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Attention and Prediction Guided Motion Detection
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Abstract—Small target motion detection within complex natu-
ral environments is an extremely challenging task for autonomous
robots. Surprisingly, the visual systems of insects have evolved
to be highly efficient in detecting mates and tracking prey, even
though targets occupy as small as a few degrees of their visual
fields. The excellent sensitivity to small target motion relies on a
class of specialized neurons called small target motion detectors
(STMDs). However, existing STMD-based models are heavily
dependent on visual contrast and perform poorly in complex
natural environments where small targets generally exhibit ex-
tremely low contrast against neighbouring backgrounds. In this
paper, we develop an attention and prediction guided visual
system to overcome this limitation. The developed visual system
comprises three main subsystems, namely, an attention module,
an STMD-based neural network, and a prediction module. The
attention module searches for potential small targets in the
predicted areas of the input image and enhances their contrast
against complex background. The STMD-based neural network
receives the contrast-enhanced image and discriminates small
moving targets from background false positives. The prediction
module foresees future positions of the detected targets and
generates a prediction map for the attention module. The three
subsystems are connected in a recurrent architecture allowing
information to be processed sequentially to activate specific areas
for small target detection. Extensive experiments on synthetic and
real-world datasets demonstrate the effectiveness and superiority
of the proposed visual system for detecting small, low-contrast
moving targets against complex natural environments.

Index Terms—Bioinspiration, small target motion detection,
prediction, robotic visual perception, complex natural environ-
ment.
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Fig. 1. Examples of small moving targets [4]. (a) An unmanned aerial vehicle
(UAV), and (b) a bird in the distance. In each subplot, enlargements of the
objects are shown in the red boxes. Both the UAV and bird appear as dim
speckles, only a few pixels in size, and most of their visual features are
difficult to discern. In particular, they all show extremely low contrast against
the complex backgrounds.

IN the visual world, object motion provides important
information to guide the behavior of observers (animals

or robots). In the future, autonomous robotic systems will
need to operate in complex dynamic environments, detecting
object motions, understanding movement intention, predicting
future paths, and reacting appropriately [1]–[3]. It is accepted
that detecting potentially dangerous objects early and far-off
would permit sufficient time for responses to be made by
autonomous systems, enabling them to maintain or enhance a
dominant position in interaction and/or competition. However,
if an object is extremely small or distant to the observer, it
will always appear as a minute, dim speckle on the image,
only one or a few pixels in size. Hence, most of the object’s
visual features will be difficult to determine, for example, an
unmanned aerial vehicle (UAV) or a bird in the distance (Fig.
1).

Small target motion detection1 plays a critical role in a
number of computer vision tasks including video surveillance,
early warning, visual tracking and defence. For example,
timely detection of micro drones flying towards and over
runways would help to protect airports from disruption. How-
ever, discriminating small moving targets in complex natural
environments remains challenging to artificial visual systems.
This is because: 1) small targets always equate to only a
few pixels in size within images, presenting low-resolution
appearance and unclear structure. Furthermore, most of the
visual features, such as colour, orientation, and texture, are
difficult to discern, which means feature representations of
small targets necessary for motion detection are extremely
weak; 2) small targets exhibit blurred boundaries and low con-

1Small target motion detection aims to detect moving object of interest that
appear as a minute dim speckle on the image. Its size varies from one pixel to
a few pixels, whereas other visual features, such as texture, orientation, and
color, are difficult to recognize.
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trast against heavily cluttered backgrounds, which makes them
difficult to distinguish from noisy clutter; 3) freely moving
camera could introduce complex changing scene and relative
motion to small targets, which brings further challenges to
motion discrimination.

Conventional approaches for motion detection can be clas-
sified into three main categories: frame difference [5], back-
ground subtraction [6], and optical flow [7]. These approaches
work best for static cameras, but their performance decreases
significantly in applications involving mobile cameras, such
as autonomous driving systems, flying drones, and mobile
robots. In addition, these approaches cannot be directly applied
to small target detection in complex natural environments,
because: 1) they are unable to discriminate small targets
from large objects in images, for example, pedestrian and/or
vehicles; 2) small targets are always hidden within pixel
errors and background noise after compensating for camera
motion. Appearance-based methods can also be adopted for
motion detection. Utilizing machine learning algorithms, such
as convolutional neural networks [8], support vector machines
[9] and evolutionary computation [10], these methods classify
moving objects based on the extracted low-level visual and
high-level semantic features. However, they are ineffective
against small objects that are only a few pixels in size, since
most of visual features are hard to discern from low-resolution
appearance of the objects.

Learning from the visual systems of animals provides a
promising approach to build effective and robust models for
detecting small moving targets in complex natural environ-
ments [11]–[13]. Despite the fact that the neural circuits in
insects are relatively simpler than those in the human brains,
insects achieve an extremely high success rate of 97% in the
pursuit of small flying mates or prey. The exquisite sensitivity
of insects to small moving targets is supported by a class
of specialized neurons called small target motion detectors
(STMDs) [14]–[16]. These STMD neurons respond strongly
to moving objects which occupy as small as 1◦ − 3◦ of the
visual field, while exhibiting much weaker or even no response
to large objects typically occupying more than 10◦. In addition,
the STMD neural responses are robust even when small
targets display extremely low contrast against cluttered moving
backgrounds. Understanding the biological neural computation
that underlies small target motion detection would provide
much needed inspirations for solving similar problems in
autonomous systems.

Motivated by the superior properties of STMD neurons, sev-
eral attempts have been made to develop quantitative STMD-
based models for small target motion detection. Wiederman
et al. [17] designed an Elementary STMD model (ESTMD)
to detect the presence of small moving targets by multiplying
luminance increase and decrease signals at each pixel after lat-
eral inhibition. To determine motion direction of small targets,
the Cascaded Model [18] and Directionally Selective STMD
(DSTMD) [19] were developed by considering the correlation
of luminance change signals from two different pixels. Wang
et al. [20] proposed a visual system called STMD Plus, which
takes into account both motion information and directional
contrast, to filter out false positives in cluttered moving

backgrounds. However, these models are heavily reliant on
contrast between small targets and the background. As a result,
their detection performance will degrade significantly as the
target contrast decreases. In complex natural environments
where small targets always exhibit extremely low contrast, it
is difficult for these models to discern small target motion
effectively and robustly.

To overcome these limitations, we develop an attention and
prediction guided visual system (called apg-STMD). Predic-
tion and attention are fundamental functions in the visual
systems of insects, where the former utilizes present and/or
past information to anticipate future object motion, while the
latter prioritizes objects of interest amidst a swarm of potential
alternatives [21]–[24]. In the proposed visual system, an
attention module and a prediction module are connected with
an STMD-based neural network in a recurrent architecture.
At each time step, the input image and a prediction map
are applied to the attention module to search for potential
small targets in several predicted areas. A contrast-enhanced
image is produced by enhancing the contrast of potential
targets over the input image, and then fed into the STMD-
based neural network for discriminating small moving tar-
gets. The prediction module anticipates future positions of
the detected small targets and generates a prediction map
which is propagated to the attention module in the next time
step. Experiments demonstrate the superior performance of
the proposed visual system in detecting small target motion
against complex backgrounds.

The remainder of this paper is organized as follows. Sec-
tion II discusses related research on motion-sensitive neural
models, attention mechanism, and prediction mechanism. We
describe the proposed attention and prediction guided visual
system in Section III. The experimental results on both syn-
thetic and real-world data sets are reported in Section IV.
Finally, Section V concludes this paper.

II. RELATED WORK

A. Motion-sensitive Neural Models

The lobula giant movement detector (LGMD) [25], [26],
lobula plate tangential cell (LPTC) [27], [28], and small target
motion detector (STMD) [14]–[16] are three types of motion-
sensitive neurons that have been widely investigated in the
visual systems of insects. The LGMD responds most strongly
to approaching objects, but shows little or no response to
receding objects. It has been modelled as a collision detector
that is further embodied in micro mobile robots [29]–[32]
and UAVs [33], [34] for collision avoidance. The LPTC is
sensitive to objects which occupy a wide region of the visual
field and which move in preferred directions. A wide-field
LPTC can be modelled by an array of Hassenstein-Reichardt
correlators [35], each of which focuses on a small part of
the visual field. The LPTC model has been used for velocity
estimation [36], collision avoidance [37], and object tracking
[38]. Although the LGMD and LPTC models perform well
in detecting collision and wide-field motion, they are unable
to discriminate small targets from other large objects in the
visual field.
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Fig. 2. Overall flowchart of the proposed attention and prediction guided visual system. It consists of a preprocessing module (left), an attention module
(top), an STMD-based neural network (right), a prediction module (bottom), and a memorizer (middle).

The STMD gives peak responses to small moving targets
that occupy only a few degrees of the visual filed, but much
weaker responses to background movement and wide-field
motion. The STMD-based models, such as ESTMD [17], the
Cascaded Model [18], DSTMD [19], and STMD Plus [20],
have been developed to discriminate small moving targets
against complex backgrounds. However, these models are
all sensitive to contrast of small targets and perform poorly
in complex natural environments where small target always
exhibit extremely low contrast against their neighbouring
backgrounds.

B. Attention Mechanism

Attention mechanism is fundamentally important for an-
imals to forage, avoid predators, and search for mates. It
focuses limited computation resources on parts of the visual
field [21]. For example, bumblebees are able to select flow-
ers of particular colours, while ignoring differently coloured
distractors during visual searches [39]; Drosophila selectively
fixate on the most salient one in the swarms of prey and
conspecifics that display different contrast against complex
background [40]; fiddler crabs adjust their escape behaviour
and selectively suppress neural responses to less dangerous
predators when confronted with multiple threats in order to
minimise the combined risk [23].

Attention mechanism has been commonly employed in
computer modelling tasks such as image classification [41],
visual question answering [42], natural language processing
[43], and image captioning [44]. It boosts model perfor-
mance by adaptively choosing a sequence of regions for fine
processing. However, it has not been utilized in artificial

visual systems to detect small moving targets against complex
natural backgrounds. Moreover, the interaction of attention
with prediction mechanisms for small target motion detection
has not been investigated in depth.

C. Prediction Mechanism

Prediction mechanism plays a significant role in the visual
systems of insects by anticipating future positions of prey
and mates, and also contributing to path planning during
rapid pursuit [45]. Recent research [24] reveals that prediction
process is able to enhance localized sensitivity to a small target
ahead of its motion path, while exhibiting suppression else-
where. Furthermore, when the target is occluded or abruptly
disappears, the localized sensitivity will move forward and
gradually weaken over time.

The ability to model the prediction mechanisms of animals
and use them to understand object motion in complex environ-
ment is extremely valuable for a wide range of applications.
For example, reliably predicting the motions of surround
objects (e.g., vehicles, pedestrians and cyclists) is a key
requirement in the development of safe advanced autonomous
driving technology [46]; keeping track of current and future
motion states of people is critical for socially-aware robots
to avoid collision in populated environments [47]; nursing-
care assistant robots should be able to automatically anticipate
human intentions by their actions to improve coordination
and functionality [48]. However, little work has been done
on modelling prediction mechanisms to anticipate small target
motion against complex natural backgrounds.
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Fig. 3. Network architecture of the proposed attention and prediction guided
visual system. Each neuron is represented by a coloured circular node.

III. ATTENTION AND PREDICTION GUIDED VISUAL
SYSTEM

The proposed visual system is composed of five sub-
systems, including three modules (preprocessing, attention,
prediction), an STMD-based neural network, and a memorizer,
as illustrated in Fig. 2. Once an image is received at time
t, it is first smoothed by the preprocessing module, then
applied to the attention module to determine several potential
areas based on the prediction map from the memorizer. In
each area, potential small targets are selected by convolution
with the attention kernels and their contrast to background
is enhanced by addition of the convolutional outputs. The
contrast-enhanced image is fed into the STMD-based neural
network for discriminating small moving targets from complex
background. In the prediction module, futures positions of the
detected targets at time t+ ∆t are anticipated by convolution
with the prediction kernels, then merged into a prediction
map that is stored in the memorizer for next input image. We
introduce network architecture of the proposed visual system
in Section III-A, then describe its components in Section III-B
– III-E.

A. Network Architecture of the Proposed Visual System

To realize the functions in Fig. 2, a number of specialized
neurons are coordinated in the proposed visual system whose
network architecture is shown in Fig. 3. As can be seen, the
proposed visual system is composed of four neural layers,
including retina, lamina, medulla, and lobula [49], where an
attention and a prediction mechanisms are implemented on the
outputs of the retina and lobula, respectively. Specifically, om-
matidia [50] capture and preprocess visual information from
the whole scene, then the attention is allocated to parts of the
visual scene to enhance signals of potential small targets. The
enhanced signals are applied to large monopolar cells (LMCs)
[51], further parallelly processed by four medulla neurons
(i.e., Tm1, Tm2, Tm3, and Mi1) [52], finally integrated in
the STMDs to detect small target motion within complex
natural environments. Future positions of the detected targets
are predicted and then fed back to the attentive process.
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Fig. 4. (a) Three-dimensional and (b) planar representations of an attention
kernel Wa(x, y, ς, θ) where ς = 3.0, θ = π/4.

B. Preprocessing Module

The functionalities of the preprocessing module is imple-
mented by numerous ommatidia located in the retina layer,
as depicted in Fig. 3. To receive an entire image as model
input, the preprocessing module first arranges ommatidia in
matrix form. Then the luminance of each pixel is captured by
each ommatidium whose sensitivity function is modelled as
a Gaussian kernel [53]. Formally, we represent input image
by I(x, y, t) ∈ R where (x, y) is spatial coordinates while t
denotes time. Given a Gaussian kernel with standard deviation
σ1

Gσ1
(x, y) =

1

2πσ2
1

exp(−x
2 + y2

2σ2
1

) (1)

then the output of an ommatidium P (x, y, t) is defined as

P (x, y, t) =

∫∫
I(u, v, t)Gσ1(x− u, y − v)dudv. (2)

C. Attention Module

As can be seen from Fig. 2, a smoothed image P (x, y, t)
and a prediction map M(x, y, t−∆t) form the inputs of the
attention module. The prediction map is initialized to zero and
updated recursively in the prediction module. A set of potential
areas denoted as {Ωi|i = 1, 2, · · · , N} is first determined by
comparing M(x, y, t−∆t) with a preset threshold. To search
for potential small targets in each area Ωi, the attention module
convolves Ωi with a family of attention kernels. Let Σ and
Θ denote sets of scale and orientation, respectively, then an
attention kernel is defined as

Wa(x, y, ς, θ) = 2
ς2 − (x cos θ + y sin θ)2

πς4
exp(−x

2 + y2

2ς2
)

(3)
where scale ς ∈ Σ and orientation θ ∈ Θ. As shown in
Fig. 4, the attention kernel measures the luminance difference
between the central part and surrounding areas on both sides
along the orientation θ. Since a small target always displays
speckle-like structure in an image whose luminance is higher
or lower than that of its surrounding background, a significant
response will appear at the target position after the convolution
with an attention kernel. To suppress non-speckle structures,
such as lines, edges, and corners, we select the minimal
convolution output by varying kernel orientation θ for each
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scale ς , then obtain the maximal output among all the scales
[54], that is

Ai(x, y, t) = max
ς∈Σ

min
θ∈Θ

∫∫
Ωi

P (u, v, t)Wa(x−u, y−v, ς, θ)dudv
(4)

where Ai(x, y, t) denotes the response of the attention module
in the local area Ωi. To enhance the contrast of potential targets
against their surrounding backgrounds, we add Ai(x, y, t) with
the smoothed image P (x, y, t), that is

Pe(x, y, t) = P (x, y, t) + α

N∑
i=1

Ai(x, y, t) (5)

where Pe(x, y, t) denotes the contrast-enhanced image, α is a
constant, and N is the number of the local areas Ωi.

D. STMD-based Neural Network

The STMD-based neural network consists of three sequen-
tially arranged neural layers, including lamina, medulla, and
lobula, as shown in Fig. 3. To detect small moving targets
against complex natural background, the contrast-enhanced
image Pe(x, y, t) from the attention module is processed by
the LMCs, medulla neurons, and STMDs in a feedforward
manner.

1) Large Monopolar Cells: Luminance of a pixel will
change over time when an object passes through it. To measure
temporal changes in luminance of each pixel, we model the

LMC as a band-pass filter in the time domain (Fig. 5). Con-
sidering excellent temporally-processing features of Gamma
kernel [55], we adopt the difference of two Gamma kernels as
the impulse response of the temporal filter H(t)

H(t) = Γn1,τ1(t)− Γn2,τ2(t) (6)

Γn,τ (t) = (nt)n
exp(−nt/τ)

(n− 1)! · τn+1
(7)

where Γn,τ (t) represents a Gamma kernel and its temporal
response characteristics are completely determined by order
n and time constant τ . The output of a LMC is given
by convolution of H(t) with the contrast-enhanced image
Pe(x, y, t)

L(x, y, t) =

∫
Pe(x, y, s)H(t− s)ds (8)

where L(x, y, t) denotes the output of a LMC corresponding
to pixel (x, y) at time t. Note that L(x, y, t) discloses the
changes in luminance at pixel (x, y) with respect to time t.
Specifically, a positive output means an increase in luminance
whereas a negative one reflects a decrease in luminance.

2) Medulla Neurons: Four medulla neurons, including
Tm1, Tm2, Tm3, and Mi1, are connected to a single LMC
and process the output of the LMC L(x, y, t) in parallel, as
can be seen from Fig. 3. More precisely, the Tm3 serves as
a half-wave rectifier to allow the positive part of L(x, y, t)
while blocking the negative part; in contrast, the Tm2 allows
the negative part and blocks the positive part. Let STm3(x, y, t)
and STm2(x, y, t) denote the output of the Tm3 and Tm2,
respectively, then they can be formulated as

STm3(x, y, t) = [L(x, y, t)]+ (9)

STm2(x, y, t) = [−L(x, y, t)]+ (10)

where [x]+ refers to max(x, 0). As shown in Fig. 5, the
Mi1 and Tm1 neurons serve as half-wave rectifiers followed
with a time-delay unit (TDU) where the temporal delay
is implemented by convolution with a Gamma kernel. De-
note the outputs of the Mi1 and Tm1 as SMi1

(n,τ)(x, y, t) and
STm1

(n,τ)(x, y, t), then they can be described as

SMi1
(n,τ)(x, y, t) =

∫
[L(x, y, s)]+ · Γn,τ (t− s)ds (11)

STm1
(n,τ)(x, y, t) =

∫
[−L(x, y, s)]+ · Γn,τ (t− s)ds (12)

where order n and time constant τ of Gamma kernel Γn,τ (t)
control the time-delay order and length, respectively.

3) Small Target Motion Detectors: Medulla neurons at
two different pixels provide inputs to an STMD neuron, as
illustrated in Fig. 5. The two pixels denoted by (x, y) and
(x′(θ), y′(θ)), respectively, are formulated as

x′(θ) = x+ γ · cos θ

y′(θ) = y + γ · sin θ
(13)

where θ represents the preferred direction of the STMD, γ
denotes a constant. Note that when an object moves from
pixel (x, y) to (x′(θ), y′(θ)), it will induce increase and
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Fig. 6. Normalized outputs of the STMD neuron to a small target
at pixel (x0, y0) and time t0 along eight preferred directions θ ∈
{0, π
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Fig. 7. Normalized outputs of the STMD neuron to a small target with
different velocities. [vmin, vmax] and vmin denote the preferred velocity range
and the optimal velocity of the STMD, respectively.

decrease in luminance of the two pixels. The luminance-
change information have been captured by the LMCs, and
further separated into increasing and decreasing components
by the four medulla neurons. To produce a significant response
to the moving object, the STMD first aligns these luminance-
increase and luminance-decrease signals correctly in the time
domain, and then multiplies the temporally-aligned signals
together [19], that is

D(x, y, t, θ) = STm3(x, y, t)×{
STm1

(n4 ,τ4 )(x, y, t) + SMi1
(n3 ,τ3 )(x

′(θ), y′(θ), t)
}

× STm1
(n5 ,τ5 )(x

′(θ), y′(θ), t)

(14)

where D(x, y, t, θ) represents the output of the STMD with a
preferred direction θ; the time constants, i.e., τ3, τ4, and τ5, are
determined by time intervals between the luminance-increase
and decrease signals of the two pixels; the orders, i.e., n3, n4,
and n5, control the shapes of signals after temporal alignment.

The correlation output D(x, y, t, θ) is further convolved
with two inhibition kernels, including Ws(x, y) in the spatial
domain for suppressing responses to large moving objects, and
Wd(θ) in the direction domain for inhibiting responses of more
than 45◦ apart, which are defined as

Ws(x, y) = A · [g(x, y)]+ +B · [g(x, y)]− (15)
g(x, y) = Gσ2

(x, y)− e ·Gσ3
(x, y)− ρ (16)

Wd(θ) = Gσ4
(θ)−Gσ5

(θ) (17)

where [x]+ and [x]− refer to max(x, 0) and min(x, 0), respec-
tively; A, B, e, and ρ are constant. The output of the STMD

min
t v 

opt
t v 

max
t v 

x

y




x

y

min
t v 

opt
t v 

max
t v 

Fig. 8. Potential positions of a small target at time t+ ∆t where the origin
coordinates are (xt, yt) and θ denotes the motion direction. The red-ring
area represents the positions where the small target would appear with a high
probability.

after the inhibition E(x, y, t, θ) is described as

E(x, y, t, θ) =

∫∫∫
D(u, v, t, ψ) ·Ws(x− u, y − v)

·Wd(θ − ψ)dudvdψ.

(18)

Fig. 6 shows E(x, y, t, θ) at pixel (x0, y0) and time t0 along
eight preferred directions θ. As can be seen, E(x, y, t, θ)
is directionally selective. Specifically, the strongest response
appears at the motion direction of the small target, i.e.,
θ = 0. When the preferred direction deviates from θ = 0,
the neural output decreases significantly and equates to zero
at θ = π opposite to the motion direction. In addition,
E(x, y, t, θ) exhibits strong velocity selectivity, as illustrated
in Fig. 7. Specifically, the STMD responds to small targets
with velocities in a specific range denoted by [vmin, vmax], and
its output peaks at an optimal velocity denoted by vopt. Note
that direction and velocity selectivities have been found in real
STMD neurons [14].

To determine locations and motion directions of small tar-
gets, we compare E(x, y, t, θ) with a threshold δ. Specially, if
E(x, y, t, θ) > δ, then we consider (x, y, t, θ) as a positive de-
tection which means a small target that moves along direction
θ is detected at pixel (x, y) and time t. However, E(x, y, t, θ)
may contain a number of false positives induced by small-
target-like features in complex backgrounds. To eliminate
these false positives, we adopt the method proposed in [20].
Specifically, true positives are distinguished from false pos-
itives by comparing variation amount of directional contrast
on their motion traces (represented by standard deviation). If
directional contrast on the motion trace of a detected object
varies significantly with time, then we believe that the detected
object is a true positive; otherwise, it is a false positive.

E. Prediction Module

The spatial coordinates (xt, yt) and motion directions θt
of the small targets at time t are obtained by the STMD-
based neural network, then fed into the prediction module
to anticipate their future positions. Let (xt+∆t, yt+∆t) denote
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Fig. 9. (a) Three-dimensional and (b) planar representations of a prediction
kernel Wp(x, y, θ) where θ = 0.

the position of a small target at time t + ∆t, then it can be
described as

(xt+∆t, yt+∆t) =(xt, yt)

+ vt(cos(θt + ωt), sin(θt + ωt))∆t

+ εt(cos(θt + ωt), sin(θt + ωt))∆t

(19)

where vt denotes the velocity of the small target at time t;
εt and ωt represent deviations of the velocity and motion
direction over the time period ∆t, respectively. Note that the
STMD is selective to object velocity (see Fig. 7), so vt is in the
preferred velocity range of the STMD, i.e, vmin ≤ vt ≤ vmax.
Moreover, if the velocity and motion direction of the small
target have not significant changes over the period ∆t, i.e., εt
and ωt are all equal to low values in (19), the small target
would appear in a ring area with a high probability at time
t+ ∆t, as depicted in Fig. 8.

Based on the above observation, we define a set of predic-
tion kernels Wp(x, y, θ) with various orientations θ as

Wp(x, y, θ) = λ · exp
(
−

(x− vopt cosϕ∆t)2

2ζ2

)
· exp

(
−

(y − vopt sinϕ∆t)2

2ζ2

)
· exp

(
η cos(ϕ− θ)

) (20)

where vopt stands for the optimal velocity of the STMD; ϕ
denotes the angle between the vector (x, y) and the positive
direction of x-axis, 0 ≤ ϕ < 2π; λ represents normalization
factor; ζ and η are constant. As can be seen from Fig. 9, the
shape of Wp(x, y, θ) is similar to that of the future positions
in Fig. 8, which displays as a ring structure. In addition, the
value of Wp(x, y, θ) reveals the probability of a small target
appearing at pixel (x, y). We further define the predictive gain
of the STMD F (x, y, t, θ) by

F (x, y, t, θ) =

∫∫ {
µE(u, v, t, θ) + (1− µ)F (u, v, t−∆t, θ)

}
·Wp(x− u, y − v, θ)dudv

(21)

where E(x, y, t, θ) is the output of the STMD at time t;
F (x, y, t−∆t, θ) denotes the predictive gain at time t−∆t;
µ is constant and 0 ≤ µ ≤ 1. To generate a prediction map,
we integrate the predictive gain F (x, y, t, θ) in the direction
domain, that is

M(x, y, t) =

∫
F (x, y, t, θ)dθ (22)

TABLE I
PARAMETERS OF THE PROPOSED PAG-STMD MODEL.

Eq. Parameters

(2) σ1 = 1

(3) Σ = {2.0, 2.5, 3.0, 3.5}, Θ = {0, π/4, π/2, 3π/4}
(6) n1 = 2, τ1 = 3, n2 = 6, τ2 = 9

(13) γ = 3

(14) n3 = 3, τ3 = 15, n4 = 5, τ4 = 25, n5 = 8, τ5 = 40

(15) A = 1, B = 3.5

(16) σ2 = 1.25, σ3 = 2.5, e = 1.2, ρ = 0

(17) σ4 = 1.5, σ5 = 3

(20) ζ = 2, η = 2.5

(23) κ = 0.02

where M(x, y, t) denotes the prediction map at time t which
anticipates the locations of small targets at t + ∆t. The
predictive process is able to facilitate responses of the STMD
[24], so we define the facilitated STMD output Q(x, y, t, θ) by
summing the STMD neural output with the previous prediction
gains, that is

Q(x, y, t,θ) = E(x, y, t, θ)

+ β ·
∫ t

t−∆t

eκ·(t−s−∆t) · F (x, y, s, θ)ds
(23)

where β, κ are constant.

F. Memorizer

As shown in Fig. 2, the memorizer collects prediction maps
M(x, y, t) from the prediction module. Let {M(x, y, t)|t ∈
[0, tc]} denote the set of the prediction maps where tc stands
for the current time step. For a new input image at time tc+∆t,
the memorizer provide the prediction map M(x, y, tc) to the
attention module for determining potential areas.

IV. EXPERIMENTS AND DISCUSSIONS

A. Experimental Setup

1) Data Sets: We used a simulated data set (Vision Egg)
[56] and a real-world data set (RIST) [57] to evaluate the
proposed model (apg-STMD) on small target motion detection
task. The Vision Egg data set covers a wide variety of synthetic
small targets exhibiting a range of luminance, velocity, and
size, moving against complex backgrounds. Each synthetic
video contains one or multiple small target motions, whose
resolution and sampling frequency equate to 500× 250 pixels
and 1000 Hz, respectively. The RIST data set contains 19
videos captured in the wild using an action camera (GoPro
Hero 6) with a resolution 480 × 270 pixels at 240 fps. High
sampling rate is set to ensure that captured images are blur-free
and every critical moment of object motion is recorded. The
scenarios of recorded videos covers various challenges, such
as highly complex dynamic backgrounds, low-contrast targets,
illumination variations, bad weather conditions, and sudden
background movements. Each video holds a small moving
target whose size ranges between 3× 3 and 15× 15 pixels.
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Fig. 10. Outputs of the STMD to a moving object against white background
with respect to (a) different Weber contrast, (b) velocities, (c) widths, and (d)
heights.

2) Implementation Details: For given preferred velocity
and size ranges of small targets, parameters of the STMD-
based neural network are determined by the previous analysis
[19]. Parameters ζ, η that control the shape of the prediction
kernel, are properly tuned based on the preferred velocity
range to ensure that the ring area of the prediction kernel
can completely cover potential positions of a small target
with preferred velocity. Scales of the attention kernel Σ are
determined by the preferred size range to ensure that small
targets with optimal size can obtain the largest response after
convolution. Multiple STMDs with different preferred velocity
and size ranges could be coordinated to detect small objects
with unknown velocities and sizes. Other parameters have been
set experimentally, but most remained identical for all test
image sequences. The parameter settings for the experimental
results are listed in Table I. All experiments are tested on
MATLAB software platform under a machine that equips with
Intel-i7 2.4 GHz CPU, 16 GB memory.

B. Response Properties of the STMD

To reveal response properties of the STMD-based neural
network, we report its outputs E(x, y, t, θ) to a moving object
with different Weber contrast, velocities, widths, and heights.
For an object whose size equates to w×h pixels, we define its
neighbouring area as a rectangle with size of (w+2d)×(h+2d)
pixels where d is set to 10 pixels [19], [20]. Weber contrast
can then be given by

Weber contrast =
|µt − µb|

255
(24)

where µt and µb denote the average pixel intensity of the
object and its neighbouring area, respectively. The four pa-
rameters of the object, i.e., Weber contrast, velocity, width,
and height, are initialized to 1, 250 pixels/s, 5 pixels, and 5

Small targets

Tree

BV

A B

Fig. 11. Input image at time t0 = 760 ms where two small targets A and
B are moving against the complex background. The background velocity is
set as 250 pixels/s, and arrow VB denotes its motion direction. The tree is
considered as a large object moving with the background at the same velocity.

pixels, respectively. Four experiments are conducted to analyse
the STMD outputs with respect to different target parameters,
each of which involves changing one of the parameters while
maintaining the other three at their initial values. The recorded
outputs to a moving target against white background are shown
in Fig. 10.

As observed from Fig. 10(a), the increase in Weber contrast
of the object leads to the increase in the STMD output, where
the strongest response is reached at Weber contrast = 1. In Fig.
10(b), we can find that the output of the STMD is larger than 0
in the interval [100, 800] pixels/s and reaches its maximum at
250 pixels/s, which correspond to the preferred velocity range
and optimal velocity of the STMD, respectively. Fig. 10(c) and
(d) presents the outputs of the STMD to objects with different
widths and heights. As can be seen, the STMD responds to
objects with widths and heights lower than 18 and 13 pixels,
respectively. In addition, its output peaks at width= 5 pixels
and height= 5 pixels.

Fig. 10(a)-(d) provides a good fit to the response prop-
erties of the STMD neurons revealed in biological research
[14]–[16], which means the proposed STMD model displays
contrast sensitivity, velocity, width, and height selectivities,
respectively.

C. Effectiveness of the Attention Module

As described in Section III-C, we design an attention mod-
ule to overcome the heavy dependence of the STMD-based
neural network on target contrast against complex background.
To validate its effectiveness, we conduct a performance com-
parison between the STMD-based neural networks with and
without an attention module. Fig. 11 shows the input image
I(x, y, t) at time t = 760 ms. As can be seen, two small
targets are moving against the complex background where the
target A shows much lower contrast against its surrounding
background compared to the target B. In addition, the target A
has relative movement to the background, whereas the target B
remains static relative to the background. To clearly illustrate
signal processing, we observe the input signal I(x, y0, t0) with
respect to x by setting y0 = 190 pixels in Fig. 12(a), and
then analyse its resulting neural outputs with and without the
attention module in Fig. 12(b), (c) and Fig. 13.

Fig. 12(b) shows the outputs of the ommatidium with and
without the attention module. As can be seen, the ommatidium
smooths the input luminance signal by applying Gaussian blur.
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Fig. 12. (a) Input luminance signal I(x, y0, t0) where y0 = 190 pixels and
t0 = 760 ms. Comparison of (b) Ommatidium outputs P (x, y0, t0), (c) LMC
output L(x, y0, t0) with and without the attention module.

The attention module further enhances the contrast of the
small target A against surrounding background by adding its
convolution output to the smoothed input signal. In compar-
ison, target B does not receive attention, because it remains
static relative to the background and is regarded as a part of
the background. As shown in Fig. 12(c), the LMC computes
changes of luminance over time for each pixel. Its positive
output reflects the increase in luminance while the negative
output indicates the decrease in luminance. Since the contrast
of the small target A has been strengthened, it induces much
more significant luminance changes with respect to time.

Fig. 13(a) illustrates four medulla neural outputs with and
without the attention module. The medulla neural outputs are
derived from either positive or negative components of the
output of the LMC, so the effect of the attention module on
medulla neurons will be consistent with that on the LMCs in
Fig. 12(c). As can be seen, the medulla neural outputs at the
position of the target A are all strengthened by the attention
module, whereas the neural outputs at other positions remain
unchanged. These four medulla neural outputs that have been
aligned in the time domain by time delay and spatial shift,
are multiplied together to define the STMD output. Fig. 13(b)
shows the maximal output of the STMD over the direction
θ, i.e., maxθ E(x, y0, t0, θ). It can be observed that the at-
tention module significantly enhances the STMD response
to the low-contrast target A, while maintaining response to
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5
O

ut
pu

ts
104

(b)

Fig. 13. Comparison of (a) medulla neural outputs, (b) STMD output
E(x, y0, t0) with and without the attention module.

the high-contrast target B that moves relatively static to the
background. Note that the STMD-based neural networks with
and without attention module all exhibit no response to the
large objects, i.e., the tree.

D. Facilitation Effect of the Prediction Module

Predictive mechanism is able to boost the STMD neural
responses, enhance contrast sensitivity and direction selectiv-
ity, and facilitate the pursuit of occluded objects, as revealed
in biological research [24]. To validate the above facilitation
effect of the proposed prediction module, we conduct four
experiments which are reported in the following subsections.

1) Facilitation in Neural Responses: We initially compare
the STMD neural outputs with and without facilitation where
the unfacilitated output E(x, y, t, θ) and the facilitated output
Q(x, y, t, θ) are defined by (18) and (23), respectively. As
depicted in Fig. 14, the unfacilitated STMD response builds
up rapidly to its peak over 7− 8 ms. However, the facilitated
response shows a slow build-up lasting roughly 50 ms before
reaching its maximum which is about twice as strong as
that of the unfacilitated response. Fig. 15 shows the STMD
responses with and without facilitation over the spatial domain.
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Fig. 14. Unfacilitated and facilitated STMD neural responses to a small target
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Fig. 15. Planar representations of (a) Unfacilitated and (b) facilitated STMD
neural responses to a small target where direction θ and time t are equal to
θ = 0 and t = 320 ms, respectively.

Compared to the unfacilitated response, the prediction module
enhances the local STMD responses in a broad region ahead
of the target motion direction.

2) Facilitation in Contrast Sensitivity: To validate the fa-
cilitatory effect in contrast sensitivity, we conduct a Primer
& Probe experiment as shown in Fig. 16(a). Specifically, the
input video displays a small target moving along a long path
which are divided into two components called the primer
and the probe. The primer segment is used to induce spatial
facilitation, while the second segment, the probe, is used to
record model outputs. The experiment involves changing the
Weber contrast of the primer and probe, respectively, and then
recording the STMD outputs with and without facilitation to
the probe. As depicted in Fig. 17, the STMD output without
facilitation remains unchanged when the contrast of the primer
increases. However, for any given contrast of the probe, the
STMD output with facilitation shows a significant increase
with the growth in the contrast of the primer.

3) Facilitation in Direction Selectivity: To validate the
facilitatory effect in direction selectivity, we conduct another
Primer & Probe experiment as shown in Fig. 16(b). This
involves fixing the Weber contrast of the primer and probe,
then changing the angular offset between the primer path and
probe path, and finally recording the STMD outputs with and
without facilitation to the probe. As can be seen from Fig.
18, the motion of the primer shows little effect on the STMD
responses without facilitation to the probe. More precisely, the
unfacilitated STMD responses along eight directions are equal,
regardless of the primer’s motion direction. However, the
prediction module facilitates the STMD response maximally

Primer

Probe

(a)

Primer

Probe

(b)

Fig. 16. (a)-(b) Schematics of the Primer & Probe test for validation of
facilitatory effect in contrast sensitivity and direction selectivity, respectively.
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Fig. 17. (a) Unfacilitated and (b) facilitated STMD outputs to the probe with
different Weber contrast, preceded by varying-contrast primer.
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Fig. 18. Unfacilitated and facilitated STMD outputs to the probes moving
along eight directions θ ∈ {0, π

4
, π
2
, 3π

4
, π, 5π

4
, 3π

2
, 7π

4
} when the motion

direction of the primer is set to (a) 0, (b) π
4

, (c) π
2

, (d) 3π
4

, respectively.

in the motion direction of the primer. The direction tuning is
also shifted to match the motion direction of the primer.

4) Facilitation in Pursuit of Occluded Objects: To validate
the facilitatory effect of the prediction module in smooth
pursuit of a moving target that is transiently occluded, we
conduct an experiment shown in Fig. 19. As can be seen,
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Fig. 19. Representation of small target motion in the xy plane where the
target is moving counterclockwise along the circular path of radius R. During
the revolution, the target is occluded (grey thick line) where the angle of the
occlusion is given by θ and A denotes the end point of the occlusion.
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Fig. 20. Planar representations of (a) unfacilitated and (b) facilitated STMD
outputs summed on the circular path where the radius R and the occlusion
angle θ is set to 50 pixels and 30◦, respectively. For better visualization, the
square root of the output is displayed.
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Fig. 21. Outputs of the STMD with facilitation at pixel A, i.e., the end point
of the occlusion, with respect to (a) occlusion angle θ and (b) radius R.

the input video contains a small target with velocity of 250
pixels/s moving counterclockwise on a circular path of radius
R. The target is occluded on part of the circular path where
the occlusion angle is set as θ.

Fig. 20 shows the summation of the unfacilitated and
facilitated STMD outputs along the circular path where the
radius R and the occlusion angle θ are equal to 50 pixels
and 30◦, respectively. As can be seen, both the unfacilitated
and facilitated STMD responses form a gaped circular path.
However, the width of the circle path formed by the facilitated
output is much wider than that of the unfacilitated output. In
addition, the facilitated STMD output still spreads forward
after the small target disappears. However, the unfacilitated
output is close to zero during the occlusion. We further reveal
the relationship between the STMD output after the occlusion
(pixel A) and occlusion angle θ and radius R, respectively. As

shown in Fig. 21, the increase in occlusion angle θ and radius
R will induce the decrease in the STMD output propagated to
pixel A, which means that precision of prediction will decrease
with the increase in occlusion period.

E. Evaluation on Synthetic and Real-World Data Sets

We compare the proposed model with three state-of-the-
art small target motion detection methods, including DSTMD
[19], ESTMD [17], and STMD Plus [20], on the synthetic
and real-world data sets in terms of the receiver operating
characteristics (ROC) curve. The experimental results are
reported in the supplementary material. The results demon-
strate that the proposed model has greatly improved detection
performance for small targets which exhibit extremely low
contrast against cluttered background. However, it fails to
detect moving objects without any contrast to backgrounds.
In such case, human visual systems are also powerless to deal
with object detection tasks.

In insect’ visual system, multiple specialized neural circuits
extract various cues simultaneously from complex natural
environment, such as color [58], depth information [59], and
motion trajectories [60]. However, the contribution of these
visual cues to motion detection and their circuit implementa-
tion are still unclear. As future work, multiple visual cues may
be combined together to further improve performance of the
proposed visual system for small target motion detection.

V. CONCLUSION

This article proposes an attention and prediction guided
visual system to detect small targets in complex natural
environments. To mitigate the heavy dependency on target
contrast against the background, the proposed visual system in-
troduces an attention module, an STMD-based neural network,
and a prediction module, which are arranged in a recurrent
architecture. The attention module is designed to search for
potential small targets in predicted areas over the input image
and enhance their contrast to neighboring backgrounds. The
STMD-based neural network is devised to take the contrast-
enhanced image as input and detect small moving targets
using both motion information and directional contrast. The
prediction module is proposed to anticipate future positions of
the detected small targets and generate a prediction for next
time step. The proposed visual system significantly improves
the performance for small target detection in complex natural
environment where small targets always exhibit extremely
low contrast. The study provides a robust solution for future
autonomous systems to detect small targets timely and react
appropriately.
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