for near surface FWI-
VMB to elastic spaces with dimensions 200m width x 50m depth through data obtained from real
boreholes of spanning 3.0 km.

2.1 Borehole data

As is typical in construction engineering, multiple boreholes are used to collect soil samples across
the 3km span. Specialists after laboratory analysis of the collected soil samples, created a subsur-
face map presenting the space between the boreholes, an example of which is shown in Figure
1a. It indicates the geomaterials that compose each section (claystone, sandstone, siltstone etc.)
the main geotechnical characteristic parameters of which, including compressive strength of the
intact rock σci and the Geological Strength Index GSI can be seen in Tables 1-3. The estimation
of the parameters of strength and deformability of the rock mass is of major importance during the
design for the opening and support of underground projects. The main difficulty in obtaining these
parameters is that the laboratory tests are done on samples of intact rock (without discontinuities)
and are therefore not representative for the rock mass which includes discontinuities. Given the
uniaxial compressive strength of the intact rock pieces without discontinuities σci and the Geo-
logical Strength Index GSI , the modulus of elasticity of the rock mass is calculated according
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Figure 2. Schematic representation of the proposed Methodology.

to the following equation which is proposed by Hoek et al.,(1997), and is a modification of the
empirical relationship of Serafim and Pereira,(1983):

Erm =
√
σci/100 ∗ 10(GSI−10)/40 (1)

Where: σci is the compressive strength of the intact rock in MPa, GSI is the Geological Strength
Index and Erm in the elastic modulus of deformation of the rock mass in GPa. These are listed in
Tables 1-3 for three sections. Sections A and B span 1.2km each and Section C spans 0.6km. For
simplification, the mean and standard deviation of the densities are used for modelling - these are
shown in Table 4.

2.2 Calculation of the Acoustic Velocities from Geotechnical Laboratory Data with Inclusion
of Elastic Displacements

The acoustic velocity is calculated as Vp =
√
(Erm/ρ), where Erm is the modulus of elasticity

of the rock mass for each layer and ρ the density for every section (Table 4). Vp is shown in Tables
1-3 (Column 4) which is mapped to a unique Red-Green-Blue (RGB) code shown in Tables 1-3
(Column 5), for every geomaterial in every geological section A,B or C, which after is assigned
to every subsurface layer in the initial drawing created by specialists. The generated images pre-
sented in Figures 3,4,5 are then resized in order to correct the drawing scale and to represent the
physical analogy of the elastic space studied (200m x 50m). After the calculation of the velocity
model and the extraction of the RGB image files, elastic displacements are added to the images
in order augment the training dataset, to strengthen the generalization of the network and to avoid
overfitting (Bloice et al., 2017). In our dataset, a Gaussian Distribution is used for sampling dis-
tortion on the center of the image, through the gaussian distortion function with parameters grid
width=3, grid height= 3,magnitude= 90 and corner=bell.

2.3 Creation of the Velocity Models and Calculation of the corresponding shot for input to
deep learning FWI network

The total length of the geotechnical sections is 3.0 km and the length of every elactic space for the
modelling of the wave equation in Devito has a physical size with dimensions (201.,51.) and grid
spacing (1.,1.). Two experiments have been implemented in this paper each one containing 9000
models: 1)Experiment 1 at which 9000 training velocity models are generated for the ”known
subsurface area” which then are used to predict ”unknown subsurface areas” and 2)Experiment
2 at which the 9000 training models are generated for the ”known subsurface area” but part of
them (4800/9000) is constrained to velocity values obtained from a single borehole data in the
”unknown subsurface areas”. Also a number a small number of subsection images (1800/9000)
is taken from the ”known subsurface area” for every geological section and used in the training
set. Subsequently the generated images are used to generate velocity arrays for the target RGBs
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Table 1. Geotechnical Properties of Section A

Geomaterial category σci(Mpa) GSI Erm(Mpa) Vp(m/s) ∗RGB

Claystone, Calcareous claystone 7.60 29 822 588 (150,150,150)
Sandstone, Calcareous sandstone 14.25 43 2487 1022 (0,255,255)
Breccia, Calcareous Breccia 17.10 55 5397 1506 (255,255,255)
Sandstone-calc.sandstone with - - - - -
claystone-calc. claystone intercalations 8.55 35 1244 723 (0,255,0)
Siltstone and sandstone alternations 9.03 35 1243 723 (0,0,0)
Marly limestone 20.90 42 2851 1095 (0,0,255)
Thin bedded marly limestone 20.90 51 4927 1439 (255,0,255)
Karstic marly limestone 20.90 47 3748 1255 (255,255,0)
Limestone 28.50 67 14184 2441 (255,0,0)

*RGB codes shown in section A shown in Figure 3.

Table 2. Geotechnical Properties of Section B

Geomaterial category σci(Mpa) GSI Erm(Mpa) Vp(m/s) ∗RGB

Claystone, Calcareous claystone 7.60 38 1382 762 (75,75,75)
Sandstone, Calcareous sandstone 14.25 45 2774 1080 (150,150,0)
Breccia, Calcareous Breccia 17.10 49 3995 1296 (125,125,125)
Claystone -calc. claystone - - - - -
with sandstone intercalations 9.03 32 1084 675 (0,125,0)
Siltstone and limestone intercalations 14.73 29 1176 703 (0,0,20)
Sandstone-calc.sandstone with - - - - -
claystone-calc. claystone intercalations 8.55 40 1635 829 (0,0,125)
Siltstone and sandstone alternations 9.03 37 1426 774 (125,0,125)
Calcareous marl 12.35 48 3214 1162 (132,132,132)
Marly limestone 20.90 56 6476 1650 (125,0,0)
Thin bedded marly limestone 20.90 60 8060 1840 (255,255,255)
Limestone 28.50 55 7160 1734 (5,5,0)

*RGB codes shown in section B shown in Figure 4.

Table 3. Geotechnical Properties of Section C

Geomaterial category σci(Mpa) GSI Erm(Mpa) Vp(m/s) ∗RGB

Limestone 38.00 57 9223 1962 (150,150,150)
Claystone, Calcareous claystone 7.60 42 1720 847 (75,75,75)
Sandstone, Calcareous sandstone 14.25 36 1696 841 (150,150,0)
Breccia, Calcareous Breccia 17.10 48 3581 1223 (125,125,125)
Claystone -calc. claystone - - - - -
with sandstone intercalations 9.03 36 1313 740 (0,125,0)
Siltstone and sandstone alternations 9.03 27 781 571 (125,0,125)
Marly limestone 20.90 15200 51 1415 (125,0,0)
Thin bedded marly limestone 20.90 49 4297 1340 (255,255,255)
Karstic marly limestone 20.90 38 2355 992 (255,255,0)
Limestone 28.50 61 10216 2065 (5,5,0)

*RGB codes shown in section C shown in Figure 5.

Table 4. Density used for modelling various section layers

Section ρmean(kg/m
3) std(kg/m3)

Geomaterials of Section A 2380 79.06
Geomaterials of Section B 2380 87.65
Geomaterials of Section C 2395 98.46
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Figure 3. Geotechnical section A, with total length of 1.2 km. The arrow shows the ”TEST- Ground Truth”
image for this section.

Figure 4. Geotechnical section B, with total length of 1.2 km. The arrow shows the ”TEST- Ground Truth”
image for this section.

Figure 5. Geotechnical section C, with total length of 600 m. The arrow shows the ”TEST- Ground Truth”
image for this section.

according to the mapping shown in Tables 1-3. Then, the calculation of the pair seismic shots that
are used for the training of the network is implemented from the solution of the constant density
acoustic 2D wave equation in the time domain according to the finite differences method which
is defined as R = ∂2u

∂t2 − c2∇2u , where u is the displacement field, c is the p wave velocity field
and R is the Ricker source propagator.
The wave equation is solved for a Ricker Source at depth of 1 m with a peak frequency of 0.010
KHz, receivers placed every 1m, at depth of 1m and the simulation lasted 2000 milliseconds. In
this study we have assumed a single source in order to aim at low costs, although the total number
of receivers could also be important. So we have assumed a very dense in-line arrangement of
surface receivers in the simulations in order to transfer to the network a greater amount of infor-
mation from the seismic recordings. The in-line spacing between receivers could be optimised
accordingly in order to lead to a more realistic placement.

2.4 DNN-based FWI setup

When the solution of the differential equation is completed the velocities and the corresponding
displacements are stored in arrays with dimensions 2000x200 for the displacements in the x-t
domain and 50x200 for the velocities in the x-z domain, and are written into two separate Matlab
files (.mat) and then passed to the FCNVMB for the training and testing procedures. The train-
ing/testing ratio used in the process is 9000:2250 for both experiments 1 and 2. The number of the
epochs is set to be 100, the test batch size equal to 10 and the learning rate used is set to be equal
to 1e-3. The training process lasted 8.50 hours on a GPU NVIDIA RTX A4000 while the testing
process took a couple of minutes.
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3 EXPERIMENTAL RESULTS

In all velocity images that can be seen in Figure 6, the horizontal axis shows the width in kilome-
ters and the vertical axis the depth in kilometers, while the maximum depth is shown at the zero
0.00 km level. Velocity has units of km/s. Finally in the velocity profile diagram the velocity is in
m/s units while the maximum depth is at the 50.00 m level of the vertical axis. Experiment 1 is
shown in column 1, experiment 2 at column2 and ground truth (GT) at column 3.

3.1 Quantitative comparison of results in terms of image metrics psnr and ssim

The peak signal to noise ratio (psnr) is a quality image metric that the higher it is, the better the
quality of the image being considered. The psnr between the prediction of the network trained
on the experiment 2 and ground truth image is improved by 11.42 % compared to the prediction
of the trained on the experiment 1 and ground truth for section A (Figure 6,1st row), 4.5 %
for section B (Figure 6,2nd row) and 27.75 % for section C (Figure 6,3rd row). The structural
similarity index (ssim) from the other hand is a quality metric used to measure how similar two
images are, based on loss of correlation, luminance distortion and contrast distortion. For the
case of experiment 2 ssim is calculated to be 3.11 %, 1.11 % and 0.9 % greater than the ssim
calculated for the experiment 1. More specifically the (psnr,ssim) values for the 2nd dataset are
(16.00,0.928),(23.75,0.984) and (30.07,0.99) for sections A B and C respectively which can be
considered as high values.

3.2 Quantitative comparison of results in terms of metrics applied on velocity values, mse

The extracted values for the ground truth, and the predictions for both experiments are plotted for
a vertical cut in the middle (at 100m position )of the elastic space and can be seen in Figure 6
(column d). The mean squared error (mse) for experiment 1 regarding to the three sections A,B,C
is 2.01,3.77 and 5.38 greater compared to the mean squared error calculated for experiment 2.

3.3 Qualitative comparison of results

As we can observe in Figure 6, 1st row, we have a complete prediction of the velocities for the
case of the experiment 2 (2nd column) training. There is some weakness in the prediction of the
thickness of the geological layers and in the shape of the geological layers. This is also reflected
as a lag in the vertical one-dimensional velocity profile in which we see that the prediction reaches
the correct estimated value but little later for the specific GT image. For the case of experiment 1
the predicted image (column 1) does not capture neither the geometry neither the correct velocity
range of the GT image. The only successful point in the prediction is the first meters of the velocity
image where the network correctly predicts low velocity values, but incorrectly maintains them
at greater depths. It is worth at this point to comment on the fact that in this example the mse
difference between the two datasets (2.01 % with respect to the values of the velocity profile) is
much smaller compared to the next two images not because the network approaches the correct
value but because the delay in estimating the correct velocity from the 2nd dataset also leads to a
very large mse error calculation which is not quite representative for this specific case since the
prediction is quite good. In Figure 6, 2nd row, we see the successful prediction after training on
2 experiment and unlike before we do not notice the same degree of failure in the prediction of
the layer thickness. This is also reflected in the vertical profile where all branches except the third
are in perfect coincidence. On the contrary, the prediction concerning the experiment 1 fails to
capture the gradation of bottom velocities so good. In Figure 6, 3rd row, we see the successful
prediction after training on experiment 2 as opposed to the prediction after training on experiment
1 where it completely fails to predict the velocity of the upper levels. This failure is what levels
up the mse since it involves many pairs of velocity values. Also as we see at greater depths the
network incorrectly predicts some low velocity values that do not exist.
Constraining the training dataset to velocity values obtained from just a single borehole data in
combination with the use of subsection images in parallel with application of elastic displacements
can strengthen the prediction ability of the network and lead to successful results on field data.
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Figure 6. Reconstructed Velocity Models. Geotechnical Sections: A-1st row,B-2nd row and C-3rd row,
Experiments: (column a) prediction 1, (column b) prediction 2, (column c) ground truth, (column d) middle-
vertical 1D velocity profile from which mse of velocities is calculated.

3.4 Conclusions

The results directly show that the proposed method can lead to great performances over field data.
Especially for tunnel construction in cases when the soil overburden above the tunnel crown is of
great height and in general when making sampling boreholes is difficult, DNN-FWI can predict
for the unknown subsurface based on a very limited- sparse number of auxiliary boreholes.
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