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This document contains exclusively Chapter 5 of the author’s PhD thesis titled Facility Location
Problems and Games. Besides the page numbering (where page 1 in this document corresponds
to page 75 in the thesis), the chapter is reproduced here in its entirety and appears identically
to how it appears in the thesis. This document serves to act as a reference chapter. Interested
readers, and those desiring a more complete introduction to the notation used and the material
explored in this chapter, are encouraged to read the preceding and subsequent chapters in
the thesis. Additionally, the related paper Competitive Location Problems: Balanced Facility
Location and the One-Round Manhattan Voronoi Game may be of interest.

The following results from Facility Location Problems and Games are referenced in the chapter:

Lemma 4.1.1. For any arena P, Black can place a point b within any bounded Voronoi cell
V ◦(w) of White’s in order to steal at least 50(1− ε)% of V ◦(w) for any ε > 0.

Lemma 4.1.2. For any arena P, if the Voronoi cells V ◦(w) have unequal area then Black can
win.

Lemma 4.1.3. For any arena P, if any Voronoi cell V ◦(w) has unequal area either side of the
horizontal or vertical through w then Black can win.

Theorem 4.2.1. The only winning arrangement for White is the 1× n arrangement for p
q ≥ n.

Otherwise Black wins.

Corollary 4.2.1. For any Voronoi cell V ◦(w) in a winning arrangement of White’s, if V ◦(w)
does not touch opposite sides of P then its arms are all equal length.

Lemma 4.2.2. For any Voronoi cell V ◦(w) in a winning arrangement of White’s, if one of the
arms does not touch the boundary of P then the opposite arm parallel to this one is no shorter
than the arms perpendicular to these arms.

Lemma 4.2.3. For any Voronoi cell V ◦(w) in a winning arrangement of White’s, if one of the
arms does not touch the boundary of P then the arms perpendicular to this arm are equal.ar
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Chapter 5

The Stackelberg Game: keeping
regular

Following the solution to the One-Round Voronoi Game we naturally may want to consider
similar games based upon the competitive locating of points and subsequent dividing of territories.
In order to appease White’s tears after they have potentially been tricked into going first in a
game of point-placement, an alternative game (or rather, an extension of the previous game) is
the Stackelberg game where all is not lost if Black gains over half of the contested area.

The set-up is identical to that of the Voronoi game. We consider the Voronoi game as before
with two players, White and Black, who take turns to place a total of n points into the playing
arena (without the ability to place atop or move an existing point) before it is partitioned into
the Voronoi diagram of these points. Each player gains a score equal to the area of the Voronoi
cells generated by their points W and B respectively and each player’s objective is to maximise
this score not to be more than their competitor’s score, but to have the largest score. That is,
White and Black wish to maximise their respective scores

W =
∑
w∈W

Area(V (w))

B =
∑
b∈B

Area(V (b))

where, as before, we have the notation scheme:

VD(W ) = {V ◦(x) : x ∈W}
VD(W ∪ b) = {V +(x) : x ∈W ∪ b}
VD(W ∪B) = {V (x) : x ∈W ∪B} .

This is subtly different to the Voronoi game wherein each player cared solely about controlling
more than the other player (or over half of the playing arena) and so did not present an
arrangement in such cases where they could not win over half of the playing area. Because of
this, the Stackelberg game is the obvious extension to the Voronoi game.

Stackelberg games (generally defined to be a game in which a leader and a follower compete for
certain quantities) present themselves in a wide range of applications so, perhaps unsurprisingly,
there is substantial literature on a diverse range of interpretations. For a full classification of
these competitive facility location problems and their many variations see the survey Plastria
(2001), and the detailed Eiselt and Laporte (1997) for a study focused upon the more sequential
problems.

Many bi-level Stackelberg location models make use of an attractiveness measure for each
facility, the most popular of which is the gravity-based model proposed by Reilly (1931) wherein
the patronage of each customer is decided (deterministically or randomly) based upon a function
proportional to the attractiveness score of the facility and inversely proportional to the distance
between the facility and customer. Both the location and attractiveness of new facilities is
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allowed to be optimised in Küçükaydın, Aras, and Kuban Altınel (2012) where the leader locates
new facilities within a market containing the follower’s existing facilities in order to maximise
captured demand, before the follower is allowed the opportunity to adjust their facilities.

Given one existing facility and a number of demand points, Drezner (1982) located a new
facility in order to maximise its attracted buying power both in the situation where the existing
facility is fixed, and where the follower is allowed to open a new facility. A centroid model is
proposed in the presence of continuous demand in Bhadury, Eiselt, and Jaramillo (2003) which
gives the follower the opportunity to respond to the leader’s facility placement with placements
of their own.

Serra and Revelle (1994) introduced a model wherein both players locate the same number of
facilities in a network with customers patronising only the closest facility, and two accompanying
heuristic algorithms are presented therein. However, in a cruel twist the objective of each player
is to minimise the score of the other player. Nevertheless this may not be a surprising sentiment
of each player since, as Moore and Bard (1990) indicated, the players’ objectives almost always
conflict with one another in the Stackelberg game.

In the hope of some level of benevolence between warring players White and Black, again we
shall focus on the One-Round Stackelberg Game over a rectangular playing arena P with length
p and height q. Just as in the Voronoi game, this is impossible to write in a closed form since
the objectives rely entirely on the relative locations of the other points and so we approach the
problem from a geometrical standpoint.

Firstly we shall note that the winning arrangement found for White for the Voronoi game
carries over to this game since, if p

q ≥ n, it was shown that deviating from this arrangement

in any way would give Black more than pq
2n and so decrease White’s score. We also found the

optimal strategy for Black in response to this arrangement given that the condition p
q ≥ n held

in the proof of Theorem 4.2.1. The supremum of all areas of V +(b1) in Sections III and IV
was found to be pq

2n , achieved when b1 lay atop one of White’s existing points. Therefore Black’s
optimal strategy would be that described in Lemma 4.1.1, placing each separate point as close

as possible to one of White’s points and thereby securing a score of (1−ε)pq
2 .

What remains to be explored for the Stackelberg game is how best White can mitigate the
damage of Black’s placements when 1

n <
p
q < n. [Note that since we will not enforce that p ≥ q

within this chapter we must ensure that p
q < n holds upon reflection in y = x (i.e. for p and q

swapped giving q
p < n), thus providing the 1

n <
p
q condition.]

Since the Lemmas 4.1.2, 4.1.3, 4.2.2, and 4.2.3 outlined significant weaknesses in certain
arrangements, we shall first consider arrangements that still satisfy these results and explore
how Black can best exploit these positions. This investigation begins in Section 5.1 wherein an
early result shows that White must play a certain grid arrangement. From there we consider
Black’s possible responses, exploring their best positions for stealing area from White and then
their best overall strategy for when White plays a row (in Sections 5.2 and 5.3) or a grid (in
Sections 5.4 and 5.5).

5.1 White’s optimal strategy: a grid

It was proven in Chapter 4 that any winning arrangement of White’s points in the Voronoi game
must have cells V ◦(w) of equal area (Lemma 4.1.2), each with every horizontal and vertical half
of the cell equal (Lemma 4.1.3), and that if any arm does not touch the boundary of P then the
opposite arm is not shorter than the perpendicular arms (Lemma 4.2.2) and these perpendicular
arms are of equal length (Lemma 4.2.3). It is natural to wonder what forms an arrangement
can take if it adheres to all of these results, and this is summarised in Lemma 5.1.1.

Firstly, let us define a regular orthogonal grid. A set of n points is a regular orthogonal
a× b grid within P (n = ab and a, b ≥ 1) if, without loss of generality locating the origin at the
bottom left vertex of P, for every point w ∈ W there exists i, j ∈ Z, 0 ≤ i < a and 0 ≤ j < b,
such that w = ( p2a + p

a i,
q
2b + q

b j). Additionally, a regular orthogonal a× b grid is a square regular
orthogonal a× b grid if p

a = q
b . From this point onwards, unless explicitly stated otherwise, we

shall simply use the term grid to mean a regular orthogonal grid, and square grid to mean a
square regular orthogonal grid.
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The following result establishes the properties of an arrangement which satisfies Lemmas 4.1.2,
4.1.3, 4.2.2, and 4.2.3 (Byrne, Fekete, Kalcsics, & Kleist, 2021).

Lemma 5.1.1. For any arrangement W satisfying Lemmas 4.1.2, 4.1.3, 4.2.2, and 4.2.3, if
p
q ≥ n then W is a 1× n grid; otherwise, W is a square grid or no such arrangement exists.

Proof. Firstly let us clarify that, from Theorem 4.2.1, if p
q ≥ n then the only winning strategy

for White in the Voronoi game is a 1 × n row. This, however, does not provide us with our
required result here since we no longer restrict W to being a winning arrangement.

If p
q ≥ n then, by Lemmas 4.1.2 and 4.1.3, the area of every half cell of VD(W ) is pq

2n =
p
q ×

q2

2n ≥
q2

2 . In order to achieve this area, since the height of every cell is bounded above by q,

the left and right arms of every cell must be at least q
2 . If any cell were not to touch opposite

sides of P then, by Corollary 4.2.1, its arms must be of equal length and so would be of length
no less than q

2 which would make it touch the horizontal sides of P . Therefore every cell touches
opposite sides of P. If a cell were to touch both vertical sides of P then, by Lemma 4.2.2, at
least one of the vertical arms would have to be longer than the horizontal arms, the minimum
length therefore being p

2 . If this vertical arm did not touch the boundary of P then the same
logic would apply to the other vertical arm, forcing it to have length at least p

2 , which would
create two vertical arms with lengths summing to p (> q). However, if this arm did touch the
boundary of P then the half cell containing the arm, split along the horizontal arms, would have

area p× p
2 = p2

2 > pq
2n . Thus every cell must touch each horizontal edge of P.

By Lemma 4.2.3 the vertical arms of every cell are therefore q
2 , i.e. every point of W is

placed on the horizontal centre line of P. Noting that all bisectors are now vertical lines, the
only way to distribute these across P in order to divide P into equal areas (of pq

n ) satisfying
Lemma 4.1.2 is to place them at intervals of p

n . This corresponds to the 1× n grid.
For the p

q < n case, let us consider the point w whose cell V ◦(w) contains the bottom left

corner of P. If V ◦(w) were to touch both horizontal edges of P then by Lemma 4.2.2 its left
arm would be of length no less than q

2 , causing the left half of V ◦(w) to have area at least
q2

2 > p
qn ×

q2

2 = pq
2n . V ◦(w) also cannot touch both vertical sides of P by the same argument

presented in the p
q ≥ n case. Therefore we can apply the result from Corollary 4.2.1 and all

arms of the cell are of equal length, d say.
Since the bottom left vertex of P is contained in V ◦(w) there are no CC4(w), CC5(w), CC6(w),

or CC7(w) bisectors, so the entire third quadrant of w contained in P is also contained in V ◦(w).
Therefore the bottom left quadrant of V ◦(w) is a square of area d2. By Lemmas 4.1.2 and 4.1.3,
the top right quadrant of V ◦(w) must also have area d2, and with arms u = r = d this top right
quadrant must also be a square.

Considering the bisector which contributes the vertical segment bounding the top right
quadrant of V ◦(w), the other point, w′ = (x, y), in this bisector must lie on the line y = x− 2d
for 0 ≤ y ≤ d (as shown in Figure 5.1) and no other point may lie between w and this line.
Since B(w,w′) is a bound on the advancement of V ◦(w′) and no other point can be closer than
w or w′ to the lower breakpoint of B(w,w′) (else this would contradict the shape of the top
right quadrant of V ◦(w)), the left arm of w′ must also be of length d.

We can easily show that V ◦(w′) cannot touch opposite sides of P since w is blocking it
from touching both vertical sides of P and to touch both horizontal sides of P would mean,
by Lemma 4.2.3, that its upper and lower arms are equal and so q

2 , contradicting 0 ≤ y ≤ d.
Therefore, utilising Corollary 4.2.1, all arms of V ◦(w′) have length d. This places w′ = (3d, d),
on the same horizontal as w, so the bisector B(w,w′) is vertical, and the bottom right quadrant
of V ◦(w) is also square. This forces the top left quadrant to also be square in order to have
area d2.

Analogously this argument can be applied to the right-hand boundary of V ◦(w′) (since the
bottom left quadrant of V ◦(w′) is now seen to be a d× d square) to establish that its unique
neighbour w′′ has arms of length d and is situated at (5d, d), and can be continued to give a
row of points w(i) = ((2i+ 1)d, d) for i ∈ Z+, giving 2d× 2d square Voronoi cells up until the
right-hand boundary of P . By symmetry the argument is identical for the points above this row
(starting from w we get a column of 2d× 2d square Voronoi cells, and then identically upwards
from w′, and w′′ and so on).
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w

w′

2d

d

d 2d 3d

Figure 5.1: V ◦(w) and a neighbouring point w′.

The iterative use of this argument gives a square grid arrangement. We should be careful
to note, however, that in order for this to work we require that the dimensions of P allow n
squares of length 2d to fit within it. That is, there exists a, b ∈ N such that a = p

2d and b = q
2d

where a× b = n for some d ∈ R+ (alternatively, 4d2 = pq
n gives 2d =

√
pq
n so our conditions are

a =
√

pn
q ∈ N and b =

√
qn
p ∈ N).

Since adherence to Lemmas 4.1.2, 4.1.3, 4.2.2, and 4.2.3 lends an obvious advantage to White
in the Voronoi game, it may also be considered sensible to implement the strategies suggested
by these results in the Stackelberg game. Therefore we shall explore such arrangements in the
Stackelberg setting. Though Lemma 5.1.1 provided constraints on the aspect ratio of P, we
shall explore the a× b grid where a, b > 1, and 1× n row strategies (even relaxing the square
grid constraint) for any aspect ratio to test the relationship between the games and outline how
best White’s positions can be exploited by Black.

5.2 White plays a 1× n row

Firstly we shall explore the placement of Black’s point b1 assuming that White plays their points
in a row. Without loss of generality let this be horizontally (a rotation of P can easily fix this –
note that, whichever rotation we choose, we are only required to explore p

n < q) and label the
vertices of W running from left to right as w1 through to wn. Since White’s arrangement is
repetitive and has such symmetry, our search for Black’s optimal location is greatly simplified
as we need only consider the placement of b1 within a small selection of areas of P.

We want to investigate the possible Voronoi diagrams VD(W ∪ b1) (in order to find the
placement of b1 so as to maximise Area(V +(b1)) which should give us an idea of how Black
should play all of their points). To do this we aim to partition the arena into subsets within
which the Voronoi diagram is structurally identical; that is, the vertices and line segments of
the Voronoi diagram have the same algebraic representation in terms of the coordinates of b1.
We require this so that, once the algebraic representation of the area of V +(b1) is found, we
can maximise this over the partition to find the optimal placement of b1 within that partition,
thereby reducing Black’s problem into many smaller, more manageable subproblems. Since P is
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rectangular and all of White’s bisectors are vertical then, from Averbakh, Berman, Kalcsics, and
Krass (2015), the partitioning lines are simply the configuration lines of each of White’s points.

The partition of the top right quadrant of a Voronoi cell of a general point wi ∈W is shown
in Figure 5.2. Ignoring the bounding above and below of P (taking q to be sufficiently large),
notice that this partition is made up of configuration lines CL1(wj) for every j ≤ i and CL3(wk)
for every k > i, creating exactly n+ 1 partition cells, irrespective of the value of i. For ease of
computation we shall say wi = (0, 0) and b1 = (x, y).

wi−2 wi−1 wi wi+1 wi+2

I

II

III

IV

V

Figure 5.2: The partition of wi in P in a boundless P of fixed width.

Observing the cell structures of V +(b1) for b1 in the first few sections, as shown in Figure
5.3, we can see the repetitive nature of these structures as each configuration line is crossed.

wi−2 wi−1 wi wi+1 wi+2

(a) Voronoi cell V +(b1) for b1 in Section I.

wi−2 wi−1 wi wi+1 wi+2

(b) Voronoi cell V +(b1) for b1 in Section II.

wi−2 wi−1 wi wi+1 wi+2

(c) Voronoi cell V +(b1) for b1 in Section III.

wi−2 wi−1 wi wi+1 wi+2

(d) Voronoi cell V +(b1) for b1 in Section IV .

Figure 5.3: Voronoi cells V +(b1) for b1 in respective sections according to Figure 5.2.
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Let us first observe V +(b1) when b1 is in Section I of Figure 5.2. Assuming i < n, V +(b1)
has vertices (x−y2 , q2 ), (x−y2 , y), (x+y2 , 0), (x+y2 ,− q2 ), ( p

2n + x−y
2 ,− q2 ), ( p

2n + x−y
2 , 0), (x+y2 + p

2n , y),

and (x+y2 + p
2n ,

q
2 ) and so an area

Area(V +(b1)) = (
p

2n
+
x− y

2
− x+ y

2
)× q + 2× (y × q

2
− 1

2
y2)

=
pq

2n
− y2

which is simply maximised at (0, 0). If i = n then this instance of V +(b1) will be maximised by
also playing as close to wn as possible, stealing a total area bounded above by pq

2n .

5.2.1 The encroachment of V +(b1) into V ◦(wj)

It may now seem a daunting task to work out the area of V +(b1) for every possible placement of
b1. Instead, one more appealing approach would be to calculate the area that b1 can steal from
each Voronoi cell in VD(W ), obtaining a formula based on the generator’s location in relation
to wi and to b1. With this information we may be able to piece such areas together in order to
obtain a general formula for the area of V +(b1).

Theft from V ◦(wi) Firstly, the area stolen from V ◦(wi) takes two different forms depending
on whether b1 ∈ CC1(wi) or b1 ∈ CC2(wi). If b1 ∈ CC1(wi) then the area can only take the
form that we have already explored in Section I so we need not continue further along this
avenue. The area stolen from V ◦(wi) if b1 ∈ CC2(wi) has vertices (− p

2n ,
x+y
2 ), (0, x+y2 ), (x, y−x2 ),

( p
2n ,

y−x
2 ), ( p

2n ,
q
2 ), and (− p

2n ,
q
2 ) and totals

Area(V +(b1) ∩ V ◦(wi)) =
p

n
× (

q

2
− x+ y

2
) +

p

2n
× x− 1

2
x2

= −x
2

2
− p

2n
y +

pq

2n
.

Theft from V ◦(wj) for j < i Next let us investigate what occurs when b1 ∈ CC1(wj) for j < i.
If there exists a j such that b1 ∈ CC1(wj) \ CC1(wj+1) then V +(b1) enters V ◦(wj). Therefore,

writing wj as ( (j−i)p
n , 0), the area stolen from V ◦(wj) if b1 ∈ CC1(wj) \ CC1(wj+1) has vertices

(x−y2 + (j−i)p
2n , y), ( (2(j−i)+1)p

2n , x+y2 −
(j−i+1)p

2n ), ( (2(j−i)+1)p
2n , q2 ), and (x−y2 + (j−i)p

2n , q2 ) and totals

Area(V +(b1) ∩ V ◦(wj)) =
1

2
× (

(2(j − i) + 1)p

2n
− (

x− y
2

+
(j − i)p

2n
))

× (
q

2
− y +

q

2
− (

x+ y

2
− (j − i+ 1)p

2n
))

=
1

2
× (

(j − i+ 1)p

2n
− x− y

2
)× (

(j − i+ 1)p

2n
+ q − x+ 3y

2
)

=
1

2
× ((

(j − i+ 1)p

2n
)2 +

(j − i+ 1)p

2n
(q − x+ 3y

2
− x− y

2
)

− x− y
2

(q − x+ 3y

2
))

=
x2

8
− 3y2

8
+
xy

4
+ (

(i− j − 1)p

4n
− q

4
)x+ (

(i− j − 1)p

4n
+
q

4
)y

− (i− j − 1)pq

4n
+

(i− j − 1)2p2

8n2
.

If b1 ∈ CC2(wj) then V +(b1) always steals from V ◦(wj). This area stolen has vertices

( (2(j−i)−1)p2n , x+y2 −
(j−i)p

2n ), ( (j−i)p
n , x+y2 −

(j−i)p
2n ), ( (2(j−i)+1)p

2n , x+y2 −
(j−i+1)p

2n ), ( (2(j−i)+1)p
2n , q2 ),

and ( (2(j−i)−1)p
2n , q2 ) and totals
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Area(V +(b1) ∩ V ◦(wj)) =
p

n
× (

q

2
− (

x+ y

2
− (j − i)p

2n
)) +

1

2
(
p

2n
)2

= − p

2n
x− p

2n
y +

pq

2n
− (4(i− j)− 1)p2

8n2
.

Theft from V ◦(wk) for k > i Now moving our focus over to the Voronoi cells of wk
for k > i, we have the analogous situations explored above. If there exists a k such that

b1 ∈ CC4(wk) \ CC4(wk−1) then V +(b1) enters V ◦(wk). Therefore, writing wk as ( (k−i)pn , 0), the

area stolen from V ◦(wk) if b1 ∈ CC4(wk) \ CC4(wk−1) has vertices ( (2(k−i)−1)p
2n , y−x2 + (k−i−1)p

2n ),

(x+y2 + (k−i)p
2n , y), (x+y2 + (k−i)p

2n , q2 ), and ( (2(k−i)−1)p
2n , q2 ) and totals

Area(V +(b1) ∩ V ◦(wk)) =
1

2
× (

x+ y

2
+

(k − i)p
2n

− (2(k − i)− 1)p

2n
)

× (
q

2
− (

y − x
2

+
(k − i− 1)p

2n
) +

q

2
− y)

=
1

2
× (

x+ y

2
− (k − i− 1)p

2n
)× (

x− 3y

2
− (k − i− 1)p

2n
+ q)

=
x2

8
− 3y2

8
− xy

4
+ (

q

4
− (k − i− 1)p

4n
)x+ (

(k − i− 1)p

4n
+
q

4
)y

− (k − i− 1)pq

4n
+

(k − i− 1)2p2

8n2
.

We are comforted to see that this area is in fact identical, up to a reflection, to that for
b1 ∈ CC2(wj) where the axes have been reflecting in the y-axis (i.e. x becomes −x and i − j
becomes k − i).

And as before, if b1 ∈ CC3(wk) then V +(b1) always steals from V ◦(wk). This area stolen

has vertices ( (2(k−i)−1)p
2n , y−x2 + (k−i−1)p

2n ), ( (k−i)p
n , y−x2 + (k−i)p

2n ), ( (2(k−i)+1)p
2n , y−x2 + (k−i)p

2n ),

( (2(k−i)+1)p
2n , q2 ), and ( (2(k−i)−1)p

2n , q2 ) and totals

Area(V +(b1) ∩ V ◦(wk)) =
p

n
× (

q

2
− (

y − x
2

+
(k − i)p

2n
)) +

1

2
(
p

2n
)2

=
p

2n
x− p

2n
y +

pq

2n
− (4(k − i)− 1)p2

8n2
.

This is again identical to the area found for b1 ∈ CC2(wj) after the reflection described previously.

We have now found all formulae for the area of V +(b1) contained in each Voronoi cell of
VD(W ) when White plays a row. From these we can derive the area for a general cell V +(b1)
where b1 ∈ V ◦(wi) for some i, and find the optimal solution within each of the partition cells
that produce such a structure of V +(b1). Figure 5.4 will depict all optimal locations of b1 within
each section under the certain circumstances we will discuss below unless optima have location
(0, 0), a placement already described in Lemma 4.1.1; Section IV and Section III are depicted
as the poster children for the general Section 2l and Section 2l + 1 results respectively, and for
clarity these respective sections will be shaded in each figure.

5.2.2 V +(b1) not touching the vertical edges of P
Since we have already explored Section I, we will look only at b1 ∈ CC2(wi). Firstly, ignoring
intersections with the vertical boundaries of P, we can see from Figure 5.3 that the left and
right ends of V +(b1) always have the same structure. This is because there is always a j such
that b1 ∈ CC1(wj) \ CC1(wj+1) and similarly always a k such that b1 ∈ CC4(wk) \ CC4(wk−1).
Furthermore, viewing j and k as points l away from i we can write each partition cell in Figure 5.2
as either (CC1(wi−l) \ CC1(wi−l+1))∩ (CC4(wi+l) \ CC4(wi+l−1)) or (CC1(wi−l) \ CC1(wi−l+1))∩
(CC4(wi+l+1) \ CC4(wi+l)) (exploring the top right quadrant of V ◦(wi) means we may interact
with wj either for all j = i− l, . . . , i+ l or for all j = i− l, . . . , i+ l + 1).
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Section 2l Therefore we have one of two area formulae, the first being for b1 ∈ (CC1(wi−l) \
CC1(wi−l+1))∩(CC4(wi+l)\CC4(wi+l−1)) = CC1(wi−l)

⋂i
j=i−l+1 CC2(wj)

⋂i+l−1
j=i+1 CC3(wj)∩CC4(wi+l)

for l ∈ N (this would be Section 2l in Figure 5.2) with

Area(V +(b1)) = Area(V +(b1) ∩ V ◦(wi−l)) +
i−1∑

j=i−l+1

Area(V +(b1) ∩ V ◦(wj))

+Area(V +(b1) ∩ V ◦(wi)) +
i+l−1∑
j=i+1

Area(V +(b1) ∩ V ◦(wj))

+Area(V +(b1) ∩ V ◦(wi+l))

=
x2

8
− 3y2

8
+
xy

4
+ (

(i− (i− l)− 1)p

4n
− q

4
)x+ (

(i− (i− l)− 1)p

4n
+
q

4
)y

− (i− (i− l)− 1)pq

4n
+

(i− (i− l)− 1)2p2

8n2

+
i−1∑

j=i−l+1

(− p

2n
x− p

2n
y +

pq

2n
− (4(i− j)− 1)p2

8n2
)− x2

2
− p

2n
y +

pq

2n

+
i+l−1∑
j=i+1

(
p

2n
x− p

2n
y +

pq

2n
− (4(j − i)− 1)p2

8n2
) +

x2

8
− xy

4
− 3y2

8

+ (
q

4
− ((i+ l)− i− 1)p

4n
)x+ (

((i+ l)− i− 1)p

4n
+
q

4
)y

− ((i+ l)− i− 1)pq

4n
+

((i+ l)− i− 1)2p2

8n2

= −x
2

4
− 3y2

4
+ (

(l − 2)p

2n
+
q

2
)y − (l − 2)pq

2n
+

(l − 1)2p2

4n2

+ (− p

2n
x− p

2n
y +

pq

2n
+

p2

8n2
)× ((i− 1)− (i− l + 1− 1))−

i−1∑
j=i−l+1

(
4(i− j)p2

8n2
)

+ (
p

2n
x− p

2n
y +

pq

2n
+

p2

8n2
)× ((i+ l − 1)− (i+ 1− 1))−

i+l−1∑
j=i+1

(
4(j − i)p2

8n2
)

= −x
2

4
− 3y2

4
+ (

(l − 2)p

2n
+
q

2
)y − (l − 2)pq

2n
+

(l − 1)2p2

4n2

+ (l − 1)(− p
n
y +

pq

n
+

p2

4n2
)− p2

2n2
(
l−1∑
i−j=1

(i− j) +
l−1∑
j−i=1

(j − i))

= −x
2

4
− 3y2

4
+ (− lp

2n
+
q

2
)y +

lpq

2n
− (l − 1)lp2

4n2
.

This area has partial derivatives

δA

δx
= −x

2
δA

δy
= −3y

2
− lp

2n
+
q

2

giving the optimal value b∗1 = (0, q3 −
lp
3n ) with Area(V +(b∗1)) = lpq

3n + (3−2l)lp2
12n2 + q2

12 . This is
depicted in Figure 5.4b for l = 2. For b∗1 to lie within Section 2l we must have x∗ + (l − 1) pn ≤
y∗ ≤ l pn − x∗ so it must be the case that (4l−3)p

n ≤ q ≤ 4lp
n .

If 4lp
n ≤ q then the optimum must lie at the intersection of x = 0 and y = l pn − x (since

δA
δx = −x2 , the area will always increase as x moves towards 0 and since 4lp

n ≤ q the global
optimum lies above Section 2l). Therefore the optimum in this section is b∗1 = (0, l pn ) achieving

Area(V +(b1)) = lpq
n + (1−6l)lp2

4n2 . This is depicted in Figure 5.4a.
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Alternatively, if (4l−3)p
n ≥ q then the optimum must lie at the intersection of x = 0 and

y = x+ (l − 1) pn (since δA
δx = −x2 , the area will always increase as x moves towards 0 and since

(4l−3)p
n ≥ q the global optimum lies below Section 2l). Therefore the optimum in this section

is b∗1 = (0, (l − 1) pn ) achieving Area(V +(b1)) = (2l−1)pq
2n − 3(2l−1)(l−1)p2

4n2 . This is depicted in
Figure 5.4c.

wi−2 wi−1 wi wi+1 wi+2

(a) b1 = (0, l p
n
) only if 4lp

n
≤ q.

wi−2 wi−1 wi wi+1 wi+2

(b) b1 = (0, q
3
− lp

3n
) only if (4l−3)p

n
≤ q ≤ 4lp

n
.

wi−2 wi−1 wi wi+1 wi+2

(c) b1 = (0, (l − 1) p
n
) only if (4l−3)p

n
≥ q.

Figure 5.4: Maximal area Voronoi cells V +(b1) for b1 within Section 2l not touching the vertical
edges of P.

Section 2l + 1 The other area formula for b1 ∈ (CC1(wi−l) \ CC1(wi−l+1)) ∩ (CC4(wi+l+1) \
CC4(wi+l)) = CC1(wi−l)

⋂i
j=i−l+1 CC2(wj)

⋂i+l
j=i+1 CC3(wj) ∩ CC4(wi+l+1) for l ∈ N (this would

be Section 2l + 1 in Figure 5.2) is, adapting from the formula found for Section 2l,

Area(V +(b1)) = Area(V +(b1) ∩ V ◦(wi−l)) +
i−1∑

j=i−l+1

Area(V +(b1) ∩ V ◦(wj))

+Area(V +(b1) ∩ V ◦(wi)) +
i+l∑

j=i+1

Area(V +(b1) ∩ V ◦(wj))

+Area(V +(b1) ∩ V ◦(wi+l+1))

= −x
2

4
− 3y2

4
+ (− lp

2n
+
q

2
)y +

lpq

2n
− (l − 1)lp2

4n2
−
(
x2

8
− 3y2

8
− xy

4

+ (
q

4
− ((i+ l)− i− 1)p

4n
)x+ (

((i+ l)− i− 1)p

4n
+
q

4
)y − ((i+ l)− i− 1)pq

4n

+
((i+ l)− i− 1)2p2

8n2

)
+

p

2n
x− p

2n
y +

pq

2n
− (4((i+ l)− i)− 1)p2

8n2

+
x2

8
− 3y2

8
− xy

4
+ (

q

4
− ((i+ l + 1)− i− 1)p

4n
)x+ (

((i+ l + 1)− i− 1)p

4n
+
q

4
)y

− ((i+ l + 1)− i− 1)pq

4n
+

((i+ l + 1)− i− 1)2p2

8n2

9



= −x
2

4
− 3y2

4
+ (− lp

2n
+
q

2
)y +

lpq

2n
− (l − 1)lp2

4n2

−
(
p

4n
x− p

4n
y +

pq

4n
+

(−2l + 1)p2

8n2

)
+

p

2n
x− p

2n
y +

pq

2n
− (4l − 1)p2

8n2

= −x
2

4
− 3y2

4
+

p

4n
x+ (− (2l + 1)p

4n
+
q

2
)y +

(2l + 1)pq

4n
− l(l + 1)p2

4n2
.

This area has partial derivatives

δA

δx
= −x

2
+

p

4n
δA

δy
= −3y

2
− (2l + 1)p

4n
+
q

2

giving the optimal value b∗1 = ( p
2n ,

q
3 −

(2l+1)p
6n ) and Area(V +(( p

2n ,
q
3 −

(2l+1)p
6n ))) = (2l+1)pq

6n −
(2l2+2l−1)p2

12n2 + q2

12 . For b∗1 to lie within Section 2l we must have l pn − x∗ ≤ y∗ ≤ x∗ + l pn so it

must be the case that (4l−1)p
n ≤ q ≤ (4l+2)p

n . This is depicted in Figure 5.4e.

If (4l+2)p
n ≤ q then the optimum must lie at the intersection of x = p

2n and y = x+ l pn (since

x∗ = p
2n does not restrict the values of y over Section 2l + 1 and since (4l−1)p

n ≥ q the global

optimum lies above Section 2l + 1). Therefore the optimum in this section is b∗1 = ( p
2n ,

(2l+1)p
2n )

achieving Area(V +(b1)) = (2l+1)pq
2n − (6l2+6l+1)p2

4n2 . This is depicted in Figure 5.4d.

Alternatively, if (4l−1)p
n ≥ q then the optimum must lie at the intersection of x = p

2n and
y = l pn − x (since x∗ = p

2n does not restrict the values of y over Section 2l + 1 and since
(4l−1)p

n ≥ q the global optimum lies below Section 2l+ 1). Therefore the optimum in this section

is b∗1 = ( p
2n ,

(2l−1)p
2n ) achieving Area(V +(b1)) = lpq

n −
(3l−1)lp2

2n2 . This is depicted in Figure 5.4f.

wi−2 wi−1 wi wi+1 wi+2

(d) b1 = ( p
2n

, (2l+1)p
2n

) only if (4l+2)p
n

≤ q.

wi−2 wi−1 wi wi+1 wi+2

(e) b1 = ( p
2n

, q
3
− (2l+1)p

6n
) only if (4l−1)p

n
≤ q ≤

(4l+2)p
n

.

wi−2 wi−1 wi wi+1 wi+2

(f) b1 = ( p
2n

, (2l−1)p
2n

) only if (4l−1)p
n

≥ q.

Figure 5.4: Maximal area Voronoi cells V +(b1) for b1 within Section 2l + 1 not touching the
vertical edges of P.
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5.2.3 V +(b1) touching only the leftmost vertical edge of P
Now the only areas not yet calculated are those that intersect the vertical boundaries of P.
Since placing b1 in Section 2l will cause V +(b1) to steal from V ◦(wj) for j = i− l, ..., i+ l and
placing b1 in Section 2l + 1 will cause V +(b1) to steal from V ◦(wj) for j = i − l, ..., i + l + 1,
V +(b1) intersects a vertical boundary of P if b1 is in Section 2l and i− l ≤ 0 or i+ l > n, or if
b1 is in Section 2l + 1 and i− l ≤ 0 or i+ l + 1 > n. That is, V +(b1) will intersect the leftmost
boundary of P if b1 is placed in Section 2i or above, and the rightmost boundary of P if placed
in Section 2(n− i) + 1 or above.

Section 2l If i ≤ n
2 then it can be the case that V +(b1) intersects only the leftmost boundary

(and not the rightmost boundary) of P. For this, b1 will have to be contained in Sections 2i
to 2(n− i). In order to compute the area of V +(b1) for b1 within these sections, we can take
the area calculated previously for b1 in Section 2l where V +(b1) does not touch either vertical
edge of P and remove the extra areas included in the previous calculation which do not exist
in the set-up studied here (i.e. the areas entering V ◦(wj) for j < 1); in calculations presented
henceforth, whenever we use a previously formulated area expression and wish to remove an area
from the original calculation, we shall display the foreign (or phantom) area A being removed
within quotation marks: “A”. Thus, if b1 is in Section 2l for l = i, ..., n− i then, for i > 1,

Area(V +(b1)) =
i−1∑
j=1

Area(V +(b1) ∩ V ◦(wj)) +Area(V +(b1) ∩ V ◦(wi))

+
i+l−1∑
j=i+1

Area(V +(b1) ∩ V ◦(wj)) +Area(V +(b1) ∩ V ◦(wi+l))

= −x
2

4
− 3y2

4
+ (− lp

2n
+
q

2
)y +

lpq

2n
− (l − 1)lp2

4n2
− “Area(V +(b1) ∩ V ◦(wi−l))”

−
0∑

j=i−l+1

“Area(V +(b1) ∩ V ◦(wj))”

= −x
2

4
− 3y2

4
+ (− lp

2n
+
q

2
)y +

lpq

2n
− (l − 1)lp2

4n2
−
(
x2

8
− 3y2

8
+
xy

4

+ (
(i− (i− l)− 1)p

4n
− q

4
)x+ (

(i− (i− l)− 1)p

4n
+
q

4
)y

− (i− (i− l)− 1)pq

4n
+

(i− (i− l)− 1)2p2

8n2

)
−

0∑
j=i−l+1

(− p

2n
x− p

2n
y +

pq

2n
− (4(i− j)− 1)p2

8n2
)

= −3x2

8
− 3y2

8
− xy

4
− (

(l − 1)p

4n
− q

4
)x+ (− (3l − 1)p

4n
+
q

4
)y +

(3l − 1)pq

4n

− (l − 1)(3l − 1)p2

8n2
− (− p

2n
x− p

2n
y +

pq

2n
+

p2

8n2
)× (0− (i− l + 1− 1))

+
p2

2n2

0∑
j=i−l+1

(i− j)

= −3x2

8
− 3y2

8
− xy

4
+ (

(l − 2i+ 1)p

4n
+
q

4
)x+ (− (l + 2i− 1)p

4n
+
q

4
)y

+
(l + 2i− 1)pq

4n
− (3l2 − 3l − i+ 1)p2

8n2
+

p2

2n2
(l − 1 + i)(l − 1− (i− 1))

2

= −3x2

8
− 3y2

8
− xy

4
+ (

(l − 2i+ 1)p

4n
+
q

4
)x+ (− (l + 2i− 1)p

4n
+
q

4
)y

+
(l + 2i− 1)pq

4n
− (l2 − l + 1− 3i+ 2i2)p2

8n2
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or, for i = 1,

Area(V +(b1)) = Area(V +(b1) ∩ V ◦(w1)) +
l∑

j=2

Area(V +(b1) ∩ V ◦(wj)) + Area(V +(b1) ∩ V ◦(wl+1))

= −x
2

2
− p

2n
y +

pq

2n
+

l∑
j=2

(
p

2n
x− p

2n
y +

pq

2n
− (4(j − 1)− 1)p2

8n2
)

+
x2

8
− 3y2

8
− xy

4
+ (

q

4
− (l − 1)p

4n
)x+ (

(l − 1)p

4n
+
q

4
)y

− (l − 1)pq

4n
+

(l − 1)2p2

8n2

= −3x2

8
− 3y2

8
− xy

4
+ (

q

4
− (l − 1)p

4n
)x+ (

(l − 3)p

4n
+
q

4
)y − (l − 3)pq

4n

+
(l − 1)2p2

8n2
+ (l − 1)(

p

2n
x− p

2n
y +

pq

2n
+

5p2

8n2
)− p2

2n2

l∑
j=2

(j)

= −3x2

8
− 3y2

8
− xy

4
+ (

q

4
+

(l − 1)p

4n
)x+ (− (l + 1)p

4n
+
q

4
)y +

(l + 1)pq

4n

− l(l − 1)p2

8n2

(identical to the previous area upon a substitution of i = 1, so we need only use this former
representation).

This area has partial derivatives

δA

δx
= −3x

4
− y

4
+

(l − 2i+ 1))p

4n
+
q

4
δA

δy
= −3y

4
− x

4
− (l + 2i− 1))p

4n
+
q

4

⇒ −2x∗ +
(2l − 2i+ 1)p

2n
+
q

2
= 0⇒ x∗ =

(2(l − i) + 1)p

4n
+
q

4

and⇒ 2y∗ +
(2l + 2i− 1)p

2n
− q

2
= 0⇒ y∗ = − (2(l + i)− 1)p

4n
+
q

4

but x∗ > p
2n (since p

4n <
q
4 ) so we are required to investigate when b1 is placed on the boundary

of Section 2l. Note that since the global optimum lies to the right of Section 2l we will not find
the optimum on the boundary x = 0 outside its endpoints.

• Upon boundary y = x+(l−1) pn we have Area(V +((x, x+ (l−1)p
n ))) = −x2+(− (2(l+i)−3)p

2n +
q
2 )x + (l+i−1)pq

2n − (6l2+4il+2i2−11l−7i+6)p2

8n2 , maximised by x∗ = − (2(l+i)−3)p
4n + q

4 giving

Area(V +((− (2(l+i)−3)p
4n + q

4 ,
(2(l−i)−1)p

4n + q
4 ))) = (2(l+i)−1)pq

8n − (8l2−10l−2i+3)p2

16n2 + q2

16 . How-

ever, for 0 ≤ − (2(l+i)−3)p
4n + q

4 ≤
p
2n to be true we require (2(l+i)−3)p

n ≤ q ≤ (2(l+i)−1)p
n . If

(2(l+i)−3)p
n ≥ q then the optimum lies on the endpoint (0, (l−1)pn ) giving Area(V +((0, (l−1)pn )))

= (l+i−1)pq
2n − (6l2+4il+2i2−11l−7i+6)p2

8n2 , and if (2(l+i)−1)p
n ≤ q then the optimum lies on the

endpoint ( p
2n ,

(2l−1)p
2n ) giving Area(V +(( p

2n ,
(2l−1)p

2n ))) = (2(l+i)−1)pq
4n − (6l2+2i2+4il−7l−3i+2)p2

8n2 .

• Upon boundary y = l pn − x we have Area(V +((x, lpn − x))) = −x2

2 + lp
n x+ (2(l+i)−1)pq

4n −
(6l2+2i2+4il−3l−3i+1)p2

8n2 , maximised by x∗ = lp
2n which is only in Section 2l for l = 1.

So if l > 1 the optimum on this boundary will lie on the endpoint ( p
2n ,

(2l−1)p
2n ) giving

Area(V +(( p
2n ,

(2l−1)p
2n ))) = (2(l+i)−1)pq

4n − (6l2+2i2+4il−7l−3i+2)p2

8n2 .

Since the optimum over boundary y = l pn − x is found at the endpoint of the bound-
ary y = x + (l − 1) pn , we need only take the results from the latter for the optimal place-

ment over all of Section 2l. This means that our optimal areas are: if (2(l+i)−1)p
n ≤ q then
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Area(V +(( p
2n ,

(2l−1)p
2n ))) = (2(l+i)−1)pq

4n − (6l2+2i2+4il−7l−3i+2)p2

8n2 ; if (2(l+i)−3)p
n ≤ q ≤ (2(l+i)−1)p

n

then Area(V +((− (2(l+i)−3)p
4n + q

4 ,
(2(l−i)−1)p

4n + q
4 ))) = (2(l+i)−1)pq

8n − (8l2−10l−2i+3)p2

16n2 + q2

16 ; and if
(2(l+i)−3)p

n ≥ q then Area(V +((0, (l−1)pn ))) = (l+i−1)pq
2n − (6l2+4li+2i2−11l−7i+6)p2

8n2 .

Section 2l+ 1 Alternatively, if V +(b1) hits the leftmost, and not the rightmost, boundary (so
i < n

2 ) and b1 is in Section 2l + 1 for l = i, ..., n− i− 1 then, for i > 1,

Area(V +(b1)) =
i−1∑
j=1

Area(V +(b1) ∩ V ◦(wj)) + Area(V +(b1) ∩ V ◦(wi))

+
i+l∑

j=i+1

Area(V +(b1) ∩ V ◦(wj)) +Area(V +(b1) ∩ V ◦(wi+l+1))

= −3x2

8
− 3y2

8
− xy

4
+ (

(l − 2i+ 1))p

4n
+
q

4
)x+ (− (l + 2i− 1))p

4n
+
q

4
)y

+
(l + 2i− 1)pq

4n
− (l2 − l + 1− 3i+ 2i2)p2

8n2
−
(
x2

8
− 3y2

8
− xy

4

+ (
q

4
− ((i+ l)− i− 1)p

4n
)x+ (

((i+ l)− i− 1)p

4n
+
q

4
)y − ((i+ l)− i− 1)pq

4n

+
((i+ l)− i− 1)2p2

8n2

)
+

p

2n
x− p

2n
y +

pq

2n
− (4((i+ l)− i)− 1)p2

8n2

+
x2

8
− 3y2

8
− xy

4
+ (

q

4
− ((i+ l + 1)− i− 1)p

4n
)x+ (

((i+ l + 1)− i− 1)p

4n
+
q

4
)y

− ((i+ l + 1)− i− 1)pq

4n
+

((i+ l + 1)− i− 1)2p2

8n2

= −3x2

8
− 3y2

8
− xy

4
+ (

(l − 2i+ 1))p

4n
+
q

4
)x+ (− (l + 2i− 1))p

4n
+
q

4
)y

+
(l + 2i− 1)pq

4n
− (l2 − l + 1− 3i+ 2i2)p2

8n2
− (l − 1)2p2

8n2
+
l2p2

8n2

+
p

4n
x− p

4n
y +

pq

4n
− (4l − 1)p2

8n2

= −3x2

8
− 3y2

8
− xy

4
+ (

(l − 2i+ 2)p

4n
+
q

4
)x+ (− (l + 2i)p

4n
+
q

4
)y

+
(l + 2i)pq

4n
− (l2 + l + 2i2 − 3i+ 1)p2

8n2

or, for i = 1,

Area(V +(b1)) = Area(V +(b1) ∩ V ◦(wi)) +
l+1∑
j=2

Area(V +(b1) ∩ V ◦(wj)) +Area(V +(b1) ∩ V ◦(wl+2))

= −3x2

8
− 3y2

8
− xy

4
+ (

q

4
+

(l − 1)p

4n
)x+ (− (l + 1)p

4n
+
q

4
)y +

(l + 1)pq

4n

− l(l − 1)p2

8n2
+ (

p

2n
x− p

2n
y +

pq

2n
− (4l − 1)p2

8n2
)

+
x2

8
− 3y2

8
− xy

4
+ (

q

4
− lp

4n
)x+ (

lp

4n
+
q

4
)y − lpq

4n
+
l2p2

8n2

− (
x2

8
− 3y2

8
− xy

4
+ (

q

4
− (l − 1)p

4n
)x+ (

(l − 1)p

4n
+
q

4
)y − (l − 1)pq

4n
+

(l − 1)2p2

8n2
)

= −3x2

8
− 3y2

8
− xy

4
+ (

lp

4n
+
q

4
)x+ (− (l + 2)p

4n
+
q

4
)y +

(l + 2)pq

4n

− l(l + 1)p2

8n2

13



(which, again, we check is identical to the representation found for i > 1 so we shall proceed to
use the former formulation).

This area has partial derivatives

δA

δx
= −3x

4
− y

4
+

(l − 2i+ 2)p

4n
+
q

4
δA

δy
= −3y

4
− x

4
− (l + 2i)p

4n
+
q

4

⇒ −2x∗ +
(2(l − i) + 3)p

2n
+
q

2
= 0⇒ x∗ =

(2(l − i) + 3)p

4n
+
q

4

and⇒ −2y∗ − (2l + 2i+ 1)p

2n
+
q

2
= 0⇒ y∗ = − (2(l + i) + 1)p

4n
+
q

4
.

Using identical logic to that in Section 2l, x∗ > p
2n so we explore the boundaries (all

boundaries this time).

• Upon boundary x = p
2n we have Area(V +(( p

2n , y))) = − 3y2

8 + (− (2l+4i+1)p
8n + q

4 )y +
(2l+4i+1)pq

8n − (4l2+8i2−4i−1)p2
32n2 , maximised by y∗ = − (2l+4i+1)p

6n + q
3 giving Area(V +(( p

2n ,

− (2l+4i+1)p
6n + q

3 ))) = (2l+4i+1)pq
12n + (−2l2−2i2+4il+l+5i+1)p2

24n2 + q2

24 . However, for (2l−1)p
2n ≤ y∗ ≤

(2l+1)p
2n we require (4(l+i)−5)p

2n ≤ q ≤ (8l+4i+7)p
2n . If (4(l+i)−5)p

2n ≥ q then the optimum lies on

the endpoint ( p
2n ,

(2l−1)p
2n ) giving Area(V +(( p

2n ,
(2l−1)p

2n ))) = (l+i)pq
2n − (6l2+2i2+4il−3l−3i)p2

8n2 ,

and if (8l+4i+7)p
2n ≤ q then the optimum lies on the endpoint ( p

2n ,
(2l+1)p

2n ) giving Area(V +(

( p
2n ,

(2l+1)p
2n ))) = (2(l+i)+1)pq

4n − (6l2+2i2+4il+5l+i+1)p2

8n2 .

• Upon boundary y = lp
n − x we have Area(V +((x, lpn − x))) = −x2

2 + (2l+1)p
2n x+ (l+i)pq

2n −
(6l2+2i2+4il−3i+l+1)p2

8n2 , maximised by x∗ = (2l+1)p
2n > p

2n , so the optimum is achieved at
x = p

2n , the value of which has been found above.

• Upon boundary y = x+ lp
n we have Area(V +((x, x+ lp

n ))) = −x2 + (− (2(l+i)−1)p
2n + q

2 )x+
(l+i)pq

2n − (6l2+2i2+4il+l−3i+1)p2

8n2 , maximised by x∗ = − (2(l+i)−1)p
4n + q

4 giving Area(V +

((− (2(l+i)−1)p
4n + q

4 ,
(2(l−i)+1)p

4n + q
4 ))) = (2l+2i+1)pq

8n − (8l2+6l−2i+1))p2

16n2 + q2

16 . However, for

0 ≤ x∗ ≤ p
2n we require (2(l+i)−1)p

n ≤ q ≤ (2(l+i)+1)p
n . If (2(l+i)−1)p

n ≥ q then the optimum

lies on the endpoint (0, lpn ): this lies on the boundary y = lp
n − x upon which it was found

never to be optimal. Alternatively, if (2(l+i)+1)p
n ≤ q then the optimum lies on the endpoint

( p
2n ,

(2l+1)p
2n ) upon the boundary x = p

2n for which all optimal values have been found.

Following this it is clear that, from the exploration of the boundaries y = x+ lp
n and y = lp

n −x,

if (2(l+i)+1)p
n ≤ q or (2(l+i)−1)p

n ≥ q then the optimum lies on the boundary x = p
2n . What

remains to be seen is whether it is optimal to place on the boundary y = x+ lp
n or x = p

2n when
(2(l+i)−1)p

n ≤ q ≤ (2(l+i)+1)p
n , so we are required to compare the optimal values found within

boundaries x = p
2n and y = x+ lp

n (so not the endpoints). Firstly, if (2(l+i)−1)p
n ≤ q ≤ (2(l+i)+1)p

n
then

(4(l + i)− 5)p

2n
=

(2(l + i)− 2.5)p

n

<
(2(l + i)− 1)p

n
≤ q ≤ (2(l + i) + 1)p

n

<
(2(l + i) + 2l + 3.5)p

n
=

(8l + 4i+ 7)p

2n

so the optimum upon x = p
2n for these values of p and q is within the boundary (not an endpoint).
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Therefore we must check

(2l + 4i+ 1)pq

12n
+

(−2l2 − 2i2 + 4il + l + 5i+ 1)p2

24n2
+
q2

24

−
(

(2l + 2i+ 1)pq

8n
− (8l2 + 6l − 2i+ 1))p2

16n2
+
q2

16

)
=

(−2l + 2i− 1)pq

24n
+

(20l2 − 4i2 + 8il + 20l + 4i+ 5)p2

48n2
− q2

48

=
1

48

(
(20l2 − 4i2 + 8il + 20l + 4i+ 5)p2

n2
− (4(l − i) + 2)pq

n
− q2

)
≥ p2

48n2
((20l2 − 4i2 + 8il + 20l + 4i+ 5)− (4(l − i) + 2)(2(l + i) + 1)− (2(l + i) + 1)2)

=
p2

48n2
(8l2 + 8l + 2) > 0 .

This settles all concerns and proves that the optimum is always located on the boundary x = p
2n .

This means that our optimal areas are: if (8l+4i+7)p
2n ≤ q then Area(V +(( p

2n ,
(2l+1)p

2n ))) =
(2(l+i)+1)pq

4n − (6l2+2i2+4il+5l+i+1)p2

8n2 as depicted in Figure 5.4g; if (4(l+i)−5)p
2n ≤ q ≤ (8l+4i+7)p

2n

then Area(V +(( p
2n ,−

(2l+4i+1)p
6n + q

3 ))) = (2l+4i+1)pq
12n + (−2l2−2i2+4il+l+5i+1)p2

24n2 + q2

24 as depicted in

Figure 5.4h; and if (4(l+i)−5)p
2n ≥ q then Area(V +(( p

2n ,
(2l−1)p

2n ))) = (l+i)pq
2n − (6l2+2i2+4il−3l−3i)p2

8n2

as depicted in Figure 5.4i.

wi wi+1 wi+2 wi+3

(g) b1 = ( p
2n

, (2l+1)p
2n

) only if (8l+4i+7)p
2n

≤ q.

wi wi+1 wi+2 wi+3

(h) b1 = ( p
2n

,− (2l+4i+1)p
6n

+ q
3
) only if (4(l+i)−5)p

2n
≤

q ≤ (8l+4i+7)p
2n

.

wi wi+1 wi+2 wi+3

(i) b1 = ( p
2n

, (2l−1)p
2n

) only if (4(l+i)−5)p
2n

≥ q.

Figure 5.4: Maximal area Voronoi cells V +(b1) for b1 within Section 2l+ 1 touching the leftmost
vertical edge of P.

It is interesting to note that the structures of V +(b1) for b1 in Section 2l+ 1 and 2(l+ 1) are
identical, owing to the fact that the partitioning line CC1(wi−l) which would normally divide the
two does not exist, simply because wi−l does not exist for l ≥ i (which our values of l satisfy).
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We can verify that the areas already found are in fact identical for these two sections. We will
use this idea to greatly simplify our work in the following subsection.

However, before we do, let us compare the optimal locations of b1 found in Section 2l + 1
and Section 2(l + 1). In both of our calculations, the optimum was never found to be within
the sections themselves so the boundary cases had to be explored. The optimum over Section
2(l + 1) was found to be on the boundary y = x + lp

n , which is shared with Section 2l + 1,
whilst the optimum over Section 2l + 1 was found to be on the boundary x = p

2n . Therefore the
optimum over Section 2l + 1 and 2(l + 1) is found on the x = p

2n boundary, as described in the
Section 2l + 1 workings.

It is important to note that this comparison is between Sections 2l + 1 and 2(l + 1) for
l = i, ..., n− i− 1, so for Section 2l where l = i (the lowest possible value of l) there does not
exist a Section 2l − 1 within which the Voronoi cell V +(b1) touches the leftmost boundary of P ,
so we must remember to use the Section 2l results for Section 2i, as depicted in Figures 5.4j,
5.4k, and 5.4l.

wi−1 wi wi+1 wi+2

(j) b1 = ( p
2n

, (2i−1)p
2n

) only if (2(i+i)−1)p
n

≤ q.

wi−1 wi wi+1 wi+2

(k) b1 = (− (4i−3)p
4n

+ q
4
,− p

4n
+ q

4
) only if (4i−3)p

n
≤

q ≤ (4i−1)p
n

.

wi−1 wi wi+1 wi+2

(l) b1 = (0, (i−1)p
n

) only if (4i−3)p
n

≥ q.

Figure 5.4: Maximal area Voronoi cells V +(b1) for b1 within Section 2i touching the leftmost
vertical edge of P.

5.2.4 V +(b1) touching only the rightmost vertical edge of P
Naturally the next avenue to explore is that of points b1 which intersect the rightmost and not
the leftmost boundary of P. If i > n

2 then it can be the case that V +(b1) intersects only the
rightmost boundary (and not the leftmost boundary) of P . For this, b1 will have to be contained
in Sections 2(n− i) + 1 to 2i− 1 (for n− i > 0 and note that if b1 is in an even section then we
require i > n

2 , otherwise we require i ≥ n
2 ). For these sections, as described above for the case

on intersecting the leftmost vertical edge of P, the partitioning lines between Sections 2l and
2l+ 1 no longer exist; they would be CC3(wi+l) but wi+l does not exist. Therefore V +(b1) takes
the same form for b1 in Sections 2l and 2l + 1 and we can explore them together. However, we
must still check the first section (Section 2(n− i) + 1), for which (as described for Section 2i for
V +(b1) touching the leftmost vertical edge of P) there is no Section 2l with which it can be
paired.
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If b1 is in Section 2(n− i) + 1 (so 2l + 1 where l = n− i) or in Section 2l or Section 2l + 1
for l = n− i+ 1, ..., i− 1 then, making use of our calculations for V +(b1) not touching either
vertical boundary of P, for i < n,

Area(V +(b1)) = Area(V +(b1) ∩ V ◦(wi−l)) +
i−1∑

j=i−l+1

Area(V +(b1) ∩ V ◦(wj))

+Area(V +(b1) ∩ V ◦(wi)) +
n∑

j=i+1

Area(V +(b1) ∩ V ◦(wj)) +Area(V +(b1) ∩ V ◦(wi+l))

= −x
2

4
− 3y2

4
+ (− lp

2n
+
q

2
)y +

lpq

2n
− (l − 1)lp2

4n2
−

i+l−1∑
j=n+1

“Area(V +(b1) ∩ V ◦(wj))”

− “Area(V +(b1) ∩ V ◦(wi+l))”

= −x
2

4
− 3y2

4
+ (− lp

2n
+
q

2
)y +

lpq

2n
− (l − 1)lp2

4n2
−

i+l−1∑
j=n+1

(
p

2n
x− p

2n
y +

pq

2n
− (4(j − i)− 1)p2

8n2
)

− (
x2

8
− 3y2

8
− xy

4
+ (

q

4
− ((i+ l)− i− 1)p

4n
)x+ (

((i+ l)− i− 1)p

4n
+
q

4
)y

− ((i+ l)− i− 1)pq

4n
+

((i+ l)− i− 1)2p2

8n2
)

= −3x2

8
− 3y2

8
+
xy

4
+ (

(l − 1)p

4n
− q

4
)x+ (− (3l − 1)p

4n
+
q

4
)y

+
(3l − 1)pq

4n
− (3l − 1)(l − 1)p2

8n2
− (i+ l − 1− n)(

p

2n
x− p

2n
y +

pq

2n
+

p2

8n2
)

+
p2

2n2

i+l−1∑
j=n+1

(j − i)

= −3x2

8
− 3y2

8
+
xy

4
− (

(l − 2n+ 2i− 1)p

4n
+
q

4
)x+ (− (l + 2n− 2i+ 1)p

4n
+
q

4
)y

+
(l + 2n− 2i+ 1)pq

4n
− (l2 − l + 2n2 + n− 4in+ 2i2 − i)p2

8n2

or, for i = n,

Area(V +(b1)) = Area(V +(b1) ∩ V ◦(wn−l)) +
n−1∑

j=n−l+1

Area(V +(b1) ∩ V ◦(wj))

+Area(V +(b1) ∩ V ◦(wn))

=
x2

8
− 3y2

8
+
xy

4
+ (

(n− (n− l)− 1)p

4n
− q

4
)x+ (

(n− (n− l)− 1)p

4n
+
q

4
)y

− (n− (n− l)− 1)pq

4n
+

(n− (n− l)− 1)2p2

8n2

+
n−1∑

j=n−l+1

(− p

2n
x− p

2n
y +

pq

2n
− (4(n− j)− 1)p2

8n2
)− x2

2
− p

2n
y +

pq

2n

= −3x2

8
− 3y2

8
+
xy

4
+ (

(l − 1)p

4n
− q

4
)x+ (

(l − 3)p

4n
+
q

4
)y − (l − 3)pq

4n
+

(l − 1)2p2

8n2

+ (n− 1− (n− l))(− p

2n
x− p

2n
y +

pq

2n
+

p2

8n2
)− p2

2n2

n−1∑
j=n−l+1

(n− j)

= −3x2

8
− 3y2

8
+
xy

4
− (

(l − 1)p

4n
+
q

4
)x+ (− (l + 1)p

4n
+
q

4
)y +

(l + 1)pq

4n
− (l − 1)lp2

8n2
.

As before, this is identical to the representation found by substituting i = n into the previous
area formula, so it is this former formula that we use for our studies.
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The area has partial derivatives

δA

δx
= −3x

4
+
y

4
− (l − 2n+ 2i− 1)p

4n
− q

4
δA

δy
= −3y

4
+
x

4
− (l + 2n− 2i+ 1)p

4n
+
q

4

⇒ −2x∗ − (2l − 2n+ 2i− 1)p

2n
− q

2
= 0⇒ x∗ = − (2l − 2(n− i)− 1)p

4n
− q

4

and ⇒ −2y∗ − (2l + 2n− 2i+ 1)p

2n
+
q

2
= 0⇒ y∗ = − (2l + 2(n− i) + 1)p

4n
+
q

4

but x∗ = (2(n−i−l)+1)p
4n − q

4 ≤ 1
4 ( pn − q) < 0 so we are required to investigate when b1 is placed on

the boundaries of its respective section – noting that the optimum will never lie on a non-endpoint
of x = p

2n because x∗ < 0.

Within Section 2(n− i) + 1, for which Area(V +(b1)) = − 3x2

8 −
3y2

8 + xy
4 + ( (n−i+1)p

4n − q
4 )x+

(− (3(n−i)+1)p
4n + q

4 )y + (3(n−i)+1)pq
4n − 3(n−i)2p2

8n2 , we produce the following calculations.

• Upon boundary y = (n−i)p
n −x we have Area(V +((x, (n−i)pn −x))) = −x2 + ( (4(n−i)+1)p

2n −
q
2 )x+ (4(n−i)+1)pq

4n − (6(n−i)2+(n−i))p2
4n2 , maximised by x∗ = (4(n−i)+1)p

4n − q
4 giving Area(V +(

( (4(n−i)+1)p
4n − q

4 ,−
p
4n + q

4 ))) = (4(n−i)+1)pq
8n − (8(n−i)2−4(n−i)−1)p2

16n2 + q2

16 . However, for 0 ≤
(4(n−i)+1)p

4n − q
4 ≤

p
2n to be true we require (4(n−i)−1)p

n ≤ q ≤ (4(n−i)+1)p
n . If q ≤ (4(n−i)−1)p

n

then the optimum lies on the endpoint ( p
2n ,

(2(n−i)−1)p
2n ) giving Area(V +(( p

2n ,
(2(n−i)−1)p

2n )))

= (n−i)pq
n − (6(n−i)2−3(n−i))p2

4n2 . If (4(n−i)+1)p
n ≤ q then the optimum lies on the endpoint

(0, (n−i)pn ) giving Area(V +((0, (n−i)pn ))) = (4(n−i)+1)pq
4n − (6(n−i)2+(n−i))p2

4n2 .

• Upon boundary y = x + (n−i)p
n we have Area(V +((x, x + (n−i)p

n ))) = −x2

2 −
(n−i)p
n x +

(4(n−i)+1)pq
4n − (6(n−i)2+n−i)p2

4n2 , maximised by x∗ = − (n−i)p
n < 0 so the optimum is achieved

at x = 0, the value of which has been found above.

Thus the optimum lies on the boundary y = (n−i)p
n −x with maximal areas Area(V +((0, (n−i)pn ))) =

(4(n−i)+1)pq
4n − (6(n−i)2+(n−i))p2

4n2 if (4(n−i)+1)p
n ≤ q as depicted in Figure 5.4m, Area(V +(( (4(n−i)+1)p

4n

− q
4 ,−

p
4n + q

4 ))) = (4(n−i)+1)pq
8n − (8(n−i)2−4(n−i)−1)p2

16n2 + q2

16 if (4(n−i)−1)p
n ≤ q ≤ (4(n−i)+1)p

n

as depicted in Figure 5.4n, and Area(V +(( p
2n ,

(2(n−i)−1)p
2n ))) = (n−i)pq

n − (6(n−i)2−3(n−i))p2
4n2 if

q ≤ (4(n−i)−1)p
n as depicted in Figure 5.4o.

Alternatively, consider placing on the boundary of Section 2l and Section 2l + 1 (i.e. upon

the boundaries x = 0, y = x+ (l−1)p
n , x = p

2n , and y = x+ lp
n ).

• Upon boundary x = 0 we have Area(V +((0, y))) = − 3y2

8 + (− (l+2n−2i+1)p
4n + q

4 )y +
(l+2n−2i+1)pq

4n − (l2−l+2n2+n−4in+2i2−i)p2
8n2 , maximised by y∗ = − (l+2n−2i+1)p

3n + q
3 giving

Area(V +(0,− (l+2n−2i+1)p
3n + q

3 )) = (l+2n−2i+1)pq
6n − (2(l−(n−i))2−5l−(n−i)−1)p2

24n2 + q2

24 . How-

ever, for (l−1)p
n ≤ − (l+2n−2i+1)p

3n + q
3 ≤

lp
n to be true we require (4l+2(n−i)−2)p

n ≤ q ≤
(4l+2(n−i)+1)p

n . If (4l+2(n−i)−2)p
n ≥ q then the optimum lies on the endpoint (0, (l−1)pn )

giving Area(V +((0, (l−1)pn ))) = (l+n−i)pq
2n − (6l2+4l(n−i)+2(n−i)2−7l−3(n−i)+1)p2

4n2 , and if
(4l+2(n−i)+1)p

n ≤ q thenArea(V +((0, lpn ))) = (2l+2(n−i)+1)pq
4n − (6l2+4l(n−i)+2(n−i)2+l+(n−i))p2

8n2 .

• Upon boundary y = x+ (l − 1) pn we have Area(V +((x, x+ (l−1)p
n ))) = −x2

2 −
(2l−1)p

2n x+
(l+n−i)pq

2n − (6l2+4l(n−i)+2(n−i)2−7l−3(n−i)+1)p2

8n2 , maximised by x∗ = − (2l−1)p
2n < 0 so the

optimum is achieved at x = 0, the value of which has been found above.

• Upon boundary y = x+ l pn we have Area(V +((x, x+ lp
n ))) = −x2

2 −
lp
n x+ (2l+2(n−i)+1)pq

4n −
(6l2+4l(n−i)+2(n−i)2+l+n−i)p2

8n2 , maximised by x∗ = − lpn < 0 so the optimum is achieved at
x = 0, the value of which has been found above.
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wi−2 wi−1 wi wi+1 wi+2

(m) b1 = (0, (n−i)p
n

) only if (4(n−i)+1)p
n

≤ q.

wi−2 wi−1 wi wi+1 wi+2

(n) b1 = ( (4(n−i)+1)p
4n

− q
4
,− p

4n
+ q

4
) only if

(4(n−i)−1)p
n

≤ q ≤ (4(n−i)+1)p
n

.

wi−2 wi−1 wi wi+1 wi+2

(o) b1 = ( p
2n

, (2(n−i)−1)p
2n

) only if (4(n−i)−1)p
n

≥ q.

Figure 5.4: Maximal area Voronoi cells V +(b1) for b1 within Section 2(n− i) + 1 touching the
rightmost vertical edge of P.

Thus the optimum lies on the boundary x = 0, with maximal areas Area(V +((0, lpn ))) =
(2l+2(n−i)+1)pq

4n − (6l2+4l(n−i)+2(n−i)2+l+(n−i))p2
8n2 if (4l+2(n−i)+1)p

n ≤ q as depicted in Figure 5.4p,

Area(V +(0,− (l+2n−2i+1)p
3n + q

3 )) = (l+2n−2i+1)pq
6n − (2(l−(n−i))2−5l−(n−i)−1)p2

24n2 + q2

24 if (4l+2(n−i)−2)p
n ≤

q ≤ (4l+2(n−i)+1)p
n as depicted in Figure 5.4q, and Area(V +((0, (l−1)pn ))) = (l+n−i)pq

2n −
(6l2+4l(n−i)+2(n−i)2−7l−3(n−i)+1)p2

4n2 if (4l+2(n−i)−2)p
n ≥ q as depicted in Figure 5.4r.

wi−2 wi−1 wi wi+1

(p) b1 = (0, lp
n
) only if (4l+2(n−i)+1)p

n
≤ q.

wi−2 wi−1 wi wi+1

(q) b1 = (0,− (l+2n−2i+1)p
3n

+ q
3
) only if

(4l+2(n−i)−2)p
n

≤ q ≤ (4l+2(n−i)+1)p
n

.
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wi−2 wi−1 wi wi+1

(r) b1 = (0, (l−1)p
n

) only if (4l+2(n−i)−2)p
n

≥ q.

Figure 5.4: Maximal area Voronoi cells V +(b1) for b1 within Section 2l touching the rightmost
vertical edge of P.

We should note here that Section I also applies in this case of intersecting the right boundary
and not the left boundary of P , though it is plain to see that the optimum for this scenario will
lie as close as possible to (0, 0) and give an area up to (but not achieving) pq

2n .

5.2.5 V +(b1) touching both vertical edges of P

Finally we shall investigate the points b1 whose cells V +(b1) touch both vertical boundaries of
P . These cells are produced for b1 in Section 2i and above if i > n

2 or Section 2(n− i) + 1 and
above if i ≤ n

2 . Importantly, within these sections the structure of V +(b1) is identical no matter
the section, even or odd. This is because, in actuality, there are no sections beyond Section
max[2i, 2(n− i) + 1] as it is defined by the edges x = 0, x = p

2n , CC1(w1), and CC3(wn).

Therefore the area for b1 in this region is, for 1 < i < n,

Area(V +(b1)) =
i−1∑
j=1

Area(V +(b1) ∩ V ◦(wj)) +Area(V +(b1) ∩ V ◦(wi))

+
n∑

j=i+1

Area(V +(b1) ∩ V ◦(wj))

=
i−1∑
j=1

(− p

2n
x− p

2n
y +

pq

2n
− (4(i− j)− 1)p2

8n2
)− x2

2
− p

2n
y +

pq

2n

+
n∑

j=i+1

(
p

2n
x− p

2n
y +

pq

2n
− (4(j − i)− 1)p2

8n2
)

= (i− 1)(− p

2n
x− p

2n
y +

pq

2n
+

p2

8n2
)− p2

2n2

i−1∑
j=1

(i− j)− x2

2
− p

2n
y +

pq

2n

+ (n− i)( p
2n
x− p

2n
y +

pq

2n
+

p2

8n2
)− p2

2n2

n∑
j=i+1

(j − i)

= −x
2

2
+ (n− 2i+ 1)

p

2n
x− p

2
y +

pq

2
+ (n− 1)

p2

8n2
− p2

2n2
(i− 1)i

2

− p2

2n2
(n− i)(n− i+ 1)

2

= −x
2

2
+

(n− 2i+ 1)p

2n
x− p

2
y +

pq

2
− (2n2 + 4i2 − 4in+ n− 4i+ 1)p2

8n2
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or, for i = 1,

Area(V +(b1)) = Area(V +(b1) ∩ V ◦(w1)) +
n∑
j=2

Area(V +(b1) ∩ V ◦(wj))

= −x
2

2
− p

2n
y +

pq

2n
+

n∑
j=2

(
p

2n
x− p

2n
y +

pq

2n
− (4(j − 1)− 1)p2

8n2
)

= −x
2

2
− p

2n
y +

pq

2n
+ (n− 1)(

p

2n
x− p

2n
y +

pq

2n
+

5p2

8n2
)− p2

2n2

n∑
j=2

j

= −x
2

2
+

(n− 1)p

2n
x− p

2
y +

pq

2
− (2n2 − 3n+ 1)p2

8n2

or, for i = n,

Area(V +(b1)) =
n−1∑
j=1

Area(V +(b1) ∩ V ◦(wj)) +Area(V +(b1) ∩ V ◦(wn))

=
n−1∑
j=1

(− p

2n
x− p

2n
y +

pq

2n
− (4(n− j)− 1)p2

8n2
)− x2

2
− p

2n
y +

pq

2n

= (n− 1)(− p

2n
x− p

2n
y +

pq

2n
− (4n− 1)p2

8n2
) +

p2

2n2

n−1∑
j=1

j − x2

2
− p

2n
y +

pq

2n

= −x
2

2
− (n− 1)p

2n
x− p

2
y +

pq

2
− (2n2 − 3n+ 1)p2

8n2
.

All of these areas have partial derivative δA
δy = −p2 providing, as expected, justification that

the area increases as y decreases within the region.

If 1 < i < n then
δA

δx
= −x+

(n− 2i+ 1)p

2n

giving x∗ = (n−2i+1)p
2n . We have x∗ ≥ 0⇔ n−2i+1 ≥ 0⇔ n+1

2 ≥ i and x∗ ≤ p
2n ⇔ n−2i+1 ≤

1 ⇔ n
2 ≤ i so this maximum is only achieved for i = dn2 e. In this case, if n is even then the

maximum within Section n+ 1 of wn
2

is found at x∗ = p
2n , and if n is odd then the maximum

within Section n+ 1 of wn+1
2

is found at x∗ = 0. Before explicitly stating the coordinates of b∗1
for these sections we will explore those values of i which did not satisfy these constraints.

For 1 < i < n where i 6= dn2 e, x∗ is never within this region. Therefore we must explore the

boundary of the region; by δA
δy we need only explore the lower boundary.

Since x∗ < 0 when i > n+1
2 , for these i the region we are exploring is Section 2i and the

bottommost point on the lower boundary (satisfying δA
δy ) is also the leftmost point (satisfying

δA
δx ) so this point, (0, (i−1)pn ), is our optimum, as well as being the optimum for i = n+1

2 when n

is odd as found above. This gives Area(V +((0, (i−1)pn ))) = pq
2 −

(2n2+4i2−3n−4i+1)p2

8n2 as depicted
in Figure 5.4s.

Since x∗ > p
2n when i < n

2 , for these i the region we are exploring is Section 2(n−i)+1 and the

bottommost point on the lower boundary (satisfying δA
δy ) is also the rightmost point (satisfying

δA
δx ), so this point, ( p

2n ,
(2(n−i)−1)p

2n ), is our optimum, as well as being the optimum for i = n
2 when

n is even as found above. This gives Area(V +(( p
2n ,

(2(n−i)−1)p
2n ))) = pq

2 −
(6n2+4i2−8in−3n)p2

8n2 as
depicted in Figure 5.4t.

If i = 1 then
δA

δx
= −x+

(n− 1)p

2n

giving x∗ = (n−1)p
2n ≥ p

2n . As before, since i < n
2 the region is 2(n− 1) + 1 so our optimum lies at

the bottom rightmost point of Section 2n− 1, ( p
2n ,

(2n−3)p
2n ), giving Area(V +(( p

2n ,
(2n−3)p

2n ))) =
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wi−1 wi wi+1 wi+2

(s) b1 = (0, (i−1)p
n

) only if i > n
2
.

wi wi+1

(t) b1 = ( p
2n

, (2(n−i)−1)p
2n

) only if i ≤ n
2
.

Figure 5.4: Maximal area Voronoi cells V +(b1) for b1 within Section n+1, touching both vertical
edges of P.

pq
2 −

(6n2−11n+4)p2

8n2 (identical to the above calculation for i < n
2 after substituting i = 1).

Finally, if i = n then
δA

δx
= −x− (n− 1)p

2n

giving x∗ = − (n−1)p
2n < 0. As before, since i > n

2 the region is 2n so our optimum lies at

the bottom leftmost point of Section 2n, (0, (n−1)pn ), giving Area(V +((0, (n−1)pn ))) = pq
2 −

(6n2−7n+1)p2

8n2 (identical to the above calculation for i ≥ n
2 after substituting i = n).

This concludes our search for the optimisation of each structure of V +(b1) which touches
both vertical boundaries of P , and with it our search for the optimisation of every structure of
V +(b1) given that White plays a 1 × n row.

5.3 Black’s optimal strategy: White plays a 1× n row

At this stage we have calculated the optimal locations of b1 within every possible partition cell
of P when White plays a 1×n row. To recap, Figure 5.4 shows all optimal locations of b1 within
each section under the certain circumstances discussed above (not depicting the optimum found
in Section I since this had location (0, 0)).

5.3.1 Black’s best point

An obvious question of interest is which point b1 is the best point – as in, which position of
b1 gives the largest area of V +(b1)? The availability of each section in which to place b1, and
the areas of the Voronoi cells V +(b1), depend entirely on the relationship between p

n and q so
this is not a straightforward question to answer. Nevertheless we shall determine what position
b∗ = (x∗, y∗) of b1 claims the largest area of V +(b1) for which ratios of p

n and q.

Let us begin by fixing the bottom right corner of P at (0,− q2 ) so that wi = ( (2i−1)p
2n , 0)

for i = 1, ..., n. Firstly it is clear to see from Figure 5.4 that Black’s best point b∗ will have
x-coordinate kp

2n for some k ∈ N. Furthermore, it is never advantageous when seeking to maximise
the area of V +(b1) to have V +(b1) bounded on one side by a vertical edge of P since this blocks
V +(b1) from gaining territory on the other side of the boundary of P , which it might be able to
do if b1 were moved a horizontal distance of p

n away from this edge. For this reason we can easily
claim that the best point b∗ has x-coordinate x∗ ∈ {p2 −

p
2n ,

p
2 ,

p
2 + p

2n}. By the symmetry of P
and W , not only does x∗ = p

2 produce a Voronoi cell symmetrical about x = p
2 , but the values

x∗ = p
2 −

p
2n and x∗ = p

2 + p
2n will produce identical Voronoi cells (after reflection in x∗ = p

2 ).
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Therefore we need only consider the location of b∗ within the top right quadrant of V ◦(wi) for
i = dn2 e, though requiring different investigations depending on whether n is even or odd.

Before we delve into the details with respect to the parity of n, let us recapitulate the results
depicted in Figure 5.4 in Table 5.1.

Section Optimum Area Condition

2l
(

(2i−1)p
2n , (l − 1) pn

)
(2l−1)pq

2n − 3(2l−1)(l−1)p2
4n2 q ≤ (4l−3)p

n(
(2i−1)p

2n , q3 −
lp
3n

)
lpq
3n + (3−2l)lp2

12n2 + q2

12
(4l−3)p

n ≤ q ≤ 4lp
n(

(2i−1)p
2n , l pn

)
lpq
n + (1−6l)lp2

4n2
4lp
n ≤ q

2l + 1
(
ip
n ,

(2l−1)p
2n

)
lpq
n −

(3l−1)lp2
2n2 q ≤ (4l−1)p

n(
ip
n ,

q
3 −

(2l+1)p
6n

)
(2l+1)pq

6n − (2l2+2l−1)p2
12n2 + q2

12
(4l−1)p

n ≤ q ≤ (4l+2)p
n(

ip
n ,

(2l+1)p
2n

)
(2l+1)pq

2n − (6l2+6l+1)p2

4n2

(4l+2)p
n ≤ q

Table 5.1: Optima contained in each section of V ◦(wi) assuming that Black’s Voronoi cell does
not touch either vertical edge of P.

We shall refer to these optima as the bottom, middle, and top optima within each section,
listed in the order that they appear in Table 5.1 with examples depicted in Figures 5.4c and
5.4f, Figures 5.4b and 5.4e, and Figures 5.4a and 5.4d respectively.

We know the optimal positions b∗1 within each of these sections, but we must ask how these
optima compare to one another across sections. It is important to realise that some optima
within different sections lie on the same point, while capturing different areas (for example
the equivalent optima in Figure 5.4c for Section V I would lie on the same point as shown in
Figure 5.4a). This is due to the fact that many of these positions represent the convergence of
b1 to a point, yet these different results are obtained from converging via different paths (i.e.
via different sections), choosing different bisectors upon degenerate configuration lines. These
are the easiest comparisons to make and can be done by simply referring to graphs of the points
as shown, by way of an example, in Figure 5.5.

wi−2 wi−1 wi wi+1 wi+2

(a) V +(( (2i−1)p
2n

, p
n
)) for ( (2i−1)p

2n
, p
n
) in Section II.

wi−2 wi−1 wi wi+1 wi+2

(b) V +(( (2i−1)p
2n

, p
n
)) for ( (2i−1)p

2n
, p
n
) in Section IV .

Figure 5.5: Comparison of identical optimal positions within different sections (shaded).

From Figure 5.5 it is clear to see that if an optimal point we are comparing is located on the
boundary of two sections, the upper section will always outperform the lower section. Therefore
the remaining optima to consider are the middle and the bottom optima, as well as the optima
for V +(b1) touching the appropriate vertical boundaries of P.

Now we ask when, if ever, it is better to locate in Section k as opposed to Section k + 2 for
k > 0, assuming that the resulting Voronoi cell of Black does not touch either vertical boundary
of P.

For even Sections 2l, we know that the bottom optimum of Section 2(l + 1) is the optimum

over Section 2(l + 1) if (4(l+1)−3)p
n = (4l+1)p

n ≥ q, whereas the middle optimum of Section 2l is

the optimum over Section 2l if (4l−3)p
n ≤ q ≤ 4lp

n so we must compare the area that the bottom
optimum of Section 2(l + 1) captures compared to that of the middle optimum of 2l when
(4l−3)p

n ≤ q ≤ 4lp
n :
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(
(2(l + 1)− 1)pq

2n
− 3(2(l + 1)− 1)((l + 1)− 1)p2

4n2

)
−
(
lpq

3n
+

(3− 2l)lp2

12n2
+
q2

12

)
=

(2l + 1)pq

2n
− 3(2l + 1)lp2

4n2
− lpq

3n
+

(2l − 3)lp2

12n2
− q2

12

=
(4l + 3)pq

6n
− (4l + 3)lp2

3n2
− q2

12
≥ 0

⇔ q2 − 2(4l + 3)p

n
q +

4(4l + 3)lp2

n2
≤ 0 .

Now it is the case that

q2 − 2(4l + 3)p

n
q +

4(4l + 3)lp2

n2
= (q − (4l + 3)p

n
)2 +

4(4l + 3)lp2

n2
− (

(4l + 3)p

n
)2

= (q − (4l + 3)p

n
)2 − 3(4l + 3)p2

n2
≤ 0

⇔ (4l + 3)p

n
−
√

3(4l + 3)p

n
≤ q ≤ (4l + 3)p

n
+

√
3(4l + 3)p

n
.

Now it remains to find the intersection of [ (4l−3)pn , 4lpn ] (the values of q for which the middle

optimum is the optimum over Section 2l) and [
(4l+3−

√
3(4l+3))p

n ,
(4l+3+

√
3(4l+3))p

n ] (the values
of q for which the bottom optimum of Section 2(l + 1) is better than the middle optimum of

Section 2l). It is clear that 4lp
n <

(4l+3+
√

3(4l+3))p

n . More involved is the following calculation:

(4l − 3)p

n
− (4l + 3−

√
3(4l + 3))p

n
=

(
√

3(4l + 3)− 6)p

n
≥ 0

⇔
√

3(4l + 3)− 6 ≥ 0

⇔ 3(4l + 3) ≥ 36

⇔ l ≥ 9

4
.

Therefore if l ≤ 2 then the bottom optimum of Section 2(l + 1) is better than the middle

optimum of Section 2l for
(4l+3−

√
3(4l+3))p

n ≤ q. Otherwise, if l ≥ 3, the bottom optimum of
Section 2(l + 1) will always be better than the middle optimum of Section 2l, and so we must

compare the bottom optima of both sections when (4l−3)p
n ≥ q:(

(2(l + 1)− 1)pq

2n
− 3(2(l + 1)− 1)((l + 1)− 1)p2

4n2

)
−
(

(2l − 1)pq

2n
− 3(2l − 1)(l − 1)p2

4n2

)
=

(2l + 1)pq

2n
− 3(2l + 1)lp2

4n2
− (2l − 1)pq

2n
+

3(2l − 1)(l − 1)p2

4n2

=
pq

n
− 3(4l − 1)p2

4n2
≥ 0

⇔ 3(4l − 1)p

4n
≤ q .

Now
3(4l − 1)p

4n
≤ (4l − 3)p

n
⇔ 3(4l − 1) ≤ 4(4l − 3)⇔ l ≥ 9

4

so if l ≥ 3 (the condition which requires us to compare these two local optima) then the bottom

optimum of Section 2(l + 1) is better than the bottom optimum of Section 2l for 3(4l−1)p
4n ≤ q.

Let us digest our findings, for which it may be more intuitive to describe the efficacy of each
section’s optima from Section II upwards. These results are summarised in the following table.

Now we must analogously explore the odd sections 2l + 1. The bottom optimum of Section
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Section Optimum Area Condition
II (x∗, 0) pq

2n q ≤ p
n

(x∗, q3 −
p
3n ) pq

3n + p2

12n2 + q2

12
p
n ≤ q ≤

(7−
√
21)p
n

IV (x∗, pn ) 3pq
2n −

9p2

4n2

(7−
√
21)p
n ≤ q ≤ 5p

n

(x∗, q3 −
2p
3n ) 2pq

3n −
p2

6n2 + q2

12
5p
n ≤ q ≤

(11−
√
33)p

n

V I (x∗, 2pn ) 5pq
2n −

15p2

2n2

(11−
√
33)p

n ≤ q ≤ 33p
4n

2l (x∗, (l − 1) pn ) (2l−1)pq
2n − 3(2l−1)(l−1)p2

4n2

3(4l−5)p
4n ≤ q ≤ 3(4l−1)p

4n

Table 5.2: Optima contained in even sections at x∗ = (2i−1)p
2n assuming that Black’s Voronoi cell

does not touch either vertical edge of P.

2(l+ 1) + 1 is the optimum of Section 2(l+ 1) + 1 if q ≤ (4(l+1)−1)p
n = (4l+3)p

n whereas the middle

optimum of Section 2l + 1 is the optimum over Section 2l + 1 if (4l−1)p
n ≤ q ≤ (4l+2)p

n , so we
must compare the area that the bottom optimum of Section 2(l + 1) + 1 captures compared to

that of the middle optimum of 2l + 1 when (4l−1)p
n ≤ q ≤ (4l+2)p

n :(
(l + 1)pq

n
− (3(l + 1)− 1)(l + 1)p2

2n2

)
−
(

(2l + 1)pq

6n
− (2l2 + 2l − 1)p2

12n2
+
q2

12

)
=

(l + 1)pq

n
− (3l + 2)(l + 1)p2

2n2
− (2l + 1)pq

6n
+

(2l2 + 2l − 1)p2

12n2
− q2

12

=
(4l + 5)pq

6n
− (16l2 + 28l + 13)p2

12n2
− q2

12
≥ 0

⇔ q2 − 2(4l + 5)pq

n
+

(16l2 + 28l + 13)p2

n2
≤ 0 .

Now it is the case that

q2 − 2(4l + 5)pq

n
+

(16l2 + 28l + 13)p2

n2
=

(
q − (4l + 5)p

n

)2

+
(16l2 + 28l + 13)p2

n2
−
(

(4l + 5)p

n

)2

=

(
q − (4l + 5)p

n

)2

− 12(l + 1)p2

n2
≤ 0

⇔ (4l + 5)p

n
− 2

√
3(l + 1)p

n
≤ q ≤ (4l + 5)p

n
+

2
√

3(l + 1)p

n
.

Now it remains to find the intersection of
[
(4l−1)p

n , (4l+2)p
n

]
(the values of q for which the

middle optimum is the optimum over Section 2l + 1) and

[
(4l+5−2

√
3(l+1))p

n ,
(4l+5+2

√
3(l+1))p

n

]
(the values of q for which the bottom optimum of Section 2(l + 1) + 1 is better than the middle

optimum of Section 2l + 1). It is clear that (4l+2)p
n <

(4l+5+2
√

3(l+1))p

n . More involved is the
following calculation:

(4l − 1)p

n
− (4l + 5− 2

√
3(l + 1))p

n
=

(2
√

3(l + 1)− 6)p

n
≥ 0

⇔ 2
√

3(l + 1)− 6 ≥ 0

⇔ 3(l + 1) ≥ 9

⇔ l ≥ 2 .

Therefore if l = 1 then the bottom optimum of Section 2(l+ 1) + 1 is better than the middle

optimum of Section 2l+ 1 for
(4l+5−2

√
3(l+1))p

n ≤ q. Otherwise, if l ≥ 2, the bottom optimum of
Section 2(l + 1) + 1 will always be better than the middle optimum of Section 2l + 1, and so we

must compare the bottom optima of both sections when (4l−1)p
n ≥ q:
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(
(l + 1)pq

n
− (3(l + 1)− 1)(l + 1)p2

2n2

)
−
(
lpq

n
− (3l − 1)lp2

2n2

)
=

(l + 1)pq

n
− (3l + 2)(l + 1)p2

2n2
− lpq

n
+

(3l − 1)lp2

2n2

=
pq

n
− (3l + 1)p2

n2
≥ 0

⇔ (3l + 1)p

n
≤ q .

Now
(3l + 1)p

n
≤ (4l − 1)p

n
⇔ (3l + 1) ≤ (4l − 1)⇔ l ≥ 2

so if l ≥ 2 (the condition which requires us to compare these two local optima) then the bottom
optimum of Section 2(l + 1) + 1 is better than the bottom optimum of Section 2l + 1 for
(3l+1)p

n ≤ q.

In contrast to our analysis of the optima in even sections, we must compare Section III with
the outlier Section I in order to discern when it is more fruitful to settle with the poor-quality
Section I optimum. We can do this simply by comparing the area from the bottom optimum in
Section III with the maximum area possible achieved in Section I:(

pq

n
− p2

n2

)
− pq

2n
=
pq

2n
− p2

n2
≥ 0⇔ q ≥ 2p

n
.

Thus, within odd sections we can only do better than pq
2n if 2p

n ≤ q, otherwise it is preferable to
locate in Section I.

Let us again digest our findings, summarised in Table 5.3.

Section Optimum Area Condition

I (∗, 0) pq
2n q ≤ 2p

n

III (x∗, p2n ) pq
n −

p2

n2
2p
n ≤ q ≤

3p
n

(x∗, q3 −
p
2n ) pq

2n −
p2

4n2 + q2

12
3p
n ≤ q ≤

(9−2
√
6)p

n

V (x∗, 3p
2n ) 2pq

n −
5p2

n2

(9−2
√
6)p

n ≤ q ≤ 7p
n

2l + 1 (x∗, (2l−1)p2n ) lpq
n −

(3l−1)lp2
2n2

(3l−2)p
n ≤ q ≤ (3l+1)p

n

Table 5.3: Optima contained in odd sections at x∗ = ip
n assuming that Black’s Voronoi cell does

not touch either vertical edge of P.

Having found the optimal locations within the set of even sections and the set of odd sections
dependent on the ratio between p

n and q, it remains to compare Table 5.2 and Table 5.3. We
shall explore the global optima as q increases, starting from the top of the tables and working
our way down comparing areas across the tables each time q increases so as to enter a new
condition.

Beginning with q ≤ p
n , both tables give the same maximal area of pq

2n no matter whether
locating in Section I and II. However, this area can be improved if p

n ≤ q by playing the middle
optimum of Section II so it is no longer optimal to locate in Section I. The next condition
occurs when 2p

n ≤ q so we must compare the middle optimum of Section II with the bottom
optimum of Section III:
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(
pq

n
− p2

n2

)
−
(
pq

3n
+

p2

12n2
+
q2

12

)
=
pq

n
− p2

n2
− pq

3n
− p2

12n2
− q2

12

=
2pq

3n
− 13p2

12n2
− q2

12
≥ 0

⇔ q2 − 8pq

n
+

13p2

n2
≤ 0

⇔
(
q − 4p

n

)2

− 3p2

n2
≤ 0

⇔ 4p

n
−
√

3p

n
≤ q ≤ 4p

n
+

√
3p

n
.

Since 2p
n < (4−

√
3)p

n < (7−
√
21)p
n < (4+

√
3)p

n , the bottom optimum of Section III is better than

the middle optimum of Section II for (4−
√
3)p

n ≤ q as long as the middle optimum of Section II
is the optimal location within even sections.

The subsequent condition to be met as q increases is when (7−
√
21)p
n ≤ q and we must

compare the bottom optimum of Section IV to the bottom optimum of Section III:(
3pq

2n
− 9p2

4n2

)
−
(
pq

n
− p2

n2

)
=

3pq

2n
− 9p2

4n2
− pq

n
+
p2

n2

=
pq

2n
− 5p2

4n2
≥ 0

⇔ q ≥ 5p

2n
.

The bottom optimum of Section IV is better than the bottom optimum of Section III for
5p
2n ≤ q and since (7−

√
21)p
n < 5p

2n <
3p
n it is the global optimum at least until q = 3p

n .

Subsequently, for 3p
n ≤ q ≤ (9−2

√
6)p

n the optimum in odd sections becomes the middle
optimum of Section III so we must compare this to the bottom optimum of Section IV :(

pq

2n
− p2

4n2
+
q2

12

)
−
(

3pq

2n
− 9p2

4n2

)
=
pq

2n
− p2

4n2
+
q2

12
− 3pq

2n
+

9p2

4n2

=
q2

12
− pq

n
+

2p2

n2
≥ 0

⇔ q2 − 12pq

n
+

24p2

n2
≥ 0

⇔
(
q − 6p

n

)2

− 12p2

n2
≥ 0

⇔ q ≤ 6p

n
− 2
√

3p

n
or q ≥ 6p

n
+

2
√

3p

n
.

Since (6−2
√
3)p

n < 3p
n < (9−2

√
6)p

n < (6+2
√
3)p

n the middle optimum of Section III never beats
the bottom optimum of Section IV . Given this fact, we know also that the middle optimum
of Section IV (which beats the bottom optimum of Section IV at 5p

n ≤ q) beats the middle
optimum of Section III.

This, when (9−2
√
6)p

n ≤ q, brings us to the comparison of the bottom optimum of Section V
and the middle optimum of Section IV :
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(
2pq

n
− 5p2

n2

)
−
(

2pq

3n
− p2

6n2
+
q2

12

)
=

2pq

n
− 5p2

n2
− 2pq

3n
+

p2

6n2
− q2

12

=
4pq

3n
− 29p2

6n2
− q2

12
≥ 0

⇔ q2 − 16pq

n
+

58p2

n2
≤ 0

⇔
(
q − 8p

n

)2

− 6p2

n2
≤ 0

⇔ 8p

n
−
√

6p

n
≤ q ≤ 8p

n
+

√
6p

n
.

Since (11−
√
33)p

n , the value of q at which the middle optimum of Section IV is no longer optimal

for even sections, is less than (8−
√
6)p

n , the middle optimum of Section IV is the global optimum

for its whole range, and for (11−
√
33)p

n ≤ q the bottom optimum of V I (the subsequent optimum
in even sections) is the next global optimum. We must therefore compare the bottom optimum
of Section V to the bottom optimum of Section V I:(

2pq

n
− 5p2

n2

)
−
(

5pq

2n
− 15p2

2n2

)
=

2pq

n
− 5p2

n2
− 5pq

2n
+

15p2

2n2

=
5p2

2n2
− pq

2n
≥ 0

⇔ q ≤ 5p

n
.

Since 5p
n < (11−

√
33)p

n ≤ q, the bottom optimum of Section V is never better than the bottom
optimum of Section V I.

At this point, since the condition values are now our general 3(4l−5)p
4n and (3l−2)p

n values (for
even and odd sections respectively), we have compared all of the necessary initial areas and can
compare the general bottom optima of Section 2l and Section 2l + 1 (and of Section 2l + 1 and
Section 2(l + 1)) for l ≥ 3.

At (3l−2)p
n ≤ q we must compare the bottom optima of Section 2l+ 1 with that of Section 2l:(
lpq

n
− (3l − 1)lp2

2n2

)
−
(

(2l − 1)pq

2n
− 3(2l − 1)(l − 1)p2

4n2

)
=
lpq

n
− (3l − 1)lp2

2n2
− (2l − 1)pq

2n
+

3(2l − 1)(l − 1)p2

4n2

=
pq

2n
− (7l − 3)p2

4n2
≥ 0

⇔ (7l − 3)p

2n
≤ q .

Since 3(4l−1)p
4n , the value of q at which the bottom optimum of Section 2l is bested by the bottom

optimum of Section 2(l + 1), is less than (7l−3)p
2n (because 3(4l − 1) ≥ 2(7l − 3)⇔ l ≤ 3

2 ), the
bottom optimum of Section 2l + 1 never beats the bottom optimum of Section 2l while this
is the global optimum, and we must compare the bottom optimum of Section 2l + 1 with the

bottom optimum of Section 2(l + 1) when 3(4l−1)p
4n ≤ q:
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(
lpq

n
− (3l − 1)lp2

2n2

)
−
(

(2(l + 1)− 1)pq

2n
− 3(2(l + 1)− 1)((l + 1)− 1)p2

4n2

)
=
lpq

n
− (3l − 1)lp2

2n2
− (2l + 1)pq

2n
+

3(2l + 1)lp2

4n2

= − pq
2n

+
5lp2

4n2
≥ 0

⇔ q ≤ 5lp

2n
.

However, 5lp
2n < 3(4l−1)p

4n (because 5l
2 ≥

3(4l−1)
4 ⇔ l ≤ 3

2 so the bottom optimum of Section 2l+ 1
is never better than the bottom optimum of Section 2(l + 1)).

Thus we have determined, for every possible proportion of p and q, all of the optimal locations
of Black’s point given that Black’s Voronoi cell does not touch either vertical edge of P . These
are shown in Table 5.4.

Section Optimum Area Condition
I (∗, 0) pq

2n q ≤ p
n

II (x∗, q3 −
p
3n ) pq

3n + p2

12n2 + q2

12
p
n ≤ q ≤

(4−
√
3)p

n

III (x∗ + p
2n ,

p
2n ) pq

n −
p2

n2

(4−
√
3)p

n ≤ q ≤ 5p
2n

IV (x∗, pn ) 3pq
2n −

9p2

4n2
5p
2n ≤ q ≤

5p
n

IV (x∗, q3 −
2p
3n ) 2pq

3n −
p2

6n2 + q2

12
5p
n ≤ q ≤

(11−
√
33)p

n

V I (x∗, 2pn ) 5pq
2n −

15p2

2n2

(11−
√
33)p

n ≤ q ≤ 33p
4n

2l (x∗, (l − 1) pn ) (2l−1)pq
2n − 3(2l−1)(l−1)p2

4n2

3(4l−5)p
4n ≤ q ≤ 3(4l−1)p

4n

Table 5.4: Optima within one quarter cell of V ◦(wi) at x∗ = ip
2n assuming that Black’s Voronoi

cell does not touch either vertical edge of P.

Finally we must determine Black’s best point in the case that Black’s Voronoi cell may touch
a vertical edge of P, and for this we will explore the cases of the parity of n separately.

n even If n is even then we are investigating the top right quadrant of V ◦(wn
2

) and so concern

ourselves with x∗ = (n−1)p
2n upon which the optima of (all but one) even sections lie, and with

x∗ = p
2 upon which the optima of odd sections lie, and with y = x− p

2n upon which the optima
of Section n

2 lie (for reference, these are the optima depicted in Figures 5.4j to 5.4l).

On x∗ = (n−1)p
2n , the Voronoi cells of points in Sections II to n − 2 will not touch either

vertical boundary of P and Section n will touch the leftmost boundary of P. On x∗ = p
2 ,

Sections I to n− 1 will not touch either vertical boundary of P and Section n+ 1 is the final
section, touching both vertical edges of P.

Therefore we need to compare the optima over Section n (shown in Table 5.5) and Section

n+ 1 (the optimum ( p
2n ,

(n−1)p
2n ) achieves pq

2 −
3(n−1)np2

8n2 ) with appropriate optima in Table 5.4.

Section Optimum Area Condition

n ( (n−1)p
2n , (n−2)p2n ) (n−1)pq

2n − (3n2−9n+6)p2

8n2 q ≤ (2n−3)p
n

( p
4n + q

4 ,
q
4 −

p
4n ) (2n−1)pq

8n − (2n2−6n+3)p2

16n2 + q2

16
(2n−3)p

n ≤ q ≤ (2n−1)p
n

(p2 ,
(n−1)p

2n ) (2n−1)pq
4n − (3n2−5n+2)p2

8n2

(2n−1)p
n ≤ q

Table 5.5: Optima within Section n of the top right quadrant of V ◦(wn
2

).

Within the calculations for general Sections 2l and 2l + 1 leading to Table 5.4, we compared
the bottom optima of Section 2l to 2l + 1 and of Section 2l + 1 to 2(l + 1). It is useful to note
that while the Voronoi cell of the ‘bottom’ optimum of Section n does share a border with
the leftmost boundary of P, this bordering does not remove any area since the boundary of
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P is incident on the perimeter of the Voronoi cell (i.e. the point captures the same area as
the equivalent point in Section n which does not touch the leftmost boundary of P). Since the
‘bottom’ optimum of Section n acts as if it does not touch either vertical boundary of P , we can
use all of the results from Table 5.4 and check the optima in Section n against that of Section
n+ 1 (along with some checks for small n).

Firstly comparing the optima of Section n and Section n + 1, by an identical argument
to the one shown in Figure 5.5, the ‘top’ optimum of Section n is beaten by the optimum in
Section n+ 1 (simply because they lie in the same location with Section n+ 1 lying on a more
preferential side of CC3(wn)). We should, however, compare the optimum of Section n+ 1 with
the ‘middle’ optimum of Section n:(

pq

2
− 3(n− 1)np2

8n2

)
−
(

(2n− 1)pq

8n
− (2n2 − 6n+ 3)p2

16n2
+
q2

16

)
=
pq

2
− 3(n− 1)np2

8n2
− (2n− 1)pq

8n
+

(2n2 − 6n+ 3)p2

16n2
− q2

16

=
(2n+ 1)pq

8n
− (4n2 − 3)p2

16n2
− q2

16
≥ 0

⇔ q2 − 2(2n+ 1)pq

n
+

(4n2 − 3)p2

n2
≤ 0

⇔
(
q − (2n+ 1)p

n

)2

− 4(n+ 1)p2

n2
≤ 0

⇔ (2n+ 1)p

n
− 2

√
(n+ 1)p

n
≤ q ≤ (2n+ 1)p

n
+

2
√

(n+ 1)p

n
.

Now
(2n− 3)p

n
<

(2n+ 1− 2
√

(n+ 1))p

n
⇔ 2

√
(n+ 1) < 4⇔ n < 3

so if n = 2 then the ‘middle’ optimum of Section n is better than the optimum over Section

n+ 1 if q ≤ (2n+1−2
√

(n+1))p

n . In this case, the remaining comparisons are very straightforward
as the only sections existing when n = 2 are Sections I, II, and III so we can record the optima
straightforwardly, as displayed in Table 5.6.

Section b∗ Area Condition
I (∗, 0) pq

2n q ≤ p
2

II (p8 + q
4 ,

q
4 −

p
8 ) 3pq

16 + p2

64 + q2

16
p
2 ≤ q ≤

(5−2
√
3)p

2

III (p2 ,
p
4 ) pq

2 −
3p2

16
(5−2

√
3)p

2 ≤ q

Table 5.6: The best point b∗ for n = 2.

If n 6= 2 then the optimum in Section n + 1 is always better than the ‘middle’ optimum
of Section n. This leads us to the comparison of the ‘bottom’ optimum of Section n and the
optimum of Section n+ 1:(

pq

2
− 3(n− 1)np2

8n2

)
−
(

(n− 1)pq

2n
− (3n2 − 9n+ 6)p2

8n2

)
=
pq

2
− 3(n− 1)np2

8n2
− (n− 1)pq

2n
+

(3n2 − 9n+ 6)p2

8n2

=
pq

2n
− 3(n− 1)p2

4n2
≥ 0

⇔ 3(n− 1)p

2n
≤ q

and, for a sanity check, the comparison of the ‘bottom’ optimum of Section n and the bottom
optimum of Section n− 2 (note that Section n− 2 may not always exist and we shall discuss
these finer details shortly):
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(
(n− 1)pq

2n
− (3n2 − 9n+ 6)p2

8n2

)
−
(

((n− 2)− 1)pq

2n
− 3((n− 2)− 1)((n−22 − 1)p2

4n2

)
=

(n− 1)pq

2n
− (3n2 − 9n+ 6)p2

8n2
− (n− 3)pq

2n
+

3(n− 3)(n− 4)p2

8n2

=
pq

n
− 3(2n− 5)p2

4n2
≥ 0

⇔ 3(2n− 5)p

4n
≤ q

(the identical condition for Section 2l and 2(l + 1) where Section 2(l + 1) does not touch either

vertical boundaries of P as expected). Finally, checking that 3(2n−5)p
4n < 3(n−1)p

2n confirms that
the optimum in Section n + 1 is better than the ‘bottom’ optimum in Section n when this
optimum is better than the bottom optimum of Section n − 2, so we need not compare the
optima of Section n+ 1 and n− 2.

Now, for l > 1, the bottom optimum in Section 2l was always found to be optimal within
some range of q in Table 5.4 as, since the ‘bottom’ optimum in Section n is identical to the
general bottom optimum in Section 2l, it is simply true that we can use all of the results
summarised in Table 5.4 until Section n at which point we use the results we have most recently
found. Hence the best points b∗ for every even n 6= 2 are recorded in Table 5.7.

Section Optimum Area Condition
I (∗, 0) pq

2n q ≤ p
n

II ( (n−1)p
2n , q3 −

p
3n ) pq

3n + p2

12n2 + q2

12
p
n ≤ q ≤

(4−
√
3)p

n

III (p2 ,
p
2n ) pq

n −
p2

n2

(4−
√
3)p

n ≤ q ≤ 5p
2n

IV ( (n−1)p
2n , pn ) 3pq

2n −
9p2

4n2
5p
2n ≤ q ≤

5p
n

IV ( (n−1)p
2n , q3 −

2p
3n ) 2pq

3n −
p2

6n2 + q2

12
5p
n ≤ q ≤

(11−
√
33)p

n

V I ( (n−1)p
2n , 2pn ) 5pq

2n −
15p2

2n2

(11−
√
33)p

n ≤ q ≤ 33p
4n

2l ( (n−1)p
2n , (l − 1) pn ) (2l−1)pq

2n − 3(2l−1)(l−1)p2
4n2

3(4l−5)p
4n ≤ q ≤ 3(4l−1)p

4n

n ( (n−1)p
2n , (n−2)p2n ) (n−1)pq

2n − (3n2−9n+6)p2

8n2

3(2n−5)p
4n ≤ q ≤ 3(n−1)p

2n

n+ 1 ( p
2n ,

(n−1)p
2n ) pq

2 −
3(n−1)np2

8n2

3(n−1)p
2n ≤ q

Table 5.7: The best point b∗ for even n 6= 2.

n odd If n is odd then we are investigating the top right quadrant of V ◦(wn+1
2

) and so concern

ourselves with x∗ = p
2 upon which the optima of all even sections lie, and with x∗ = (n+1)p

2n

upon which the optima of (all but one) odd sections lie, and with y = (n−i)p
n − x upon which

the optima of Section i lie (for reference, these are the optima depicted in Figures 5.4m to 5.4o).
On x∗ = p

2 , the Voronoi cells of points in Sections II to n− 1 will not touch either vertical
boundaries of P, and Section n+ 1 is the final section, touching both vertical edges of P. On

x∗ = (n+1)p
2n , the Voronoi cells of points in Sections I to n − 2 will not touch either vertical

boundaries of P and Section n will touch the rightmost boundary of P.
Therefore, as before, we need to compare the optima over Section n (shown in Table 5.8)

and Section n+ 1 (the optimum ( p2 ,
(n−1)p

2n ) achieves pq
2 −

3(n−1)np2
8n2 ) with appropriate optima

in Table 5.4.
Now the only optimum within an odd section (ignoring Section I) to be a global optimal

point for Voronoi cells not touching either vertical boundary of P is the bottom optimum of
Section III. Since the areas achieved by the optima in Section n for Voronoi cells touching
the rightmost vertical boundary of P are no greater than the areas achieved by the optima of
Section n for Voronoi cells that touch neither vertical boundary of P and the latter are not
global optima unless n = 3, the optima of our Section n will never be global optima unless
n = 3. Therefore we only need consider the optima in Section n if n = 3, and by the argument
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Section Optimum Area Condition

n ( (n+1)p
2n , (n−2)p2n ) (n−1)pq

2n − 3(n−2)(n−1)p2
8n2 q ≤ (2n−3)p

n

( (4n−1)p
4n − q

4 ,−
p
4n + q

4 ) (2n−1)pq
8n − (2n2−6n+3)p2

16n2 + q2

16
(2n−3)p

n ≤ q ≤ (2n−1)p
n

(p2 ,
(n−1)p

2n ) (2n−1)pq
4n − (3n−2)(n−1)p2

8n2

(2n−1)p
n ≤ q

Table 5.8: Optima within Section n of the top right quadrant of V ◦(wn+1
2

).

from Figure 5.5 we need never consider the ‘top’ optima of Section n. Moreover, we can avoid
all further calculations by noting that the bottom optimum of Section III and of Section IV
in Table 5.4 (two consecutive global optima) are, respectively, exactly the same location and
achieve exactly the same area as the ‘bottom’ optimum of Section III in the case that the
Voronoi cells touch the rightmost boundary of P, and the optimum of Section IV in the case
that the Voronoi cells touch both vertical boundaries of P. Therefore we already know our
global optima and these are displayed in Table 5.9.

Section Optimum Area Condition
I (∗, 0) pq

2n q ≤ p
n

II (p2 ,
q
3 −

p
3n ) pq

3n + p2

12n2 + q2

12
p
n ≤ q ≤

(4−
√
3)p

n

III ( (n+1)p
2n , p2n ) pq

n −
p2

n2

(4−
√
3)p

n ≤ q ≤ 5p
2n

IV (p2 ,
p
3 ) pq

2 −
p2

4
5p
2n ≤ q

Table 5.9: The best point b∗ for n = 3.

The ideas here can also be transferred to the n 6= 3 case. All that remains is to compare the
optima found in Table 5.4 to the optimum of Section n+ 1, yet once we realise that the optimum
of Section n+ 1 touching both vertical boundaries of P is identical in location and area to the
bottom optimum of Section n+ 1, touching neither vertical boundary of P which is the global
optimum for cells not touching either vertical boundary, we know that we have already found
the hierarchy of optima and we can simply copy the results from Table 5.4 (and these also hold
true for n = 3). Hence the best points b∗ for every odd n are recorded in Table 5.10.

Section Optimum Area Condition
I (∗, 0) pq

2n q ≤ p
n

II (p2 ,
q
3 −

p
3n ) pq

3n + p2

12n2 + q2

12
p
n ≤ q ≤

(4−
√
3)p

n

III ( (n+1)p
2n , p2n ) pq

n −
p2

n2

(4−
√
3)p

n ≤ q ≤ 5p
2n

IV (p2 ,
p
n ) 3pq

2n −
9p2

4n2
5p
2n ≤ q ≤

5p
n

IV (p2 ,
q
3 −

2p
3n ) 2pq

3n −
p2

6n2 + q2

12
5p
n ≤ q ≤

(11−
√
33)p

n

V I (p2 ,
2p
n ) 5pq

2n −
15p2

2n2

(11−
√
33)p

n ≤ q ≤ 33p
4n

2l (p2 , (l − 1) pn ) (2l−1)pq
2n − 3(2l−1)(l−1)p2

4n2

3(4l−5)p
4n ≤ q ≤ 3(4l−1)p

4n

n+ 1 (p2 ,
(n−1)p

2n ) pq
2 −

3(n−1)np2
8n2

3(2n−3)p
4n ≤ q

Table 5.10: The best point b∗ for odd n.

And thus we have found all of the best points b∗ in P for every combination of p, q, and n.

5.3.2 Black’s best arrangement

As interesting as Black’s best point may be, Black must also consider the placement of their
other n− 1 points, and the best single point may actually be a poor placement when considering
where to place Black’s remaining points.

On top of the relationship between p
n and q restricting what sections are available within

which to place Black’s points, the idea of modelling the interaction between different black points
and consideration of where a black cell would steal from another black cell, thereby reducing
the effectiveness of their placement, fills the writer with fear. However, we can learn something
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from the optimisation of b1 within every possible partition of P, as depicted in Figure 5.4 and
the tables of Black’s best single points.

Making use of the work summarised in Table 5.4 we can achieve crude upper bounds on the
area that Black can steal with the näıve suggestion that Black manages to steal the area of their
best point for each point. This supposition is not so crazy for low values of q; it is clear that
Black can steal a maximum of pq

2 if p
n ≥ q by placing their points bi as close as possible to wi.

However, for p
n ≤ q ≤ (4−

√
3)p

n for which the middle optimum of Section II is the best point,
one can easily see that it is not possible to locate n of these points such that no two of Black’s
Voronoi cells overlap.

Observe from Figure 5.3 that every point b1 = (x, y) placed in Section III and above steals
from at least four quarter cells in VD(W ) all of the area from y upwards (or placed in Section
IV and above if b1 is placed within a quarter cell sharing a vertical boundary with P). Naturally
it would be wasteful if Black were to steal such a portion of a single quarter cell more than once
(i.e. by two separate placements b1 and b2). Since there are a total of 4n quarter cells to steal
from and n Black points to be positioned in order to steal from these quarter cells, an effective
position for b ∈ B would steal as much area as possible from a particular four quarter cells. This
suggests that a utilisation of a row of points as depicted in Figure 5.4f equally spaced with a
horizontal separation of 2p

n above and below the white row would work rather effectively. Let us
formally describe such an arrangement.

With white points being ordered w1 to wn left to right where wi = ( (2i−1)p
2n , 0), this

arrangement for Black as described would be bui = ( ipn ,
p
2n ) and bdi = ( ipn ,−

p
2n ) for i = 1, ..., bn2 c

(being the points played above and below White’s row respectively). Of course, if n is odd
then we have one remaining point bn to place, and one Voronoi cell V ◦(wn) which remains

unchallenged by any of Black’s points b
{u,d}
i so it makes most sense to place bn as close as

possible to wn in order to steal the most ( pq2n ) from V ◦(wn). These arrangements (for n even
and odd) are always possible (i.e. the points bui and bdi exist) and are pictured in Figure 5.6.

(a) n even.

(b) n odd.

Figure 5.6: Arrangements exploiting the efficacy of the best point in Section III.

If n is even then this arrangement scores an area of pq − 3n× p2

4n2 = pq − 3p2

4n , capturing all

of P outside − p
2n < y < p

2n . We know that this arrangement is optimal for (4−
√
3)p

n ≤ q ≤ 5p
2n

since it is under this condition that the best point b∗ is the lower optimum of Section III and
so this arrangement is composed entirely of non-overlapping best points b∗.

Furthermore, we hold that this arrangement is optimal for even n even when 5p
2n ≤ q. This is

due to the fact that increasing q merely increases the area controlled by Black’s points without
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altering White’s area. If {bui , bdi }i∈[1,...,n] is not the optimal arrangement for Black then there
must be another arrangement which controls more area within − p

2n < y < p
2n of P. However,

no arrangement containing a point with a y-coordinate of absolute value greater than 5p
2n can

steal more area within − p
2n < y < p

2n of P. Therefore this better arrangement must also exist

for 5p
2n ≥ q and so be the optimal arrangement for some range of (4−

√
3)p

n ≤ q ≤ 5p
2n , providing

an obvious contradiction.
Thus we have found Black’s optimal play for even n and (4−

√
3)p

n ≤ q in response to White

playing a row. Results for odd n and (4−
√
3)p

n ≥ q are less obvious, though we suspect that
the best point within Section III will be prevalent in optimal arrangements, not least effective
arrangements.

5.4 White plays an a× b grid

Next we shall explore the placement of Black’s point b1 within grids with depth greater than
one. We assume that the points are positioned in an a× b grid and without loss of generality let
us assume p

a ≥
q
b . Since White’s arrangement is repetitive and has such symmetry, our search

for Black’s optimal location is greatly simplified as we need only consider the placement of b1
within a small selection of areas of P.

Again we shall investigate the possible Voronoi diagrams VD(W ∪ b1) (in order to find the
placement of b1 so as to maximise Area(V +(b1))) by partitioning the arena into subsets within
which the Voronoi diagram is structurally identical. Since P is rectangular and all of White’s
bisectors are vertical and horizontal then, from Averbakh et al. (2015), the partitioning lines are
simply the configuration lines of each of White’s points.

In any a × b grid of points W in P with a, b ≥ 2, there exists a 2 × 2 subgrid within the
arrangement. An example of such a subgrid is shown in Figure 5.7 along with its partition
of the space into regions within which the cell V +(b1) is structurally identical. This subgrid
can be found by choosing any point w0 ∈ W and orienting P so that w0 is the bottom left
vertex of a 2× 2 subgrid. Having done this we will label the adjacent point to the right of w0

by w0R and then label every pair of left and right points directly above w0 and w0R by wiL
and wiR respectively and every pair of left and right points directly below w0 and w0R by w−iL
and w−iR respectively, where i marcates these pairs as being the ith pairs away from w0 and
w0R in their given directions. That is, taking w0 = (0, 0), we have the following expressions:
wiL =

(
0, iqb

)
and wiR =

(
p
a ,

iq
b

)
for i ∈ Z (where w0L = w0). Similarly define wiLL

=
(
− pa ,

iq
b

)
for i ∈ Z to be the set of points adjacent to the left of wiL . Note that wiL and wiR may not
exist for i ∈ Z \ {0, 1}, nor may wiLL

for any i ∈ Z, so these are not depicted in Figure 5.7.

I

II

III

IV

w0 w0R

w1Rw1L

Figure 5.7: The partition of P for an example 2× 2 subgrid of W .
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Without loss of generality let us choose to place b1 within the first quadrant of V ◦(w0). By
the symmetry of this 2× 2 subgrid, every possible cell type of V +(b1) can be grown from this
placement, adjusting the number of white points with which to generate a bisector outside the
2 × 2 subgrid in whichever direction we choose (as will be shown). Note that it is only the
points wiL , wiR , and w0LL

and w1LL
that can contribute a bisector part to the perimeter of

V +(b1) since p
a ≥

q
b . We can also use this quadrant to investigate the structures that V +(b1)

can take when placed outside a 2 × 2 subgrid (i.e. placed in a quadrant of V ◦(w) for some w
which borders the perimeter of P) by introducing boundaries along the borders of V ◦(w0) as
required (as will also be shown).

The observant reader may realise that there should perhaps be at least another configuration
line contributing to the partition in Figure 5.7: the potential configuration line CL4(w−1R), for
example. While indeed b1 will interact with w−1R (if existing) if b1 ∈ CC1(w0), this interaction
will be identical no matter whether b1 ∈ CC3(w−1R) or b1 ∈ CC4(w−1R). This is because the only
bisector part present in B(b1, w−1R) is the diagonal part, identical in its representation for both
CC3(w−1R) and CC4(w−1R) bisectors. In order to present a horizontal or vertical bisector part,
one of the quadrant lines of b1 must enter the cell V ◦(w−1R). Therefore the only configuration
lines required are from those points in W lying on the quadrant lines through w1. For that
reason we may also ignore the configuration lines CC3(w−iR), CC5(wiR), and CC7(w1LL

) for all
i ∈ N. Moreover, since p

a ≥
q
b , the configuration lines of w0R and w0LL

do not enter the first

quadrant of V ◦(w0), so the only lines contributing to our partition are CC7(wiL) and CC1(w−iL)
for i ∈ N.

As p
2a increases in relation to q

2b from the proportions shown in Figure 5.7, the partitioning

lines CC7(wiL) and then CC1(w−iL) for i ∈ N will begin to contribute to the partition of P. In
this way, momentously, the partition confined to the top right quadrant of V ◦(w0) is identical to
the partition studied for White’s row arrangement (shown in Figure 5.2) but reflected in y = x
and with the width p

2n and height q
2 of the quadrant being explored replaced by q

2b and p
2a

respectively (truncated, instead, by the bisector B(w0, w0R)). In this way we have the partition
cells as in Figure 5.2 which are Section I (CC2(w0)), Section 2l (CC1(w1−lL) \ CC8(wlL)) for

0 ≤ (l−1)q
b ≤ p

2a , and Section 2l + 1 (CC8(wlL) \ CC1(w−lL)) for q
2b ≤

(2l−1)q
2b ≤ p

2a , as shown
in Figure 5.8. Note that, since b is finite, Sections 2l and 2l + 1 do not always exist. If w0

is on the ith row of White points (counting from the bottom of the a × b grid) then the last
possible partition section will be bounded by either CL2(w1−iL) (so would be Section 2i) or by
CL8(wb−iL) (so would be Section 2(b− i) + 1) depending on whether −(1− i) ≥ b− i⇔ i ≥ b+1

2
or not, respectively.

I

II

III

IV

V

w0 w0R

w1Rw1L

Figure 5.8: The partition of P for a general 2× 2 subgrid of W .

In order to obtain a feel for how V +(b1) can appear under White’s grid arrangements, in
Figure 5.9 we shall draw the first three unique structures that V +(b1) can take from the partition
displayed in Figure 5.7 (combining II and IV into what we refer to as Section II). Whilst they
are shown to extend to the furthest that a grid arrangement would allow, one can easily imagine
how the cells are truncated if they hit the boundary of P before closing (for example, if w0LL

and w1LL
do not exist then V +(b1) in Figure 5.9a will be prevented from expanding any further

left than the boundary of P at x = − p
2a ).
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w0LL

w1LL

w0 w0R

w1Rw1L

(a) Voronoi cell V +(b1) for b1 in Section I.

w−1L w−1R

w0 w0R

w1Rw1L

(b) Voronoi cell V +(b1) for b1 in Section II.

w−1L w−1R

w0 w0R

w1Rw1L

w2Rw2L

(c) Voronoi cell V +(b1) for b1 in Section III.

Figure 5.9: Voronoi cells V +(b1) for b1 in respective sections according to Figure 5.8.

From these figures we can see that our situation is very similar to the situation we faced
in Section 5.2. Yet again, if b1 is placed within Section I then V +(b1) exhibits a particularly
unique structure, whilst Section 2l and 2l + 1 Voronoi cells resemble one another fairly closely,
with V +(b1) entering V ◦(wl+1L)∪V ◦(wl+1R) as b1 ventures from Section 2l to 2l+ 1 and enters
into V ◦(w−(l+1)L

) ∪ V ◦(w−(l+1)R
) as b1 ventures from Section 2l + 1 to 2(l + 1). Therefore, as

before, it will prove useful to analyse the area of V +(b1) stolen from each constituent block
V ◦(wiL) ∪ V ◦(wiR) for i ∈ Z in the case that b1 = (x, y) is not in Section I.

Theft from V ◦(w0L) ∪ V ◦(w0R) Firstly we will look at the area of V +(b1) intersected with
V ◦(w0L)∪V ◦(w0R). Since b1 ∈ CC1(w0L)∩CC4(w0R) (as we are not considering b1 in Section I)
this area always exists, has vertices ( x−y2 , q2b ), (x−y2 , y), (x+y2 , 0), (x+y2 ,− q

2b ), ( p2a + x−y
2 ,− q

2b ),

( p2a + x−y
2 , 0), ( p2a + x+y

2 , y), and ( p2a + x+y
2 , q2b ), and totals
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Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R))) = (
p

2a
+
x+ y

2
− x+ y

2
)× q

b
− y2

=
pq

2ab
− y2 .

It is clear that this area is maximised by y = 0 and is invariant in the value of x.

Theft from V ◦(wiL)∪V ◦(wiR) for b1 ∈ CC8(wiL) or b1 ∈ CC1(w−iL) Now we shall determine
the areas of V +(b1) intersected with V ◦(wiL) ∪ V ◦(wiR) in which V +(b1) steals area at every y
value of V ◦(wiL) ∪ V ◦(wiR). That is, if i > 0, that V +(b1) also enters V ◦(wi+1L) ∪ V ◦(wi+1R)
(if existing) so b1 ∈ CC8(wiL) (which restricts b1 to also lie within CC5(wiR)) and, if i < 0, that
V +(b1) also enters V ◦(wi−1L) ∪ V ◦(wi−1R) (if existing) so b1 ∈ CC1(wiL) (which restricts b1 to
also lie within CC4(wiR)). This restricts b1 to lie within Sections 2i+ 1 and beyond if i > 0 or
Sections 2(−i + 1) and beyond if i < 0. By symmetry these areas (for i > 0 and i < 0) have
the same structure and, since these structures rely only on the distance between b1 and the
generators of the Voronoi cells in question, the representations are nigh identical.

For i > 0 the area has vertices ( iq2b + x−y
2 , (2i+1)q

2b ), ( iq2b + x−y
2 , iqb ), ( (i−1)q

2b + x−y
2 , (2i−1)q2b ),

( p2a −
(i−1)q

2b + x+y
2 , (2i−1)q2b ), ( p2a −

iq
2b + x+y

2 , iqb ), and ( p2a −
iq
2b + x+y

2 , (2i+1)q
2b ) and totals

Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR))) = (
p

2a
− iq

2b
+
x+ y

2
− (

iq

2b
+
x− y

2
))× q

b
+
( q

2b

)2
= (

p

2a
− iq

b
+ y)× q

b
+

q2

4b2

=
q

b
y +

pq

2ab
− (4i− 1)q2

4b2
.

For i < 0 the area has vertices (x+y2 − (i+1)q
2b , (2i+1)q

2b ), (x+y2 − iq
2b ,

iq
b ), (x+y2 − iq

2b ,
(2i−1)q

2b ),

( p2a + iq
2b + x−y

2 , (2i−1)q2b ), ( p2a + iq
2b + x−y

2 , iqb ), and ( p2a + (i+1)q
2b + x−y

2 , (2i+1)q
2b ) and totals

Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR))) = (
p

2a
+
iq

2b
+
x− y

2
− (

x+ y

2
− iq

2b
))× q

b
+
( q

2b

)2
= (

p

2a
+
iq

b
− y)× q

b
+

q2

4b2

= −q
b
y +

pq

2ab
+

(4i+ 1)q2

4b2
.

Again, neither area depends on the value of x; however, the area is maximised if i > 0 by y = p
2a

and if i < 0 by y = 0.

Theft from V ◦(wiL) ∪ V ◦(wiR) for b1 ∈ CC7(wiL) or b1 ∈ CC2(w−iL) Finally we shall
determine the areas of V +(b1) intersected with V ◦(wiL) ∪ V ◦(wiR) in which V +(b1) steals only
at certain values of y in V ◦(wiL) ∪ V ◦(wiR). That is, if i > 0, that V +(b1) does not enter
V ◦(wi+1L) ∪ V ◦(wi+1R) (if existing) so b1 ∈ CC7(wiL) (which restricts b1 to also lie within
CC6(wiR)) and, if i < 0, that V +(b1) does not enter V ◦(wi−1L) ∪ V ◦(wi−1R) (if existing) so
b1 ∈ CC2(wiL) (which restricts b1 to also lie within CC3(wiR)). This restricts b1 to lie within
Sections 2i− 1 and 2i if i > 0 (note that this area only holds for b1 within Section II if i = 1)
or Sections 2(−i) and 2(−i) + 1 if i < 0. Analogously to above, both of these areas are the same
structures with only subtly different representations.

For i > 0 the area has vertices ( p
2a ,

iq
2b + x+y

2 ), (x, iq2b + x+y
2 ), ( (i−1)q

2b + x−y
2 , (2i−1)q2b ), and

( p2a −
(i−1)q

2b + x+y
2 , (2i−1)q2b ) and totals
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Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR))) =

(
p

2a
−
(

(i− 1)q

2b
+
x− y

2

))
×
(
iq

2b
+
x+ y

2
− (2i− 1)q

2b

)
=

(
p

2a
− (i− 1)q

2b
− x− y

2

)
×
(
− (i− 1)q

2b
+
x+ y

2

)
= −x

2

4
+
y2

4
+

p

4a
x+

(
p

4a
− (i− 1)q

2b

)
y

− (i− 1)pq

4ab
+

(i− 1)2q2

4b2
.

For i < 0 the area has vertices (− (i+1)q
2b + x+y

2 , (2i+1)q
2b ), (x, iq2b −

x−y
2 ), ( p2a ,

iq
2b −

x−y
2 ), and

( p2a + (i+1)q
2b + x−y

2 , (2i+1)q
2b ) and totals

Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR))) =

(
p

2a
−
(
− (i+ 1)q

2b
+
x+ y

2

))
×
(

(2i+ 1)q

2b
−
(
iq

2b
− x− y

2

))
=

(
p

2a
+

(i+ 1)q

2b
− x+ y

2

)
×
(

(i+ 1)q

2b
+
x− y

2

)
= −x

2

4
+
y2

4
+

p

4a
x−

(
p

4a
+

(i+ 1)q

2b

)
y

+
(i+ 1)pq

4ab
+

(i+ 1)2q2

4b2
.

Now both areas are maximised by x = p
2a to give, if i > 0,

Area(V +(b1)∩(V ◦(wiL)∪V ◦(wiR))) =
y2

4
+

(
p

4a
− (i− 1)q

2b

)
y− (i− 1)pq

4ab
+

p2

16a2
+

(i− 1)2q2

4b2

and, if i < 0,

Area(V +(b1)∩(V ◦(wiL)∪V ◦(wiR))) =
y2

4
−
(
p

4a
+

(i+ 1)q

2b

)
y+

(i+ 1)pq

4ab
+

p2

16a2
+

(i+ 1)2q2

4b2

(and if this optimum is not achievable then, fixing y, the area increases as x moves closer to p
2a ).

If i > 0 then the maximiser is

y =
(i− 1)q

b
− p

2a

=
(2i− 3)q

2b
− p

2a
+

q

2b

≤ q

2b

relying on the fact that, since Section 2i− 1 must exist in some form (for i 6= 1) for this area

to be formed, it must be the case that (2i−3)q
2b ≤ p

2a . On the other hand, if i < 0 then the
maximiser is

y =
p

2a
+

(i+ 1)q

b
≥ 0

relying on the fact that, since Section 2(−i) must exist in some form for this area to be formed,

it must be the case that (−i−1)q
b ≤ p

2a .

Not only are these calculations useful for formulating the representation of the different
areas of V +(b1) for b1 contained in different sections within the first quadrant of V ◦(w0), but
they provide a very strong clue to where we will find the optimum to maximise Area(V +(b1)).
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Recall from Section 5.3 (in particular the discussion surrounding Figure 5.5) that Black will
always improve upon their area, when locating upon the boundary of two sections, by choosing
to locate in the higher section – or in our case, the rightmost section. Additionally we have
found that the x-coordinate of b1 does not affect the area of V +(b1) within most Voronoi cells
in VD(W ) and, when the value of x does contribute to the representation of Area(V +(b1)), the
optimal direction of movement is rightwards within the first quadrant of V ◦(w0). Combining
these two properties, we can say that the optimum b1 within Section II and beyond lies on the
line x∗ = p

2a ; for any fixed y, Area(V +(b1)) increases as x increases within a section, and will
increase upon crossing a configuration line into a section of greater value (increasing x) so the
best point for fixed y lies at x = p

2a .

This remains true no matter whether V +(b1) intersects the top or bottom perimeter of P.
Therefore, since our interest is Black’s best point, in contrast to Section 5.2 we need not calculate
the areas of every possible V +(b1) structure and optimise this area over the partition within
which this structure is maintained. Now we need only explore Section I and the line x∗ = p

2a ,
taking care to remember to check for special cases if V +(b1) interacts with the boundary of P.

5.5 Black’s optimal strategy: White plays an a× b grid

5.5.1 Black’s best point

Many ideas from our discussion in Section 5.3 carry over to the case where White plays a
grid. We will limit our exploration of Black’s best point b∗ to core quadrants. We will call the
first quadrant of V ◦(w0) a core quadrant if it borders only other Voronoi cells (and not the
boundary of P); that is, if w0R and w1L both exist. It is only these quadrants that we are
interested in because, as explained in Section 5.3, Black’s best point will never be contained in
a quadrant bordering P as long as core quadrants exist. As before, Black’s best point will never
be located next to the boundary of P . This is simply because, if V +(b1) touches one boundary
of P , translating the point a distance p

a or q
b perpendicularly away from a vertical or horizontal

boundary of P respectively will allow V +(b1) to enter a new uncharted pair of Voronoi cells
V ◦(wiL) ∪ V ◦(wiR) (up to orientation), and if V +(b1) touches opposite boundaries of P then,
since b1 is more effective at stealing area from Voronoi cells closest to b1, b1 does better when
equally distant from both boundaries. This will be explained in greater detail later within this
section.

As in Section 5.3, Figure 5.10 will depict all optimal locations of b1 within each required
section under the particular circumstances we will discuss below; again, Section IV and Section
III are depicted as the poster children for the general Section 2l and Section 2l + 1 results
respectively and for clarity these respective sections will be shaded in each figure.

As described above there are two areas of interest within these core quadrants: Section I,
and the line x∗ = p

2a .

Section I First we explore V +(b1) for b1 in Section I. It has vertices, tracing the perimeter
clockwise, (0, x+y2 ), (x, y−x2 ), ( p2a ,

y−x
2 ), ( p2a+ x+y

2 , y), ( p2a+ x+y
2 , q2b ), ( p2a ,

q
2b+ x+y

2 ), (x, q2b+ x+y
2 ),

(0, q2b + y−x
2 ), (− p

2a ,
q
2b + y−x

2 ), (− p
2a −

y−x
2 , q2b ), (− p

2a −
y−x
2 , y), and (− p

2a ,
x+y
2 ), giving an area

Area(V +(b1)) = (
p

2a
+
x+ y

2
)× (

q

2b
+
x+ y

2
− y − x

2
)− x2 − (

x+ y

2
)2

+ (
p

2a
+
y − x

2
)× (

q

2b
+
y − x

2
− x+ y

2
)− (

y − x
2

)2

=
q

2b
(
p

a
+ y) + x(x)− 3x2 + y2

2

= −x
2

2
− y2

2
+

q

2b
y +

pq

2ab

or, if points w0LL
and w1LL

do not exist (i.e. V ◦(w0) borders the perimeter of P),
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Area(V +(b1)) = (
p

2a
+
x+ y

2
)× (

q

2b
+
x+ y

2
− y − x

2
)− x2 − (

x+ y

2
)2

+
p

2a
× (

q

2b
+
y − x

2
− x+ y

2
)

=
q

2b
(
p

a
+
x+ y

2
) + x(

x+ y

2
)− 5x2 + 2xy + y2

4

= −3x2

4
− y2

4
+

q

4b
x+

q

4b
y +

pq

2ab
.

Assuming that points w0LL
and w1LL

do exist, to find the maximum of this over Section I
we first use gradient methods

δA

δx
= −x

δA

δy
= −y +

q

2b

to ascertain that the maximum of Area(V +(b1)) is found at b∗1 = (0, q2b ) (still contained in

Section I), giving Area(V +(b∗1)) = pq
2ab + q2

8b2 . This is depicted in Figure 5.10a.
Alternatively, if the points w0LL

and w1LL
do not exist, we have gradients

δA

δx
= −3x

2
+

q

4b
δA

δy
= −y

2
+

q

4b

so the area reaches its maximum at b∗1 = ( q6b ,
q
2b ) (still contained in Section I), giving

Area(V +(b∗1)) = pq
2ab + q2

12b2 . This is depicted in Figure 5.10b.

w0LL

w1LL

w0 w0R

w1Rw1L

(a) b1 = (0, q
2b
).

w0 w0R

w1Rw1L

(b) b1 = ( q
6b
, q
2b
).

Figure 5.10: Maximal area Voronoi cells V +(b1) for b1 within Section I.

Section 2l upon x∗ = p
2a Within the first quadrant of V ◦(w0), the line x∗ = p

2a can be in an
even section, an odd section, or both (entering into Section 2l + 1 from Section 2l as y increases
from 0). Therefore we must explore the area formulae for b1 in each section separately. Beginning

with the placement of b1 inside the even Section 2l (where (l−1)q
b ≤ p

2a ≤
lq
b ⇒ l = d pb2qae),

V +(b1) will extend into Voronoi cells V ◦(wiL) ∪ V ◦(wiR) for i ∈ {−l, . . . , l} (if existing).
Now the effect caused by the non-existence of these faraway Voronoi cells (i.e. the area that

the boundary of P cuts off) can greatly diminish the suitability of the placement of b1 if we
are in search of Black’s best point. It is clear that, if wlL does not exist while w−l−1L does,
simply choosing w0 to be the point directly below it (w−1L) will be beneficial to increasing the
maximum area that V +(b1) can take when locating within the first quadrant of V ◦(w0), simply
because this translation of our point of reference q

b lower will allow V +(b1) not only to keep
exactly the same area as before but also to enter another previously untapped Voronoi cell of
White’s. The same is clearly true for the analogous case where it is w−lL that does not exist
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while wl+1L does, and these alterations of w0 can of course be repeated until all Voronoi cells
V ◦(wiL) ∪ V ◦(wiR) for i ∈ {−l, . . . , l} exist (in which case b > 2l and V +(b1) does not interact
with P , and we may not necessarily have a unique best point of reference for w0), or until both
wlL and w−l−1L or w−lL and wl+1L do not exist.

If both wlL and w−l−1L or w−lL and wl+1L do not exist while wiL does for i ∈ {−l, . . . , l−1}
or for i ∈ {−l + 1, . . . , l} respectively then it is the case that b = 2l and V +(b1) touches only
one bounding edge of P. In this scenario we must decide which area we would prefer: that
stolen from V ◦(wlL) ∪ V ◦(wlR) or from V ◦(w−lL) ∪ V ◦(w−lR). Since b1 is being located in
the first quadrant of V ◦(w0), lying closer to wlL than w−lL , it can steal a larger area from
V ◦(wlL) ∪ V ◦(wlR) than it could from V ◦(w−lL) ∪ V ◦(w−lR), so it is favourable for w0 to be
chosen to be on the lth row of points in W (counting from the bottom of the grid) so that
V +(b1) consists of areas stolen from V ◦(wiL) ∪ V ◦(wiR) for all i ∈ {−l + 1, . . . , l} (as opposed
to for all i ∈ {−l, . . . , l − 1}).

This idea also applies to areas V +(b1) that touch both horizontal bounding edges of P (so
both wlL and w−lL do not exist, meaning that b < 2l) since, for i ∈ Z+, the area stolen from
V ◦(w±iL)∪V ◦(w±iR) will always be greater than that stolen from V ◦(w±(i+1)L

)∪V ◦(w±(i+1)R
),

and also the area stolen from V ◦(wiL)∪V ◦(wiR) will always be greater than or equal to the area
stolen from V ◦(w−iL) ∪ V ◦(w−iR). Therefore it is still optimal to choose w0 to be on the d b2eth
row of points in W in order to steal from V ◦(wiL) ∪ V ◦(wiR) for all i ∈ {−d b2e + 1, . . . , b b2c}.
Note though that, as described in the work preceding Figure 5.8, the final section possible in
the top right quadrant of V ◦(w0), where w0 is on the d b2eth row of points in W , is Section
b + 1, no matter whether b is even or odd. Therefore there is only one section within which
V ◦(w0) touches both horizontal edges of P and this is Section b+ 1. We will explore this section
separately to this investigation, after the Section 2l + 1 material is presented. Thus we shall
only consider b ≥ 2l here.

Now that we have chosen the optimal w0 and recorded which Voronoi cells V ◦(wiL)∪V ◦(wiR)
will be entered, we can calculate the areas of the Voronoi cell V +(b1) for different values of b

and optimise the location of b1 upon x∗ = p
2a within Section 2l. If b > 2l

(
= 2d pb2qae

)
then

Area(V +(b1)) = Area(V +(b1) ∩ (V ◦(w−lL) ∪ V ◦(w−lR)))

+
−1∑

i=−(l−1)

Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR)))

+Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R)))

+
l−1∑
i=1

Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR)))

+Area(V +(b1) ∩ (V ◦(wlL) ∪ V ◦(wlR)))

=
y2

4
−
(
p

4a
+

(−l + 1)q

2b

)
y +

(−l + 1)pq

4ab
+

p2

16a2
+

(−l + 1)2q2

4b2

+
−1∑

i=−l+1

(
−q
b
y +

pq

2ab
+

(4i+ 1)q2

4b2

)
+

pq

2ab
− y2

+
l−1∑
i=1

(
q

b
y +

pq

2ab
− (4i− 1)q2

4b2

)
+
y2

4
+ (

p

4a
− (l − 1)q

2b
)y − (l − 1)pq

4ab
+

p2

16a2
+

(l − 1)2q2

4b2

= −y
2

2
− (l − 2)pq

2ab
+

p2

8a2
+

(l − 1)2q2

2b2
+ 2

l−1∑
i=1

(
pq

2ab
− (4i− 1)q2

4b2

)
= −y

2

2
+
lpq

2ab
+

p2

8a2
− (l − 1)lq2

2b2
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and if b = 2l then, adapting this formula,

Area(V +(b1)) = −y
2

2
+
lpq

2ab
+

p2

8a2
− (l − 1)lq2

2b2

− “Area(V +(b1) ∩ (V ◦(w−lL) ∪ V ◦(w−lR)))”

= −y
2

2
+
lpq

2ab
+

p2

8a2
− (l − 1)lq2

2b2

−
(
y2

4
−
(
p

4a
− (l − 1)q

2b

)
y − (l − 1)pq

4ab
+

p2

16a2
+

(l − 1)2q2

4b2

)
= −3y2

4
+

(
p

4a
− (l − 1)q

2b

)
y +

(3l − 1)pq

4ab
+

p2

16a2
− (l − 1)(3l − 1)q2

4b2

It is straightforward to see that ( p2a , 0) is the optimum if b > 2l giving Area(V +(( p2a , 0))) =
lpq
2ab + p2

8a2 −
(l−1)lq2

2b2 . This is depicted in Figure 5.10c.

For b = 2l we have derivative

δA

δy
= −3y

2
+

p

4a
− (l − 1)q

2b

which gives our optimum to be at y∗ = p
6a −

(l−1)q
3b = p

6a −
(b−2)q

6b . However, in order for

b1 =
(
p
2a ,

p
6a −

(b−2)q
6b

)
to lie within Section b it must be the case that, if (b−2)q

2b ≤ p
2a ≤

(b−1)q
2b ,

b1 lies below CL2(w− b−2
2 L

) and, if (b−1)q
2b ≤ p

2a ≤
q
2 , b1 lies below CL8(w b

2L
).

Therefore if (b−2)q
2b ≤ p

2a ≤
(b−1)q

2b then it must be the case that y ≤ x− (b−2)q
2b so we require

p

6a
− (b− 2)q

6b
≤ p

2a
− (b− 2)q

2b
⇔ (b− 2)q

3b
≤ 2p

3a
⇔ (b− 2)q

4b
≤ p

2a
.

Hence b1 is the optimum in Section b for all values (b−2)q
2b ≤ p

2a ≤
(b−1)q

2b .

Otherwise, if (b−1)q
2b ≤ p

2a ≤
q
2 then it must be the case that y ≤ q

2 − x so we require

p

6a
− (b− 2)q

6b
≤ q

2
− p

2a
⇔ 2p

3a
≤ (2b− 1)q

3b
⇔ p

2a
≤ (2b− 1)q

4b
.

Therefore if (b−1)q
2b ≤ p

2a ≤
(2b−1)q

4b then b1 is the optimum in Section b. Otherwise, if (2b−1)q
4b ≤

p
2a ≤

q
2 then b1 will lie above Section b. If this is the case then the optimum over Section b must

lie on the boundary between Section b and b+ 1. However, as we saw when exploring Black’s
best point when White plays a row (see Figure 5.5 for example), any point lying in Section b on
the boundary with Section b+ 1 will be dominated by the identical point within Section b+ 1.

Therefore Black’s best point will not lie in Section b if (2b−1)q
4b ≤ p

2a .

To summarise, if b is even then: if (b−2)q
2b ≤ p

2a ≤
(2b−1)q

4b then the optimum in Section b is

( p2a ,
p
6a −

(b−2)q
6b ) giving Area(V +(( p2a ,

p
6a −

(b−2)q
6b ))) = (2b−1)pq

6ab + p2

12a2 −
(b−2)(4b−1)q2

12b2 (depicted

in Figure 5.10d), otherwise if (2b−1)q
4b ≤ p

2a ≤
q
2 then the optimum lies on the boundary with

Section b+ 1 and is not Black’s best point (and so is not drawn).

Section 2l + 1 upon x∗ = p
2a We now consider the placement of b1 on x∗ = p

2a inside the

odd Section 2l + 1 (where (2l−1)q
2b ≤ p

2a ≤
(2l+1)q

2b ⇒ l = dpb−qa2qa e) where V +(b1) will extend into

Voronoi cells V ◦(wiL) ∪ V ◦(wiR) for i ∈ {−l, . . . , l + 1} (if existing).

Now, as before, we will explore the effect caused by the non-existence of these faraway
Voronoi cells (i.e. what area the boundary of P cuts off). We can use identical processes to
those described in Section 2l in order to find the best point in W to assign to be w0. If b > 2l+ 1
then we can choose w0 such that all Voronoi cells V ◦(wiL)∪V ◦(wiR) for i ∈ {−l, . . . , l+ 1} exist
and V +(b1) does not interact with P (again we will not have a unique best point of reference
for w0 if b 6= 2l + 2).
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w0 w0R

w1L w1R

w−1L w−1R

w2L w2R

w−2L w−2R

(c) b1 = ( p
2a
, 0).

w0 w0R

w1L w1R

w−1L w−1R

w2L w2R

(d) b1 = ( p
2a
, p
6a

− (b−2)q
6b

) only if
(b−2)q

2b
≤ p

2a
≤ (2b−1)q

4b
and b = 2l.

Figure 5.10: Maximal area Voronoi cells V +(b1) for b1 within Section 2l upon x∗ = p
2a .

If both wl+1L and w−l−1L or w−lL and wl+2L do not exist while wiL does for i ∈ {−l, . . . , l}
or for i ∈ {−l + 1, . . . , l + 1} respectively then it is the case that b = 2l + 1 and V +(b1) touches
only one bounding edge of P . In this scenario we must again decide which area we would prefer:
that stolen from V ◦(wl+1L)∪V ◦(wl+1R) or from V ◦(w−lL)∪V ◦(w−lR). Since b1 is being located
in the first quadrant of V ◦(w0), lying closer to w−lL than wl+1L , it can steal a larger area from
V ◦(w−lL) ∪ V ◦(w−lR) than it could from V ◦(wl+1L) ∪ V ◦(wl+1R), so it is favourable for w0 to
be chosen to be on the l + 1th row of points in W (counting from the bottom of the grid) so
that V +(b1) consists of areas stolen from V ◦(wiL) ∪ V ◦(wiR) for all i ∈ {−l, . . . , l} (as opposed
to for all i ∈ {−l + 1, . . . , l + 1}).

Using an identical argument to that for even sections, for areas V +(b1) that touch both
horizontal bounding edges of P (so both wl+1L and w−lL do not exist, meaning that b < 2l + 1)
it is still optimal to choose w0 to be on the d b2eth row of points in W in order to steal from

V ◦(wiL) ∪ V ◦(wiR) for all i ∈ {−d b2e+ 1, . . . , b b−12 c}. As justified in our analysis of Sections 2l
it is only within this final Section b+ 1 that both horizontal edges of P are touched, and we
shall explore this section after finishing a full investigation of Sections 2l + 1 for b ≥ 2l + 1.

Now that we have chosen the optimal w0 and recorded which Voronoi cells V ◦(wiL)∪V ◦(wiR)
will be entered, we can calculate the areas of the Voronoi cell V +(b1) for different values of b
and optimise the location of b1 upon x∗ = p

2a within Section 2l + 1. We calculate these areas
by taking the area found in Section 2l and adapting it for Section 2l + 1 (noting that a move
from Section 2l to 2l + 1 means that V +(b1) enters V ◦(wl+1L) ∪ V ◦(wl+1R) for the first time).

If b > 2l + 1
(

= 2dpb−qa2qa e+ 1
)

then

Area(V +(b1)) = −y
2

2
+
lpq

2ab
+

p2

8a2
− (l − 1)lq2

2b2

− “Area(V +(b1) ∩ (V ◦(wlL) ∪ V ◦(wlR)))”

+Area(V +(b1) ∩ (V ◦(wlL) ∪ V ◦(wlR)))

+Area(V +(b1) ∩ (V ◦(wl+1L) ∪ V ◦(wl+1R)))
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= −y
2

2
+
lpq

2ab
+

p2

8a2
− (l − 1)lq2

2b2

−
(
y2

4
+ (

p

4a
− (l − 1)q

2b
)y − (l − 1)pq

4ab
+

p2

16a2
+

(l − 1)2q2

4b2

)
+
q

b
y +

pq

2ab
− (4l − 1)q2

4b2

+
y2

4
+

(
p

4a
− ((l + 1)− 1)q

2b

)
y − ((l + 1)− 1)pq

4ab
+

p2

16a2
+

((l + 1)− 1)2q2

4b2

= −y
2

2
+

q

2b
y +

(l + 1)pq

4ab
+

p2

8a2
− l2q2

2b2

and if b = 2l + 1 then, adapting this formula,

Area(V +(b1)) = −y
2

2
+

q

2b
y +

(l + 1)pq

4ab
+

p2

8a2
− l2q2

2b2

− “Area(V +(b1) ∩ (V ◦(wl+1L) ∪ V ◦(wl+1R)))”

= −y
2

2
+

q

2b
y +

(l + 1)pq

4ab
+

p2

8a2
− l2q2

2b2

−
(
y2

4
+

(
p

4a
− lq

2b

)
y − lpq

4ab
+

p2

16a2
+
l2q2

4b2

)
= −3y2

4
−
(
p

4a
− (l + 1)q

2b

)
y +

(2l + 1)pq

4ab
+

p2

16a2
− 3l2q2

4b2
.

Clearly ( p2a ,
q
2b ) is the optimum if b > 2l + 1 giving Area(V +(( p2a ,

q
2b ))) = (4l−1)pq

4ab + p2

8a2 −
(4l2−1)q2

8b2 as depicted in Figure 5.10e.

For b = 2l + 1 we have derivative

δA

δy
= −3y

2
− p

4a
+

(l + 1)q

2b

which gives our optimum to be at y∗ = − p
6a + (l+1)q

3b = − p
6a + (b+1)q

6b . However, in order for

b1 = ( p2a ,
(b+1)q

6b − p
6a ) to lie within Section b+1 it must be the case that, if (b−2)q

2b ≤ p
2a ≤

(b−1)q
2b ,

b1 lies above CL8(w b−1
2 L

) and, if (b−1)q
2b ≤ p

2a ≤
q
2 , b1 lies above CL2(w− b−1

2 L
).

Therefore, if (b−2)q
2b ≤ p

2a ≤
(b−1)q

2b then it must be the case that (b−1)q
2b − x ≤ y so we require

(b− 1)q

2b
− p

2a
≤ (b+ 1)q

6b
− p

6a
⇔ (b− 2)q

3b
≤ p

3a
⇔ (b− 2)q

2b
≤ p

2a
.

Hence b1 is the optimum in Section b for all values (b−2)q
2b ≤ p

2a ≤
(b−1)q

2b .

Otherwise, if (b−1)q
2b ≤ p

2a ≤
q
2 then it must be the case that x− (b−1)q

2b ≤ y so we require

p

2a
− (b− 1)q

2b
≤ (b+ 1)q

6b
− p

6a
⇔ 2p

3a
≤ (2b− 1)q

3b
⇔ p

2a
≤ (2b− 1)q

4b
.

Therefore, if (b−1)q
2b ≤ p

2a ≤
(2b−1)q

4b then b1 is the optimum in Section b. Otherwise, if
(2b−1)q

4b ≤ p
2a ≤

q
2 then b1 will lie below Section b. If this is the case then, following identical

working as that for even b, the optimum over Section b must lie on the boundary between
Section b and b+ 1 whereupon it will be dominated by the identical point within Section b+ 1.

Therefore Black’s best point will not lie in Section b if (2b−1)q
4b ≤ p

2a .

To summarise, if b is odd then: if (b−2)q
2b ≤ p

2a ≤
(2b−1)q

4b then the optimum in Section b is

( p2a ,
(b+1)q

6b − p
6a ) giving Area(V +(( p2a ,

(b+1)q
6b − p

6a ))) = (5b−1)pq
24ab + p2

12a2 −
(b−2)(2b−1)q2

12b2 (depicted

in Figure 5.10f), otherwise if (2b−1)q
4b ≤ p

2a ≤
q
2 then the optimum lies on the boundary with

Section b+ 1 and is not Black’s best point (and so is not drawn).
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(e) b1 = ( p
2a
, q
2b
).

w0 w0R

w1L w1R

w−1L w−1R

w2L w2R

(f) b1 = ( p
2a
, (b+1)q

6b
− p

6a
) only if

(b−2)q
2b

≤ p
2a

≤ (2b−1)q
4b

and b = 2l + 1.

Figure 5.10: Maximal area Voronoi cells V +(b1) for b1 within Section 2l + 1 upon x∗ = p
2a .

Section b+ 1 upon x∗ = p
2a Finally we explore Section b+ 1, the last possible section, where

w0 is chosen to be on the d b2eth row. If b1 is placed within this section then V +(b1) touches
both horizontal boundaries of P. This simply has the areas, if b is even,

Area(V +(b1)) =

−1∑
i=− b−2

2

Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR)))

+Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R)))

+

b
2∑
i=1

Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR)))

=
−1∑

i=− b−2
2

(
−q
b
y +

pq

2ab
+

(4i+ 1)q2

4b2

)
+

pq

2ab
− y2

+

b
2∑
i=1

(
q

b
y +

pq

2ab
− (4i− 1)q2

4b2

)
= −y2 +

q

b
y +

pq

2a
− (b2 − b+ 1)q2

4b2

and, if b is odd,

Area(V +(b1)) =
−1∑

i=− b−1
2

Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR)))

+Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R)))

+

b−1
2∑
i=1

Area(V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR)))
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=
−1∑

i=− b−1
2

(
−q
b
y +

pq

2ab
+

(4i+ 1)q2

4b2

)
+

pq

2ab
− y2

+

b−1
2∑
i=1

(
q

b
y +

pq

2ab
− (4i− 1)q2

4b2

)
= −y2 +

pq

2a
− (b− 1)q2

4b
.

It is clear that ( p2a ,
q
2b ) and ( p2a , 0) are the optima for b is even and b is odd, and these are

both in Section b+ 1 for b even and odd respectively. We are certainly pleased to see this result
since, as we might expect, both of these points lie on the horizontal line of symmetry of P and
can be considered to be the centre of P which we would presume to be an effective placement.

This gives us areas Area(V +(( p2a ,
q
2b ))) = pq

2a −
(b−1)q2

4b and Area(V +(( p2a , 0))) = pq
2a −

(b−1)q2
4b

(interestingly, identical to each other) as depicted in Figures 5.10g and 5.10h respectively.

w0 w0R

w1L w1R

w−1L

(g) b1 = ( p
2a
, q
2b
).

w0 w0R

w1L w1R

w−1L w−1R

w2L w2R

(h) b1 = ( p
2a
, 0).

Figure 5.10: Maximal area Voronoi cells V +(b1) for b1 within Section b+ 1 upon x∗ = p
2a .

And thus we have found every optimal location within every possible partition of P that is a
candidate for Black’s best point b∗. To recap, Figure 5.10 shows all of the potential candidates
for b∗ within each appropriate section. Following our discussion of the choice of w0 (and the fact
that the best choice of w0 for b1 in Section I only requires that the first quadrant of V +(b1) is a
core quadrant and, if possible, that w−1L exists) we can say with confidence that, without loss
of generality, the best point b∗ lies in the first quadrant of the (da2 e, d b2e)th point in W (where
the (i, j)th point in W is the point w ∈W which is in the ith column (counting from the left)
and jth row (counting from the bottom)). This quadrant is the unique (or one of two or four
identical) most central quadrant in P, thus furthest from the boundaries of P. Hence the best
point b∗ will lie in this quadrant and in Section I or on the line x∗ = p

2a and we must determine
which optimum within which of these areas gives the best point depending on the relationship
between p, q, a, and b.

Fortunately the nature of our investigation into x∗ = p
2a allows us to fairly easily compare

optima upon this line where we have relatively restrictive conditions on which sections contain

x∗ = p
2a . For (2l−1)q

2b ≤ p
2a ≤

lq
b and assuming that 2l + 1 < b (we will assess 2l + 1 ≥ b later),

x∗ = p
2a enters Sections 2l and 2l + 1 so we shall compare the optima within these sections for

this condition. In Section 2l, Area(V +(( p2a , 0))) = lpq
2ab + p2

8a2 −
(l−1)lq2

2b2 and in Section 2l + 1,

Area(V +(( p2a ,
q
2b ))) = (4l−1)pq

4ab + p2

8a2 −
(4l2−1)q2

8b2 . The optimum in Section 2l + 1 is better than
that in Section 2l if
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(
(4l − 1)pq

4ab
+

p2

8a2
− (4l2 − 1)q2

8b2

)
−
(
lpq

2ab
+

p2

8a2
− (l − 1)lq2

2b2

)
=

(4l − 1)pq

4ab
+

p2

8a2
− (4l2 − 1)q2

8b2
− lpq

2ab
− p2

8a2
+

(l − 1)lq2

2b2

=
(2l − 1)pq

4ab
− (4l − 1)q2

8b2
≥ 0

⇔ p

2a
≥ (4l − 1)q

4(2l − 1)b
.

Now
(2l − 1)q

2b
≤ (4l − 1)q

4(2l − 1)b
⇔ 8l2 − 12l + 3 ≤ 0 ⇔ 3−

√
3

4
≤ l ≤ 3 +

√
3

4

so if l > 1 then the optimum in Section 2l + 1 is always better than the optimum in Section 2l.

Otherwise, if l = 1 then Section 2l (II) is better than Section 2l + 1 (III) for
(
q
2b =

) (2l−1)q
2b ≤

p
2a ≤

(4l−1)q
4(2l−1)b

(
= 3q

4b

)
.

For lq
b ≤

p
2a ≤

(2l+1)q
2b and assuming that 2(l + 1) < b (we will assess 2(l + 1) ≥ b soon),

x∗ = p
2a enters Sections 2l+ 1 and 2(l+ 1) (note that x∗ = p

2a will never enter Section I because
p
2a ≥

q
2b ). In Section 2l + 1, Area(V +(( p2a ,

q
2b ))) = (4l−1)pq

4ab + p2

8a2 −
(4l2−1)q2

8b2 and in Section

2(l + 1), Area(V +(( p2a , 0))) = (l+1)pq
2ab + p2

8a2 −
(l+1)lq2

2b2 so the optimum in Section 2(l + 1) is
better than that in Section 2l + 1 if(

(l + 1)pq

2ab
+

p2

8a2
− (l + 1)lq2

2b2

)
−
(

(4l − 1)pq

4ab
+

p2

8a2
− (4l2 − 1)q2

8b2

)
= − (2l − 3)pq

4ab
− (4l + 1)q2

8b2
≥ 0

⇔ (3− 2l)p

2a
≥ (4l + 1)q

4b
.

Now if (3− 2l) ≤ 0 (i.e. l ≥ 3
2 ) then 0 ≥ (3−2l)p

2a ≥ (4l+1)q
4b so the optimum in Section 2(l + 1) is

never better than the optimum in Section 2l + 1. Otherwise if l = 1 then p
2a ≥

(4l+1)q
4(3−2l)b = 5q

4b >
q
b = lq

b , so the optimum in Section 2(l + 1) (IV ) is better than the optimum in Section 2l + 1

(III) for 5q
4b ≤

p
2a ≤

3q
2b = (2l+1)q

2b .

Upon x∗ = p
2a we have the possibility of two special cases with regard to the area of V +(b1)

to which we must give careful consideration: Section b (within which b1 produces a Voronoi cell
touching exactly one horizontal boundary of P) and Section b+ 1 (within which b1 produces
a Voronoi cell touching both horizontal boundaries). Therefore we must compare the areas of
Section b− 1 with Section b as well as the areas of Section b with Section b+ 1.

Firstly, suppose b is even. For (b−2)q
2b ≤ p

2a ≤
(b−1)q

2b and assuming b > 2 (since p
2a ≥

q
2b ),

x∗ = p
2a enters Sections b− 1 and b whose maximal areas are Area(V +(( p2a ,

q
2b ))) = (2b−5)pq

4ab +
p2

8a2 −
(b2−4b+3)q2

8b2 and Area(V +(( p2a ,
p
6a −

(b−2)q
6b ))) = (2b−1)pq

6ab + p2

12a2 −
(b−2)(4b−1)q2

12b2 respectively.
The optimum in Section b is better than the optimum in Section b− 1 if(

(2b− 1)pq

6ab
+

p2

12a2
− (b− 2)(4b− 1)q2

12b2

)
−
(

(2b− 5)pq

4ab
+

p2

8a2
− (b2 − 4b+ 3)q2

8b2

)
= − (2b− 13)pq

12ab
− p2

24a2
− (5b2 − 6b− 5)q2

24b2
≥ 0

⇔ p2

a2
+

2(2b− 13)pq

ab
+

(5b2 − 6b− 5)q2

b2
≤ 0
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⇔
(
p

a
+

(2b− 13)q

b

)2

+
(b2 + 46b− 174)q2

b2
≤ 0

⇔ (13− 2b−
√
−(b2 + 46b− 174))q

2b
≤ p

2a
≤ (13− 2b+

√
−(b2 + 46b− 174))q

2b
.

Now this condition only holds if b2 + 46b− 174 ≤ 0⇔ −23−
√

703 ≤ b ≤ −23 +
√

703 ≈ 3.5 so
b must be either 2 or 3, and since b is even it must be the case that b = 2 which contradicts our
assumption. So the optimum in Section b− 1 is better than the optimum in Section b for all
b 6= 2. This result is actually as expected: the optimum in Section 2(l + 1) is dominated by the
optimum in Section 2l + 1 and the structure in Section b has a lesser area than the structure in
a general Section 2(l+ 1) would have for a value of l = b−2

2 ; and this paragraph simply serves as
a sanity check.

For (b−1)q
2b ≤ p

2a ≤
q
2 , x∗ = p

2a enters Sections b and b + 1 whose maximal areas are

Area(V +(( p2a ,
p
6a −

(b−2)q
6b ))) = (2b−1)pq

6ab + p2

12a2 −
(b−2)(4b−1)q2

12b2 (only for (b−2)q
2b ≤ p

2a ≤
(2b−1)q

4b so

we now only consider the interval (b−1)q
2b ≤ p

2a ≤
(2b−1)q

4b ) and Area(V +(( p2a ,
q
2b ))) = pq

2a −
(b−1)q2

4b
respectively. The optimum in Section b+ 1 is better than the optimum in Section b if(pq

2a
− (b− 1)q2

4b

)
−
(

(2b− 1)pq

6ab
+

p2

12a2
− (b− 2)(4b− 1)q2

12b2

)
=

(b+ 1)pq

6ab
− p2

12a2
+

(b2 − 6b+ 2)q2

12b2
≥ 0

⇔ p2

a2
− 2(b+ 1)pq

ab
− (b2 − 6b+ 2)q2

b2
≤ 0

⇔
(
p

a
− (b+ 1)q

b

)2

− (2b2 − 4b+ 3)q2

b2
≤ 0

⇔ (b+ 1−
√

2b2 − 4b+ 3)q

2b
≤ p

2a
≤ (b+ 1 +

√
2b2 − 4b+ 3)q

2b
.

Now 2b2 − 4b+ 3 = 2(b− 1)2 + 1 > 0 so the condition holds for all b. Comparing the limits of
both conditions,

(b− 1)q

2b
− (b+ 1−

√
2b2 − 4b+ 3)q

2b
=

(−2 +
√

2(b− 1)2 + 1))q

2b
≥ 0

⇔
√

2(b− 1)2 + 1 ≥ 2

⇔ 2(b− 1)2 ≥ 3

⇔ b ≤ 2−
√

6

2
or b ≥ 2 +

√
6

2

and
(b+ 1 +

√
2b2 − 4b+ 3)q

2b
− (2b− 1)q

4b
=

(3 + 2
√

2(b− 1)2 + 1)q

4b
≥ 0 .

Hence the optimum in Section b+ 1 is better than the optimum in Section b unless b = 2 (since

b ≥ 2+
√
6

2 ) in which case the optimum in Section b (II) is better than the optimum in Section

b+ 1 (III) for
(

(b−1)q
2b =

)
q
4 ≤

p
2a ≤

(3+
√
3)q

4

(
= (b+1+

√
2b2−4b+3)q
2b

)
.

Finally, suppose instead that b is odd. For (b−2)q
2b ≤ p

2a ≤
(b−1)q

2b , x∗ = p
2a enters Sections

b − 1 and b whose maximal areas are Area(V +(( p2a , 0))) = (b−1)pq
4ab + p2

8a2 −
(b−3)(b−1)q2

8b2 and

Area(V +(( p2a ,
(b+1)q

6b − p
6a ))) = (5b−1)pq

24ab + p2

12a2 −
(b−2)(2b−1)q2

12b2 respectively. The optimum in
Section b is better than the optimum in Section b− 1 if(

(5b− 1)pq

24ab
+

p2

12a2
− (b− 2)(2b− 1)q2

12b2

)
−
(

(b− 1)pq

4ab
+

p2

8a2
− (b− 3)(b− 1)q2

8b2

)
= − (b− 5)pq

24ab
− p2

24a2
− (b2 + 2b− 5)q2

24b2
≥ 0
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=
p2

a2
+

(b− 5)pq

ab
+

(b2 + 2b− 5)q2

b2
≤ 0

=

(
p

a
+

(b− 5)q

2b

)2

+
(3b2 + 18b− 45)q2

4b2
≤ 0

=
(b− 5−

√
−3(b2 + 6b− 15))q

4b
≤ p

2a
≤ (b− 5 +

√
−3(b2 + 6b− 15))q

4b
.

Now this condition only holds if b2+6b−15 = (b+3)2−24 ≤ 0⇔ −3−
√

24 ≤ b ≤ −3+2
√

6 ≈ 1.9
so it holds for no value of b. Hence the optimum in Section b− 1 is better than the optimum in
Section b.

For (b−1)q
2b ≤ p

2a ≤
q
2 , x∗ = p

2a enters Sections b and b + 1 whose maximal areas are

Area(V +(( p2a ,
(b+1)q

6b − p
6a ))) = (5b−1)pq

24ab + p2

12a2 −
(b−2)(2b−1)q2

12b2 (only for (b−2)q
2b ≤ p

2a ≤
(2b−1)q

4b

so we now only consider the interval (b−1)q
2b ≤ p

2a ≤
(2b−1)q

4b as before) and Area(V +(( p2a , 0))) =
pq
2a −

(b−1)q2
4b respectively. The optimum in Section b+ 1 is better than the optimum in Section b

if (pq
2a
− (b− 1)q2

4b

)
−
(

(5b− 1)pq

24ab
+

p2

12a2
− (b− 2)(2b− 1)q2

12b2

)
=

(7b+ 1)pq

24ab
− p2

12a2
− (b2 + 2b− 2)q2

12b2
≥ 0

⇔ p2

a2
− (7b+ 1)pq

2ab
+

(b2 + 2b− 2)q2

b2
≤ 0

⇔
(
p

a
− (7b+ 1)q

4b

)2

− (33b2 − 18b+ 33)q2

16b2
≤ 0

⇔ (7b+ 1−
√

3(11b2 − 6b+ 11))q

8b
≤ p

2a
≤ (7b+ 1 +

√
3(11b2 − 6b+ 11))q

8b
.

Comparing the limits of both conditions,

(7b+ 1−
√

3(11b2 − 6b+ 11))q

8b
− (b− 1)q

2b
=

(3b+ 5−
√

3(11b2 − 6b+ 11))q

8b
≥ 0

⇔ 3b+ 5 ≥
√

3(11b2 − 6b+ 11)

⇔ 24b2 − 48b+ 8 = 8(3b2 − 6b+ 1) ≤ 0

⇔ 3−
√

6

3
≤ b ≤ 3 +

√
6

3
≈ 1.8

and

(7b+ 1 +
√

3(11b2 − 6b+ 11))q

8b
− (2b− 1)q

4b
=

(3b+ 3 +
√

3(11(b− 3
11 )2 + 112

11 )))q

8b
≥ 0 .

Hence the optimum in Section b+ 1 is better than the optimum in Section b.

Thus we have analysed all possible solutions upon x∗ = p
2a and discerned the best possible

location on x∗ = p
2a for every combination of p, q, a, and b. These are summarised in Table 5.11.

Now all that remains is to compare the optima upon x∗ = p
2a with the optima in Section I

according to the conditions in Table 5.11 as well as the existence of w0LL
. Since we have chosen

w0 to be the (da2 e, d b2e)th point in W , the condition that w0LL
does not exist amounts to a = 2

(importantly, this condition has no effect upon the optima upon x∗ = p
2a ).

Recalling our earlier results, the maximal area in Section I is Area(V +((0, q2b ))) = pq
2ab + q2

8b2

unless a = 2 in which case the maximal area is Area(V +(( q6b ,
q
2b ))) = pq

2ab + q2

12b2 . Studying the
areas claimed by the optima within Table 5.11 we can see that, if all other variables are fixed,
the value of every optimal area increases with p at a rate of at least q

2ab (which is the rate of
increase of the optimal values for Section I). Moreover, the value of the optimum upon x∗ = p

2a
further increases with p

2a whenever the optimal solution is replaced by the next (better) solution.
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Section Optimum Area Condition

II ( p2a , 0) pq
2ab + p2

8a2
q
2b ≤

p
2a ≤

3q
4b

III ( p2a ,
q
2b )

3pq
4ab + p2

8a2 −
3q2

8b2
3q
4b ≤

p
2a ≤

5q
4b

IV ( p2a , 0) pq
ab + p2

8a2 −
q2

b2
5q
4b ≤

p
2a ≤

3q
2b

2l + 1 ( p2a ,
q
2b )

(4l−1)pq
4ab + p2

8a2 −
(4l2−1)q2

8b2
(2l−1)q

2b ≤ p
2a ≤

(2l+1)q
2b

b = 2 ( p2a ,
p
6a ) pq

4a + p2

12a2
q
4 ≤

p
2a ≤

(3+
√
3)q

4

b+ 1 = 3 ( p2a ,
q
4 ) pq

2a −
q2

8
(3+
√
3)q

4 ≤ p
2a

b− 1 even ( p2a , 0) (b−1)pq
4ab + p2

8a2 −
(b−3)(b−1)q2

8b2
(b−2)q

2b ≤ p
2a ≤

(b−1)q
2b

b+ 1 even ( p2a , 0) pq
2a −

(b−1)q2
4b

(b−1)q
2b ≤ p

2a

b+ 1 odd ( p2a ,
q
2b )

pq
2a −

(b−1)q2
4b

(b−1)q
2b ≤ p

2a

Table 5.11: Optima upon x∗ = p
2a .

Therefore, for b 6= 2, if the optimum in Section I is better than the optimum upon x∗ = p
2a

at p
2a = X then the optimum in Section I is better than the optimum upon x∗ = p

2a for all
p
2a ≤ X, and similarly if the optimum upon x∗ = p

2a is better than the optimum in Section I
at p

2a = X then the optimum upon x∗ = p
2a is better than the optimum in Section I for all

p
2a ≥ X. Hence there exists a value X of p

2a at which point the values of the optima in Section
I and upon x∗ = p

2a are equal, and this determines our best point b∗. Additionally, since the
value of the optimum in Section I is reduced if a = 2, the value X for a > 2 will be more than
the analogous value X ′ for a = 2.

If a > 2 and b > 2 then we can simply compare the area within Section I with the smallest
possible maximal area upon x∗ = p

2a (Section II):(
pq

2ab
+

q2

8b2

)
−
(
pq

2ab
+

p2

8a2

)
=

q2

8b2
− p2

8a2
≥ 0⇔ q

b
≥ p

a

but p
a ≥

q
b so if a > 2 and b > 2 then the optimum lies upon x∗ = p

2a . The same is indeed true
for a = 2 as described above. Therefore we have the best points b∗ as outlined in Table 5.12.

Section Optimum Area Condition

II ( p2a , 0) pq
2ab + p2

8a2
q
2b ≤

p
2a ≤

3q
4b

III ( p2a ,
q
2b )

3pq
4ab + p2

8a2 −
3q2

8b2
3q
4b ≤

p
2a ≤

5q
4b

IV ( p2a , 0) pq
ab + p2

8a2 −
q2

b2
5q
4b ≤

p
2a ≤

3q
2b

2l + 1 ( p2a ,
q
2b )

(4l−1)pq
4ab + p2

8a2 −
(4l2−1)q2

8b2
(2l−1)q

2b ≤ p
2a ≤

(2l+1)q
2b

b− 1 even ( p2a , 0) (b−1)pq
4ab + p2

8a2 −
(b−3)(b−1)q2

8b2
(b−2)q

2b ≤ p
2a ≤

(b−1)q
2b

b+ 1 even ( p2a , 0) pq
2a −

(b−1)q2
4b

(b−1)q
2b ≤ p

2a

b+ 1 odd ( p2a ,
q
2b )

pq
2a −

(b−1)q2
4b

(b−1)q
2b ≤ p

2a

Table 5.12: The best point b∗ for b 6= 2.

Alternatively, if a > 2 and b = 2 then we must compare the maximal areas within Section I
and Section b: (

pq

4a
+
q2

32

)
−
(
pq

4a
+

p2

12a2

)
=
q2

32
− p2

12a2
≥ 0⇔ p

2a
≤
√

6q

8
.

The optimum in Section b is valid for q
4 ≤

p
2a ≤

(3+
√
3)q

4 so the optimum within Section I is b∗

for q
4 ≤

p
2a ≤

√
6q
8 but we need not compare the maximal area in Section I any further. This

gives the best points b∗ as displayed in Table 5.13.
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Section Optimum Area Condition

I (0, q2b )
pq
4a + q2

32
q
4 ≤

p
2a ≤

√
6q
8

b ( p2a ,
p
6a ) pq

4a + p2

12a2

√
6q
8 ≤

p
2a ≤

(3+
√
3)q

4

b+ 1 ( p2a ,
q
4 ) pq

2a −
q2

8
(3+
√
3)q

4 ≤ p
2a

Table 5.13: The best point b∗ for b = 2 and a 6= 2.

Finally if a = 2 and b = 2 then, comparing the maximal areas within Section I and Section b,(
pq

8
+
q2

48

)
−
(
pq

8
+
p2

48

)
=
q2

48
− p2

48
≥ 0⇔ q

b
≥ p

a
.

Therefore, since p
a ≥

q
b , the optimum in Section b is always better than the optimum in Section

I. This gives the best points b∗ as displayed in Table 5.14.

Section Optimum Area Condition

b ( p2a ,
p
6a ) pq

4a + p2

12a2
q
4 ≤

p
2a ≤

(3+
√
3)q

4

b+ 1 ( p2a ,
q
4 ) pq

2a −
q2

8
(3+
√
3)q

4 ≤ p
2a

Table 5.14: The best point b∗ for b = 2 and a = 2.

And thus, we have found the best points b∗ in response to White playing an a× b grid.

5.5.2 Black’s best arrangement

We have found Black’s best point b∗ but, as we have seen in Section 5.3, these are often not
useful points to play when considering a whole arrangement. As we saw towards the end of
Section 5.3, a good point for Black to play within an arrangement steals the best proportion of
two halves of White’s cells in VD(W ). However, as Black’s points venture further away from
w0 they steal less and less from the the two Voronoi cells they steal the most from, sacrificing
this area in order to steal more area from a greater number of White’s Voronoi cells. Therefore
it may be useful to explore how Black performs playing closer to White’s points, and we shall
investigate Black’s possible placements within Sections I, II, and III.

Core quadrants

We have already investigated the core quadrants in our search for Black’s best point so there is
little extra work we need do within these quadrants.

Section I was given a full exploration in our search for b∗ so we will simply refer the reader
to the results summarised in Figures 5.10a and 5.10b. On the other hand, only the areas
upon x∗ = p

2a were optimised within Sections II and III. It requires little effort, however, to
extend the results already investigated to cases where x∗ = p

2a does not lie within the section in
question.

Each constituent area component V +(b1) ∩ (V ◦(wiL) ∪ V ◦(wiR)) calculated in Section 5.4
was found to be either independent of the value of x, or maximised by choosing x as close
as possible to p

2a (which leads us to the result that b∗ must lie on x∗ = p
2a or Section I). In

Sections II and IV , these maximum values of x are q
b and 3q

2b (at y = 0 and y = q
2b ), so we

must consider the optimal solutions within these sections if p
2a >

q
b and p

2a >
3q
2b respectively.

Therefore, in order to confirm that the maximisation of y in our previous work does not conflict
with this maximisation of x that we must now consider, we need only to check that the optima
obtained through our previous discoveries are

(
q
b , 0
)

and
(
3q
2b ,

q
2b

)
respectively (i.e. x is maximal

at p
2a = q

b and p
2a = 3q

2b ).
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Section II For Section II, assuming V +(b1) does not touch the boundary of P , the maximal

area when p
2a ≤

q
b is Area(V +(( p2a , 0))) = pq

2ab + p2

8a2 as depicted in Figure 5.11a. If p
2a >

q
b then,

since the optimum at p
2a = q

b is ( qb , 0) as required, our previous results give that the optimum is
at b1 =

(
q
b , 0
)

with

Area(V +(b1)) = Area(V +(b1) ∩ (V ◦(w1L) ∪ V ◦(w1R)))

+Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R)))

+Area(V +(b1) ∩ (V ◦(w−1L) ∪ V ◦(w−1R)))

=

(
−1

4

(q
b

)2
+

02

4
+

p

4a

q

b
+

(
p

4a
− (1− 1)q

2b

)
× 0− (1− 1)pq

4ab
+

(1− 1)2q2

4b2

)
+
( pq

2ab
− 02

)
+

(
−1

4

(q
b

)2
+

02

4
+

p

4a

q

b
−
(
p

4a
+

(−1 + 1)q

2b

)
× 0

+
(−1 + 1)pq

4ab
+

(−1 + 1)2q2

4b2

)
=
pq

ab
− q2

2b2

as depicted in Figure 5.11b.

w−1L w−1R

w0 w0R

w1L w1R

(a) b1 = ( p
2a
, 0) only if p

2a
≤ q

b
.

w−1L w−1R

w0 w0R

w1L w1R

(b) b1 = ( q
b
, 0) only if p

2a
≥ q

b
.

Figure 5.11: Maximal area Voronoi cells V +(b1) for b1 within Section II not touching the
horizontal edges of P.

Otherwise if w−1L does not exist then, using the results of Section b from above: if p
2a ≤

3q
4b

then the maximal area is Area(V +(( p2a ,
p
6a ))) = pq

2ab + p2

12a2 as depicted in Figure 5.12a; if
3q
4b ≤

p
2a ≤

q
b then the optimum is ( p

2a ,
q
b −

p
2a ) (upon the boundary between Section II and

Section III) giving

Area(V +(b1)) = −3

4

(q
b
− p

2a

)2
+

(
p

4a
− (1− 1)q

2b

)(q
b
− p

2a

)
+

(3(1)− 1)pq

4ab
+

p2

16a2
− (1− 1)(3(1)− 1)q2

4b2

=
3pq

2ab
− p2

4a2
− 3q2

4b2

as depicted in Figure 5.12b; and if p
2a ≥

q
b , since the optimum at p

2a = q
b is ( qb , 0), our previous
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results give that the optimum is at b1 = ( qb , 0) with

Area(V +(b1)) = Area(V +(b1) ∩ (V ◦(w1L) ∪ V ◦(w1R)))

+Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R)))

= −1

4

(q
b

)2
+

02

4
+

p

4a

q

b
+

(
p

4a
− (1− 1)q

2b

)
× 0− (1− 1)pq

4ab
+

(1− 1)2q2

4b2

+
pq

2ab
− 02

=
3pq

4ab
− q2

4b2

as depicted in Figure 5.12c.

w0 w0R

w1Rw1L

(a) b1 = ( p
2a
, p
6a
) only if p

2a
≤ 3q

4b
.

w0 w0R

w1Rw1L

(b) b1 = ( p
2a
, q
b
− p

2a
) only if 3q

4b
≤ p

2a
≤ q

b
.

w0 w0R

w1Rw1L

(c) b1 = ( q
b
, 0) only if p

2a
≥ q

b
.

Figure 5.12: Maximal area Voronoi cells V +(b1) for b1 within Section II touching the bottommost
horizontal edge of P.

Section III For Section III, assuming V +(b1) does not touch the boundary of P , the maximal

area when p
2a ≤

3q
2b is Area(V +(( p2a ,

q
2b ))) = 3pq

4ab + p2

8a2 −
3q2

8b2 as depicted in Figure 5.12d. If
p
2a ≥

3q
2b then, since the optimum at p

2a = 3q
2b is

(
3q
2b ,

q
2b

)
as required, our previous results give

that the optimum is at b1 =
(
3q
2b ,

q
2b

)
with
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Area(V +(b1)) = Area(V +(b1) ∩ (V ◦(w2L) ∪ V ◦(w2R))

+Area(V +(b1) ∩ (V ◦(w1L) ∪ V ◦(w1R))

+Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R))

+Area(V +(b1) ∩ (V ◦(w−1L) ∪ V ◦(w−1R))

=

(
−1

4

(
3q

2b

)2

+
1

4

( q
2b

)2
+

p

4a

3q

2b
+

(
p

4a
− (2− 1)q

2b

)
q

2b
− (2− 1)pq

4ab
+

(2− 1)2q2

4b2

)

+

(
q

b

q

2b
+

pq

2ab
− (4(1)− 1)q2

4b2

)
+

(
pq

2ab
−
( q

2b

)2)
+

(
−1

4

(
3q

2b

)2

+
1

4

( q
2b

)2
+
p

4a

3q

2b
−
(
p

4a
+

(−1 + 1)q

2b

)
q

2b
+

(−1 + 1)pq

4ab
+

(−1 + 1)2q2

4b2

)
=

3pq

2ab
− 3q2

2b2

as depicted in Figure 5.12e.

w−1L w−1R

w0 w0R

w1L w1R

w2L w2R

(d) b1 = ( p
2a
, q
2b
) only if p

2a
≤ 3q

2b
.

w−1L w−1R

w0 w0R

w1L w1R

w2L w2R

(e) b1 = ( 3q
2b
, q
2b
) only if p

2a
≥ 3q

2b
.

Figure 5.12: Maximal area Voronoi cells V +(b1) for b1 within Section III not touching the
horizontal edges of P.

Otherwise, if w−1L does not exist (a situation previously not necessary to study) then

Area(V +(b1)) = Area(V +(b1) ∩ (V ◦(w2L) ∪ V ◦(w2R))

+Area(V +(b1) ∩ (V ◦(w1L) ∪ V ◦(w1R))

+Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R))

=

(
−x

2

4
+
y2

4
+

p

4a
x+

(
p

4a
− (2− 1)q

2b

)
y − (2− 1)pq

4ab
+

(2− 1)2q2

4b2

)
+

(
q

b
y +

pq

2ab
− (4(1)− 1)q2

4b2

)
+
( pq

2ab
− y2

)
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= −x
2

4
− 3y2

4
+

p

4a
x+

( p
4a

+
q

2b

)
y +

3pq

4ab
− q2

2b2

gives partial derivatives

δA

δx
= −x

2
+

p

4a
δA

δy
= −3y

2
+

p

4a
+

q

2b

which gives optimal y∗ = p
6a + q

3b ≥
q
6b + q

3b = q
2b . Therefore, since the area is maximised by

choosing x as close as possible to p
2a and choosing y as close as possible to y∗ ≥ q

2b , the maximal

areas within Section III are, for p
2a ≤

3q
2b , Area(V +(( p2a ,

q
2b ))) = 7pq

8ab + p2

16a2 −
7q2

16b2 as depicted

in Figure 5.12f and, for p
2a ≥

3q
2b , Area(V +((( 3q

2b ,
q
2b ))) = 5pq

4ab −
q2

b2 as depicted in Figure 5.12g.

w0 w0R

w1L w1R

w2L w2R

(f) b1 = ( p
2a
, q
2b
) only if p

2a
≤ 3q

2b
.

w0 w0R

w1L w1R

w2L w2R

(g) b1 = ( 3q
2b
, q
2b
) only if p

2a
≥ 3q

2b
.

Figure 5.12: Maximal area Voronoi cells V +(b1) for b1 within Section III touching the bottom-
most horizontal edge of P.

Otherwise, if w2L does not exist then, using the results of Section b from above: if p
2a ≤

5q
4b

then the maximal area is Area(V +(( p2a ,
2q
3b−

p
6a ))) = 7pq

12ab+ p2

12a2−
5q2

12b2 as depicted in Figure 5.12h;

if 5q
4b ≤

p
2a ≤

3q
2b then the optimum is ( p2a ,

p
2a −

q
b ) (upon the boundary between Section III and

Section IV ) giving

Area(V +(b1)) = −3

4

( p
2a
− q

b

)2
−
(
p

4a
− (1 + 1)q

2b

)( p
2a
− q

b

)
+

(2(1) + 1)pq

4ab
+

p2

16a2
− 3(1)2q2

4b2

=
9pq

4ab
− p2

4a2
− 5q2

2b2

as depicted in Figure 5.12i; and if p
2a ≥

3q
2b , since the optimum at p

2a = 3q
2b is ( 3q

2b ,
q
2b ), our

previous results give that the optimum is at b1 = ( 3q
2b ,

q
2b ) with
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Area(V +(b1)) = Area(V +(b1) ∩ (V ◦(w1L) ∪ V ◦(w1R))) + Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R)))

+Area(V +(b1) ∩ (V ◦(w−1L) ∪ V ◦(w−1R)))

=

(
q

b

q

2b
+

pq

2ab
− (4(1)− 1)q2

4b2

)
+

(
pq

2ab
−
( q

2b

)2)
+

(
−1

4

(
3q

2b

)2

+
1

4

( q
2b

)2
+
p

4a

3q

2b
−
(
p

4a
+

(−1 + 1)q

2b

)
q

2b
+

(−1 + 1)pq

4ab
+

(−1 + 1)2q2

4b2

)
=

5pq

4ab
− q2

b2

as depicted in Figure 5.12j.

w−1L w−1R

w0 w0R

w1L w1R

(h) b1 = ( p
2a
, 2q
3b

− p
6a
) only if p

2a
≤ 5q

4b
.

w−1L w−1R

w0 w0R

w1L w1R

(i) b1 = ( p
2a
, p
2a

− q
b
) only if 5q

4b
≤ p

2a
≤ 3q

2b
.

w−1L w−1R

w0 w0R

w1L w1R

(j) b1 = ( 3q
2b
, q
2b
) only if p

2a
≥ 3q

2b
.

Figure 5.12: Maximal area Voronoi cells V +(b1) for b1 within Section III touching the topmost
horizontal edge of P.
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Finally, if neither w−1L nor w2L exists then

Area(V +(b1)) = Area(V +(b1) ∩ (V ◦(w1L) ∪ V ◦(w1R)))

+Area(V +(b1) ∩ (V ◦(w0L) ∪ V ◦(w0R)))

= −x
2

4
− 3y2

4
+

p

4a
x+ (− p

4a
+
q

b
)y +

pq

ab
− 3q2

4b2
− (

p

2a
− x+ y

2
)× x− y

2

= −y2 +
q

b
y +

pq

ab
− 3q2

4b2

is maximised by y = q
2b , irrespective of the value of x. Therefore the optimum is (x, q2b ) as

depicted in Figure 5.12k.

w0 w0R

w1L w1R

(k) b1 = (x, q
2b
).

Figure 5.12: Maximal area Voronoi cells V +(b1) for b1 within Section III touching both
horizontal edges of P.

Edge quadrants

Now, to consider the placement of b1 in a quadrant of V ◦(w) which borders the perimeter of
P, we shall use the structures explored above and determine all possible cells V ◦(b1) in the
presence of one boundary of P.

Firstly let us imagine that the quadrant of the cell containing b1 touches P but does not
contain a corner of P – i.e. it borders exactly one of the edges of P, so exactly one of w1L or
w0R does not exist. We shall refer to this type of quadrant as an edge quadrant. In Figure 5.9
this would amount to discarding all area either above y = q

2b or to the right of x = p
2a and

we must consider both cuts. However, before we dive into our calculations, let us notice that
a vertical cut at x = p

2a would produce Voronoi cells V +(b1) for b1 in Section II and beyond
exactly resembling those studied in Section 5.2, reflected in y = x. It should be a great relief to
spot this as it saves us having to repeat our calculations since we can simply take our results
from Section 5.2, remembering to exchange p

n and q with q
b and p

a respectively.

Therefore we need only explore Section I with the vertical cut, and then all sections with the
horizontal cut. Another important point to note is that, with a horizontal cut, the partitioning
lines donated by points wiL for i > 0 no longer exist (since the points wiL no longer exist). This
means that there is no distinction between Voronoi cells of points in Section 2l and Section
2l + 1, so we can explore these together.
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But, despite the fear of holding the reader back from diving into the analysis, we can (and
will) say still more. The structures from Section I with a vertical cut and Section II (and III)
with a horizontal cut are identical up to the reflection in x = y as already described. Therefore
we need only investigate Section I and transfer the representation symmetrically to Section II
(and III).

Section I Finding the area of the cell obtained through a horizontal cut according to the
Section I structure (with vertices (0, x+y2 ), (x, y−x2 ), ( p2a ,

y−x
2 ), ( p2a + x+y

2 , y), ( p2a + x+y
2 , q2b ),

(− p
2a −

y−x
2 , q2b ), (− p

2a −
y−x
2 , y), and (− p

2a ,
x+y
2 )) to be

Area(V +(b1)) = (
p

2a
+
x+ y

2
)× (

q

2b
− y − x

2
)− 1

2
x2 − 1

2
(
x+ y

2
)2

+ (
p

2a
+
y − x

2
)× (

q

2b
− x+ y

2
)− 1

2
(
y − x

2
)2

= −x
2

4
− 3y2

4
+ (− p

2a
+

q

2b
)y +

pq

2ab
,

or, if w0LL
does not exist (i.e. V ◦(w0) also touches the perimeter of P on its left edge),

Area(V +(b1)) = (
p

2a
+
x+ y

2
)× (

q

2b
− y − x

2
)− 1

2
x2 − 1

2
(
x+ y

2
)2 + (

p

2a
)× (

q

2b
− x+ y

2
)

= −3x2

8
− 3y2

8
− xy

4
+

q

4b
x+ (− p

2a
+

q

4b
)y +

pq

2ab

gives partial derivatives

δA

δx
= −x

2
δA

δy
= −3y

2
− p

2a
+

q

2b

enforcing y∗ = − p
3a + q

3b ≯ 0, or, if w0LL
does not exist, gives partial derivatives

δA

δx
= −3x

4
− y

4
+

q

4b
δA

δy
= −3y

4
− x

4
− p

2a
+

q

4b

⇒ 2x∗ − p

2a
− q

2b
= 0⇒ x∗ =

p

4a
+

q

4b
, y∗ = −3p

4a
+

q

4b

where y∗ = − 3p
4a + q

4b ≯ 0 since p
a ≥

q
b . Therefore for both instances we must explore the

boundary of Section I for an optimal location of b1.

• Upon boundary x = 0 we have Area(V +((0, y))) = − 3y2

4 +(− p
2a+ q

2b )y+ pq
2ab , maximised by

y∗ = − p
3a + q

3b ≯ 0. Therefore the maximum will be at b∗1 = (0, 0) where Area(V +(b∗1)) =
pq
2ab . Alternatively, if (− pa , 0) does not exist then Area(V +((0, y))) = − 3y2

8 +(− p
2a + q

4b )y+
pq
2ab , maximised by y∗ = − 2p

3a + q
3b ≯ 0. Therefore the maximum will also be at b∗1 = (0, 0)

where Area(V +(b∗1)) = pq
2ab .

• Upon boundary x = y we have Area(V +((x, x))) = −x2 + (− p
2a + q

2b )x + pq
2ab which

is maximised by x∗ = − p
4a + q

4b ≯ 0, so again the maximum is found at b∗1 = (0, 0).
Alternatively, if (− pa , 0) does not exist then Area(V +((x, x))) = −x2 + (− p

2a + q
2b )x+ pq

2ab
is maximised by x∗ = − p

4a + q
4b ≯ 0 so again the maximum lies at b∗1 = (0, 0).

• Upon boundary y = q
2b , since its endpoints are shared with endpoints of the other two

boundaries which were found not to be optimal over those boundaries, any area will be
less than the maximised area already found, and thus the optimum will not exist on this
boundary.
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Therefore the optimal location of b1 in Section I of an edge quadrant for a horizontal edge
is to place as close as possible to White’s point, and since this technique is summarised in
Lemma 4.1.1 we do not depict this in Figure 5.10.

Now, the cell obtained through a vertical cut according to the Section I structure has vertices
(0, x+y2 ), (x, y−x2 ), ( p2a ,

y−x
2 ), ( p2a ,

q
2b + x+y

2 ), (x, q2b + x+y
2 ), (0, q2b + y−x

2 ), (− p
2a ,

q
2b + y−x

2 ),

(− p
2a −

y−x
2 , q2b ), (− p

2a −
y−x
2 , y), and (− p

2a ,
x+y
2 ) and area

Area(V +(b1)) = −x
2

2
− y2

2
+

q

2b
y +

pq

2ab
− (

x+ y

2
× (

q

2b
− y) + (

x+ y

2
)2)

= −3x2

4
− y2

4
− q

4b
x+

q

4b
y +

pq

2ab
.

Note that since a > 1, the points w0LL
and w1LL

always exist. The partial derivatives

δA

δx
= −3x

2
− q

4b
δA

δy
= −y

2
+

q

4b

give b∗1 = (− q
6b ,

q
2b ) which is not contained in Section I so again we must explore the boundary

of Section I.

• Upon boundary x = 0 we have Area(V +((0, y))) = −y24 + q
4by + pq

2ab which is maximised

by y∗ = q
2b to give Area(V +((0, q2b )) = pq

2ab + q2

16b2 .

• Upon boundary x = y we have Area(V +((x, x))) = −x2 + pq
2ab which is maximised by

x∗ = 0 to give Area(V +((0, 0))) = pq
2ab .

• Upon boundary y = q
2b , since its endpoints are shared with endpoints of the other two

boundaries which were found not to be optimal over those boundaries, any area will be
less than the maximised area already found, and thus the optimum will not exist on this
boundary.

Therefore, for the vertical cut, the optimal location in Section I is b∗1 = (0, q2b ) giving

Area(V +((0, q2b )) = pq
2ab + q2

16b2 . This is depicted in Figure 5.12l.

w0LL

w1LL

w0

w1L

(l) Area(V +((0, q
2b
))) = pq

2ab
+ q2

16b2
.

Figure 5.12: Maximal area Voronoi cell V +(b1) touching a vertical boundary for b1 within
Section I.

Section II (and III) So what does this tell us about Section II and Section III?
For the horizontal edge situation in Sections II and III, the results can be transformed

directly from the vertical edge situation studied for Section I since this work did not rely on
any relationship between the sizes of p

a and q
b . Therefore, retracing our steps, the area

Area(V +(b1)) = −x
2

4
− 3y2

4
+

p

4a
x− p

4a
y +

pq

2ab

59



has partial derivatives

δA

δx
= −x

2
+

p

4a
δA

δy
= −3y

2
− p

4a

which give an optimum b∗1 = ( p2a ,−
p
6a ) which is obviously not within Section II or Section III.

Therefore the optimum will lie upon either one of the boundaries y = 0 or y = x− q
b of Section

II and Section III:

• Upon the boundary y = 0, the optimum will clearly lie at ( p2a , 0) giving Area(V +(( p2a , 0))) =
pq
2ab + p2

16a2 . However, if p
2a ≥

q
b then this point will not lie within Section II or III so the

optimum will instead be ( qb , 0), giving Area(V +(( qb , 0))) = 3pq
4ab −

q2

4b2 .

• Upon the boundary y = x− q
b we have Area(V +(x, x− q

b )) = −x2 + 3q
2bx+ 3pq

4ab −
3q2

4b2 which

is maximised by x∗ = 3q
4b . Since this is not within Section II or III the optimum must lie

at the closest endpoint, the intersection of y = 0 and y = x− q
b already studied.

Hence b1 = ( p2a , 0) gives the largest possible Area(V +(( p2a , 0))) = pq
2ab + p2

16a2 as depicted in Fig-
ure 5.12m, unless p

2a >
q
b in which case b1 = ( qb , 0) gives the largest possible Area(V +(( qb , 0))) =

3pq
4ab −

q2

4b2 as depicted in Figure 5.12n.

w−1L w−1R

w0 w0R

(m) b1 = ( p
2a
, 0) only if p

2a
≤ q

b
.

w−1L w−1R

w0 w0R

(n) b1 = ( q
b
, 0) only if p

2a
> q

b
.

Figure 5.12: Maximal area Voronoi cells V +(b1) touching a horizontal boundary for b1 within
Sections II and III.
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Corner quadrants

Now let us imagine that the quadrant of the cell containing b1 contains a corner of P – i.e. both
outside boundaries of this quadrant are on the perimeter of P (neither w1L nor w0R exists). We
shall refer to this type of quadrant as a corner quadrant. In Figure 5.9 this would amount to
discarding all areas above y = q

2b and to the right of x = p
2a . Fortuitously, as with many cases

for edge quadrants, Section II and beyond in corner quadrants have already been covered in
Section 5.2 since the areas are identical after a reflection in y = x and suitable rescaling of p and
q. To our delight, the same is also true for areas within Section I, even without the described
reflection, since these cells would only require bisectors from one row of points in W . Therefore
with one fell swoop we can discard having to explore any corner quadrants as the results are
contained in the work in Section 5.2.

Having found all local optima within the sections closest to each wi we can experiment
with different combinations of these points in order to form reasonable arrangements for Black.
However, while we were able to make use of the best point b∗ within the first sections when
White plays a row, we find that the points drawn in Figure 5.12 make pretty lousy team players.
This is due to the fact that without any existing black points the placement of b1 within any
section, with the exception of Section I, is always improved by locating closer to the line x = p

2a
in order to make the most of the alluring area left to capture from the Voronoi cells V ◦(wiR).
In this way V +(b1) steals a mediocre amount from a large number of Voronoi cells, instead of
a large amount from a few cells which we were hoping for (points which steal efficiently from
fewer cells provide less risk of overlapping with other black points and so will work well within
an arrangement).

It is for this reason that it is probably a more fruitful approach to consider the best points
from Black’s row strategy for candidates within an arrangement for the grid scenario. Since,
when White plays a row, P provides a physical cap bounding the area available to capture in
the opposite direction of the generator of the cell within which Black is locating, the optimal
locations better reflect the attempt to steal as much as possible from fewer cells (at least for
smaller sections). One such effective arrangement is the grid adaptation of the optimal row
arrangement found in Section 5.3 (see Figure 5.6 for a reminder) whereby, at least for the
preferable even b scenario, each column wiX of white points for i = 1, . . . , a can be sandwiched
between points of Black to create a columns of the arrangement in Figure 5.6a, rotated by 90◦,
where n = b. Similarly for a row arrangement W , this response from Black does seem, at least
for certain values of p

a and q
b , to be a good arrangement. However, if the challenges in proving

the optimality of an arrangement presented in Section 5.3 left us hiding behind our cushions
then we should certainly avert our eyes from the problem of finding optimal arrangements in
response to a grid, since the supreme difficulties exhibited here far overshadow what we have
already seen. This is in part due to the fact that a point which steals from V ◦(w0) will encroach
on the thefts from cells below, and above, and to the left or right of V ◦(w0) – a whole new
direction to consider in contrast to the two-dimensional reasoning exploited in Section 5.3.

For this reason we should feel content at having found the best points in response to both a
general row and a general grid arrangement, as well as an optimal black arrangement for the
row case, and reward ourselves with a forage among the bounties that the non-grid world may
furnish.
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