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Abstract 

Bladder cancer is the seventh most common cancer in the UK (2011), fourth most 

common cancer in men and thirteenth most common in women. The total annual cost 

of bladder cancers in the UK was £55.39 million. The cost per patient was £8349 per 

year, including diagnosing, treating and following up, as well as indirect costs like loss 

of earnings etc. Cystoscopy with biopsy is the current gold standard for diagnosing 

bladder cancer. However, it is expensive and invasive, and has difficulties in 

diagnosing early stage cancer or carcinoma in situ (flat tumour). Non-invasive 

diagnosis of bladder cancer like urine cytology and urinary biomarker tests have poor 

specificity therefore they are used as supportive tests rather than definitive tests. The 

aim of this study is to develop a detecting system for bladder cancer urinary volatile 

organic compounds (VOCs) biomarkers and explore its application in non-invasive 

diagnosis of bladder cancer. Urinary VOCs are a class of chemical compounds found 

in urine that generated from biological activities of cells, cancer cells have special 

metabolic alternations compare to normal cells, therefore having different VOCs 

profiles that can be used for discrimination. Compare to conventional mass-

spectroscopy and e-nose techniques for VOCs detection, the fluorescence sensor array 

has good detection accuracy and much lower cost of use, it is especially ideal for 

developing non-invasive point-of-care device for bladder cancer diagnosis and 

surveillance purposes. This study successfully developed a fluorescence cross-

response sensor array system for diagnosing bladder cancer by detecting the urinary 

VOCs. On this system, a distinguishing test of four urinary VOC biomarkers: 

ethylbenzene, hexanal, lauric aldehyde, and nonanoyl chloride, was undertaken and 

achieved a sensitivity of 77.75% and a specificity of 93.25%. In a proof-of-principle 

clinical trial involving 79 participants (38 bladder cancer patients and 41 healthy 

controls), this system using a PLSDA model successfully identified over 80% of urine 
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samples (86.08% with leave-one-out, 81.76% with Mote Carlo cross-validation) with 

77.42%-84.21% sensitivity and 85.82%-87.80% specificity. This study revealed the 

possibility of using low-cost optical sensor system for medical diagnosis purposes, and 

this could inform larger scale multi-centre trails of biogenic VOCs diagnosis and other 

possible clinical applications in the future. 
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1. Introduction 

Bladder cancer is the seventh most common cancer in the UK (2011), fourth most 

common cancer in men and thirteenth most common in women. In recent years, its 

incidence rates in general are decreasing (probably due to classification changes, 

reductions in smoking and exposure to occupational carcinogens), but it still has the 

highest incidence rates in older men and women [1-4]. 

Bladder cancer also has been considered as one of the most expensive cancer among 

all cancer types, this is mainly because bladder cancer has very high recurrence rate 

and lacks inexpensive surveillance tools. According to National Institute for Health 

and Care Excellence (NICE) guidance of bladder cancer management, each year the 

treatment for each newly diagnosed bladder cancer patient costs £1480 at beginning, 

with £248 for each follow-up procedure for each low-risk non-muscle-invasive bladder 

cancer patient and the number of follow-up appointments for those patients are 7 per 

year for five years after confirmed diagnosis[5]. 

Cystoscopy with biopsy is the current gold standard for diagnosis of bladder cancer. 

However, as summarized by NICE guidance, this procedure is expensive and 

uncomfortable, and it is an invasive test. The current approaches for improving the 

bladder cancer diagnosis are mainly focusing on two directions: one is to consistently 

improve the diagnostic accuracy of cystoscopy by applying novel medical imaging 

techniques in order to better distinguish between cancerous tissue and non-cancer but 

easily confused tissue; another approach is to use the blood or urine biomarkers as 

supplementary means for conventional diagnosis methods and to lower the cost and 

number of follow-up appointments for bladder cancer surveillance. 

The latter approach now had successfully delivered several commercial products on 

the market: qualitative (NMP22, Alere) and quantitative (BladderChek, Alere) nuclear 
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matrix protein 22 (NMP22) test; qualitative (BTA stat, Polymedco) and quantitative 

(BTA TRAK, Polymedco) bladder tumor antigen (BTA) test; fluorescence in situ 

hybridization (FISH) (UroVysion, Abbott Molecular); and fluorescence 

immunohistochemistry (ImmunoCyt, Scimedx) are the six FDA approved urinary 

biomarker tests for bladder cancer diagnosis and surveillance. Those urine-based assay 

have sensitivity ranged 0.58-0.78, and specificity ranged 0.74-0.88. Compare to 

conventional cystoscopy and cytology, those urine-based diagnosis and surveillance 

assay has similar sensitivities and specificities, with much lower cost per patient per 

test. However, all of six tests are laboratory based, which means they require trained 

specialists to perform those tests, therefore limited their applications. The point-of-

care diagnosis and surveillance tool for bladder cancer is still lacking. 

The aims of this project are: 

a) Develop a fluorescence diagnosis tool that can generate unique responses to 

various VOC vapours. 

b) Test the aforementioned tool with urinary volatile organic compound 

biomarkers for bladder cancer.  

c) Explore the application by test the tool with clinical samples from bladder 

cancer patients, for example, human urine.  

To achieve this target, first a strong theoretical background of the mechanism of 

urinary VOCs and its relationship with presences of bladder tumour must be 

established. Chapter 2 is the literature review about bladder and bladder cancer, 

biogenic VOCs and their pathways, metabolism alternation of cancer and generation 

of VOC biomarkers, and correlations between VOC biomarkers and cancer grading 

and staging. Chapter 3 further introduced the physiochemistry background of 

fluorescence gas sensitive materials and the principle of interactions between VOC 

and such materials, then this chapter introduced a custom-built detecting system for 
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VOC samples and a sensor array made from fluorescence gas sensitive materials, and 

discussed the properties of the detecting system and the sensor array film. Chapter 4 

introduced and compared the common gas sensing techniques and signal processing 

and pattern recognition algorithm, then tested the detecting system from chapter 3 with 

four purified samples of urinary VOC biomarkers for bladder cancer. Chapter 5 

reviewed and compared recent studies about application of urinary VOC biomarkers 

in diagnosis of bladder cancer and discussed the results of the clinical study about 

application of aforementioned fluorescence urinary VOC detecting system in 

diagnosis, grading and staging of bladder cancer using human urine samples. Chapter 

6 and 7 concluded the works done so far and prospected the future works. 
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2. Literature Review 

This literature review covered three topics: bladder cancer and current diagnosis 

methods, theoretical background of bladder cancer volatile organic compounds (VOCs) 

biomarkers, and photophysical mechanisms of fluorescence VOCs sensors. The aim 

of this chapter is to provide a comprehensive background knowledge of urinary VOCs 

diagnosis of bladder cancer from biological, medical, and engineering perspectives. 

2.1. Bladder and Bladder Cancer 

 Bladder anatomy 

The bladder lies within the pelvic cavity, behind the symphysis pubis. It can expand 

superiorly into the abdominal cavity when full and is entirely situated in the pelvic 

cavity when empty. The empty bladder is a three-side pyramid shaped organ with an 

apex, a base, a superior surface, and two inferolateral surfaces. The apex of the bladder 

is connected to the anterior abdominal by the median umbilical ligament. The base of 

the bladder is an inverted triangle shaped surface and faces posteroinferiorly; the 

urethra drains inferiorly from the under vertex of the triangle, while two ureters enter 

the bladder from the two upper base vertexes. Unlike other parts of the bladder mucosa, 

the mucosal lining of the area between two ureters openings and urethra opening is 

firmly attached to the smooth muscle wall to prevent mucosa fold, keeping a smooth 

area. This smooth triangle area also called Trigon [6]. 

 Incidence of bladder cancer 

Bladder cancer is the seventh most common cancer in UK (2011), fourth most common 

cancer in men and thirteenth most common in women. In recent years, its incidence 

rates in general are decreasing (probably due to classification changes, reductions in 

smoking and exposure to occupational carcinogens), but it still has the highest 

incidence rates in older men and women [1-4]. The crude mortality rate of bladder 
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cancer is 8.2 deaths per 100,000 individuals in the UK (2012). Similar to incidence 

rates, mortality is strongly related to age, with an average of 68% of bladder cancer 

deaths in the UK between 2010 and 2012 occurring in those aged 75 or more [1-4].  

The incidence and mortality ratios between male and female are around 35:10 and 2:1, 

respectively. The cause of such gender disparity is still unclear but tobacco smoking 

and the presence of androgen receptors are considered possible reasons [7]. 

 Symptom of bladder cancer 

The most common symptom of bladder cancer is micro- or macro-haematuria (blood 

in urine), occurring in 13.7% and 78.3% of patients, respectively [8]. Although 

haematuria is a common early sign of bladder cancer, it is still easily missed because: 

it is painless; it is transient; microscopic haematuria is invisible to the naked eye. 

Visible haematuria is usually linked with higher grading and more advanced cancer. 

However, having visible haematuria does not mean it must be cancer; only 10% of 

patients with visible haematuria are diagnosed with bladder cancer [9, 10]. 

Considering 2-7% of men and 3-15% of women in the general adult population have 

microscopic haematuria [11], the cost-effectiveness of screening using dip-stick tests 

is too small, even in high-risk groups like heavy smokers and those with high 

occupational carcinogen exposure [12]. 

 Grading and staging of bladder cancer 

Histologically, the most common type of bladder cancer is urothelial carcinoma, 

constituting around 75%-90% of all cases [13]. As shown in Table 2-1[14], there are 

differentiations and variants of urothelial carcinoma, squamous and glandular being 

the most common, accounting for 60% and 6% of cases, respectively [13]. The variants 

are linked with pathologic stage and aggressiveness. For example, the micropapillary 

urothelial carcinoma is highly aggressive, has lymphovascular invasiveness, and is 
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easily metastasised to local lymph nodes and distant sites, which behave differently 

than other high-grade but locally advanced bladder tumours. Thus, the treatment plans 

concerning early cystectomy or neoadjuvant therapy are controversial [14]. Another 

example is plasmacytoid urothelial carcinoma, this variant is rare but aggressive and 

has unique discohesive plasmacytoid morphology, showing a strong predisposition for 

peritoneal spread. It therefore has poor prognosis [15]. 
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U rothelial tum ours 

Infiltrating urothelial carcinom a 

  w ith squam ous differentiation 

  w ith glandular differentiation 

  w ith trophoblastic differentiation 

  N ested 

  M icropapillary 

  Lym phoepitheliom a-like 

  Lym phom a-like 

  Plasm acytoid 

  Sarcom atoid 

  G iant cell 

  U ndifferentiated 

N on-invasive urothelial neoplasias 

  U rothelial carcinom a in situ 

  N on-invasive papillary urothelial 

carcinom a, high grade 

  N on-invasive papillary urothelial 

carcinom a, low  grade 

  N on-invasive papillary urothelial 

neoplasm  of low  m alignant potential 

  U rothelial papillom a 

  Inverted urothelial papillom a 

 

Squam ous neoplasm s 

  Squam ous cell carcinom a 

  Verrucous carcinom a 

  Squam ous cell papillom a 

 

G landular neoplasm s 

Adenocarcinom a 

  Enteric 

  M ucinous 

  Signet-ring cell 

  Clear cell 

 

Villous adenom a 

N euroendocrine tum ours 

  Sm all cell carcinom a 

  Carcinoid 

  Paragangliom a 

 

M elanocytic tum ours 

  M alignant m elanom a 

  N evus 

 

 

M esenchym al tum ours 

Rhabdom yosarcom a 

Leiom yosarcom a 

Angiosarcom a 

O steosarcom a 

M alignant fibrous histiocytom a 

Leiom yom a 

H aem angiom a 

O ther 

 

H aem atopoietic and lym phoid 

tum ours 

Lym phom a 

Plasm acytom a 

 

M iscellaneous tum ours 

Carcinom a of Skene, Cow per and Little 

glands 

M etastatic tum ours and tum ours 

extending from  other organs 

 

Table 2-1 World Health Organization (WHO) histological classification of tumours of the urinary tract. 

Reproduced with permission from the WHO[14]. 
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From a histopathological point of view, there are non-muscle-invasive bladder cancer 

(NMIBC) and muscle-invasive bladder cancer (MIBC), the former constitutes 75% of 

patients, and the latter constitutes 25% [16]. Two concepts, Grading and Staging, are 

the most important factors in bladder cancer prognosis and management. 

The term “Grading” is based on the differentiation of the cells; higher differentiation 

means the cells are closer to normal tissue, thus the cancer has a lower grade and degree 

of malignancy. Meanwhile, poorer differentiation means the cells are reversed from 

differentiation (anaplasia), have lost the mature morphological characteristics and 

leads to excessive growth (neoplasm), thus the cancer has a higher grade and degree 

of malignancy. “Staging” is based on the depth of tumour invasion and metastasis and 

relies on clinical examinations like cystoscopy and transurethral resection biopsies. 

Although it cannot be exact, the histological staging is still the gold standard, and 

provides important information for evaluation of the risk of tumour prognostication 

[15]. 

Both concepts are important for evaluating the prognosis and management of cancer, 

but for the two types (NMIBC and MIBC), each concept differs in importance. For 

NMIBC, grading is more important, because the low-grade tumour is less aggressive 

than a high-grade tumour, therefore is considered as “low-risk cancer”. While for 

MIBC, the more important prognostic factor is staging. This is because the 

aggressiveness of the tumour has been confirmed by its invasiveness and how far the 

tumour penetrates the bladder wall; whether it invades the surrounding tissue and 

nodes becomes the major concern for prognosis and subsequent management. 

In 1973, the World Health Organization introduced the numeric grading system for 

urothelial carcinoma. This system has four grades, starting from papilloma, and then 

grade 1 to 3. In 2004, the WHO updated the grading system of urothelial carcinoma 

and included the papillary urothelial neoplasm of low malignant potential (PUNLMP) 
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as a new category, replacing the grade 1 category of the 1973 system [17]. The most 

significant change is the low grade, formerly grade 2. Almost 40% of grade 2 cases in 

the 1973 system are categorized higher in the 2004 system however studies have found 

that both systems are significant in describing the disease progression and recurrence 

[15]. Such a grading system is widely accepted and inherited by the latest 2016 WHO 

grading system [18].  

The widely accepted staging system for bladder cancer is the American Joint 

Committee on Cancer (AJCC) TNM staging system. In this system, the letters T, N, 

and M stand for primary tumour, regional lymph node metastasis and distant metastasis, 

respectively. Each category represents the relevant clinical and pathological 

classification of the patient and, combined together, provide prognostic factors for 

stage grouping [19]. 



12 

 

 

a. D efinition of Prim ary Tum our (T) 

T Category T Criteria 

TX Prim ary tum our cannot be assessed 

T0 N o evidence of prim ary tum our 

Ta N on-invasive papillary carcinom a 

Tis U rothelial carcinom a in situ: “flat tum our” 

T1 Tum our invades lam ina propria (subepithelial connective tissue) 

T2 Tum our invades m uscularis propria 

  pT2a Tum our invades superficial m uscularis propria (inner half) 

  pT2b Tum our invades deep m uscularis propria (outer half) 

T3 Tum our invades perivesical soft tissue 

  pT3a Tum our invades perivesical soft tissue m icroscopically 

  pT3b Tum our invades perivesical soft tissue m acroscopically (extravesical 

m ass) 

T4 Extravesical tum our directly invades any of the follow ing: prostatic 

strom a, sem inal vesicles, uterus, vagina, pelvic w all, abdom inal w all 

  T4a Extravesical tum our invades directly into prostatic strom a, sem inal 

vesicles, uterus, vagina 

  T4b Extravesical tum our invades pelvic w all, abdom inal w all 

 

b. definition of Regional Lym ph N ode (N ) 

N  Category N  Criteria 

N X Lym ph nodes cannot be assessed 

N 0 N o lym ph node m etastasis 

N 1 Single regional lym ph nodes m etastasis in the true pelvis (perivesical, 

obturator, internal and external iliac, or sacral lym ph node) 

N 2 M ultiple regional lym ph nodes m etastasis in the true pelvis 

(perivesical, obturator, internal and external iliac, or sacral lym ph 

node m etastasis) 

N 3 Lym ph node m etastasis to the com m on iliac lym ph nodes 

 

c. D efinition of D istant M etastasis (M ) 

M  Category M  Criteria 

cM 0 N o distant m etastasis 

cM 1 D istant m etastasis 

  cM 1a D istant m etastasis lim ited to lym ph nodes beyond the com m on iliac 

  cM 1b N on-lym ph-node distant m etastasis 

pM 1 D istant m etastasis, m icroscopically confirm ed 

  pM 1a D istant m etastasis lim ited to lym ph nodes beyond the com m on iliac, 

m icroscopically confirm ed 

  pM 1b N on-lym ph-node distant m etastasis, m icroscopically confirm ed 

 

 
 

Table 2-2 Definitions of TNM staging system of bladder cancer, reproduced with permission from AJCC 

cancer staging manual, Eighth edition [20] 
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Table 2-2 shows the criteria for classification for each category in bladder cancer 

staging. Specifically, the category T is defined by the size and contiguous extension of 

the primary tumour. As previously mentioned, 75% of all cases are NMIBC and about 

70% of those NMIBC cases are non-invasive papillary carcinoma (Ta), 20% are T1 

and 10% are Tis [21]. The category N is defined by the absence/presence of cancer in 

regional lymph nodes and the number of positive lymph nodes. The most frequent 

lymph node metastasis sites are perivesical, internal and external iliac and obturator 

basins [20]. The category M is defined by the absence/presence of distant metastasis. 

The prefixes of cM and pM represent the time point each stage is assigned: clinical 

(before treatment) and pathological (after surgical removal and being reviewed by 

specimens), respectively. Retroperitoneal lymph nodes, lung, bone, and liver are the 

most common distant metastasis sites of bladder cancer [20]. Table 2-3 shows the 

AJCC stage group assignment by combination of T, N, and M categories. 

W hen T is… W hen N  is… W hen M  is… Then the stage group is… 

Ta N 0 M 0 0a 

Tis N 0 M 0 0is 

T1 N 0 M 0 I 

T2a N 0 M 0 II 

T2b N 0 M 0 II 

T3a, T3b, T4a N 0 M 0 IIA 

T1-T4a N 1 M 0 IIA 

T1-T4a N 2, N 3 M 0 IIB 

T4b Any N  M 0 IVA 

A ny T Any N  M 1a IVA 

A ny T Any N  M 1b IVB 

 

 

Table 2-3 AJCC Prognostic stage groups, reproduced with permission from AJCC cancer staging 

manual, Eighth edition [20]. 
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 Economics of bladder cancer 

Surveillance is very important in the management and follow-up of bladder cancer 

patients. This is because of both the high recurrence rate of NMIBC and MIBC and 

the short progression time of metastatic disease. The surveillance strategies are based 

on the combination of grading, staging, and other pathological characteristics. In 

general, low-risk patients need over 5 years of surveillance after initial surgery, 

intermediate-risk patients are under lifelong surveillance with adjuvant 

immunotherapy and high-risk patients need multiple surgeries with extending adjuvant 

immunotherapy. From an economical perspective, bladder cancer is a very “expensive” 

disease. This is due to not only direct costs from long-term surveillance, but also 

indirect costs from loss of earnings, time costs, caregiving, and physical and social 

functioning loss with the patients [22]. In a study published in 2004, the total annual 

cost of bladder cancers in the UK was £55.39 million. The cost per patient was £8349 

per year, including diagnosing, treating and following up, as well as indirect costs like 

loss of earnings. The cost of low-grade bladder cancer was £35.25 million, about £33 

million of that was direct costs, resulting in a significantly heavy burden on National 

Health Service (NHS) resources [23].  

 

 Conventional Diagnosis of Bladder Cancer 

Most patients with early stage bladder cancer start with haematuria, sometimes 

accompanied by frequent or urgent urination and dysuria. Patients are asked to provide 

urine samples for urinary cytology test. Through microscopic observation of the 

shedding epithelium cells from the urine tract and bladder, urinary cytology can detect 

highly abnormal cells, making it ideal for diagnosing high-grade tumours. For the low-

grade tumours, cell morphology changes may not be that obvious, therefore diagnosis 

relies on the inspector’s experience. However, inspector’s experience should be treated 
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as a supportive test rather than a definitive test. Cystoscopy with biopsy is the current 

gold standard for diagnosing bladder cancer. A flexible cystoscope is usually used for 

cystoscopy observation only; it has a flexible thin tube mounted with a light source 

and camera and only requires local anaesthetic. The light source can illuminate the 

area within the bladder, allowing for the detection of visible morphological changes 

and the extent of the tumour. A rigid cystoscope has thick and rigid tubes, which allows 

larger surgical instruments to enter the bladder though the urethra. For example, 

instruments for biopsy using transurethral resection of bladder tumours (TURBT) [24]. 

In addition to conventional white light cystoscopy (WLC), various cystoscopy 

techniques have been developed. Photodynamic diagnosis (PDD) is used for 

diagnosing bladder cancer because it can distinguish the tumour from healthy tissue 

under the specific light wavelength. Photosensitizing (PS) agent can be absorbed by 

cancer cells and causes the cells to have a different fluorescence characterisation 

compared to normal cells. Recently, PS-free diagnosis systems based on endogenous 

tissue signals (like Raman spectroscopy, autofluorescence spectroscopy, and narrow 

band imaging) were developed in order to countervail some drawbacks of PS based 

PDD.  

Most of the imaging techniques have relatively low tissue penetration (<500µm), 

which limits the application in diagnosing the invasiveness and metastasis of cancer. 

Computerised tomography (CT) and intravenous urogram (IVU) can help to gain depth 

and whole images of the bladder and urine tract. Magnetic resonance imaging (MRI) 

and Positron emission tomography (PET) can provide the information about metastasis 

and conditions of nearby lymph nodes and soft tissue.  

 Non-invasive Diagnosis of Bladder Cancer 

2.1.7.1. Urine Cytology 

Urine cytology is a pathological interpretation of the morphological features of shed 
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cells in stained cellular smears from urine [25]. Urine cytology has a reported 

sensitivity of 44% (38% ~ 51%) and specificity of 96% (94% ~ 98%) [26]. Such 

statistics perfectly reflect the nature of the stand-alone urine cytology in bladder cancer 

diagnosis. Urine cytology has very good specificity, which means abnormal cells 

found through this method are highly likely to be cancer cells and can be considered 

as strong evidence of urothelial malignancies. However, the relatively low sensitivity 

means some cases may be missed, especially those with low-grade malignancies, 

which has minor morphological changes [27].  

There are several factors that affect the accuracy of urine cytology: specimen 

collection; variation in specimen processing; subjective interpretation; and lack of 

reporting standards [27]. Besides from positive and negative, there are other 

terminologies used in the urine cytology report, like suspicious and atypical; the 

classification of those groups remains controversial and may affect the sensitivity of 

the diagnosis. To address this problem, The Paris System for Reporting Urine Cytology 

(PSRUC) was formed in 2016 to establish a universal standard for urine cytology 

reports. The aim of this system is to improve the communication between pathologist 

and clinician by standardising the terms used in the urine cytology reports. It is 

surprising that, until recent years, pathologists around the world did not have 

standardised language. Now, the first generic terminology for urine cytology is in use 

and several studies have shown optimistic findings as a result. For example: lower 

rates of atypical urothelial cells diagnosis [28]; better characterization of atypical 

urothelial cells, low-grade urothelial neoplasm, or suspicious for high-grade urothelial 

carcinoma [29]; and increased correlation between surgical biopsy diagnosis and 

urinary cytology diagnosis [30]. Even though the Paris system has been used in a 

limited number of institutions for only one year, the preliminary results have shown 

positive improvement in urine cytology practices [31].  
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2.1.7.2. Urinary Biomarkers 

Over the past 30 years, several urinary biomarkers have been discovered; some of them 

have received U.S. Food and Drug Administration (FDA) approval and are 

commercially available for bladder cancer diagnosis and surveillance. In general, 

urinary biomarkers can be classified into several types by their detection targets: 

tumour-associated antigens; blood group antigens; growth factors; cell cycle/apoptosis; 

and extracellular matrix proteins. There are six commercially available bladder cancer 

urinary biomarker tests approved by the FDA: qualitative (NMP22, Alere) and 

quantitative (BladderChek, Alere) nuclear matrix protein 22 (NMP22) test; qualitative 

(BTA stat, Polymedco) and quantitative (BTA TRAK, Polymedco) bladder tumor 

antigen (BTA) test; fluorescence in situ hybridization (FISH) (UroVysion, Abbott 

Molecular); and fluorescence immunohistochemistry (ImmunoCyt, Scimedx).  

a) Nuclear matrix protein 22 (NMP22) 

Nuclear matrix protein 22 is commonly found as part of the mitotic apparatus released 

from urothelial nuclei upon cellular apoptosis. The NMP22 has been found to have a 

significantly higher concentration in the urine of cancer patients than the urine of 

healthy controls [32], and has been used as a bladder cancer urinary biomarkers for 

more than 20 years. The NMP22 qualitative test (BladderChek) is an 

immunochromatographic assay, only a few drops of urine are needed on the testing 

card, and the colour change indicates the result.  

The NMP22 quantitative test is an enzyme-linked immunosorbent assay (ELISA) that 

is able to measure the concentration of the NMP22 protein in the urine specimen. The 

qualitative test has been approved as a point-of-care test for diagnosis and surveillance, 

while the quantitative test is approved for surveillance and can only be carried out in 

laboratory.  

Mowatt et al. analysed 41 studies consisting of 13,885 participants and reported the 
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performance of NMP22. It was found that NMP22 achieved a sensitivity of 0.68 (95% 

CI 0.62-0.74) and specificity of 0.79 (95% CI 0.74-0.84). NMP22 was more sensitive 

than urine cytology (0.44, 95% CI 0.38-0.51), but less specific (0.96, 95% CI 0.94-

0.98) [26]. Another study carried out by Chou et al. directly compared all six 

commercially available urinary biomarker tests, including the NMP22[33]. By 

summarizing 19 quantitative NMP22 studies (consisting of 3,555 participants) and 4 

qualitative NMP22 studies (consisting of 2,039 participants), the authors found 

quantitative NMP22 tests had higher sensitivity than qualitative NMP22 tests (0.69 

[95% CI 0.62-0.75] vs. 0.58 [95% CI 0.39-0.75]). In contrast, specificity is higher in 

qualitative NMP22 tests (0.77 [95% CI 0.70-0.83] vs. 0.88 [95% CI 0.78-0.94]).  

There are several interference factors that affect the accuracy of NMP22 tests. NMP22 

is released during cellular apoptosis, therefore the benign urologic changes (involving 

cell-turnover and apoptosis, like infection, stone, haematuria and instrumentation) may 

increase NMP22 release and cause false-positive results [34]. 

b) Bladder tumor-associated antigen (BTA) 

There are two commercially available urinary biomarker tests based on detection of 

human complement factor H (cFH)-related protein. Factor H can interrupt the 

complement cascade and bind and interrupt the activation of C3b, thus evade the attack 

from the immune system and gain selective growth advantage to cancer cells [35]. Like 

NMP22, BTA tests also have qualitative point-of-care immunochromatographic and 

quantitative lab-based ELISA assay: branded BTA stat and BTA TRAK, respectively. 

Both BTA stat and BTA TRAK received FDA approval for diagnosis and management 

of bladder cancer, in conjunction with cystoscopy.  

In the same meta-analysis, Chou et al. found the sensitivities of BTA stat and BTA 

TRAK were 0.64 (95% CI 0.58-0.69) and 0.65 (95% CI 0.54-0.75), while the 

specificities were 0.77 (95% CI 0.73-0.81) and 0.74 (95% CI 0.64-0.82), 
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respectively[33]. This study included 21 studies for qualitative BTA stat with 894 

participants, and 4 studies for quantitative BTA TRAK with 125 participants. The 

relative low sensitivity and specificity of BTA tests are the main reason that prevent it 

from being used alone, instead of as supplementary method for cystoscopy. 

Like NMP22, BTA assays also have interference issues, because Kupffer cells, 

hepatocytes, vascular endothelial cells, and platelets can produce and secrete factor H-

related proteins into the serum as well as bladder cancer cells. Therefore, urinary tract 

infections, stones, installing catheters or stents and any conditions that may cause 

haematuria will bring significant impact of false-negative results [36, 37]. 

c) Fluorescence in situ hybridization (FISH) 

UroVysion/uFISH is a multi-target, multi-colour fluorescence, in situ hybridization 

assay test that detects aneuploidy in chromosomes 3, 7, and 17, and the loss of the 

9p21 locus in urothelial cells [38]. FISH has been approved by FDA for bladder cancer 

diagnosis and surveillance in adjunct to cystoscopy and urine cytology. Similar to urine 

cytology, FISH is reported dichotomously (positive/negative) based on cell 

chromosomal and morphological changes, and it also requires specialized equipment 

and trained personnel.  

Mowatt et al. analysed the data from 14 studies consisting of 3321 participants tested 

with FISH and found the overall sensitivity and specificity were 0.76 (95% CI 0.65-

0.84) and 0.85 (95% CI 0.78-0.92), respectively[26]. Chou et al. found 0.63 (95% CI 

0.50-0.75) sensitivity and 0.87 (95% CI 0.79-0.93) specificity from 11 studies with 

416 participants[33]. Compared to urine cytology, FISH has higher sensitivity but 

lower specificity; compared to other non-invasive urinary tests, FISH has highest 

specificity and competitive sensitivity [33]. 

The major disadvantages of FISH include the requirement of specialized equipment 

and trained personnel, difficulty of interpreting the atypical or non-significant 
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chromosomal and morphologic changes, and lack of universal standard definitions of 

positive results. As mentioned in AUA guideline, FISH was recommended for aiding 

treatment decisions for patients with equivocal cytology and/or cystoscopy[39]. 

d) Immunohistochemistry 

The ImmunoCyt test is a fluorescence immunohistochemistry test for urine specimen. 

Developed by Fradet and Lockhart, the ImmunoCyt combines three fluorescence 

labelled antibodies (M344, LDQ10 and 19A211) against two commonly observed 

antigens (mucins and a high molecular weight form of carcinoembryonic antigen, 

which is over-expressed in most of the bladder cancer cells but not in normal 

transitional epithelium cells) [40]. Under the fluorescence microscope, positive shed 

cells are green or red while the negative cells show no fluorescence. Comploj et al. 

reported over 7000 ImmunoCyt and urine cytology tests between January 2002 and 

March 2011 [41]. This study found that the ImmunoCyt test has higher sensitivity than 

urine cytology (0.681 vs. 0.345) but lower specificity (0.723 vs. 0.979). The authors 

then reported that the ImmunoCyt test combined with conventional urine cytology can 

offset their respective defects and achieve better overall sensitivity (0.728) and 

comparable specificity (0.719). The authors confirmed the value of ImmunoCyt and 

cytology analyses in the follow-up of patients with NMIBC. Another meta-analysis, 

analysing 14 studies published between 1999 and 2006, also supported this conclusion, 

finding that almost all ImmunoCyt tests have better sensitivities than urine cytology 

alone, and specificity is improved by at least 15% when combing the two [42]. 

2.1.7.3. Summary 

As shown in Table 2-4, among the six FDA approved bladder cancer urinary diagnosis 

methods, the immunohistochemistry test achieved highest sensitivity 

(0.84[26]/0.78[33]/0.681[41]), while the FISH achieved the highest specificity 

(0.85[26]/0.87[33]). Compared to urine cytology, all six biomarkers have better 
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performance in overall sensitivity, especially in detection of low-grade tumours. 

However, the false-positive rate reduces their performance in terms of specificity. 

Therefore, at present, using biomarkers in conjunction with cystoscopy or cytology is 

recommended to offset the drawbacks of the conventional diagnosis methods.  

Biom arker Sensitivity (95% CI) Specificity (95% CI) 

Q uantitative N M P22 0.69(0.62-0.75) 0.77(0.70-0.83) 

BladderChek 0.58(0.39-0.75) 0.88(0.78-0.94) 

BTA  stat  0.64(0.58-0.69) 0.77(0.73-0.81) 

BTA  TRA K 0.65(0.54-0.75) 0.74(0.64-0.82) 

U roVysion 0.63(0.50-0.75) 0.87(0.79-0.93) 

Im m unoCyt 0.78(0.68-0.85) 0.78(0.72-0.82) 

 

 

Table 2-4 Summary of diagnostic accuracy of FDA approved bladder cancer urinary biomarkers. 

Reproduced with permission from Chou et al.[33]. 

In recent years, besides from the aforementioned six FDA-approved commercial 

urinary biomarkers, more than 100 novel urinary biomarkers have been found and 

tested for diagnosis and surveillance purposes in bladder cancer. A systematic review 

published recently summarized 115 studies of novel bladder cancer urinary biomarkers, 

reported between January 2013 and July 2017 [43]. Of those studies, 105 single 

biomarker studies achieved 2-94% sensitivity and 46-100% specificity, 10 multiple      

biomarker combination studies achieved 24-100% sensitivity and 48-100% specificity. 

14 out of 115 studies reached ≥80% sensitivity and specificity. Of those, Orosomucoid 

1 (ORM1), serine protease HtrA1, and Survivin performed the best and have the 

greatest potential in the application of novel clinical diagnosis and surveillance tools. 

In the UK, particularly the NHS, the mean cost per test for PDD was £1371, WLC 

£937, flexible cystoscopy (CSC) £441, urine cytology £92, NMP22 £39, ImmunoCyt 
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£54 and FISH £55 [26]. Obviously, the cost of urinary biomarker tests is much cheaper 

than conventional invasive tests and remains competitive when compared with the cost 

of urine cytology. However, none of the urinary biomarker tests beat the urine cytology 

in head-to-head comparisons of specificity. Therefore, urinary biomarker tests are still 

considered supplementary methods to urine cytology in diagnosis and management of 

bladder cancer. 

2.2. Volatile Organic Compounds and Bladder Cancer 

 What are VOCs? 

As the name suggests, volatile organic compounds (VOCs) are a class of organic 

compounds with high vapor pressure at room temperature, which makes them volatile. 

VOCs produced from biological activities are called biogenic VOCs in this thesis, 

unless otherwise stated. Biogenic VOCs means the VOC is produced from a human 

cells’ biological activities; the VOCs produced by microorganisms within the human 

body are not included in the definition. Usually, biogenic VOCs are produced from 

cell activities and are present in the blood stream, released by exhaled breath, skin, 

saliva, milk, and urine. Common biogenic VOCs include hydrocarbons, alcohols, 

aldehydes, ketones, esters, and aromatic compounds. 

 Why are Biogenic VOCs so important? 

Biogenic VOCs contain information about nutrients concerning human health. In 

ancient times, Chinese and Greek doctors already knew that certain smells indicated 

some diseases such as corrupt breaths for digestive problems, fruity flavours from 

diabetes, and ammonia odours from patients with kidney or liver diseases. More 

recently, news reports have stated that pet dogs warned their masters by sniffing and 

pointing at some part of body and eventually found out there was melanoma [44] and 

a breast tumour [45]. 



23 

 

 

Willis et al. (2004) published a study demonstrating that six dogs, trained with human 

urinary odour, could successfully identify 22 out of 54 bladder cancer patients, 

compared to a 14% accuracy rate by chance alone [46]. This is the first published 

clinical study of the potential of animal olfactory systems in cancer diagnosis. Since 

then, more urinary odour animal olfactory detection studies of lung [47, 48], breast 

[47] and prostate [49-51] cancer were published and showed varying accuracy, from 

no better than chance to higher than 99%. The animal olfactory detections of cancer 

are highly dependent on training and stimulus, which limits the application of such 

methods [52]. 

However, animal olfactory detection studies revealed that there are differences 

between the odours of cancer patients and that of healthy people. Those differences 

were confirmed by analytical chemistry methods like gas chromatography (GC), mass 

spectroscopy (MS), nuclear magnetic resonance (NMR) spectroscopy, thus 

establishing the link between biogenic VOCs and odour differences. So far, more than 

200 urinary VOCs with a correlation with cancer have been found, in both species and 

concentrations levels. Detailed discussion of the biogenic VOCs cancer biomarkers 

will be in Chapter 5: Urine tests.  

 Why does cancer patients’ urine have different VOCs species/ levels? 

The different levels or species of VOCs between cancer cells and healthy cells may be 

induced by various metabolism and nutritional changes during tumour growth [53-55]. 

This topic is still in fast development; people are continuously discovering new 

metabolism pathways and expanding knowledge of cancer cell metabolism and its 

consequences. This part will summarize some the most widely accepted theories and 

mechanisms of the origin of biogenic VOCs cancer biomarkers. 

In general, from a metabolic point of view, there are four major changes that can affect 
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the biogenic VOCs generation: oxidative stress, cytochrome p450 detoxication, 

carbohydrates metabolism (glycolysis/gluconeogenesis pathways), and lipid 

peroxidation [56]. Briefly, cytochrome p450 detoxication activates for cells clearance 

of toxins. Oxidative stress is a commonly found phenomenon in cancer cells causing 

lipid peroxidation. Another commonly observed change in cancer cells is special 

energetic metabolism pathways, for fulfilling their requirements for rapid growth and 

proliferation. Those biological processes will generate unique metabolites and 

subsequently turn into signature VOCs. 

2.2.3.1. Carbohydrates metabolism 

Warburg effect, a phenomenon of abnormal upregulated aerobic glycolysis in cancer 

cells, was first observed by Otto Warburg in 1920s [57]. In normal cells, adenosine 

triphosphate (ATP) is produced mainly from oxidative phosphorylation (OXPHOS) to 

provide the energy needed for cell activities. In normal cells, glucose first converts into 

pyruvate through glycolysis in the cytoplasm, then the pyruvate turns into acetyl-CoA 

at the mitochondria and participates in the tricarboxylic acid cycle (TCA cycle). Then, 

it produces reduced nicotinamide adenine dinucleotide (NADH) and reduced flavin 

adenine dinucleotide (FADH2) and finally transfers the energy to ATP through electron 

transport chain [58]. 

While in many tumour cells the OXPHOS is inhibited as compensation, glycolysis is 

promoted as an altered metabolism pathway for producing ATP. The excessive 

pyruvate is turned to lactate and discharged, rather than entering the TCA cycle. From 

the perspective of efficient energy generation, one glucose can net produce 2 ATP 

through glycolysis whereas through normal OXPHOS it can net produce 36 ATP. 

However, the aerobic glycolysis is actually necessary for tumour cells. There are 

intermediate products of glycolysis and truncated TCA cycle; citric acid being 

transported out from mitochondria turns into malate in the cytoplasm and then 
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continues the TCA cycle, skipping major energy production steps. These products can 

be used as materials for synthesis of nucleotides, lipids and proteins, to satisfy the 

conditions of rapid tumour growth. Despite less ATP production, glycolysis is faster 

than OXPHOS, which is also an adaptation of that facilitates fast tumour growth. 

Lactate, the final product of glycolysis, will secrete to the extracellular environment, 

it will acidify the tumour microenvironment and promote tumour growth and 

metastasis [59]. 

Tali et.al studied the concentration of VOCs released by lung cancer cells in vitro and 

found that some VOCs masses changed after admission of 2DG and 3BrPA glycolysis 

inhibitors [60]. Glycolysis inhibitors are able to block the hyperglycolysis of cancer 

cells, therefore the authors infer that they can also reduce the VOCs production in 

relation to glycolytic and subsequent metabolic pathways. They found the 

concentration of methanethiol, one of the by-products of glucose and lactate 

metabolism, significantly decreased after admission of 3BrPA. Similarly, 2-methyl-

1,3-butadiene and carbonic acid, one of the VOCs related to hypoxia condition, 

decreased after 3BrPA, indicating the lower pH of microenvironments of cancer cells. 

This study brings more understanding of the mechanism of the Warburg effect and 

evidences the origins of the biogenic VOCs cancer biomarkers (aerobic glycolysis). 

Yamagishi et al. explained one possible mechanism of cancer cells producing odorous 

sulfur-containing compounds and its relationship with glycolysis [61]. They found 

glucose, usually largely accumulated by tumour tissue, can have Maillard reaction with 

methionine and produce sulfur-containing compounds like hydrogen sulfide and 

methanethiol (also the culprit of smelly urine after eating asparagus). Further study 

found lactic acid, the end product of glycolysis, can also react with sulfur-containing 

amino acid and produce hydrogen sulfide and methanethiol. Those VOCs were found 

significantly higher in flatus from colon cancer patients and exhaled breath from 
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patients with lung cancer compared to healthy people. Furthermore, those sulfur-

containing compounds can further bind to iron atoms in haemoglobin, thereby further 

intensifying the histotoxic hypoxia in tumour tissue. This study is also strong evidence 

of how aerobic glycolysis can promote specific biogenic VOCs production, and such 

VOCs are not only indicators but also accomplices of growing tumours. 

Another energetic metabolism alternation that happens in cancer cells is 

glutaminolysis. Similar to aerobic glycolysis, the glutaminolysis is upregulated in 

cancer cells to compensate for energy generation, to supplement the intermediate 

products for TCA cycle, and to generate nicotinamide adenine dinucleotide phosphate 

(NADPH) for biosynthesis and protecting against the toxicity of ROS [62]. Although 

the direct products of glutaminolysis are not volatile, it can still influence the biogenic 

VOCs production. This is reflected in: glutamate and aspartate, as precursors of nuclei 

acid biosynthesis; NADPH and subsequent biosynthesis; pyruvate, as in Warburg 

effect.  

2.2.3.2. Lipid metabolism 

The main functions of lipid in living cells include storing energy, acting as structural 

components of membranes and signalling. Lipid metabolism is considered one of the 

origins of biogenic VOCs. Like all other metabolisms, there are two subcategories of 

lipid metabolism: lipid biosynthesis (anabolism) and lipid catabolism. An increase 

in de novo lipid synthesis has been observed in many cancer types and is closely related 

to the rapid growth and proliferation needs of cancer cells [63]. While the lipid 

catabolism, especially the lipid peroxidation, is one of the major origins of cancer 

VOCs biomarkers, the mechanism is related to reaction oxygen species (ROS) and 

its damage to lipid membranes, ether by exogenous or endogenous ROS. 

From the point of view of the origins, there are two classes of biogenic VOCs: 

endogenous and exogenous. From the patients’ perspective of finding cancer 
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biomarkers, people prefer endogenous VOCs more because endogenous VOCs reflect 

the metabolic reactions within the cells, and they are also more controllable and 

predictable. However, the roles of exogenous VOCs cannot be ignored; those 

chemicals can be metabolised and eliminated in urine, but the time of clearance is 

varied from weeks to months, and could be longer if a duct is formed [64]. More 

importantly, the intake exogenous VOCs can participate in the production of ROS, thus 

affecting the cell metabolism and endogenous VOCs production. 

ROS are a family of oxygen containing chemically reactive chemicals. Commonly 

found ROS in cells include peroxides (H2O2 and others), superoxide (O2
−), hydroxyl 

radical ( OH 
∙ ), and singlet oxygen ( [O2] 

1 ). The ROS can lead to cell damage by 

attacking DNA or RNA, polyunsaturated fatty acid (PUFA), amino acid in proteins, 

and deactivating some enzymes by oxidation of co-factors [65]. Carcinogens and 

mutagens, like high-energy radiation, pollutants, tobaccos, and toxins, can increase the 

production of ROS. The cytotoxicity and genotoxicity of ROS is considered one of the 

main mechanisms of their carcinogenicity and mutagenicity [66]. 

Besides from exogenous, cells produce ROS continuously in mitochondria as by-

products of aerobic respiration. Its level is controlled by antioxidant enzymes like 

superoxide dismutase (SOD) and glutathione peroxidase. In normal cells, the 

antioxidant enzymes maintain the dynamic equilibrium between generation and 

deactivation of ROS. During oxidative stress, the balance is broken; the generation of 

ROS exceeds the clearance by SOD or the repair of the damage it caused, and may 

lead to cell damage, apoptosis or even necrosis depending the severity of oxidative 

stress [67].  

The ROS can, on the one hand, activate the body’s detoxification process of 

cytochrome p450 and catalyse the exogenous VOCs into more water-soluble 

compounds and excrete them to the blood. On the other hand, it also can attack lipid 
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on the cell membranes and break it into smaller molecules. This process is done by 

free radical chain reaction. During this reaction, fatty acid lose hydrogen atoms to 

ROS and become fatty acid radicals, then fatty acid radicals react with molecular 

oxygen and produce a peroxyl-fatty acid radical. The peroxyl-fatty acid radicals react 

with another free fatty acid and turn it into a new fatty acid radical, thereby continuing 

the cycle. The peroxyl-fatty acid radical receives a hydrogen atom and becomes lipid 

hydroperoxide; it may further turn in to another lipid radical, other reactive products, 

or aldehydes [66]. This phenomenon is called lipid peroxidation, and it can cause cell 

membrane and distal tissue damages. The VOCs produced from lipid peroxidation 

include saturated hydrocarbons like ethane and pentane, as well as reactive aldehydes 

like malondialdehyde (MDA) and 4-hydroxynonenal (HNE), which has been used as 

a breath indicator for evaluating the level of lipid peroxidation of human body [68].  

 

Figure 2-1 VOCs like aldehydes, ketones, dicarbonyls, furans, and hydrocarbons can be produced by 

lipid peroxidation as secondary products. (courtesy T.Shibamoto [69], reproduced with permission from 

Elsevier) 
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Figure 2-1 summarises a general process of production of aldehydes, ketones, 

dicarbonyls, furans and hydrocarbons by lipid peroxidation of unsaturated fatty acids, 

and some examples of intermediate products [69]. As the ROS and lipid peroxidation 

chain reaction is an important concept of understanding the origins of biogenic VOCs, 

it is necessary to explain the mechanism and product pathway in detail:  

Lipid peroxidation has selective targets of fatty acids to attack. The PUFA is more 

sensitive than the saturated one because the C − H bond of the methylene group is 

weakened by the double bond adjacent to it, this specific site on PUFA is called the 

activated methylene bridge (RH ). The chain reaction initialized by the activated 

methylene bridge (RH) causes PUFA to lose a hydrogen atom to a free radical and 

become an alkyl radical (R∙). It soon combines with a molecular oxygen and forms a 

lipid peroxyl radical (ROO∙ ). The lipid peroxyl radical is capable of capturing a 

hydrogen atom from other PUFA, thereby propagating the chain reaction [70]. In 

summary, this process can be expressed as: 

RH + OH 
∙ → R∙ + H2O (1 − 1) 

R∙ + O2 → ROO∙ (1 − 2) 

ROO∙ + RH → ROOH + R∙ (1 − 3) 

The lipid hydroperoxide (ROOH) is the first stable product of lipid peroxidation. 

However, in the presence of metal ion, there are: 

Fe2+ + ROOH → RO∙ + OH− + Fe3+ (1 − 4) 

Fe3+ + ROOH → ROO∙ + H+ + Fe2+ (1 − 5) 

Cu+ + ROOH → RO∙ + OH− + Cu2+ (1 − 6) 

Cu2+ + ROOH → ROO∙ + H+ + Cu+ (1 − 7) 

This products of ROOH-dependant lipid peroxidation reactions are lipid peroxyl and 
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alkoxyl radicals (RO∙), which are able to capture hydrogen atoms from other PUFA and 

thus re-initialise the chain reactions [71]. 

At the termination step, small molecule secondary products, such as those shown in 

Figure 2-1, are formed, along with the deactivation of free radicals, thus ending the 

chain reaction. When the concentration of previously formed radicals is high enough, 

with suitable environmental conditions (temperature, oxygen pressure, solvent etc.), 

the lipid free radicals can recombine and may generate stable products, thus 

terminating the chain reactions. For example, two peroxyl radicals ( ROO∙ ) can 

recombine and form an unstable tetroxide intermediate (ROOOOR) and soon break into 

an alcohol and a ketone. However, there are many different decay pathways of peroxyl 

radicals, therefore the end products are varied, too. Carbonyl groups, alcohols, 

unsaturated carbon bonds or epoxides, or even new radicals to propagate the radical 

reaction chain, are all possible [72]. Another example of diversity of end products is 

alkoxyl radicals (RO∙): it can recombine with an alkyl radical (R∙) and form an ether, 

ketone and alkane, or ketone and alcohol, depending on the site of radical group. Or it 

can recombine with another alkoxyl radical to form a lipid peroxide (R1OOR2). Under 

suitable conditions,  alkoxyl radicals can have α-scission or β-scission and produce 

smaller aldehydes and alkyl radicals and propagate the radical reaction chain [73]. 

Figure 2-2 summarises the common reactions during the classical lipid peroxidation 

chain and the products; the end products may have further oxidations and may generate 

more secondary products [74]. 

It is worth noting that “termination” does not mean the radical reaction chain is fully 

stopped. As seen in aforementioned examples, there are always new free radicals being 

generated. Along with ROS from cellular aerobic breathing, the chain reactions will 

only slow down when clearance of free radicals exceeds the rate of new chain 

production. 
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Figure 2-2 Classic lipid peroxidation and the end products (courtesy KM. Schaich [74], reproduced with 

permission from Elsevier). 

So, what is the relationship between ROS and cancer cells? In almost all cancer cell 

types, the intercellular ROS level is higher than normal cells [75]. However, cancer 

cells can also express higher levels of antioxidant proteins to maintain the ROS 

homeostasis and maintain their functionality [76]. In normal cells, ROSs are mainly 

generated by OXPHOS as by-products; molecular oxygen reacts with electrons 
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released from electron transport chain (ETC) and turns into superoxide radicals (O2
−), 

and releases to the cytoplasm through the mitochondrial permeability transition pore 

[77]. In the cytoplasm the superoxide can be dismutated into hydroperoxide (H2O2) 

by SOD and further degraded into water by glutathione peroxidase (GPx). It can also 

react with another hydroperoxide and produce a more active hydroxyl radical ( OH 
∙ ) 

and cause damage to lipids, DNAs, and proteins [75].  

The main reason for higher ROS levels in cancer cells than normal cells is their higher 

metabolic level. The rapid proliferation and growth of cancer cells requires more 

energy production than normal cells. For this reason, more NADH are generated from 

enhanced energetic metabolism, meaning more reduced cites in the ETC complex and 

higher chances of electron leakages during the ETC process, resulting in more ROS 

productions [78, 79]. In mitochondrial theory of cancer, mutation of nuclear or 

mitochondrial genes encoding components of the mitochondrial ETC can lead to 

partial inhibition of electron transfer [80]. This will cause the electrons to accumulate 

at a place and make them easier to be captured by molecular oxygen and form 

superoxide radicals, resulting in the high cellular ROS level in cancer cells. 

2.2.3.3. Cytochrome P450 

Another important source of endogenous ROS is through Cytochrome P450 (CYP)-

dependent microsomal electron transport system. The CYP-dependent microsomal 

electron transport system can catalyse oxidation of a substrate to a monooxygenated 

substrate [81]. During the CYP monooxygenase cycle, two electrons will move from 

NADPH to the CYP heme prosthetic group. Later, if the transfer of an oxygen atom to 

a substrate is not tightly coupled to NADPH utilisation, the electrons will be deployed 

to CYP–oxygen complexes instead of the substrate, then the complexes dissociate and 

release ROSs like O2
−, H2O2, and OH 

∙  [82]. In many cancer types, including bladder 

cancer, CYP genes are overexpressed [81, 83]. One possible explanation is that they 
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are activated by environmental toxins, however the detoxication may lose control due 

to the mutation of CYP genes and produce more ROS. Moreover, the CYP enzymes 

are involved in the catalysation of bioactivation of chemical procarcinogens into 

reactive carcinogens, thus promoted the carcinogenesis [81]. 

Cytochrome p450, along with Alcohol dehydrogenase (ADH) and aldehyde 

dehydrogenase (ALDH), are able to catalyse alkanes into alcohols, aldehydes, and 

carboxylic acids, as consequent process of turning secondary products of lipid 

peroxidation into a wide variety of VOCs [84]: 

Alkane
Cytochrome p450
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Alcohol

ADH
�⎯� Aldehyde

ALDH
�⎯⎯�  Carboxylic Acid (1 − 8) 

2.2.3.4. Oxidative stress 

Besides from endogenous source, exogenous sources like UV light, ionizing radiation, 

inflammatory cytokines and carcinogens can also stimulate ROS production [85]. 

DNA damage by ROS attacks are widely accepted as a major cause of cancer [85]. 

Although there are DNA repair mechanisms to recover the damages, persistent DNA 

damage may lead to replication errors, activation of oncogenes, inactivation of tumour 

suppressor genes and genomic instability, thus inducing carcinogenesis [81]. When the 

ROS production exceeds the clearance of antioxidant, more and more ROS will 

accumulate within the cells. Such persistent DNA damage is easier to happen, this 

status is so-called Oxidative Stress. 

Oxidative stress is a double-edged sword. In normal cells, it can lead to cell damage 

and carcinogenesis, but it can also stimulate cell activities and gene expression when 

at a low level, known as hormesis [86]. Meanwhile, in cancer cells, oxidative stress 

guides metabolic reprogramming and participates in activation of various signal 

cascades. Many studies have found that higher than normal levels of oxidative stress 

may contribute to the survival and proliferation of cancer cells [76, 87-90]. However, 
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contrastingly, ROS-induced apoptosis is a key mechanism of many cancer 

chemotherapy methods; cancer cells are more vulnerable than normal cells to toxicity 

induced by oxidative stress. With the addition of exogenous oxidative agents, the 

higher ROS basal level of cancer cells makes them closer to reach the threshold of 

cytotoxicity. This results in cancer cell cycle arrest, senescence, and apoptosis [81, 88]. 

The mutation of genes coding antioxidant enzymes in cancer cells may reduce anti-

oxidation effectiveness, which also contributes to cancer cells intolerance of oxidative 

stress induced by chemotherapy [88, 91]. 

2.2.3.5. Other mechanisms  

The rapid growing cancer cells require biosynthesis of a large amount of proteins, lipid, 

and nucleic acid. As mentioned previously, upregulated aerobic glycolysis and 

glutaminolysis can provide materials for those biosynthesises, thereby apparently 

reducing the concentration of other materials required for such biosynthesis. For 

example, pyrimidine biosynthesis is largely promoted for providing the materials for 

RNA and DNA synthesis [92, 93], while its intermediate products like ureidosuccinic 

acid are largely consumed [94], therefore showing decreased concentration. A similar 

phenomenon was observed on the purine biosynthesis, whereby the concentration of 

synthesis product (hypoxanthine) increased and that of the breakdown product (uric 

acid) decreased [95]. 

Figure 2-3 shows the systematic sketch of possible pathways of bladder cancer 

metabolic biomarkers [96]. The red highlighted metabolites indicate a decrease 

relative to healthy controls while green indicates an increase. Besides from 

aforementioned shortened TCA cycles, glycolysis, purine and pyrimidine metabolism, 

and oxidative stress related pathway (Taurine, GSH etc.), there are large groups of 

upregulated metabolisms of fatty acid, amino acid, and glycerophospholipids. Such 

upregulated metabolisms contribute to energy alternation, rapid growth and 
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proliferation, and membrane formation of cancer cells. Notably, some of the 

metabolites’ changes are observed in vitro cell culture and those observed in urine are 

not volatile therefore are not considered as VOCs biomarkers.
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Figure 2-3 Bladder cancer biomarkers and possible metabolism pathways, red highlighted potential biomarkers are upregulated, green highlighted are downregulated. (courtesy 

of D. Rodrigues et al. [96], reproduced with permission from Elsevier). 
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Lee et al. revealed the metabolic pathways of biogenic VOCs in lung cancer cells using 

13C isotope labelling [97]. By measuring the 13C enrichment ratio during isotopic flux, 

they found that 2-pentadecanone, one of the most studied cancer VOC biomarkers 

found in breast, lung, colon and pancreatic cancer cells, is produced from the metabolic 

pathway of glucose to fatty acid synthesis. This pathway is upregulated and possibly 

used for meeting the requirements for producing a membrane for the rapid proliferation 

cancer cells. This finding confirmed that increased fatty acid synthesis is one of the 

reasons that cancer cells produce abnormal levels of VOCs, linking the shortening of 

the TCA cycle and the lipid biosynthesis with the production of those VOCs.  

 

 How do biogenic VOCs generated by cancer cells get into urine? 

For bladder cancer, the biogenic VOCs generated from cell activities have two possible 

ways of entering urine: direct excretion into urine or entering blood and subsequently 

urine through the kidneys. Because the kidney’s filtration process allows molecules 

with a weight of up to 7k free to pass, basically all VOCs in plasma could eventually 

appear in urine. The real questions are: how many biogenic VOCs generated from 

cancer cells can enter the urine and how many of them will release to the urine 

headspace? 

These could be answered by designing an experiment comparing the VOC profiles of 

bladder cancer tumour tissue, blood headspace and urine headspace of the same patient. 

However, no such experimental results have been published yet. The closest approach 

was carried out on mice models of lung cancer in 2012; Hanai et al. analysed the 

headspace of the culture medium of A549 lung cancer cell line and urine of A549 

implanted mice and found seven VOCs increased in both culture medium and 

implanted mice urine compared to controls [98]. It is reasonable that all seven VOCs 
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they found had higher concentrations in urine than in culture medium, as urine comes 

from ultrafiltration and the concentration of plasma. However, there is still no 

experimental support for VOCs biomarkers distribution between bladder cancer cell 

line and biofluid.  

From a thermodynamic point of view, the distribution of volatile solute between liquid 

solvent and its headspace follows Henry’s law: 

kH = C
Pi�  (1 − 9) 

Where kH (mol L−1 atm−1) is the Henry’s law constant, or distribution coefficient, C 

(mol L-1) is the concentration of the solute in the solution, and the Pi (atm) is the 

partial pressure of solute in the headspace.  

The Henry’s law constant is temperature dependent; it can be determined by a static 

headspace method by measuring the concentration of solute in the headspace of known 

concentration solution. Although common VOCs’ kH in water is available to check 

on the NIST online database and several studies had gathered experimental data for 

some chemicals’ kH in blood, a database for VOCs’ kH in urine is still lacking. 

Wilson et al. measured the Henry’s law constant of o-xylene and trichloroethylene in 

water, blood and urine [99]. Both o-xylene and trichloroethylene have low solubility 

in aqueous solvents and show lower kH in urine than in plasma and whole blood but 

show slightly higher kH than in water. The authors hypothesised that the chemicals 

may have reactions with contents in blood, thus increasing the apparent solubilities. 

Such results suggest that VOCs solubilities in urine may be closer to those in water 

than in blood. Again, this is only about two VOCs’ solubilities in urine, more 

experimental data is urgently needed for the development of urinary VOCs studies. 

In summary, the VOCs generated from bladder cancer cells can enter urine directly, 
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while those entering the blood stream may further degenerate in the liver by 

Cytochrome p450 and turn into different molecules. Those VOCs that are smaller than 

7k MW can pass through the glomerular filtration freely and mix with those directly 

excreted by cancer cells. The solubilities of VOCs in urine may be lower than in blood, 

more volatile molecules can be released from urine thus increasing the detectability. 

 

 How do biogenic VOCs cancer biomarkers help cancer grading and staging? 

As tumour growth is a dynamic process, the oxygen level within the tumours change 

dynamically as well. During the rapid growth of the tumour, the tumour tissue 

outgrows the blood supply, therefore resulting in tissue hypoxia. As mentioned 

previously, the hypoxia may cause the Warburg effect and produce characteristic 

VOCs. Meanwhile, the cancer cells can also produce various cell factors to promote 

the new blood vessel growth (angiogenesis). The newly grown blood vessels are 

chaotic and irregular therefore, at this stage, there are hypoxic and anoxic regions 

existing at the same time in the tumour. As we known, the reperfusion after myocardial 

infarction or cerebral ischaemia can cause the generation of ROS. Therefore, we can 

also hypothesise that reperfusion of the tumour tissue can also produce ROS and its 

characteristic VOCs.  

Different studies have shown that cancer stem cells (CSCs) display molecular and 

functional heterogeneity, even at the early stage within the primary tumour. Only a few 

cell clones present the ability of becoming metastasis-initiating cells. Therefore, the 

functional heterogeneity of CSCs might require them to use different types of 

metabolism. For example, Pascual et al. found high expression of lipid metabolism 

genes of human oral carcinomas cells, these are especially able to initiate metastasis 

[100]. Further studies showed those cells are upregulated in lipid uptake and transport 
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fatty acid β- and α-oxidation, lipid biosynthesis and intracellular lipid storage genes 

and are able to increase the lipid intake from the extracellular environment, allowing 

cells to produce extra ATP through lipid β-oxidation. 

Different metabolic phenotypes may indicate the outcomes of the cancer, and such 

differences could be detected by urinary metabolites profiles. Alberice et al. studied 

48 urine samples from bladder cancer patients and linked the recurrence rate with the 

existence of some urinary metabolites [95]. They found a total of 27 metabolite 

features have significant differences between patient groups. Among the 27 

metabolites, tryptophan and N-acetyltryptophan were found to be significantly 

increased in low-risk patients. Meanwhile, leucine, methylated derivatives of lysine 

and histidine were observed to be increased in patients with recurrence and in high-

risk patients relative to low-risk. 

In summary, tumour growth and metastasis can alter the tumour metabolism. Therefore, 

as an indicator of cell metabolism, the VOCs also have potential uses in tumour staging 

and grading. 
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3. Development of Fluorescence Cross-Response Sensor Array System 

The aim of this part of work is to develop a system that is able to:  

1. Vaporise VOCs from liquid sample 

2. Guide the vapours to interact with a fluorescence sensory array 

3. Detect the differences in the fluorescence signal of the sensory array before 

and after such interaction 

Afterwards, the differences of fluorescence signal will be used to build a 

discrimination model to classify the testing samples and to predict unknown samples’ 

classification. Successful achievement of those goals can provide a potential platform 

for a non-invasive urinary diagnosis tool for bladder cancer. 

In this chapter, the development of both hardware and software of the system will be 

discussed. As a key component of the detection method, the manufacturing methods 

of fluorescence VOCs sensor array are also described. 

 

3.1. Introduction 

According to the EU’s definition, VOCs are “any organic compound, having 293.15 

K and a vapour pressure of 0.01 kPa or more” [101]. VOCs are present everywhere in 

our daily life, bringing us both pleasant and foul fragrances. In recent years, “VOCs” 

has been a hot key word in environmental topics. People are raising concerns about 

VOCs with regards to indoor air qualities, atmospheric pollution, volcano eruptions in 

Indonesia or Iceland, and related healthcare and medical effects. As a potential 

pathogenic factor, VOCs have already been linked with respiratory diseases, allergy, 

and irritations [102]. More efforts are committed to find out the long-term health risks 

of human expose to indoor VOCs. 
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Recently, using biogenic VOCs as a cancer diagnostic marker has drawn widespread 

attention in academia. VOC analysis has been proved to have potential in the diagnosis 

of a wide range of cancers, including breast [103-105], thyroid [106], colorectal [107-

112], esophagogastric [113], gastric [114, 115], lung [116-121], pancreatic [122], 

bladder [123-126], and prostate [127, 128] cancers. This is from a variety of sources 

including exhaled breath [103-108, 113-120, 127], urine [111, 112, 122-126, 128], 

sweat [121], and stool [109, 110].  

As discussed in Chapter 2, the sources of biogenic VOCs include: lipid peroxidation; 

Warburg effect (cancer cells prefer accelerated glycolysis rather than oxidative 

phosphorylation); xenobiotic metabolism (drugs, smoking, diet, inhaled air pollutants); 

other metabolic alterations like increasing fatty acid oxidation and glutaminolysis.  

In this part, we will introduce the basic principle of the optic VOCs sensory technique, 

how the sensitive material emits fluorescence, how it will behave when exposed to 

VOCs vapours, and how those responses are linked with a unique ‘fingerprint’ of 

specific VOCs. 

 

 Gouterman Four Orbital Model of Porphyrins 

Porphine is a macrocyclic compound that comprises four pyrroles and four methane 

groups. The four carbons between each pyrrole ring are called meso carbon, while the 

other eight available substitution sites on the pyrrole rings are called peripheral carbon 

(β-carbon), as shown in Figure 3-1: 
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Figure 3-1 Porphine, the simplest porphyrin, showing meso- and β- carbons, which are most common 

locations for substituents.  

All the substitution products of porphine are collectively referred to as porphyrin. The 

carbon and nitrogen on the porphine ring are in sp2 hybridization. Since the porphine 

ring is a plain structure, the remaining un-hybridized p orbitals is distributed in parallel 

on each side of porphine plane and forms a 24-atom circular delocalized π bond. This 

conjugated system increases the stability of the macrocyclic compound and gives it 

colour.  

Gouterman’s four-orbital model was first proposed by Martin Gouterman in the 1960s 

to explain the absorption spectra of porphyrins. In molecular orbital theory, the 

electrons are distributed around the whole molecule, while the bonding between atoms 

is determined by the energy level of molecular orbitals, which is always a pair of the 

lowest energy bonding orbital and a high energy antibonding orbital. When porphyrin 

molecule absorbs light, the electron from π-bonding orbital receives energy and be 

excited to an antibonding π* orbital, this is called π →π* electronic transitions.  

More specifically, the electronic transition only happens when the energy of a photon 

matches the energy gap between the orbitals. The lower energy photons will simply 
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transmit without absorption. Therefore, the smallest energy gap between the orbitals 

determines the least energy requirement for a photon to be absorbed. Such orbitals are 

called “frontier orbitals”, because they are the frontier of electronic transition 

occurrences. The frontier orbitals are the highest-energy occupied molecular orbital 

(HOMO) and the lowest-energy unoccupied molecular orbital (LUMO), with and 

without electrons, respectively. Notably, there is usually more than one HOMO and 

LUMO, therefore the transitions are not unique. This is also why there are multiple 

absorption peaks in the spectra. 

 

Figure 3-2 Gouterman four-orbital model and HOMO/LUMO of porphyrin. a) Two HOMOs (a2u and 

a1u) and LUMOs (egx and egy) in the four orbitals model. b) Left: Four electronic transitions of porphyrin 

molecular orbitals: a2u→egy, a1u→egy, a2u→egx and a1u→egx. Right: States and transitions diagram of 

porphyrins, and their correspondences with UV/Vis abs bands. (Reproduced with permission from 

Namuangruk et al. [129], with permission from The Royal Society of Chemistry) 
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In Gouterman’s four-orbital model, there are two HOMOs and LUMOs (see Figure 

3-2a), namely a2u (HOMO-1), a1u (HOMO), egx (LUMO), egy (LUMO+1). Hence, four 

combinations of transitions may occur: two from HOMOs to highest LUMO+1 (a2u→

egy and a1u→egy), giving rise to the absorption band located at the lower wavelength: 

the Soret band. Also, two from HOMOs to lower LUMO (a2u→egx and a1u→egx), giving 

rise to the weaker absorption band located at the longer wavelength: the Q bands 

(Figure 3-2.b).  

Orbitals are used for describing the location and energy of individual electrons, while 

states are used for describing the total energy and overall electron configuration of the 

whole molecule. The ground state 𝑺𝑺𝟎𝟎 
𝟏𝟏  is the lowest-energy electron configuration 

of the molecule (which in our case is when the electrons are occupying the HOMOs). 

All other electron configurations, when electrons are on the different orbitals (for 

example, when one electron gets excited and transitions to a LUMO), are called 

excited states 𝑬𝑬𝒖𝒖 
𝟏𝟏 .  

Figure 3-3 shows the typical UV/Vis absorption spectrum of porphyrin: one strong 

absorption band at the lower wavelength region called Soret band and four relatively 

weaker bands at longer wavelength region called Q bands. The reason for four split Q 

bands is related to porphyrins’ vibrational excitation states, and a symmetry break by 

two N-H protons.  
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Figure 3-3 Typical Porphyrin UV/Vis absorption spectrum: one Soret band and four Q bands 

The excited states of molecules tend to return to lower energy ground states, and there 

are several ways to “deexcite” excited states. Non-radiative decay can turn the 

photonic energy into heat through molecular vibration and collisions with solvent 

molecules. Another way is radiative decay, including fluorescence and 

phosphorescence, which are two ways of emitting light from excited molecules. Both 

fluorescence and phosphorescence usually emit a longer wavelength light than the 

excitation light; the major difference is that fluorescence has a faster rate (with shorter 

lifetime) and higher energy. This difference is because the phosphorescence decay 

experiences an intermediate state, called triplet excited state, thus leading to slower 

and longer wavelength emissions of light. Besides from the aforementioned ways, 

excited molecules can transfer the excitation energy to another ground-state acceptor 

molecule through energy transfer. This is not related to the main topic of this thesis, 

but it has unique characteristics in cancer diagnosis and treatment, known as 

photodynamic therapy and fluorescence resonance energy transfer assay. 
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In general, there are three steps of a molecule to return from excited state to ground 

state by fluorescence emission. Jablonski diagram (Figure 3-4) illustrates this process. 

 

Figure 3-4 Jablonski diagram 

First, the excited molecules have a quick (~picoseconds) non-radiative relaxation to a 

lower energy excited state called the equilibrium excited state. During this process, the 

molecules at the various vibrational and rotational energy sub levels 𝑆𝑆1(1,2,3 … ) are 

returned to the lowest vibrational sub-state 𝑆𝑆1(0), leading to a portion of energy loss. 
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Then, the electrons in the high energy orbital return to the lower energy orbital and 

emit a photon. On the molecular energy level, the molecule quickly returns from 

equilibrium excited state to the ground state and fluoresce. Similar to the excited state, 

the ground state also splits into variance vibrational and rotational sub-states, therefore 

these transitions have multiple destinations, expressed as 𝑆𝑆1(0) → 𝑆𝑆0(1,2,3 … ). 

Finally, the molecules in mixing sub-states 𝑆𝑆0(1,2,3 … )  undergo non-radiative 

relaxations and return to the lowest energy equilibrium ground state 𝑆𝑆1(0). 

From that we can see the method of energy loss in each step, leading to a lower energy 

level of fluorescence than the initial absorption. On the spectrum, this is reflected by a 

longer wavelength fluorescence band than the longest absorption band. 

Specific to tetraphenyl porphyrin (TPP or H2TPP; also called meso-tetraphenyl 

porphyrin), the phenyl substituted porphyrin occurs in the meso carbon position (i.e. 

the 5-, 10-, 15-, 20- carbons in Figure 3-1). The meso substituents may influence the 

density of the electron cloud of the macrocyclic structure, therefore affecting the 

energy level of the frontier orbitals of porphyrin. However, usually, the stronger the 

electron donating substituent, the higher energy level of LUMO and the smaller the 

HOMO/LUMO gap [130]. Since the phenyl group is a weak electron donating group, 

the TPP has a slightly redshifted maximum absorption and emission compared to 

porphin’s (See Figure 3-5).  
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Figure 3-5 UV/Vis absorption and emission (λex = 418 nm) spectrum of TPP in toluene (courtesy of 

Mahesh et al. [131], reproduced with permission from Elsevier) 

 

 Interactions between VOC and Fluorescence Sensitive Materials 

Previous electronic noses are based on the cross-reactive sensor arrays that depend 

on the changes of their properties when exposed to the analytes, mainly mass 

(polymer coated surface acoustic wave/quartz crystal microbalance sensors) and 

conductivity (conductive polymer, metal oxide sensors). On the level of molecular 

forces, those sensors depend on the van der Waals interactions between VOC 

molecules with their sensitive materials (see Figure 3-6). 

 

Figure 3-6 Intermolecular interactions on a semiquantitative energy scale. (Reproduced with permission 

from Janzen et al. [132]. Copyright (2006) American Chemical Society). 

For photonics VOC sensor, there are two fundamental requirements: each sensitive 

material must have a centre to interact strongly with the VOCs and each interaction 

centre must be coupled to an intense fluorophore. The first requirement means the 

interactions could be not only the physical absorption and van der Waals interaction 

like other e-nose sensors, but also π-π interactions and Bronsted and Lewis acid/base 
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interactions. The second requirement means the sensitive materials should be 

fluorophores that have large conjugate structures that allow for interaction with the 

VOC molecules.  

In general, three classes of dye fulfil the abovementioned requirements: Lewis 

acid/base dyes, such as porphyrins and metalloporphyrins; dyes responding to 

Bronsted acidic or basic pH indicators; dyes with large permanent dipoles, such as 

zwitterionic solvatochromic dyes.  

3.1.2.1. Lewis acidic/basic dyes 

When Lewis acid and basic adducts, the electron from Lewis basic HOMO and the 

LUMO of Lewis acid have very closed energy levels. The interaction makes a pair of 

new low-energy bonding and high-energy anti-bonding. The non-binding electron pair 

from Lewis basic then fills into the low-energy bonding and forms the coordinate 

covalent bond and is therefore in the porphyrin complex. The metal ion is Lewis acid, 

while the porphyrin ligand is Lewis basic; the donor atoms in metalloporphyrin are the 

inner nitrogen, usually there are four. 

For porphyrins, the large molecular surface area allows enough space to interact with 

the analyte molecule. For example, in the meso-5,10,15,20-tetrakis(4-carboxyphenyl) 

porphyrin (TCPP, or H2TCPP), the distance between the nitrogen atom within the 

porphin ring to the oxygen atom in the carboxyl group is between 0.841nm (not bonded 

to hydrogen) and 0.858nm (bonded to hydrogen) [133]. Therefore, it has good 

interaction with molecules that have two hydrogen bond sites spacing roughly 0.85nm, 

such as β-maltose (the distance between two ends hydroxyl groups is 0.859nm [134]). 

Although it has the same molecular weight and a similar distance between the two 

ends of hydroxyl groups (0.837nm), the α-lactose are not able to form stable bonding 

to TCPP, because the hydroxymethyl group on galactose is on the same side of the two 

hydroxyl groups, resulting large steric hindrance and preventing bonding.  
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Figure 3-7 TCPP can bond to β-maltose but not α-lactose 

For the metalloporphyrin, the metal ion in the centre has the ability to form further 

coordination with other molecules. Therefore, it has specific bonding to strong 

ligands. In this situation, the metalloporphyrin is acting as a Lewis acid and it 

receives an electron pair from the ligand, while the ligand is Lewis base and it 

donates an electron pair and forms a metalloporphyrin-analyte coordination bond. 

 

3.1.2.2. Bronsted acidic/basic dyes 

In Bronsted acidic/basic theory, a chemical that can give a proton is acidic, and 

chemicals that receive protons are alkaline. The pH indicators are usually weak acids 

or bases that have two forms of structure. The structures depend on environmental 

proton strength, for example, methyl orange, a commonly used pH indicator in 

titrations, has two forms of structure: azo and quinoid structure (Figure 3-8). In basic 

conditions, methyl orange is in azo structure form, and it is yellow, whereas with a 

hydrogen ion bond with one of the nitrogens in the nitrogen-nitrogen double bond, it 

takes a quinoid structure is red due to the fact that a higher degree of delocalisation 

can lead to longer wavelengths absorption. 
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Figure 3-8 Two structures of Methyl orange 

The pH indicator can respond to the general acidity/basicity of the environment, it also 

can respond to the overall polarity of the detecting vapours. 

 

3.1.2.3. Solvatochromic dyes 

Solvatochromic dyes will change colour based on the environmental polarity, usually 

from solvent polarity. Take Reichardt’s dye as example, the positive and negative 

charges in this molecule are separated at the nitrogen end and oxygen end (see Figure 

3-9, left), but the whole molecule is neutral. Such molecules are called zwitterions. 

When the molecule absorbs light, an electron will shift from the HOMO to the 

LUMO (see Figure 3-9, right), from the oxygen end to the nitrogen end. Therefore, 

the polar ground state of Reichardt’s dye is more stable in the polar solvent, while the 

nonpolar excited state is more stable in the nonpolar or less polar solvents. In other 

words, for excitation state the energy in nonpolar solvent needs to be lower than in 

polar solvent, hence showing redshift in spectrum.  
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Figure 3-9 Reichardt's dye and light induced charge shift 

Different bonding molecules can largely affect the stability of the ground state and 

excited state of solvatochromic dyes, thus influencing the HOMO-LUMO gap and 

electronic transitions, and finally expressed as shifts on the spectrum. Comparing to 

porphyrins, solvatochromic dyes have better affinity to molecules like aromatics and 

ketones, which will increase the selectivity and sensitivity of the sensory array. 

 

3.2. Materials & Methods 

 System Overview 

In general, the fluorescence sensor array system is made of three modules: sample 

processing module, responding module, and analysing module. In this chapter, we 

will only focus on the first two modules, and the third module will be discussed along 

with the experimental data in the following chapters. 
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Figure 3-10 Block diagram of fluorescence sensor array-based VOCs detection system 

As shown in Figure 3-10, the sample processing module receives the liquid state 

sample and transforms it into gaseous state. The responding module receives the gas 

from the sample processing module and generates the spectrum data based on the 

sensory array’s response. Finally, the analysing module receives all the data flows from 

previous modules and generates a classification result. The specific components for 

each module may vary depending on different applications, but the system structure as 

a whole remains the same, as shown in Figure 3-10. 

 

 Sample processing module  

3.2.2.1. For VOCs tests 

The sample processing module (Bronkhorst UK Ltd., UK) for the VOC vapour test 

consists of three parts: a liquid flowmeter for controlling of the VOC liquid flow; a gas 

flowmeter for controlling of the carrier gas flow; and the mixer for vaporising the VOC 

liquid and mixing it with the carrier gas for specific concentration. The sketch of the 

system is shown in Figure 3-11. A central controller (E-8000, Bronkhorst UK Ltd., 
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UK) was used for community and control. On the PC terminal, FlowView and 

FlowDDE were used for monitoring and controlling the working parameters of the 

system.  

 

Figure 3-11 VOCs sample processing module and Bronkhorst system sketch figure. LFM: Liquid Flow 

Metre. CEM: Controlled Evaporator and Mixer. MFC: Mass Flow Controller 

 

Figure 3-12 Picture of VOCs sample processing module and Bronkhorst system, the reaction chamber 
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used is Mark. II, detailed sketch was shown in Figure 3-17. 

3.2.2.2. For urine tests 

The sample processing module for urine testing was developed on the Arduino 

microcontroller platform. A RS Pro D250 micro diaphragm gas pump (RS 

Components Ltd, UK) was used for pumping the gas flow; its gas flow speed is 

adjustable by simply changing the working voltage, the default working voltage is 5V 

and in this circumstance the flow speed is 380mL/min. 

As shown in Figure 3-13, two 15mL centrifuge tubes (Fisher, UK) work as a gas 

bubbler-safety bottle. The tubing outlet of the pump is under the liquid surface of the 

urine in a gas bubbler; when the pump is on, the air will be pushed through the urine 

and increase the gas-liquid contact area and therefore speedup the process. In some 

cases, the protein from blood and other secretions in the urine is not removed 

completely. The bubbles generated from the bubbling process are hard to break and 

may stack up and flow into the reaction chamber. Therefore, to prevent contamination, 

the safety bottle is used. The safety bottle can provide extra volume to accommodate 

the urine bubbles, thereby avoiding the bubbles going directly into the reaction 

chamber. Three-way-valves (1 and 2 in Figure 3-13) are used to control the gas flow 

in the system. When both valves are switched to the middle, the gas will circulate 

between the two 15mL tubes and avoid the reaction chamber. The flow speed of the 

gas pump can be just by supply voltage, under the maximum flow speed (5mL/s), the 

system can achieve a gas-liquid dynamic balance of the urinary vapor under room-

temperature in less than 2 minutes. Then, valves 1 and 2 are switched to a down 

position, allowing the gas to flow into the reaction chamber and circulate between the 

two 15mL tubes and the reaction chamber. There are two reasons for doing so: first, it 

gives the operator time to adjust the output power of the gas pump without facing the 

risk of contaminating the reaction chamber; second, it allows the gas to be prepared 
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before contact with the sensory film. The latter is very important to maintain the 

reproducibility of the experiment by reducing the concentration fluctuations at the 

beginning of the gas flow. 

 

Figure 3-13 Urine sample processing module sketch figure 

 LAKK-M System 

The LAKK-M system (SPE LAZMA, Russia) was not designed for fluorescence 

sensors detection. However, the LAKK-M has full functionality for a fluorescence 

spectrometer with 4 fluorescence channels (UV: 365nm, Blue: 450nm, Green: 532nm, 

and Red: 633nm), and its compact design allows peripheral equipment to cooperate 

with it freely. The laser sources are coupled with the detection fibre in a 2.5mm 

diameter optic fibre probe; each tip is separated by around 1mm, allowing the light 

source to illuminate a 12mm2 circular area with a 1.5mm distance above the surface of 

the sensory film. The emitted fluorescence signal is transferred by a receiver optic fibre 

through the corresponding requisite filter to the CCD spectrophotometer and converted 

to the electronic signal (Figure 3-14). The spectrophotometer has measurement range 

of 342nm to 815nm, with a spectral resolution of 0.22nm. LDF 3.1.1 software (SPE 

LAZMA, Russia) is used for recording and analysing the data. A typical user interface 
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of LDF software is shown in Figure 3-15. A typical measurement process includes: 

1. Initialising the spectrometer by pressing the “setup” button on the fluorescence panel 

and waiting for the message to turn green 

2. Turning on the light source by pressing the physical button on the front panel of the 

device 

3. Waiting until the prompt message “measuring” disappears and the spectra shows up 

4. Pressing the “pause” then “save” buttons to save the spectra  

5. Turning off the light source by pressing the physical button on the device.  

By the default setting, one measurement will take about 30 seconds to complete. 

Changing the acquisition numbers and exposure time can help to shorten the 

measurement time but may reduce the signal-to-noise ratio. 

 

Figure 3-14 Optic fibre layout of LAKK-M probe tip 
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Figure 3-15 Example user interface of LAKK-M PC terminal 

 Sensory film manufacture 

In the literature, there are various manufacturing methods used for making the 

fluorescence and colorimetric VOC sensor array [132, 135, 136]. In general, those 

methods are focused on how to deposit the sensitive material onto a solid surface, with 

chemically and physically stable fixation. At the very beginning of this study, spin 

coating, as a fast and inexpensive method, was tested. 
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N o. CA S N am e 

(1) 14609-54-2 4,4′,4′′,4′′′-(Porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) 

(2) 14172-91-9 5,10,15,20-Tetraphenyl-21H ,23H -porphine copper(II) 

(3) 14074-80-7 5,10,15,20-Tetraphenyl-21H ,23H -porphine zinc 

(4) 90587-86-3 5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H ,23H -porphine 

m anganese(III) chloride 

(5) 35218-75-8 4,4′,4″,4″′-(Porphine-5,10,15,20-

tetrayl)tetrakis(benzenesulfonic acid) 

(6) 917-23-7 m eso-Tetraphenylporphyrin 

(7) 15086-94-9 Eosin Y 

(8) 81-88-9 Rhodam ine B 

(9) 14320-04-8 Zinc phthalocyanine 

(10) 25440-14-6 5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin 

(11) 553-12-8 Protoporphyrin IX 

(12) 15442-64-5 Protoporphyrin IX zinc(II) 

(13) 143-74-8 Phenol Red 

(14) 493-52-7 M ethyl Red 

(15) 7385-67-3 N ile Red 

(16) 10081-39-7 Reichardt's dye 

 

 

Table 3-1 Fluorescence dye candidates 

Sixteen dye candidates, as shown in Table 3-1, were purchased from Sigma (Sigma-

Aldrich, UK). Solvents tetrahydrofuran (THF, CAS: 109-99-9) and 

dimethylformamide (DMF, CAS: 02/12/1968), film substrate polyvinylidene fluoride 

(PVDF) membrane (Amersham™ Hybond®) and 10µL pipette tips (Corning® 

DeckWorks™) were purchased from Sigma (Sigma-Aldrich, UK).  

 

3.2.4.1. Spin coating 

An Ossila Spin Coater (Ossila Ltd, UK) was used for preparing the spin-coated sensory 

film. Cover glass, quartz glass, and silicon wafer were used as substrates. 10mM 

Eosin-Y THF solution was used as a coating solution.  



61 

 

 

Before starting, the substrate was cut into a square with a side length of 25mm and 

cleaned using detergent, deionized water and nitrogen purge. This process was 

intended to clean up the grease and dust on the surface of the substrate. Then, the 

substrate was fixed at the centre of the spinner by the claw fixing mechanism. One 

drop of the coating solution was spotted on the middle of the substrate, then the lid 

was closed, and the spinner started spinning at 6000 rpm. Most of the coating solution 

was flung off the side. With the airflow, the solvent volatilised and left the solute 

deposited on the top surface of the substrate to form an evenly covered film.  

The thickness of the film depends on the spin speed, concentration and solvent 

evaporate rate, as well as solution viscosity, temperature, vapour pressure, and 

humidity. Roughly speaking, 6000 rpm spinning speed should form a thin film 

thickness at nanometre level. 

The finished spin-coating sensory films were then stored in sealed plastic boxes 

wrapped with aluminium foil. The fluorescence signal measurements were carried out 

following the same standard procedure as other measurements in this study. 

 

3.2.4.2. Polyvinylidene fluoride (PVDF) sensory film  

Polyvinylidene fluoride (PVDF) film was also used for making the sensory film. 

PVDF low-fluorescence membranes were purchased from Sigma (Sigma-Aldrich, UK) 

and cut into small pieces before use. For single-element test, the films were 10mm in 

diameter, allowing one spot of sensitive material to deposit on. For the multi-element 

array, the films were cut into 25mm×25mm square size, allowing up to 25 spots deposit 

on. 

All the sensitive materials were prepared in 1mM THF solution. For the single-element 

test, each time 10 µL of solution was spotted it made a circle around 6mm in diameter 
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that contained 1×10-8 mol of solute. For the multi-element array, a stainless-steel 

mould was made to assist the precise spotting of the solution. Before spotting, 50mm 

size PVDF film was mounted on the back of the mould and fixed with aluminium foil. 

The small through-hole only allowed the pipette tip to insert no more than 2mm to 

ensure the exact position. 1.5 µL of the solution was the amount used for each spotting, 

making a circular shape spot around 3mm in diameter. After spotting, the mould was 

dissembled and cleaned using acetone, water and dried in a fume cupboard overnight. 

The film reproducibility will be discussed in later chapter, briefly, the doping volume 

and solubility of the sensitive material can largely affect the final products therefore 

the manufacture process must be carefully controlled, the reproducibility of the film 

was measured by normalized coefficient of variance (nCV) which also will be 

discussed detailly in later chapters. 

 

 Reaction chamber design 

The reaction chamber is the core component of the system; it is the place where the 

VOC vapour interacts with the sensory film. Such interaction is indirectly observed 

through the changes of the fluorescence signal of the sensory elements. Any 

influencing factors that affect either the VOC-sensor interactions or the process of 

sensory elements’ fluorescence occurrence will affect the final output of the system. 

Therefore, the reaction chamber must provide a stable physical, chemical and optical 

environment for the VOC-sensor interaction and its measurement. 

 

3.2.5.1. For VOCs tests 

The first design of the reaction chamber (Mark. I) aims to validate the feasibility of the 

sensory film and the VOC vapour interactions, therefore only single element is allowed 
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in this design. The setup is simple and consists of: a 1mm diameter meshed ring holder, 

which can fit tightly on the neck of a 5mL glass volumetric flask (BRAND, Sigma-

Aldrich, UK); a corresponding screw cap with a 10 mm through hole to seal the 

chamber and allow the insertion of the LAKK-M probe. During the experiment, a flask 

filled with 5mL purified VOC solution is mounted to the bottom of the chamber and 

each time a 5mm diameter sensory film with single sensory point is placed within the 

chamber and sealed with the screw cap. By calculation, the distance of the tip of the 

probe to the surface of the film is set to 6 mm, which allows the light to illuminate a 

4mm2 circle area on the film.  

 

Figure 3-16 Reaction chamber design Mark. I for single element tests 

This design has some defects and it is only for proof of principle purposes. Therefore, 

a better design of a multi element chamber is necessary. Using the same black PLA 3D 

printing material, the Mark. II has a bigger reaction chamber to accommodate larger 

multi element film and mechanic components for switching the elements. The Mark. 
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II has a cube-shaped chamber with an inlet and outlet for the gas flow. Within the 

chamber, there is a movable rack and corresponding gear that are driven by a servo 

motor. During the experiment, the rack is first placed on ‘initial’ position. At this 

position, the sensory film fixed on the rack is directly exposed to the gas within the 

chamber. After a certain time, the rack moves to the ‘reading’ position and detaches 

the gas chamber. The sensory points on the film then pass through the reading window 

one after another, which allows the light probe of LAKK-M to read the fluorescence 

spectrum of each point separately (Figure 3-17). This chamber design was intended to 

be used in purified urinary VOC biomarkers tests; the results will be discussed in 

chapter 4. 

 

Figure 3-17 Reaction chamber design Mark. II for multi-element sensor array tests, red arrow shows 

the direction of the film rack movement during the reading process. 

3.2.5.2. For urine tests 

For the urine test, a smaller and more compact reaction chamber is designed (Mark. 

III) to adapt to the nature of the low concentration and small amount of urine vapour. 

In addition to the smaller box-shaped gas chamber, two semi-cylindrical chambers are 

attached to the inlet and outlet of the gas chamber. It is mainly used for pre-mixing the 
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urine vapour at the very beginning of each flow to balance the vapour concentration 

around the film surface and to work as a buffer to prevent the film from contamination 

from urine spillage. In this design, the sensory film is restricted to a 25mm×25mm 

square and allowed a maximum of 25 elements as small as 1mm diameter each.  

 

Figure 3-18 Reaction chamber design Mark. III for urine tests 

 Control and communication components  

3.2.6.1. For VOCs test 

One Arduino micro-controller was used for controlling the movement of the film platform 

during multi-element tests. Single element tests reaction chamber does not have mechanical 

movement parts. 

3.2.6.2. For urine test 

As shown in Figure 3-19, two Arduino micro-controllers work as the main hosts in the 

control and communication components. The Arduino 1 controls the motion 

components. In this experiment, a servo motor (a) was used for the movement of the 

laser probe on x-axis, while the servo motor (b) was used for the movement of film 

platform on y-axis. This provides a 2D movement at the point of laser focus, with a 

resolution of 0.06mm. The temperature and humidity sensor in the reaction chamber, 
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together with the micro diaphragm gas pump on the main pipeline, were controlled by 

Arduino 2. This Arduino collected the real time flow speed, humidity, and temperature 

information through the sensors and transported them to the host PC. The PC terminal 

(Figure 3-20) was developed using LabVIEW 2016 (National Instruments Corporation, 

US) with open-source LINX toolkit. This program allows the user to select any of the 

sensory points to focus on or perform a full array reading and it also can display the 

flow speed, humidity, and temperature on the screen and save this in a log file. 

 

Figure 3-19 Control and communication component for urine tests sketch figure 

 

Figure 3-20 Controller PC terminal user interface 
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Figure 3-21 Block diagram of PC terminal program in LabVIEW 

 Software and devices 

All the sketching and modelling works were done by SolidWorks 2014 (Dassault 

Systèmes SE, France). 3D printer modelling of slicing and parameter setup was done 

by Cura 3.1 (Ultimaker, Netherlands) and PreForm 2 (Formlabs, Inc., US). The 3D 

printers used were Ultimaker 2 (Ultimaker, Netherlands) and Form 2 (Formlabs, Inc., 

US). Signal processing and data analysis algorithms were developed using MATLAB 

R2018b (The MathWorks, Inc., US). 

 

3.3. Results & Discussion 

 LAKK-M 

There are four built-in light sources in LAKK-M device, with slightly different output 

powers: 1.5mW for UV; 3.5mW for blue; 4.5mW for green; and 5.5mW for red. The 

optic power of one light source is not stable, it will change over time. Figure 3-22 

shows the optic power of the blue light source. At the first 5 seconds, the optic power 

steeply rises, followed by a gentle decline. After 1500 seconds, the optic power reaches 

a stable level with about 0.2mW fluctuations. 
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Figure 3-22 Changes over time of optic power of blue light source in LAKK-M 

Because of that, the influence of the optic power of the light source is not negligible. 

When we consider the nature of spectrum, there is some information that links to the 

optic power of the light source. Firstly, the backscattering peak, which is the excitation 

light that is returned to the spectrometer due to the backscattering. The intensity of the 

backscattering light is affected by both the optic power of the incident light and the 

absorption and scattering coefficient of the illuminated object. The higher the incident 

light power, the higher backscattering light. Meanwhile, higher absorption or 

scattering coefficients can lead to lower backscattering light.  

 

 Influence of manufacturing material  

3.3.2.1. 3D printing materials 

For the fused deposition modelling (FDM) 3D printer, the most commonly used 
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printing materials are acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). 

Both ABS and PLA have good mechanical strength and processing performance, the 

main difference being the temperature. 

 

N am e PLA ABS 

Chem ical com position Polylactic Acid Acrylonitrile-Butadiene-

Styrene copolym er 

N ozzle tem perature 180-200°C 210-240°C 

G lass transition tem perature 60-65°C ~ 105°C 

M echanical property H igher strength Better elasticity 

H eat plate N ot required Required (> 80°C) 

Fum es N one - light H eavy 

Biodegradable Yes N o 

Block nozzle Easy H ard 

 

Table 3-2 Comparison of PLA and ABS in 3D printing material properties 

During FDM 3D printing, the printing material filament is pushed through a hot 

(usually over 180°C) metal nozzle where the plastic melts (also called glass transition) 

and becomes soft and partly fluid-like. The soft plastic is squeezed and stretch to a fine 

line in the 1/10-millimetre level. The nozzle travels through a pre-set route over the 

printing platform, while the melted plastics are deposited and stacked layer-by-layer 

and form the shape of the desired object. 

Comparing to PLA, ABS has a higher glass transition temperature. Therefore, ABS 

require a higher printing temperature but also has better thermal stability. However, 

for this study, a good thermal stability was not that necessary; the temperature of VOC 

vapours leaving the mixer was below 50°C, and even consider the device heating the 

temperature are safe for both materials.  

However, because the monomers of the ABS are toxic and there are pungent fumes 

during the printing, thermal decomposition products may potentially release during the 

printing. This can cause health risks and, most importantly, remains on the finished 
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objects and interacts with the sensitive materials, bringing interference to the results. 

Although there is no evidence of residues, the release of thermal decomposition 

products of ABS during printing has been confirmed by experiments [137]. Moreover, 

the shrinkage of the ABS is much higher than PLA, which easily causes deformation 

and lifting on the edge of the object.  

Based on aforementioned factors, PLA is more suitable for our study. Even though 

PLA has no fluorescence background, pure PLA is nearly transparent, therefore its 

printing product cannot be light-shielding. After repeat tests with different coloured 

filaments, a dark black PLA filament was chosen, and the background fluorescence 

was minimized. 

For the stereolithography (SLA) 3D printer, the printing material was pre-mixed resin 

with photosensitizer. The standard resin we used for Formlabs 2 is made from 

methacrylated oligomer (75~90%), methacrylated monomer (25~50%), and 

diphenyl(2,4,6-trimethylbenzoyl) phosphineoxide (1~3%). During SLA printing, a 

thin layer of resin was used to cover the surface of the printing platform. A 405nm 

violet laser beam focussed on this layer and incurred photopolymerization, whereby 

the photosensitizer was activated by the light and released radicals to polymerize the 

resin monomers and form the desired solid layer. Similar to FDM, the SLA also prints 

the object in layer-by-layer style, the difference is the SLA machine we used (Formlabs 

2) prints upside down (Figure 3-23). 
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Figure 3-23 3D printing techniques. Left: Fused Deposition Modelling (FDM), Right: Stereolithography 

(SLA). 

Compared to FDM, the biggest advantage of SLA 3D printing is its way higher 

precision (0.2mm vs. 0.05mm layer thickness), but the costs of the machine and 

consumables are also 4-5 times higher. Additionally, the objects printed by SLA are 

solid, whilst most of the FDM objects are printed hollow inside to prevent the 

wrapping. Therefore, the SLA object has better bending resistance. For the impact 

resistance, cured resin is hard but brittle. Compared to ABS and PLA, the resin object 

is slightly more fragile. Similar to other 3D printing materials, the colour agents added 

in resin have large fluorescence backgrounds. However, because isopropanol was used 

for washing the residues of resin, this process will bring residues of isopropanol to the 

finished object. Therefore, it is not suitable for making the reaction chamber. Every 

finished object was further washed with a large amount of running water and dried at 

least 48 hours before use. 

Due to the above reasons, the SLA machine was used for making the mechanical parts 
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as well as the parts that do not have contact with the sensory film directly. Meanwhile, 

the FDM machine was used for making the reaction chamber and the parts that can be 

illuminated by the laser beam. Figure 3-24 shows the fluorescence background of PLA 

(black), PLA (white) and Methacrylic resin 3D printing materials. As clearly shown in 

the figure, the black PLA has a much lower background than other materials.  

 

Figure 3-24 Fluorescence background of 3D printing materials 

3.3.2.2. Sensitive materials 

As described previously, there are three types of fluorescence dyes that suitable for 

VOCs sensitive material: dyes that respond to Lewis acidity/basicity (e.g., porphyrins 

and metalloporphyrins), pH indicators that respond to Bronsted acidity/basicity, and 

dyes with large permanent dipoles that respond to polar VOCs. 

Based on this principle and wider literature, 16 fluorescence dyes were chosen for the 

candidates of the sensitive materials. Chemical structures of the candidates in Table 

3-1 are shown in Table 3-3. From the perspective of classification: TCPP (1), TPPS 
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(5), TPP (6), TFPP (10), and PpIX (11) are free-based porphyrins; CuTPP (2), ZnTPP 

(3), (Mg− Cl)TPPS  (4), and ZnppIX (12) are metalloporphyrins; ZnPc (9) is 

phthalocyanine metal complex; eosin Y (7), rhodamine B (8), phenol red (13) and 

methyl red (14) are pH indicators; Reichardt's dye (16) and Nile red (15) are 

solvatochromic dyes.  

From a photochemistry point of view, porphyrin free bases are Lewis basic, and can 

be used for detection of Lewis acid. Metalloporphyrins and phthalocyanine metal 

complex are Lewis acids and can be used for detection of Lewis basic. pH indicators 

can be used for detection of Bronsted acid/basic. Solvatochromic dyes can be used for 

detection of local polarity changes. 
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Table 3-3 Structure of fluorescence dye candidates 
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3.3.2.3. Sensory film substrate materials & manufacturing methods 

The sensitive materials, especially porphyrin and their derivatives, have higher 

solvability in the aprotic solvents like Tetrahydrofuran (THF), Dimethylformamide 

(DMF), and Chloroform. Those solvents have very low viscosity at room temperature: 

THF is 0.48 cP; DMF is 0.92 cP; and Chloroform is 0.56 cP (as a reference, the 

viscosity of water is 1 cP). This characteristic brings about difficulties in making the 

sensor films using the spin-coating technique. Usually, to make spin-coated film from 

such thin solution, viscous additive is required to reduce the fluidity of the solution. 

However, this will also thicken the sensory film and affect the contact between the 

analyte gas and the sensitive material. Both glass and silicon wafer have good affinity 

to THF, however the viscosity of solution makes it hard to adhere to the substrate and 

results in defects like bubbles, stipes and pinholes of the film.  

There are more methods to create thin solid deposition film like vacuum evaporation, 

Molecular-beam epitaxy (MBE), and Langmuir–Blodgett (LB) film [138]. These 

methods can usually create solid films that have thin to low micrometre to nanometre 

levels, which are ideal for making gas sensor components in mass production. 

In this study, the sensory film was made by simply putting spot sensitive material 

solution on the polymer film. Polyvinylidene fluoride (PVDF) film was chosen 

because of its low fluorescence background and high affinity to most of the 

hydrophobic sensitive materials used in this study.  

Different sizes of the film were made based on the application and device design. For 

VOC vapour tests, 10 µL of 1mM sensitive material solution was spotted to make each 

sensitive point of 10-mm in diameter. For urine tests, each point was made from 1.5 

µL of 1mM sensitive material solution, covering 3-mm in diameter in a 5×5 array 

layout on a 25mm×25mm PVDF film. 
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PVDF film has been widely used in Western Blot as the transfer membrane for holding 

proteins separate by gel electrophoresis. For fluorescence visualization Western Blot, 

the low fluorescence backgrounds PVDF film can help biologists to get a clear, dark 

background. For our study, such a property is also very helpful to prevent the 

interference from autofluorescence of the background. 

Figure 3-25 shows the fluorescence backgrounds of different substrate materials under 

blue laser: glass, PVDF and silicon wafer. The spectrum has been normalized with the 

total area under curve to remove the influence of power variance of the light source. 

As shown in the figure, PVDF has the lowest background at the main peak region but 

has some signals around 500~550 nm region.  

 

Figure 3-25 Fluorescence background of substrate materials 
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 Selection of sensitive materials based on the single-element test 

For single-element tests, there are no actual control components. Most of the 

operations were performed manually by human operators, with the only data needing 

to be transported being the spectrum data, which was manually exported from the 

LAKK-M software. There are some advantages and disadvantages to this. Positively, 

it is very easy to build and minimise enough so as to only focus on the interactions 

between VOC vapour and sensory film. However, because there is no ventilation, the 

VOC vapour can only rely on natural diffusion to enter the reaction chamber, which is 

inaccurate in both time and concentration. To address this issue, exposure of the vapour 

during the single-element test was performed for a longer time to ensure the sensitive 

materials interacted fully and completely with saturated VOC vapour. Safety is another 

concern. Every time a sensory film is changed, the whole chamber needs to be 

disassembled. Unavoidably, VOC vapour will release to the surrounding environment, 

therefore operators must wear full safety equipment including organic vapour 

respirator, gloves, safety glasses and chemical resistant lab coats, and all operations 

must be performed in a vented cupboard. 



78 

 

 

 

Figure 3-26 Single-element test 

Although single-element tests have several cons, they still can perform a quick and 

simplified test for verifying the sensitive material candidates and checking their 

responses to various analytes like purified VOCs or urine samples. 
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Figure 3-27 Original spectrum of all 16 sensitive material candidates under blue, green, red, and uv laser 
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Figure 3-27 shows the original spectrum of all 16 sensitive material candidates. As we 

can see the candidates (4), (5), and (14), namely (Mg − Cl)TPPS, TPPS, and methyl 

red, have very weak fluorescence. For candidates (4) and (5), because the sulfonyl 

hydroxide group is a strong electron withdrawing group, it is reasonable that there is 

weakening of the coaxial effect of the macrocyclic as well as the fluorescence. 

Theoretically, methyl red (14) should have wide emissions in the range of 320 nm to 

480 nm, with maximum at 375nm on excitation at 310nm [139]. However, it did not 

show any fluorescence when fixed on the PVDF film, probably because of the lack of 

ionization without solution.  

Candidate (13) and (16), namely phenol red and Reichardt's dye, failed to present 

fluorescence changes after exposure to urine vapour. Contrastingly, previous studies 

have shown that those dyes will change colours when exposed to various VOCs [132]. 

The reason for the discrepancy may be the influence of high water and low VOC 

concentrations. 

Candidates (2) and (3) have the same frame structure and almost the same response to 

urine vapour. Therefore, only (2), namely CuTPP, was kept due to its better 

signal/noise ratio on excitation at UV and blue laser. 

Candidate (12), namely Zn-PpIX, was abandoned due to its uneven deposition onto 

the PVDF film (see Figure 3-28). It led to large differences between each measurement 

and poor reproducibility. The reason for such uneven deposition is unclear, it is 

possibly due to the poor solubility of stabilizer that mixed with Zn-PpIX crystals. 

 

Figure 3-28 Deposition of Zn-PpIX (left) and ZnTPP (right) THF solution on the PVDF substrate, the 

Zn-PpIX are crystalized on the film, form unevenly died area.  
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 Parameters 

One of the most important aims of single element testing is to determine the suitable 

parameters for optic lasers.  

First is the distance between the tip of the light probe and the film surface. Because of 

the photobleaching effect, dyes exposed to light may lose the fluorescence ability 

permanently due to a break of a covalent bond or non-specific reactions between 

molecules by the high energy of light. There are several ways to reduce the effect of 

photobleaching, such as lowering the incident light intensity, reducing the time of 

exposure or reducing the frequency of the light thus lowering the photon energy. In 

current circumstances, the output power of the light source in LAKK-M is not 

adjustable, and its wavelength is fixed too. So, there are only two ways to reduce the 

photobleaching effects: by reducing the light energy received per unit area on the 

surface of the film or reducing the time of exposure.  

The time of overall exposure depends on the single exposure time, the number of 

accumulations, and the process speed of the spectrometer: 

Overall exposure = Single exposure time × Number of accumulations + Process time 

The processing time required for each spectrum is fixed, while the single exposure 

time and number of accumulations are adjustable in the LAKK-M PC terminal. In 

general, longer single exposures can get more photons into the spectrometer, 

generating a higher intensity signal as well as noise. Whereas, more accumulations can 

reduce the noise by averaging multiple spectra from each single exposure, thus 

yielding a higher signal-to-noise ratio. All the sensitive materials used have quite good 

quantum yields, therefore the exposure time does not have to be set very high. While 

the number of accumulations is very effective in reducing noise, we still can use a de-

noising algorithm later to reduce it as well. 
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The light emitted from the tip of the probe is distributed in a cone shape and the spot 

area increases with the distance between probe and surface. While the fluorescence is 

generated on the top of the film surface and diverges evenly in all directions, only those 

directly hitting the receiving fibre can be seen by the spectrometer. Therefore, 

increasing the hanging distance can increase the spot area. This reduces the energy 

received per unit area on the film surface, but it will also reduce the fluorescence signal 

received by the spectrometer.  

After repeat testing, the distance between the light fibre tips to the film was fixed at 

3mm, permitting the light source to illuminate a 2mm diameter circle. Using this setup, 

fluorescence intensity of the sensitive materials can be maintained for 30s under 

exposure of UV light and 1min under blue light without being heavily photobleached.  

 

 Film reproducibility 

Based on the results from single-element tests, 8 out of 16 sensitive material candidates 

were selected for making the VOCs sensory array: CuTPP (2), quantum yields ɸf: 0.17; 

TPP (6), ɸf: 0.12; Eosin Y (7), ɸf: 0.67; Rhodamine B (8), ɸf: 0.7; Zinc phthalocyanine 

(9), ɸf: 0.3; TFPP (10), ɸf: 0.2; Protoporphyrin IX (11), ɸf: 0.1; and Nile Red (15), ɸf: 

0.7. Among them are three free-base porphyrins, one metalloporphyrin, two 

fluorescence pH dyes, one phthalocyanine metal complex, and one solvatochromic dye. 

To verify the reproducibility of our methods of making sensory films, 10 repeat 

measurements were carried out on the selected sensitive materials, and the normalized 

coefficient of variations (nCV) of all tests were used for evaluating the reproducibility 

of sensory films. 

The only difference between the normalised coefficient of variations and ordinary 

coefficients of variations is the normalisation of the spectrum before calculation of 
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coefficient of variations. This was intended to eliminate the interference from 

excitation light output power. 

Coefficient of variations: Cv =
σ
µ

, where σ = �
1
N
�(xi − µ)2
N

i=1

 (3 − 1) 

Where σ is standard deviation, µ is mean value, and N is the number of measurements, 

xi  is the intensity reading of i-th wavelength. Figure 3-29 shows the original 

fluorescence spectrum of Eosin Y under green light. We can see there are quite large 

differences between each measurement. However, after eliminating the interference 

from the excitation light output power through normalisation, the spectrum reveals that 

the differences are not that significant (Figure 3-30). The plot of normalised coefficient 

of variation (Figure 3-31) also supports this finding: the nCV values are small (<0.01) 

at the range of emission peak. 
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Figure 3-29 Original fluorescence spectrum of Eosin Y under 532nm excitation 

 

Figure 3-30 Normalized fluorescence spectrum of Eosin Y under 532nm excitation 
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Figure 3-31 Normalized coefficient of variation of 10 repeats of Eosin Y fluorescence spectrum under 

532nm excitation 

Therefore, using nCV to evaluate the variation between repeat measurements is 

feasible. As shown in Figure 3-32, all the selected sensitive materials have good 

reproducibility with very small nCV (<0.05). 
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Figure 3-32 nCV of 8 selected sensitive materials, measurement number = 10 

 Sensory array layout 

Figure 3-33 shows the layout of the 24-elements in the sensory array film. Unless 

stated otherwise, all the “sensory arrays” in this thesis followed the same layout and 

composition as this design: a 25mm×25mm PVDF film with 24 element points with 

each point spotted with 1.5µL of 1mM sensitive material THF solution. The distance 

between each point centre is 5mm. The right-bottom corner on the film is the reference 

point to be used as blank control of the background and location point for film 

orientation. 

 

Figure 3-33 24-elements sensory array layout and sensitive material composition 

 

 Fluorescence decays 

The fluorescence emission intensity decays over longer periods (days to weeks) were 

observed during the experiments. The following designed experiment was carried out 

to investigate the shelf life of the sensory films. This test aimed to evaluate the 

durability of the sensory film and find out the cause of decay.  
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Two 24 elements PVDF sensory films (with layouts as described previously) were 

measured 0, +1, +2, +4, +6, +8 days after being freshly prepared. The reference film 

was stored in an aluminum foil covered and sealed petri-dish at room temperature. The 

testing film was stored in the same petri-dish with the lid opened in the same room. 

The room temperature was 21°C and humidity was 60% and remained stable during 

the tests. 
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Figure 3-34 emission intensity decays of porphyrin sensitive materials element point P2 (TPP) and P6 

(TFPP) on PVDF film. 

Figure 3-34 shows the decay of the emission spectrum of element point 2 (TPP) and 6 

(TFPP) over a 9-day period in lid-open group; the spectrum has been normalised to 

eliminate the influence of the optic power of light source. It is clear that porphyrins do 

lose their fluorescence ability over time when exposed to air, while fluorescence dyes 

like eosin Y do not (Figure 3-34). In comparison, another sensory film from the same 

batch of production was stored in the same condition except for the fact it was in a 

sealed petri-dish for 9 days. In this test, all the element points did not decay during the 

test period. Therefore, it is reasonable to hypothesise that something in the air, most 

likely oxygen, quashed the porphyrins’ fluorescence ability. 

3.4. Conclusion 

In this chapter, the physical chemistry and optical principles of fluorescence gas 

sensitive materials were reviewed. Three major types of fluorescence gas sensitive 

materials were discussed. According to Gouterman four orbital model, the energy gap 

between HOMO and LUMO decides the absorption and emission of porphyrin and 

porphyrin derivatives. When environmental molecules adduct with the porphyrins, 

their HOMO/LUMO gap will change and the central ions and steric hindrance will 

affect the selectivity of the coordination of the ligands. For pH indictors, the molecules 

usually have two forms of structure and switching between them depends on the 

environmental proton strength, showing pH-dependent spectral properties. 

Solvatochromic dyes will change colour based on the environmental polarity, usually 

from solvent polarity.  

Based on the aforementioned principles, a total of 16 sensitive materials were tested 

using a custom-built detection system. This system was composed of a 
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laser/spectrometer device (LAKK-M); a sample processing module, used for turning 

the liquid sample into gas phase; a sensory array, made by different manufacturing 

methods; a reaction chamber, to allow the VOC molecules to interact with the sensor 

array. The system has several versions to suit different applications and a set of 

hardware and software parts for control and communications. 

This system fulfilled the requirement of a proof-of-principle medical device prototype 

for urinary bladder cancer diagnosis, it can handle different testing samples with 

corresponding hardware configurations, with selective sensitive materials the cross-

responsive sensor array has ability to respond to different analytes, next two chapters 

will verify this using purified urinary VOC biomarkers for bladder cancer and urine 

samples for bladder cancer patients and healthy controls. 
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4. Distinguish Test of Urinary VOC Biomarkers for Bladder Cancer 

The aim of this section of work was to comprehensively test the performance of the 

fluorescence urinary VOCs detection system we built. Several tests were carried out 

to achieve this goal: 

1. Establishing a data processing protocol, designed for the data generated from 

this system 

2. Building a classification model that may be able to identify the target urinary 

VOC biomarkers using processed data 

3. Determining the performance indexes of the fluorescence urinary VOCs 

detection system such as sensitivity, selectivity, stability, responding speed, 

and limits of detection. 

4.1. Introduction 

Electronic nose, or e-nose, is a device designed to mimic the discrimination of the 

mammalian olfactory system for smells [140]. Like its imitation target, the artificial 

olfactory system follows the same principle of identifying the odorant (Figure 4-1). 
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Figure 4-1 Analogy of the biological and the electronic noses (courtesy Ghasemi-Varnamkhasti et al. 

[141], reproduced with permission from Elsevier). 

In a biological system, there are many olfactory receptors on the olfactory sensory 

neurons. Such receptors can have specific binding to odorant molecules, leading to an 

action potential in the receptor neuron that converts the chemical signals to 

bioelectrical signals. In an artificial system, the chemical sensors take the role of 

olfactory receptors. Depending on the type of sensor, the chemical signals of odorant 

molecules are converted into electric charge or experience optical or mass changes, 

eventually turning into electronic signals. There are millions of olfactory receptors in 

a biological olfactory system; multiple receptors may respond to one odorant molecule, 

while single receptors may respond to multiple odorant molecules. Similarly, in an 

artificial olfactory system, multiple sensors combine and build up a sensory array, 

showing the same “cross-responding” ability of biological system. Through the 

network of receptors/sensors, a complex information profile of exposed odours was 

generated that compared these with a pattern recognition database of known odours. 

This allowed for the identification of the exposed odour. 

Therefore, starting from these three aspects, we can summarise current commonly used 

e-nose techniques. 

 

 Sensing technology 

In general, the sensing technology can be dived into two types: electronic and non-

electronic. The former includes Metal Oxide Semiconductor (MOS), Metal Oxide 

Semiconductor Field Effect Transistor (MOSFET) and Conducting polymer (CP) 

sensors. The latter includes Quartz microbalances (QMB or QCM), Surface Acoustic 

Wave (SAW) and optical sensors. 
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Metal oxide semiconductor (MOS) based gas sensors are the most invested in type of 

gas sensor across all e-nose sensor types and have been widely used in environmental 

monitoring of flammable, toxic or hazardous gases [142]. In general, MOS-based gas 

sensors have two major components: receptor and transducer. The receptor is 

composed of a metal oxide surface that has direct contact with analyte gases. Such 

contact induces the electronic resistance changes of the surface and is read by the 

transducer. MOS-based gas sensors have a very wide response range (low- to high- 

ppmV level of wide various chemicals) and a low unit costs, but they require a high 

working temperature (a few hundred degrees Celsius) and have a long-term usability 

issue in terms of poisoning by sulfide chemicals or baseline shifting. 

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) gas sensors are 

another type of gas sensing technique, based on the electronic property changes on 

exposure to chemical vapours. MOSFET gas sensors have a layer of catalyst that 

covers the insulating gate. Its catalytic products of VOC can infiltrate the insulating 

gate and cause the threshold voltage to shift, thereby changing the electronic properties 

of the transistor. A different catalytic layer can be used for detection of various types 

of VOCs. The MOSFET gas sensor can be manufactured on an integrated circuit with 

good stability and reliability but requires complex processing techniques. 

Conducting polymer (CP) gas sensors are the most widely used e-nose sensing 

technique, also belonging to electronic based gas sensor types and similar to MOS 

sensors. The sensitive material coating the top of the components can respond to VOC 

gases by changing their conductivities. The biggest difference between the CP sensor 

and the MOS sensor is that the CP sensor relies on conducting particles, such as 

polypyrole and carbon black, interspersed in an insulating polymer matrix to absorb 

the analyte molecules rather than metal oxide thin films. The good side of doing this 

is that the CP coating can work under room temperature, which makes it suitable for 



95 

 

 

usage in portable device. Meanwhile, the disadvantage of CP sensors is that the coating 

is very sensitive to water and has a similar baseline shifting in long term uses to MOS 

sensors. 

The Quartz microbalances (QMB or QCM) gas sensor is a non-electronic based gas 

sensor. Its core component is a polymer coated quartz resonance plate that works at a 

low MHz resonance frequency. When the polymer coating absorbs analyte gases, the 

mass of plate will increase and cause the resonance frequency to decrease.; this 

establishes the linear correlation between gas concentration and component resonance 

frequency. Its selectivity depends on the material of the polymer coating. Various 

materials, including porphyrin, were tested for manufacturing QMB gas sensors. The 

biggest advantage of QMB gas sensor is its structure simplicity and good sensitivity, 

but it has serious cross-responding issues due to non-specific interactions between 

polymer coating and interference gases. 

The Surface Acoustic Wave (SAW) gas sensor is very similar to the QMB sensor. The 

SAW sensor also relies on the selective interaction between sensitive polymer coating 

and analyte gases. However, it is not only focused on the mass changes from material 

adsorption of gas molecules, but also the conductivity and viscoelasticity influencing 

the SAW frequency. Compared to QMB, the SAW gas sensor has a higher working 

frequency and higher sensitivity but lower signal-to-noise ratio. Another major 

advantage of the SAW gas sensor is that it can be processed using the lithography 

technique, which has been widely used in large-scale integrated circuit (IC) chip 

manufacturing. This means it is very suitable for integrated mass production and 

reduces the overall costs. 

Despite the fluorescence gas sensor array described in the previous chapter, there are 

other optical gas sensing techniques including absorption spectroscopy, optical fibre-

based sensors, colorimetric sensors and surface enhanced Raman spectroscopy. The 
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optical sensing techniques have some unique advantages over the commercially 

available methods mentioned previously such as: higher detection limit (pptV - low 

ppbV level compared to ppmV level) and signal-to-noise ratio, room temperature 

working condition. The biggest disadvantages of optical sensing methods are the 

expensive costs of optical devices. 

 Signal processing and Pattern recognition 

The raw data obtained from the gas sensors array is usually a 2D array of a series of 

discrete data. For an array with n sensors, each sensor generates m readings, there are: 

𝑋𝑋𝐺𝐺𝐺𝐺𝐺𝐺1 = �
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Then the dataset for each analyte gas 𝑋𝑋𝐺𝐺𝐺𝐺𝐺𝐺 is a n × m 2D array. Depending on the type 

of sensor, the size of m could be from hundreds to thousands of readings. For most of 

the electronic and non-electronic type e-nose, the responding curves are composited 

from a series of transient response signals in time sequence. While for optical type, the 

readings usually are a series of intensity in frequency sequence. Both of them need 

normalization to some extent to remove the influence of factors that correlate to time 

or frequencies.  

Other commonly used signal processing in e-noses include resampling, noise reduction, 

detrend, removal of outliers. Sometimes those process steps are used solely or together 

to remove interference factors such as artefacts, background noise, trends, or spikes in 

preparation for further analysis.  

The third step shown in Figure 4-1 is identification of odours by memory or pattern 

recognition. In fact, a single biological olfactory receptor in the human olfactory 

epithelium can only respond to very few kinds of odours with limited sensitivity and 

specificity. Contrastingly, the olfactory neuro-network can enhance the ability of a 
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single olfactory receptor by 1000 times by integrating hundreds of thousands of 

receptors’ information [143]. So does the pattern recognition algorithm in artificial 

olfactory systems; a single gas sensor only has limited sensitivity and selectivity, but 

when multiple sensors build up a cross-responsive array and combine with suitable 

pattern recognition algorithms, their identification ability can significantly 

enhancement. Commonly used pattern recognition algorithms in e-nose include Linear 

Discriminant Analysis (LDA), k-nearest-neighbours (k-NN), artificial neural networks 

(ANN), support vector machine (SVM). Pattern recognition is defined as “the 

automatic discovery of regularities in data through the use of computer algorithms and 

with the use of these regularities to take actions such as classifying the data into 

different categories” [144]. The idea of pattern recognition gave rise to today’s hot 

artificial intelligence and machine learning, and it still very useful in dealing with 

problems like classification and clustering.  

4.2. Materials & Methods 

 Materials 

Four VOC biomarkers were selected from the literature of bladder cancer urinary 

biomarkers [96, 126, 145, 146]: ethylbenzene (CAS: 100-41-4), hexanal (CAS: 66-25-

1), lauric aldehyde (dodecanal; CAS: 112-54-9), and nonanoyl chloride (CAS: 764-

85-2). All were purchased from Sigma-Aldrich (Sigma-Aldrich, UK). All chemicals 

were of analytical grade and were used as received without further purification.  

All the mechanical parts and micro controllers were used as described in Chapter 3. 

 Sample processing module  

As described in Chapter 3, the sample processing module for the VOC vapour test 

consists of three parts: liquid flowmeter, for controlling the VOC liquid flow; gas 

flowmeter, for controlling the carrier gas flow; and the mixer, for vaporising the VOC 
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liquid and mixing it with the carrier gas to achieve the desired concentration.  

 Reaction chamber & sensory film 

As described in Chapter 3, the reaction chamber used in VOC tests were Mark. I and 

Mark. II, with corresponding single-element sensory film and multi-element arrays 

made from low-fluorescence PVDF membrane. 

In short, the Mark. I chamber was designed to validate the feasibility of the whole 

system, therefore it only has some basic functionalities to allow one single-element of 

sensory film to be exposed to VOC vapours in a sealed environment, Meanwhile, the 

detecting probe of LAKK-M can be inserted into the chamber and hover over the top 

of the film so it can read the fluorescence signal in real-time.  

The Mark. II chamber allows the chamber to hold bigger film with a multi-elements 

array. Apart from that, a mechanism driven by a servo motor allows the automatic 

switching between sensor points. Although changing the optic filters of LAKK-M still 

relies on manual operation, this chamber design allows the operator to read all readings 

of the array without opening up the box, therefore ensuring the accuracy of the flow 

control. 

 

 Experiment workflow 

4.2.4.1. Single-element test 

To validate the performance of the sensitive material candidates, the reaction chamber 

Mark. I was made for a single-element test. As described in Chapter 3, the 3D printed 

reaction chamber has two parts: the upper part has a hole to allow the detection probe 

of the LAKK-M laser device in and the lower part has a stand to support the sensor 

film and allow the VOCs vapours to spread into the chamber. The two parts were 

screwed together to ensure a tightly sealed environment.  
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Before starting, a single-element PVDF sensory film was mounted in the lower part of 

the Mark. I chamber, then the upper part was screwed in to combine the two parts. 

Next, the reaction chamber with the sensory film was mounted on the empty flask, and 

the fluorescence spectrum under ultraviolet (UV; 365nm), blue (450nm), and green 

(532nm) excitation light was detected by the LAKK-M device. An accumulation of 15 

spectra were recorded using an acquisition time of 150ms per exposure at an excitation 

power of 4.2mW. After that, 5mL of VOC liquid was added into a flask and warmed 

to 37℃, and the VOC gas was released and spread into the chamber to react with the 

sensitive materials on the sensory film. After waiting two minutes for the reaction to 

take place, the fluorescence spectra for the same excitation lights were recorded.  

To further ensure the responses are also applicable to urine, a urine sample from a 26-

year-old male volunteer with signed consenting was tested for each fluorescence 

sensitive material candidate. 

To reduce errors, the background signal of the device was measured, and the data 

showed that the materials of the 3D printing device and substrate can cause 

background fluorescence. The main reason is that the polymer materials will emit 

fluorescence, especially under UV and blue light excitation. Finally, we chose black 

PVA as 3D printing material and low-fluorescence PVDF as a substrate. The 

background of the substrates and chamber material were measured before each test as 

a reference. 

 

 Data processing 

Each raw data file exported from LAKK-M contains the spectrophotometer reading of 

one element excited with single light, with 2100 wavelength and corresponding 

intensity readings. Therefore, for a 24-element array, there are 24 separate files for 
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each element. During the export process, additional information of date and time, test 

object, sensor identity number, film batch code, and excitation light were added to the 

file. In MATLAB, two datasets were generated from the files. The first dataset is the 

reading dataset, containing only intensity readings from each element as a 24×2100 

two-dimension double numeric array. The second dataset is the identity dataset, it 

contains the additional information aforementioned in a 24×5 two-dimension string 

array. 

Four steps of signal processing were then applied to the reading dataset: removing 

backscattering; normalization; de-noising; and serialization. This is shown as flow 

diagram in Figure 4-2. The product of data processing is the serialized feature array, 

which is a sequence of fluorescence peaks of each sensor point. 

 

Figure 4-2 Flow diagram of data processing 
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 Differential spectrum 

Differential spectrum is a key concept of fluorescence sensor array responses. 

Differential spectrum is the difference between the fluorescence emission spectrum of 

one sensory element before exposure with any analyte and the fluorescence emission 

spectrum of the same sensory element after exposure with analyte. For each point Δ𝐼𝐼𝜆𝜆 

on the differential spectrum at the wavelength λ, it has: 

Δ𝐼𝐼𝜆𝜆 = 𝐼𝐼𝜆𝜆 − 𝐼𝐼𝜆𝜆′ 2 

Where 𝐼𝐼𝜆𝜆 is the intensity of the ‘Before’ spectrum at the point of wavelength λ, and 

𝐼𝐼𝜆𝜆′  is the intensity of the ‘After’ spectrum at the point of wavelength λ.  

This principle also applies on the sequence array; the differential sequence array will 

be the input of the discrimination algorithm. 

 

 Discriminate analysis 

Two common dimension reduction methods were used: signal characteristics selection, 

used for feature selection, and Principal Component Analysis (PCA), used for feature 

extraction.  

Five signal characteristics: Maximum Peak Value (MXV) and Wavelength (MXW), 

Minimum Peak Value (MNV) and Wavelength (MNW), and Peak Area (PA) were 

extracted from the spectrum, as shown in Figure 4-3: 
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Figure 4-3 Differential Spectrum and feature selection 

The signal characteristics from each differential spectrum then formed a spectrum 

signal characteristic dataset 𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺. For each 𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺 generated from n samples tested 

with m elements array, there are: 

𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆 = �
MXV11 MXW11 MNV11 ⋯ MNV1𝑚𝑚 MNW1𝑚𝑚 PA1𝑚𝑚

⋮ ⋱ ⋮
MXV𝑛𝑛1 MXW𝑛𝑛1 MNV𝑛𝑛1 ⋯ MNV𝑛𝑛𝑚𝑚 MNW𝑛𝑛𝑚𝑚 PA𝑛𝑛𝑚𝑚

� 3 

The size of 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆 are n-by-5m. 

Principal Component Analysis (PCA) was used for feature extraction. PCA can 

generate a new set of variables from linear combinations of original variables without 

losing too much information, therefore reducing the number of variables used for 

further analysis. The linear combinations of original variables called principle 

components (PCs), and its amount is picked based on the explanation of original data. 
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Usually, PCs that can explain 95% of the raw data are sufficient for use. 

Smaller numbers of variable can largely reduce the computation of discriminate 

analysis and model validation. Linear Discriminate Analysis (LDA) was used for 

building the classification model for the testing VOCs, while leave-one-out cross 

validation was used for validating such model. 

All the data processing and computations were performed using MATLAB 2018b 

(MathWorks, USA). 

4.3. Results & Discussion 

 Target VOC biomarkers 

As discussed in Chapter 2, there are various origins of the bladder cancer biogenic 

VOC biomarkers: endogenous and exogenous. For endogenous sources, the most 

studied pathways are: oxidative stress, cytochrome p450 detoxication, carbohydrates 

metabolism, and lipid peroxidation [56]. Through researching the literature, four VOC 

biomarkers were carefully selected for testing the system shown in table 4.1 [96, 126, 

145, 146]. 
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Structural formula VOCs CAS Formula 

 

Ethylbenzene 100-41-4 C8H10 

 

Hexanal 66-25-1 CH3(CH2)4CHO 

 

Lauric aldehyde 

(dodecanal) 

112-54-9 CH3(CH2)10CHO 

 

Nonanoyl chloride 764-85-2 CH3(CH2)7COCl 

 

 

Table 4.4-1 Urinary bladder cancer VOC biomarkers tested. 

Of the VOCs tested, ethylbenzene is an aromatic hydrocarbon, which smells like 

gasoline. Hexanal and lauric aldehyde are aliphatic aldehydes with a grassy and soapy 

flavour. Meanwhile, nonanoyl chloride is acyl halide with a pungent, mustard-like 

odour.  

Both lauric aldehyde and hexanal are aldehydes that are probably generated from lipid 

peroxidation. Hexanal has been found to be elevated in both breath [84] and urine [126] 

of cancer patients, while such elevation is only present in urine for lauric aldehyde 

[145]. From the structures, we can see the only difference between hexanal and lauric 

aldehyde is the length of the carbon chain. Since both of them are saturated, straight 

monoaldehydes, they can be considered as the end products of lipid peroxidation and 
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would be good targets to validate the selective responding of our sensors due to the 

aforementioned steric hinderance effect. 

Ethylbenzene is a metabolism product of aromatic compounds. Usually, ethylbenzene 

is considered as an air pollutant and should be metabolised by detoxication cascades. 

In the blood, ethylbenzene can be oxidised by NADP and turns into benzyl alcohol. 

Benzyl alcohol further turns into benzoic acid by NAD, and finally condensates with 

glycine and turns into hippuric acid and is discharged in urine. However, the hippuric 

acid, the end product of ethylbenzene metabolism process, has been found to be of a  

lower concentration in the urine of those with bladder cancer than that of healthy 

groups [147]. Therefore, we have reason to believe that the ethylbenzene found in 

bladder cancer patients’ urine is excreted directly into the urine by cancer cells and is 

not present in the blood in large quantities. This means ethylbenzene is more likely to 

be from an endogenous source, not an exogenous one such as inhaled air pollutant.  

Among the four VOC biomarkers we tested with our system, only nonanoyl chloride 

may be an exogenous VOC. The detailed biogenic origin and metabolism pathway of 

nonanoyl chloride is not clear, but from its chemical property, it is unlikely to be from 

endogenous sources. However, as an acyl halide, the nonanoyl chloride is a typical 

electrophile and Lewis acid, which can be detected by metalloporphyrin. The reason 

for using exogenous VOCs is to verify that the system can distinguish the endogenous 

VOCs from exogenous ones, and to find possible linear relationships between the 

concentration of VOCs and the sensor array’s responding, as well as the limit of 

detection (LOD).  

 Sensors responses 

Figure 4-4 to Figure 4-7 shows the raw differential spectra of each sensor point in 

response to each urinary VOCs biomarker of bladder cancer. Those spectra are not 
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processed. As we can see, the degree of change of intensity varied between ±0.5 to 

±100; some spectra have maximum intensity changes at the backscattering region, and 

some sensor points have weak responses and therefore low signal-to-noise ratio. The 

raw differential spectra need further signal processing to remove those influencing 

factors. 

 

Figure 4-4 Differential Spectrum of each sensor point in response to ethylbenzene 
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Figure 4-5 Differential Spectrum of each sensor point in response to hexanal 
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Figure 4-6 Differential Spectrum of each sensor point in response to Lauric aldehyde 
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Figure 4-7 Differential Spectrum of each sensor point in response to nonanoyl chloride 

 Data processing 

The raw data file exported from LAKK-M software was a 72 kb .csv file for each 

single excitation and the structure of the datasets is shown in Figure 4-8:  
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Figure 4-8 Dataset structure of raw csv file exported from LAKK-M program 

Each line in the dataset represents a reading from the spectrophotometer, as shown in 

Figure 4-8, containing one wavelength reading and the corresponding intensity reading, 

separated with a semicolon delimiter. The numbers are saved as a double precision 

floating point decimal, which means they have a 15 significant digit precision, much 

higher than the spectral resolution of the spectrophotometer (0.22nm). The speed-up 

of processing by reducing the decimal numbers is almost negligible in modern 

computers, but it may be significant on portable devices since they have slower 

processors and smaller storage space. By converting the data storage from a double 

precision floating point decimal to a single precision floating point decimal, the size 

of one measurement file is reduced by 48.6%. 

The backscattering is the signal from excitation light scattering back to the device, in 

the spectra it looks like a sharp and narrow peak on the same wavelength of the 

excitation light. Its intensity is affected by several factors: the intensity of incident light; 

the absorption and reflection of the illuminating material (including sensitive material 

and substrate); and the angle of the light probe. To ensure the accuracy of 
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normalization, the backscattering peak was removed at the first step of the data 

processing. 

Normalization is a key process in reducing the influence of different output powers of 

excitation lights. Because at the first step the backscattering has been removed, the 

trapezoidal numerical integration of the spectrum can be considered as the emission 

output of the fluorescence material. Meanwhile for the same material under the same 

conditions, the emission output of the fluorescence material depends on the output 

power of the excitation light to a larger extent. 

Commonly used normalization standards include total area under the spectrum, 

internal peaks (unchanged peaks within the studying spectrum) and external peaks 

(peaks from external standard spectrum). In this study, normalization over the total 

area under the spectrum was used, as shown in the equation 4-1. The normalized 

intensity of each point 𝐼𝐼𝜆𝜆
𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 equals the original intensity of the same point on the 

spectrum curve 𝐼𝐼𝜆𝜆  divided by the trapezoidal numerical integration of the whole 

spectrum.   

𝐼𝐼𝜆𝜆
𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 =

𝐼𝐼𝜆𝜆
∑ (𝜆𝜆𝑖𝑖+1 − 𝜆𝜆𝑖𝑖)𝐼𝐼𝜆𝜆𝑛𝑛
𝑖𝑖=0

(4 − 1) 

Savitzky-Golay filtering was used for denoising [148]. Several commonly used 

denoising filters were tested: moving average; local regression; fast Fourier transform; 

and wavelet package denoising. The reason for choosing Savitzky-Golay filtering is 

because it can remove high-frequency noise efficiently without shifting the 

fluorescence peaks, while other denoising methods cannot. This is a very important 

property for keeping the responding information of each of the sensors thus ensuring 

reproducibility and accuracy. 

In MATLAB, there is a built-in function sgolayfit in the signal processing toolbox: 

y =  sgolayfilt(x,order,fram elen) 
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Where y is the output smoothed data, x is input data, order is the polynomial order of 

local function to fit the curve and framelen is the length of frame of local function to 

work on. In most cases, the signal-noise-ratio is high and fluorescence signals do not 

have too much detail; linear function is sufficient (order = 1), while the frame length 

is set to 25. 

Serialization is essential for discriminant analysis modelling. It will transform the two-

dimensional reading dataset array to a one-dimensional feature array. On the image, it 

looks like the spectra connect each other end-to-end and become a long sequence of 

spectrums with multiple peaks. During serialization, a new column is added to the 

identity dataset that is used for keeping the location information of the spectrum in the 

original 2D array to correspond to the new 1D feature array. 

 

 Discriminate analysis 

The idea of discriminate analysis is to establish an association between a categorical 

variable and a set of interrelated variables [149]. Different applications have different 

names for the two concepts such as: variables and observations, respond and predictors, 

dependant variable and independent variables. In discriminate analysis, the first one is 

called classes while the second one is called features. Specific to our study, the classes 

are the sample categories we know, such as cancer or non-cancer, or different names 

of VOC chemicals whilst the features are the data received from the sensors, or any 

dataset generated from them.  

Consider the characteristics of the differential feature array generated from our data; 

the number of features of each sample (p, also called dimensions) is much larger 

than the number of samples (n). In this case (p>>n), the discriminate will easily get 
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overfitted, which means the classification model picks too many irrelevant features 

and reduces the accuracy of the model relative to models with fewer features, known 

as “curse of dimensionality”. In our case, the differential feature array contains a lot of 

background signal. Even though we can remove those backgrounds and the regions 

without fluoresce emission, the scale of the feature array is still much larger than the 

number of samples we get.  

There are two feasible ways to ease the curse of dimensionality: feature selection and 

feature extraction. Both methods aim to reduce the number of features without losing 

the characteristics of the data. Theoretically, increasing sample numbers can also help, 

but the number of samples required increases exponentially with the dimensions, so it 

is not the most common method in practice. The strategy of feature selection is to 

reduce the dimensions by selecting a subset of original features. Meanwhile, the 

strategy of feature extraction is to find one or more combinations of original features 

that can explain the samples most (principal component analysis, PCA) or distinguish 

the samples most (linear discriminant analysis, LDA).  

4.3.4.1. Feature selection: signal characteristics of differential spectrums 

As shown in the Figure 4-3, a typical differential spectrum of fluorescence peak can 

be described in these parameters: Maximum Peak Value (MXV) and Wavelength 

(MXW), Minimum Peak Value (MNV) and Wavelength (MNW), and Peak Area (PA). 

Thereby, for each differential spectrum, the number of features was reduced from 2100 

to 5. Obviously, this method only works when there is only one maximum peak and 

one minimum peak, and it discards most of the minor details of the differential 

spectrum. However, as described in Chapter 3, the sensitive materials were carefully 

selected for those with specific reactions with target bladder cancer biomarkers, which 

means their responses to the VOC biomarkers are known, thus minimising the 

influence of information loss.  
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4.3.4.2. Feature extraction (FS): principal component analysis (PCA) 

Principal component analysis (PCA) is available in Statistics and Machine Learning 

Toolbox in MATLAB: 

[coeff,score,latent,tsquared,explained,m u] =  pca(X) 

 

X: input n-by-p data matrix. In our case, n represents the number of samples while p 

represents the number of features. coeff: principal component coefficients,which is a 

p-by-p matrix whereby each column represents the coefficient of one principle 

component (PC). score: represents the scores of each sample in each PC, it can be used 

as an input for other discriminate analysis. latent: principal component variances 

represented as a column vector; its size is the number of PCs and every element in it 

is the contribution of corresponding PC in score. tsquared: Hotelling's T-squared 

statistic (t2) for each sample in X. explained: same size as latent and is expressed as 

the percentage of each latent in total, representing the percentage of variance explained 

by each PC. This can help in choosing the number of PCs for dimensional reduction. 

mu: estimated means of the features in X, in our case it is the mean of all samples.  

Particularly, when p>n, the maximum number of PCs will be n-1, as the dimensions 

required to explain n sample in the multivariance space is one less than the number of 

samples. Therefore, the coeff matrix will be in p-by-(n-1) size, and score matrix will 

be n-by-(n-1) etc. 

As the results of dimensional reduction, the number of PCs (q) was chosen based on 

the accumulated explained. Usually, we use 95% variance explanation as the threshold; 

choosing this number of PCs means 95% of the variance is explained by the 

combination of selected PCs, with only 5% variance unexplained. Through the 

dimensional reduction by PCA, the feature matrix X becomes reduced score matrix 
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𝑿𝑿𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓, its size thereby is reduced from n-by-p to n-by-q. 

 

4.3.4.3. Discriminate Analysis: Linear Discriminant Analysis (LDA) 

In MATLAB, fitcdiscr is a built-in function in Statistics and Machine Learning 

Toolbox: 

M dl =  fitcdiscr(X,Y) 

 

It returns trained discriminant analysis classification model Mdl based on the input 

features array X and classification Y. 

In our case, X can be spectrum signal characteristic dataset 𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺  by feature 

selection or reduced score matrix 𝑿𝑿𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 by feature extraction, while the Y can 

be either VOCs names or cancer and non-cancer classes.  

The Classification Object Mdl has many properties; one is Mdl.Coeffs, which contains 

the coefficients for the linear boundary between classes and can be used for visualizing 

the classifier. For the prediction, the classifier aims to minimise the expected 

classification cost: 

ŷ = arg min
𝑦𝑦=1,⋯,𝑘𝑘

�𝑃𝑃�(𝑘𝑘|𝑥𝑥)𝐶𝐶(𝑦𝑦|𝑥𝑥)
𝐾𝐾

𝑘𝑘=1

4 

where 

ŷ is the predicted classification, K is the number of classes, 𝑃𝑃�(𝑘𝑘|𝑥𝑥) is the posterior 

probability of class k for observation x and 𝐶𝐶(𝑦𝑦|𝑥𝑥) is the cost of classifying an 

observation as y when its true class is k [150]. In two-classes classification, cost 

function can evaluate the prediction performance of the classifier.  
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4.3.4.4. Partial least squares Discriminant Analysis (PLS-DA). 

Partial least squares Discriminant Analysis (PLS-DA) is a linear classification 

algorithm that combines the partial least squares regression with the discrimination 

analysis for classification purposes. The PLS-DA using Latent Variables (LVs) to 

describe the input features of the algorithm, which are the linear combination of 

original features. Loadings are the coefficients of original features in the linear 

combination, while scores are the coordinates of each samples in the LV projection 

hyperspace. LVs, loadings, and scores are the most commonly used parameters in 

visualizing the results of PLS-DA classification.[151] 

The PLS-DA was performed using third-class Classification toolbox for MATLAB 

version 4.2 developed by Milano Chemometrics and QSAR Research Group[152]. 

This toolbox contains various classification algorithms with a graphic user interface 

for visualization the classification results.  

 Classification results 

Figure 4-9 shows some of the most significant spectra changes of sensory points during 

multiple-element array tests after exposure with different urinary VOCs biomarker of 

bladder cancer. The unfiltered differential spectra can be seen in Figure 4-4 to Figure 

4-7. 
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Figure 4-9 Sensor point responses to VOCs under excitation by 450nm, 532nm, and 365nm laser. The 

differential spectrum has been denoised using Savitzky-Golay filtering [123]. 

It is very clear that the sensory array has the most significant responses to nonanoyl 

chloride, then ethylbenzene and hexanal, while the Lauric aldehyde causes the weakest 

responses. This is due to the chemical properties of those VOCs. Acyl halide (nonanoyl 

chloride) is the most active compound of the four VOC biomarkers. Usually, aldehyde 

should be more active than alkylbenzene, but for our sensitive material, the changes of 

spectral property are more influenced by the π-π conjunction between the VOC 

molecules and the sensitive materials. Therefore, specific sensor points (see Figure 4-9 
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point 3 and 8) have higher responses to ethylbenzene than the two aldehydes. 

VOC Test Sensitivity Specificity 

Ethylbenzene 12 73% 89% 

Hexanal 12 38% 94% 

Lauric aldehyde 12 100% 90% 

Nonanoyl chloride 12 100% 100% 

 

 

Table 4-2 Leave-one-out cross-validation results of the VOCs test PLS-DA classification model, latent 

variables = 3, R2 = 0.97, Q2 = 0.83. 

As shown in Table 4-2, 12 repeat tests for each urinary bladder cancer biomarkers were 

conducted. A leave-one-out cross-validation was used for validating the PLS-DA 

classification model and achieved overall 77.75% sensitivity and 93.25% specificity. 

Among the four VOC biomarkers, the nonanoyl chloride unexpectedly achieved 100% 

classification accuracy due to its chemical properties being most different. The hexanal 

achieved the worst classification accuracy due to the structural and chemical similarity 

to Lauric aldehyde; the test passed the leave-one-out cross-validation by satisfying the 

condition of both percentages of explained variances in training (R2) and cross-

validating (Q2) datasets being larger than 0.4. 
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Figure 4-10 FS-LDA plot of urinary VOC bladder cancer biomarkers test (Feature selection) 

VOC Test Sensitivity Specificity 

Ethylbenzene 12 50% 94% 

Hexanal 12 58% 91% 

Lauric aldehyde 12 100% 83% 

Nonanoyl chloride 12 100% 96% 

 

 

Table 4-3 Leave-one-out cross-validation results of the VOCs test FS-LDA classification model, R2 = 

1.00, Q2 = 0.77  

Figure 4-10 shows the feature selection (FS) + LDA score plot of the four urinary VOC 
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bladder cancer biomarkers tested. From the 3D plot we can clearly see that all four 

groups are well separated and each element within the groups is well clustered. Three 

functions explained 100% of variance. The first function explained 96.2% of the 

variance with canonical correlation of 0.998. The second function explained 2.1% of 

the variance with canonical correlation of 0.932. The third explained 1.7% of the 

variance, canonical correlation at 0.915. In combination, these discriminant functions 

significantly differentiated all VOC groups. The index for describing discrete between 

groups, Wilk’s Lambda Λ < 0.01, the chi-square test of significance under 123 degrees 

of freedom: χ2 (123) = 233.71, p < 0.01, by removing the first function indicating that 

the second and third function can still differentiate the four VOC groups but not 

significantly, Λ = 0.02, χ2 (80) = 94.07, p = 0.14. The discriminant function plot 

showed that: the first function discriminated the nonanoyl chloride group from the 

other groups, the second function differentiated the hexanal group from the remaining 

two groups and the third function differentiated the ethylbenzene group from the 

Laurie aldehyde group. 
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Figure 4-11 PCA-LDA plot of urinary VOC bladder cancer biomarkers test (Feature extraction: 4 

components PCA) 

VOC Test Sensitivity Specificity 

Ethylbenzene 12 75% 92% 

Hexanal 12 42% 92% 

Lauric aldehyde 12 92% 86% 

Nonanoyl chloride 12 100% 100% 

 

 

Table 4-4 Leave-one-out cross-validation results of the VOCs test PCA-LDA classification model, 

principle components = 4 (explanation>90%), R2 = 0.79, Q2 = 0.77 (Feature extraction: PCA) 

Table 4-4 shows the sensitivities and specificities of PCA-LDA classification model 

of the four urinary VOC bladder cancer biomarkers tested. Four principle components 

were kept after PCA (>90% explanation). Compared to FS-LDA (Figure 4-10), the 

PCA-LDA score plot (Figure 4-11) has worse separation of the hexanal group from 

ethylbenzene and Lauric aldehyde groups, but it is still easily distinguishable from the 

remaining three groups. Three functions explained 100% of variance. The first 

function explained 91.0% of the variance with a canonical correlation of 0.919. The 

second function explained 7.9% of the variance with a canonical correlation of 0.567. 

The third explained 1.0% of the variance, canonical correlation at 0.241. However, all 

three Wilk’s Lambda Λ > 0.01 (0.1, 0.639, 0.942, respectively) indicate that the 

classification model may have poor performance in separate groups. 

This qualitative test shows the ability of different urinary VOC biomarkers in 
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identifying bladder cancer by the selecting sensitive materials. It also shows the (albeit 

limited) ability of this method in identifying structurally and chemically similar 

compounds like hexanal (C6 aldehyde) and Lauric aldehyde (C12 aldehyde). Both 

feature extraction and feature selection processing before discriminate analysis can 

achieve good classification performance. The comparison of the performance of three 

classification models is shown in Table 4-5: 

 Sensitivity Specificity Notes 

PLS-DA 77.75% 93.25% 3 latent variables 

PCA-LDA 77.25% 92.50% 4 principle components 

FS-LDA 77.00% 91.00%  

 

 

Table 4-5 Comparison of the classification performance of PLSDA, PCA-LDA, and FS-LDA. The 

sensitivities and specificities are generated from leave-one-out cross validation 

 

 



123 

 

 

 

Figure 4-12 a. PLS-DA score plot of various concentration tests of nonanoyl chloride, vapour 

concentration: 200 ppt ~ 200ppb, reaction time: 120s, carrier gas: nitrogen. b. Differential spectrum of 

element 1 under 450nm laser excitation when exposed to various concentrations of nonanoyl chloride. 

c. Differential spectrum of element 5 under 532nm laser excitation when exposed to various 

concentrations of nonanoyl chloride [123]. 

Figure 4-12.a shows a clear discrimination grouping of 200 ppb, 100 ppb, 5 ppb, and 

200 ppt of nonanoyl chloride by PLS-DA. The degree of dispersion of sample points 
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within the group shows that, at ppb level, the variation between each measurement is 

acceptable. Meanwhile, the variation becomes bigger at the sub-ppt level. As shown 

in Figure 4-12.b and Figure 4.12.c, there are clear changes in spectra intensity that are 

specific to elements and positively correlated with the concentration of VOC. Within 

ppbV range, the intensity changes are clear and significant. Contrastingly, once the 

concentration drops onto pptV (part-per-trillion volume) range, the intensity changes 

become insignificant and confused with background noise, which makes it harder for 

the PLSDA algorithm to identify.  

 

 Cost efficiency  

A typical commercial hand-held e-nose usually costs more than $5000. For example, 

a ppbRAE Plus system (used for homeland security and indoor air quality) costs about 

$6200, while a Cyranose 320 system with wide range of chemical detection costs about 

$8000. For our system, the main cost is from the optical system. An Ocean optic 

USB4000-FL fluorescence spectrometer costs about $3500 and a low-power LED light 

source costs around $1000. In combination, the cost of the components of the lab-

based system are at the same level as commercially available systems, while the 

material cost of each sensory array is as low as $0.5 per test. Notably, the 

aforementioned commercial e-noses are all integrated, which means the sensory setup 

is fixed and cannot be changed. Meanwhile, our system uses a low-cost sensory array 

that is customised for urinary VOCs test. This means, if necessary, it can be changed 

to adapt to other applications, or be upgraded further if new sensitive materials are 

found, without needing to change the main design of the device.  
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4.4. Conclusion 

In this chapter, the basic principle of sensing technology was reviewed. The artificial 

olfactory device or e-nose follows the same workflow as the natural animal olfactory 

system to identify the odours from gas samples. Compare to electronic (MOS, 

MOSFET, CP etc.) based sensors, non-electronic (QMB, SAW, optical etc.) based 

sensors usually have a lower detection limit and better sensitivity, but the relevant 

detecting systems are more complicated and sometimes more expensive. 

In this chapter, the fluorescence sensory array built based on selected sensitive 

materials mentioned in last chapter were tested using VOC test purposed-built device 

setups. Four literature reviewed urinary VOC biomarkers of bladder cancer: 

ethylbenzene, hexanal, Lauric aldehyde (dodecanal), and nonanoyl chloride were 

tested.  

Using discrimination analysis with algorithms LDA and PLS-DA, the classification 

models of four urinary VOC biomarkers were built. In verification of such models, 

leave-one-out cross validation was used. As a result, all four urinary VOC biomarkers 

were classified correctly, while the leave-one-out cross validation shows that the PLS-

DA classification model achieved overall 77.75% sensitivity and 93.25% specificity. 

In further tests, the limit of detection of the system was found between low-ppmV to 

medium-ppbV with acceptable discrimination.  

In conclusion, the experiments have shown that the fluorescence VOCs sensitive 

materials and their sensory array can respond to the presence of urinary VOC 

biomarkers of bladder cancer to reflect changes in their fluorescence spectra. Further 

statistical analysis revealed that the classification model can reach a high sensitivity 

(77.75%) and specificity (93.25%). With suitable statistical tools, the system has the 

potential to become a cost-effective point-of-care non-invasive diagnostic method for 

urinary bladder cancer.  
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5. Clinical Tests of Human Urine Samples 

5.1. Introduction 

In 2004, Willis et al. published a study using six trained detection dogs to identify 

human urine from bladder cancer patients and healthy controls [153]. The dogs 

successfully identified 22 out of 54 cancer patients, better than 14% accuracy rate by 

chance. Later, several animal olfactory studies were carried out to identify the urine 

samples from patients with lung [47, 48], breast [47], and prostate [49-51] cancer. 

Those studies revealed that the odours from human urine have information about 

certain health conditions, and those odours are detectable. 

Analytical chemistry has powerful tools, like gas chromatography (GC), liquid 

chromatography (LC) and mass spectroscopy (MS), for investigating the detailed 

composition of testing materials, including urine and the origin of its odour: volatile 

organic compounds (VOCs). Back in 1999, even earlier than the very first dog test, 

Spanel et al. used selected ion flow tube mass spectrometry (SIFT‐MS) to study the 

concentration of formaldehyde in the headspace of urine from patients with bladder 

(14) and prostate cancer (24), as well as 14 healthy volunteers [154]. They found that 

in both bladder and prostate cancer patients’ urine the concentration of formaldehyde 

was elevated, and the bladder cancer patients’ urine had even higher formaldehyde 

concentrations than prostate cancer patients. The authors speculated that this was 

because the bladder tumor has closer contact with urine than the prostate tumor, 

whereby formaldehyde must progress to urine from blood stream.  

Jobu et al., using GC-MS, studied urine samples from 9 bladder cancer patients before 

and after TURBT and 7 healthy controls [145]. They found 12 peak area increased 

metabolites in patients’ urine, and 5 of them were unique to bladder cancer patients’ 

urine when the tumor was not removed. They suggested that the 5 unique VOCs, 



127 

 

 

namely ethylbenzene, nonanoyl chloride, dodecanal, (Z)-2-nonenal, and 5-dimethyl-

3(2H)-isoxazolone could be used as urinary VOCs biomarkers.  

Silva CL et al. studied urine samples from 33 cancer patients (14 leukemia, 12 

colorectal and 7 lymphoma cancers) and 21 healthy volunteers using GC-qMS analysis 

[112]. The authors found that a total of 82 volatile metabolites were identified in both 

groups, while the compound classes and concentrations were dramatically different 

between cancer patients and healthy volunteers. Benzene derivatives, terpenoids and 

phenols were the most common classes from the cancer group, whereas ketones and 

sulphur compounds were the main classes of the control group. 2-methyl-3-phenyl-2-

propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-

naphthalene were observed to have significantly increased concentrations in cancer 

groups. This study confirmed the hypothesis that biogenic VOCs as cancer biomarkers 

do exist among various tpes of cancer, and the differences of biogenic VOCs occur in 

both classes and concentrations. 

Issaq HJ et al. used high performance liquid chromatography (HPLC)-MS to identify 

the urine samples of 48 healthy volunteers and 41 patients with bladder cancer [155]. 

The authors achieved 100% sensitivity and specificity using the OPLS-DA 

classification model and 98% sensitivity and 96% specificity using the unsupervised 

PCA model. Compared to other studies, this research focused more on analysing the 

VOCs profile of urine samples as a whole instead of targeting any specific VOC 

biomarkers and achieved remarkably good results, which showed the potential of full 

urinary VOCs analysis in diagnostic application. 

Cauchi M et al. studied urine samples from 72 patients with bladder cancer and 205 

controls using GC-MS with three different statistical analyses and machine learning 

algorithms PLS-DA, random forests, and support vector machine (SVM) [126]. They 

achieved 89% overall accuracy (90% sensitivity and 88% specificity) in classification 
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of cancer and non-cancer groups using PLS-DA. This study revealed that pattern 

recognition algorithms, especially PLS-DA, are feasible in the analysis of high 

dimensional data like chromatogram or spectra when coupled with suitable cross-

validation methods. It was also shown that the “dimensional curse” is not inevitable 

and building a reliable and robust classification model based on urinary VOCs profile 

is possible. 

Alberice et al. discovered 27 metabolites from the urine samples of 48 bladder cancer 

patients using LC-MS and capillary electrophoresis (CE)-MS [95]. This study also 

found that several metabolites (namely betaine, cysteine, histidine and tyrosine) have 

elevated levels in high-risk compared to low-risk patients, while tryptophan was found 

to be particularly significant in low-risk patients. They also found that several elevated 

metabolites in bladder cancer patients’ urine were related to bladder cancer recurrence 

and regulated by some biophysical pathways linked to well-known cancer mechanisms 

like immunity and oxygen stress. Although the biomarkers found in this study are not 

VOCs in the usual sense, the idea of correlating the metabolism products (including 

VOCs and non-VOCs) with prognosis of cancer is still instructive to our study. 

Besides, there are more studies that have found non-VOC urinary metabolite 

biomarkers using chromatography and MS coupling techniques. Pasikanti et al., using 

GC-ToFMS, studied urine samples from 24 bladder cancer patients and 51 non-cancer 

controls, achieving 100% sensitivity and specificity by the OPLS-DA classification 

model [93]. Then, they compared the spectra with a standard database and found 15 

significant differences in urinary metabolites between cancer and non-cancer groups. 

Jin et al., using high-performance liquid chromatography-quadrupole time-of-flight 

mass spectrometry (HPLC-QTOFMS), studied urine profiles of 138 bladder cancer 

patients and 121 controls [156]. They successfully distinguished not only cancer/non-

cancer, but also muscle-invasive/non-muscle-invasive cancer groups. Further study 
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found 12 differential metabolites and some of them (namely phosphoenolpyruvate, 

pyruvate, and acetyl-CoA) are related to glycolysis and beta-oxidation pathways. Zhou 

et al. studied urine samples from 50 bladder cancer patients and 35 healthy controls 

using GC-MS and built a classification model using PCA and PLS-DA [157]. They 

also collected urine samples from 59 bladder cancer patients and 37 healthy controls 

and used an external validation set to validate the classification model. They achieved 

85.7% sensitivity and specificity in a cross-validation in training set, and 70.5% 

sensitivity and 70.3% specificity in the external validation set. 

A recent study by Rodrigues et al. provided an ex-vivo point of view in the study of 

VOCs profile of bladder cancer [146]. Two transitional cell carcinoma cell lines (J82, 

5637), one squamous cell carcinoma cell line (Scaber), and one non-tumorigenic cell 

line (SV-HUC-1) were cultured and the VOCs from the extracellular medium were 

analyzed using GC-MS. Three VOC metabolites, namely 2-pentadecanone, dodecanal 

and γ-dodecalactone were found to be significant in the identification of bladder cancer 

and normal cell lines.  

In recent years, besides from the approaches of finding more biomarkers and 

improving the accuracy of GC/LC and MS, studies also introduced e-nose in 

identifying urinary VOC biomarkers. Weber CM et al., using GC in conjunction with 

12 MOS and 10 MOSFET gas sensor arrays, analysed urine samples from 30 bladder 

cancer patients and 59 controls [54]. The data analysis algorithms used were PCA and 

PLS-DA. The classification models achieved accuracies varying from 62.2% to 70.0% 

among identification between cancer groups and a control group of those with different 

urological conditions. Khalid T et al. analyzed 98 urine samples from 24 patients with 

bladder cancer and 74 controls with non-malignancy urological symptoms using an in-

house fabricated GC-MOS sensor device [124]. The LDA model successfully 

classified 24/24 of cancer groups and 70/74 of control groups and a leave-one-out 
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cross-validation of the PLSDA model achieved 95.8% and 94.6% sensitivity and 

specificity in prediction of the same samples, respectively. Heers et al. tested urine 

samples from 30 bladder cancer patients and 30 healthy controls with handheld CP e-

nose Cyranose™ 320 [125]. The LDA model successfully classified 28/30 cancer 

groups and 26/30 healthy controls. They also tested the influence of different frozen 

temperatures (-20°C and -80°C) and concluded that no significant effect was observed. 

Horstmann et al. reported a pilot study using MOS e-nose in the detection of urinary 

VOCs from 15 participants with a clinical suspicion of primary or recurrent bladder 

cancer and from 21 of those without cancer but with benign urological conditions [158]. 

Histological tests found 8 out 15 cancer group members have urothelial cancer, while 

the e-nose only detected 5 of them (75% sensitivity), while the system correctly 

identified 24 out of 28 in the control group (86% specificity).  

Last but not least, the recent publication from our research group (Zhu et al. [159]) 

used a novel fluorescence gas sensor array system and PLS-DA algorithm to test urine 

samples from 30 bladder cancer patients and 30 age- and gender-matched healthy 

controls. We successfully identified 54 out of 60 urine samples and achieved 90.00% 

accuracy with 86.67% sensitivity and 93.33% specificity overall. Furthermore, in 

classification of high-grade and low-grade bladder cancer, the novel system achieved 

76.67% accuracy with 78.57% sensitivity and 75.00% specificity overall. In the 

following part of this chapter, the study will be detailed, and the updated results will 

be fully analyzed and discussed. 

 

5.2. Materials & Method 

 Sample processing module 

As described in Chapter 3, the sample processing module for urine test was based on 
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a bubbler-safety bottle setup and driven by a RS Pro D250 micro diaphragm gas pump 

(RS Components Ltd, UK), the default flow speed is 380mL/min under 5V working 

voltage. 

 

 Reaction chamber design 

For the urine test, a smaller and more compact design of reaction chamber is made 

based on the VOC test’s chambers (Mark. III). The aim of this version is to adapt the 

nature of low concentration and small amounts of urine vapour. In addition to the 

smaller box shaped gas chamber, two semi-cylindrical chambers are attached to the 

inlet and outlet of the gas chamber. The semi-cylindrical chambers are mainly used for 

pre-mixing the urine vapour at the very beginning of each flow to balance the vapour 

concentration around the film surface and work as a buffer, preventing the film from 

contamination from urine spill. In this design, the sensory film is restricted to 

25mm×25mm square size and allowed to have a maximum of 25 elements as small as 

1mm diameter each.  

 

Figure 5-1 Reaction chamber Mark. III 
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 Patient Recruitment 

Ethical approval for this study was obtained through the East of Scotland Research 

Ethics Service (REC: 17/ES/0003) titled “Urinary volatile organic compounds (VOCs) 

in the diagnosis of urothelial bladder cancer” with sponsorship from TASC (University 

of Dundee/NHS Tayside). The application was made on 23 December 2016 for 80 

participants recruited for 12 months and approved on 22 February 2017. An 

application for amendment in order to extend the 12-month period was made on 26 

March 2018 and approved by the same authority on 27 March 2018. In total, 42 bladder 

cancer patients and 40 non-cancer controls were recruited in this study. The inclusion 

criteria were: 16-90 years old, cystoscopically or histologically confirmed new bladder 

tumour (cancer group), OR 16-90 years old, no urological infections or cancerous 

disease. All participants received a participant information sheet (PIS) and an 

introduction letter for this study and asked to provide signed informed consent form 

on the day of recruitment. The documents of recruitment are attached on Appendix.2.  

 Sample collecting protocol 

There were three different sources for participant recruitment:  

1. Patients receiving cystoscopy examination at the endoscopy department in Ninewells 
hospital; 

2. Patients about to receive the transurethral resection of bladder tumour (TURBT) at 
the surgery department in Ninewells hospital; 

3. Patients visiting the urology outpatient clinic in Ninewells hospital. 

For the participants from each source, there are slight differences in the protocols for 

collecting urine sample:  

For case 1, patients need to empty their bladder prior to the cystoscopy examination. 

A small part of the voided urine was used for a dipstick test to check for any urinary 

infections and the remains were then temporary stored in the urine container covered 

with lid. When a patient was found to have a tumour in the bladder during the 
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cystoscopy examination, the clinic nurse introduced him/her to the study and provided 

the recruitment documents. Once he/she agreed to participant and signed the consent 

form, his/her urine sample was be transferred to a sealed sterilized urine beaker and 

frozen in -20 °C immediately.  

For case 2, the TURBT waiting list was checked by a senior urologist and surgeon in 

advance and suitable potential participants were selected based on the patient’s clinical 

report. Once the potential participant arrived to the pre-surgery ward, the clinic nurse 

introduced the study to him/her and provided the recruitment documents, along with a 

leaflet describing the procedure of passing the urine to the urine beaker without 

contamination. Once the patient agreed to participant and signed the consent form, 

he/she was provided with a sealed sterilized urine beaker to collect the urine sample. 

Successfully collected urine samples were then frozen under -20 °C immediately. 

For case 3, most of the controls came from this source. The clinic nurse was in charge 

of filtering the potential participants from patients visiting the urology outpatient 

department in Ninewells hospital. The inclusion criteria were: age and gender 

matching the existing cancer group and no urological infections or known cancerous 

disease. Similar to case 2, the potential participants were given the recruitment 

documents and guidance notes on collecting urine samples. Upon signing the consent 

form, the urine samples were collected and stored immediately.



134 

 

 

 

 

Figure 5.5-2 Recruitment flowchart for each case. WLC: white light cystoscopy; PIS: patient information sheet; CF: consent form; TURBT: transurethral resection of bladder 

tumour.
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 System workflow 

On the day of testing, frozen urine samples were moved out of the -20°C freezer to 

defrost in a 37°C water bath. Simultaneously, the “before” spectra of the sensor array 

film were measured using the LAKK-M device. Then, the defrosted urine sample was 

centrifuged at 5000rpm for 5min to remove the sediment. 1.5mL of the urine 

supernatant was then transferred to a 15mL tube and 1.5mL of 1M NaOH solution was 

added and incubated for 30min in the 37°C water bath. After incubation, the tube with 

urine solution was mounted to the sample processing module, the pump then turned 

on for 2min to circulate the urine vapour within the reaction chamber. After “pre-mix”, 

the sensory array film was put into the reaction chamber and the pump was turned on 

for another 2min to allow the sensitive materials on the film to interact with the urinary 

VOCs. After reaction, the sensory array film was measured again for “after” spectra, 

and the tubing and reaction chamber were purged with clean air to remove any 

residuals. 

  

5.3. Results & Discussion 

For all cases, urine collection was part of the standard operating procedure, no 

additional procedures were added to the routine. All the recruitment documents were 

paper archived: the signed consent forms were kept by research team, while the study 

introduction letters and PIS were archived in participants’ clinic notes for future 

reference. All participants’ age, gender and medication history were collected and 

study-related diagnoses (including histopathological results) of cancer patients were 

authorised to be obtained by the research group. All information was stored in a 

password protected NHS computer and only authorised members of the research team 
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were able to access it. 

 Patient demographic 

Table 5-1 shows the original patient demographic of this study. In total, 83 participants 

were recruited, with 42 of them having suspected bladder cancer (tumour found 

through imaging examination before TURBT and biopsy examination) and the 

remaining 41 being healthy volunteer controls. 10 out of 42 cancer group members 

were recruited from a pre-surgery ward in Ninewells hospital, while the remaining 32 

were recruited from the endoscopy department in same hospital. All the control group 

members were recruited from Ninewells hospital’s urology outpatient clinic. 

Characteristic Cancer (n= 42) Control (n= 41) 
A ge (Years):   

   M eans 72.88 67.73 
   Range 33-92 25-85 
G ender:   

   M ale 33 (78.6%) 35 (85.4%) 
   Fem ale 9 (21.4%) 6 (14.6%) 

 

 

Table 5-1 Participant demographics of original recruitment 

The average age of the cancer group was 72.88 years old, ranging from 33 to 92 years 

old, with a male to female ratio 33:9, mean ages 73.06 and 72.22, respectively. The 

average age of the control group was 67.45 years old and ranged from 25 to 85 with a 

male to female ratio of 34:6, aged 71.74 and 43.17 years old, respectively.  

All urine samples from cancer group members were collected before they had TURBT 

and biopsy. The pathological results of the biopsy were analysed by the pathology 

department in Ninewells hospital and discussed by doctors during routine 

multidisciplinary team (MDT) meetings in which the clinical diagnosis was given. The 
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diagnosis opinions recorded in MDT meeting documents were considered as a 

decisional diagnosis and were used as the “true condition” for discrimination analysis 

and further discussion.  

Among all 42 cancer group members, 1 patient (Research code: BC5) was diagnosed 

as “No evidence of malignancy” by pathological examination and was removed from 

cancer group. Three patients (Research codes: BC10, BC37, BC40) failed to provide 

sufficient or qualified samples for pathological examinations hence no pathological 

opinions were given; those 3 patients were removed from the cancer group as well. 

Updated participant demographic and cancer groups’ pathological diagnosis opinions 

are shown in Table 5-2: 

Characteristic Cancer (n= 38) Control (n= 41) 

A ge (Years):   

   M eans 72.74 67.73 

   Range 33-92 25-85 

G ender:   

   M ale 31 (81.6%) 35 (85.4%) 

   Fem ale 7 (18.4%) 6 (14.6%) 

G rading:   

   G 1 1 (2.6%)  

   G 2-Low  19 (50.0%)  

   G 2-H igh 9 (23.7%)  

   G 3 9 (23.7%)  

Staging:   

   pTa 27 (71.0%)  

   pT1 6 (15.8%)  

   pT2 5 (13.2%)  

 

 

Table 5-2 Updated participant demographic and cancer group members pathological diagnosis results 

 Urine sample preparation 

The vapour-liquid equilibrium of VOCs in water solution follows Raoult’s law: 
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p = 𝑝𝑝𝐴𝐴∗𝑥𝑥𝐴𝐴 + 𝑝𝑝𝐵𝐵∗ 𝑥𝑥𝐵𝐵 + ⋯ 

It states that the partial vapor pressure of each component 𝑝𝑝𝑖𝑖 of an ideal mixture of 

liquids is equal to the vapour pressure of the pure component 𝑝𝑝𝑖𝑖∗ multiplied by its 

mole fraction 𝑥𝑥𝑖𝑖 in the mixture. 

In reality, because of the interactions between components, the vapour-liquid 

equilibrium of the real solution does not always follow Raoult’s law, as shown in 

Figure 5-3. The total vapour pressure of a solution may have positive or negative 

deviation from Raoult’s law, meaning the vapour-liquid equilibrium may be different 

to the calculation. When the interaction force between different molecular components 

in the solution is lower than the force between dissimilar molecular components, the 

pressure and polarity will cause more molecules to escape the solution, therefore the 

vapour pressure would be greater than the Raoult’s law calculation, showing positive 

deviation. Opposingly, the negative deviation of Raoult’s law happens when the 

adhesive and cohesive forces between the mixture are stronger than the purified 

solution; the molecules are more likely to stay in the solution, causing lower vapour 

pressure and lesser gaseous state molecules to release.  
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Figure 5-3 Vapour pressure curves of different Azeotrope solution compared to ideal Raoult's law[162]. 

One of the most important influencing factors of molecular interaction forces in 

solution is the ionic strength. The ionic strength is the concentration of ions in the 

solution, it can affect many properties of the solution such as the dissociation constant 

or the solubility of different compounds. Usually, increasing the ionic strength of the 

solution can enhance the VOCs released because the charge around the ions in the 

solution can attract the component molecules in the solution and reduce the interaction 

forces between existing solution components, thus enhancing the positive deviation of 

Raoult’s law. The most commonly used ionic additions for urine analysis are salt (e.g. 

NaCl), acid (e.g. HCl) and alkali (e.g. NaOH) additions.  

For the acid and alkali additions, another important influencing factor is pH value. 

Change of pH value can largely influence the VOC’s profile of urine because the H+ 

and OH- ions will push the ionisation equilibrium of a weak acid or base toward the 

unionised forms, thus enhancing the corresponding compounds released from the 
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solution. In addition, the acid or base condition may promote further reactions with 

existing compounds in the solution and produce secondary volatile or non-volatile 

compounds [160]. For example, esters are expected to hydrolyse greater under basic 

conditions, thus leading to more alcohols and less esters releases from the solution. In 

general, acid and alkali additions cause more species and higher concentrations of 

VOCs release into the urine vapour than salt additions [161]. 

In this study, all the urine samples were treated with the same amount of basic solution 

(1:1 1M NaOH solution) to ensure the same condition, no further VOC enhancement 

was carried out. Although acid addition may result in higher enhancement of VOC’s 

urine vapour, the volatile nature of acid itself may bring interference to pH sensitive 

materials in our sensory array. Besides, the hydrocarbon enhancement by acid addition 

is harder for our sensory array to detect, while the alcohol enhancement by alkali 

addition is an ideal detection target for the sensory array we made. 

 

 Effect of storage and freezing-thawing 

Smith et al. studied the VOCs profile when it was fresh and after 2hrs, 4hrs, 6hrs and 

8hrs of storage at room temperature, and subsequently frozen-thawed urine samples 

using GC-MS [161]. They found that deep freezing can preserve the VOC’s profile of 

the urine sample without appreciable loss of volatility. The time between urine 

collection and freezing did not affect the VOC’s profile, but they observed some peak 

area changes after 8hrs of storage at room temperature prior to freezing and estimated 

that this was because of microbial production or utilisation of urine components. This 

study suggests that the urine sample can be stored for a short time before freezing, and 

that frozen-thawed urine samples are still useable for VOC’s analysis. 

Due to the nature of our methods, it was not possible to carry out a quantitative study 
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of the VOC’s profile differences between fresh and frozen-thawed urine samples like 

GC-MS does, but the comparison of the response signals of the device is still 

meaningful. As shown in Figure 5-4, most of the sensor elements have no differences 

in response signals between fresh and frozen-thawed urine samples, though element 3, 

4, and 8 showing some peak shifts in the differential spectra. Those signals are not 

gone through denoising filter in order to maintain the raw responses from fluorescence 

sensors. The differences of element 3, 4, and 8 are mainly because the interference 

from background noise, the level of shifts is very weak therefore cannot be 

distinguished. In combination of conclusion from previous studies and our tests, we 

can think that the impact to VOCs profiles of human urine from single frozen-thawed 

cycle is negligible. However repeated freezing-thawing are not suggested, it because 

the microbes may grow and produce VOCs during thawing process and cause 

interference to the urinary VOC profiles. This is the same reason for avoids long delays 

prior to the urine sample freezing (longer than 8 hours of storage in room temperature), 

microbes may grow and produce metabolites, including VOCs. In this project, all urine 

samples were frozen within 2 hours of collection, and were tested within one month of 

storage. 
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Figure 5-4 Comparison of signal profile of fresh and frozen-thawed urine samples 

 Discrimination analysis 

The discrimination analysis methods are the same as VOCs tests: feature 

selection/extraction and LDA, serial differential spectrum PLS-DA for a classification 

model and leave-one-out cross validation for validating such model. 

In short, the feature selection/extraction are two methods to reduce the sample 

dimensions and improve the model calculation performance. The feature selection 

method in this study was signal characteristics extraction. It described the differential 

spectrum through several characteristics: Maximum Peak Value (MXV) and 

Wavelength (MXW), Minimum Peak Value (MNV) and Wavelength (MNW), and 

Peak Area (PA). The spectrum signals characteristic dataset 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆 was a combination 

of each elements’ differential spectrum signal characteristics on the sensory array and 

was then used as an input dataset for LDA. The feature extraction method used in this 

study was PCA. The PCA described the features of the differential spectrum by linear 

transformation of the raw dataset and generated a new smaller dataset that could 

describe the original dataset to the greatest extent. The new dataset, reduced score 

matrix 𝑋𝑋𝑁𝑁𝑟𝑟𝑟𝑟𝐺𝐺𝑟𝑟𝑁𝑁𝑁𝑁𝑟𝑟, was then used as an input dataset for LDA modelling. 

LDA was used for building the classification model. It used a linear combination of 

features to generate a function that aimed to maximise the differences between each 

group and to minimise the differences within each group. The function, called cost 

function, can be used for predicting the classification of unknown samples.  

PLS-DA was used independently without prior feature selection or extraction, it is the 

combination of partial least squares regression with discrimination analysis. The PLS 

algorithm works as feature extraction and noise reduction and its properties are ideal 

for a dataset that has more variables than sample numbers, like ours. 
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5.3.4.1. Classification of cancer and non-cancer groups (diagnosis) 

The classification model of cancer and non-cancer is the approach is to distinguish the 

bladder cancer group from healthy control group, it is the primary target of the study. 

To achieve that, all three previous discussed discriminate analysis algorithms: FS-LDA, 

PCA-LDA, PLS-DA were used for building the classification model. 

 

Figure 5-5 Canonical score plot of FS-LDA classification model 
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Table 5-3 Leave-one-out cross-validation results of FS-LDA model 

Figure 5-5 and Table 5-3 show the classification results of the FS-LDA model, cross-

validated by leave-one-out cross validation. The FS-LDA model successfully 

identified 65 out of 79 urine samples with an overall accuracy of 82.28%. The cross-

validation sensitivity and specificity were 76.32% and 87.80%, respectively. 

Total population Bladder Cancer BC Health Control HC Prevalence Accuracy (ACC)

79 38 41 0.481012658 82.28%

Predicted BC True positive False positive
Positive predictive value 

(PPV)
False discovery rate

 (FDR)

34 29 5 0.852941176 14.71%

Predicted HC False negative True negative False omission rate
 (FOR)

Negative predictive value 
(NPV)

45 9 36 20.00% 0.8

True positive rate
 (TPR)

False positive rate
 (FPR)

Positive likelihood ratio
 (LR+)

Diagnostic odds ratio
 (DOR) 

76.32% 12.20% 6.257894737 23.2

False negative rate 
(FNR)

 True negative rate 
(TNR) 

Negative likelihood ratio
 (LR−)

F1 score

23.68% 87.80% 0.269736842 0.805555556
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Figure 5-6 Score plot PCA-LDA classification model, principle components = 5 

 

Table 5-4 Leave-one-out cross-validation results of PCA-LDA classification model (principle 

components = 5) 

Total population Bladder Cancer BC Health Control HC Prevalence Accuracy (ACC)

79 38 41 0.481012658 78.48%

Predicted BC True positive False positive
Positive predictive value 

(PPV)
False discovery rate

 (FDR)

31 26 5 0.838709677 16.13%

Predicted HC False negative True negative False omission rate
 (FOR)

Negative predictive value 
(NPV)

48 12 36 25.00% 0.75

True positive rate
 (TPR)

False positive rate
 (FPR)

Positive likelihood ratio
 (LR+)

Diagnostic odds ratio
 (DOR) 

68.42% 12.20% 5.610526316 15.6

False negative rate 
(FNR)

 True negative rate 
(TNR) 

Negative likelihood ratio
 (LR−)

F1 score

31.58% 87.80% 0.359649123 0.753623188
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Figure 5-6 and Table 5-4 show the classification results of PCA-LDA model, cross-

validated by leave-one-out cross validation. The PCA-LDA model successfully 

identified 62 out of 79 urine samples with an overall accuracy of 78.48%. The cross-

validation sensitivity and specificity were 68.42% and 87.80%, respectively. 

 

 

Figure 5-7 Score plot of PLSDA classification model, latent variables = 4 

 

Table 5-5 Leave-one-out cross-validation results of PLSDA classification model (4 latent variables) 

Total population Bladder Cancer BC Health Control HC Prevalence Accuracy (ACC)
79 38 41 0.481012658 86.08%

Predicted BC True positive False positive
Positive predictive value 

(PPV)
False discovery rate

 (FDR)
37 32 5 0.864864865 13.51%

Predicted HC False negative True negative False omission rate
 (FOR)

Negative predictive value 
(NPV)

42 6 36 14.29% 0.857142857
True positive rate

 (TPR)
False positive rate

 (FPR)
Positive likelihood ratio

 (LR+)
Diagnostic odds ratio

 (DOR) 
84.21% 12.20% 6.905263158 38.4

False negative rate 
(FNR)

 True negative rate 
(TNR) 

Negative likelihood ratio
 (LR−)

F1 score

15.79% 87.80% 0.179824561 0.853333333
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Table 5-5 shows the classification and leave-one-out cross validation results of the 

PLSDA model and the number of latent variables (4). As shown above, the PLSDA 

model successfully identified 68 out of 79 urine samples with an overall accuracy of 

86.08%. The cross-validation sensitivity and specificity were 84.21% and 87.80%, 

respectively. As shown in Figure 5-7, the score plot can clearly separate the two groups 

with very little overlay. 

To further validate the model, a 20% random Mote Carlo cross-validation was 

performed. This method randomly divides the dataset into training (80% of the 

samples) and testing (20% of samples) datasets, and the algorithm attempts to build 

the model using only the training dataset and to verify the model using the testing 

dataset. This is repeated 1,000 times. This is a strong cross-validation method and can 

largely challenge the prediction ability of the model. Compared to other cross-

validation methods, the major disadvantage of random Mote Carlo is that it requires a 

large amount of calculation of resources and is more time consuming. 

In a total of 1,000 iterations of 16,000 predictions, the PLSDA model hit 13,081 times 

correctly with 81.76% overall accuracy, 77.42% sensitivity and 85.82% specificity. 

The detailed confusion matrix is shown in Table 5-6. 

 

Total population Bladder Cancer BC Health Control HC Prevalence Accuracy (ACC)

16000 7742 8258 0.483875 81.76%

Predicted BC True positive False positive
Positive predictive value 

(PPV)
False discovery rate

 (FDR)

7165 5994 1171 0.836566643 16.34%

Predicted HC False negative True negative False omission rate
 (FOR)

Negative predictive value 
(NPV)

8835 1748 7087 19.78% 0.802150538

True positive rate
 (TPR)

False positive rate
 (FPR)

Positive likelihood ratio
 (LR+)

Diagnostic odds ratio
 (DOR) 

77.42% 14.18% 5.459860607 20.75299818

False negative rate 
(FNR)

 True negative rate 
(TNR) 

Negative likelihood ratio
 (LR−)

F1 score

22.58% 85.82% 0.263087799 0.804185953
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Table 5-6 Confusion matrix of 20% random Mote Carlo cross-validation of PLSDA model, latent 

variables = 4 

In summary, three discriminate analysis were performed using same dataset, by 

comparison, the PLSDA model achieved highest sensitivity and specificity, FS-LDA 

second, and the PCA-LDA third. One of the main concerns of discriminate analysis is 

the possibility of overfitting, which means the discriminate algorithm picked up too 

many unnecessary features of input data and overwhelmed the real difference. To 

prevent that from happening, cross-validation is needed. 

The leave-one-out cross-validation is a trade-off of bias and variance: each time it uses 

all except one sample to train the model, which makes it almost has no bias, but when 

the sample number is small, it tends to be easier to having overfitting, therefore the  

20% random Mote Carlo cross-validation was used to further investigate whether the 

overfitting happened or not. Luckily, both the sensitivity and specificity have not fallen 

too much, which means that the possibility of overfitting is minimized. 

One of the interesting phenomena is that all three discriminate analysis achieved the 

same specificity, with 5 false positive hits, the study code of the five easy-to-confused 

samples are: C2, C7, C23, C34, C39. All of them are men, average age 72.2 (62-84), 

which is nearly 10 years older than the average ages of all control group, this suggests 

those five men might have some sort of metabolic disorders or hidden influence factors 

yet to know and requires further studies. Although the exact reasons of why the urine 

samples from these five participants have similar sensor responds to cancer patients is 

still unclear, this results also proved that all three discriminate algorithms can pick up 

the same special features from the spectral data that different from the labeled groups, 

hence mutually verified the ability of choosing most significant features of the three 

algorithms.  
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5.3.4.2. Classification of high-grade and low-grade cancer groups (grading) 

As described in Chapter 1, the biogenic VOC’s profile may express differently among 

different phenotypes of cancer cells, which means the high-grade and low-grade 

tumours may have different VOCs profiles and that this might be detected by our 

system. 

 

Figure 5-8 Score plot of PLSDA grading model, latent variables = 10 
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Table 5-7 Leave-one-out cross-validation results of PLSDA grading model (10 latent variables) 

As shown in Table 5-7, the PLSDA grading model successfully identified 27 out of 38 

urine samples with an overall accuracy of 71.05% and cross-validation sensitivity and 

specificity of 66.67% and 75.00%, respectively. However, with such a small sample 

size, the model may have overfitted, therefore further cross-validation is needed. 

 

Table 5-8 Confusion matrix of 20% random Mote Carlo cross-validation of PLSDA grading model, 

latent variables = 10, 3996 out of 8000 samples failed to assigning groups. 

Similar to the classification model, a 20% random Mote Carlo cross-validation was 

used for validating the PLSDA grading model. In a total of 1,000 iterations of 8,000 

Total population High Grade HG Low Grade LG Prevalence Accuracy (ACC)
38 18 20 0.473684211 71.05%

Predicted HG True positive False positive
Positive predictive value 

(PPV)
False discovery rate

 (FDR)

17 12 5 0.705882353 29.41%

Predicted LG False negative True negative False omission rate
 (FOR)

Negative predictive value 
(NPV)

21 6 15 28.57% 0.714285714

True positive rate
 (TPR)

False positive rate
 (FPR)

Positive likelihood ratio
 (LR+)

Diagnostic odds ratio
 (DOR) 

66.67% 25.00% 2.666666667 6

False negative rate 
(FNR)

 True negative rate 
(TNR) 

Negative likelihood ratio
 (LR−)

F1 score

33.33% 75.00% 0.444444444 0.685714286

Total population High Grade HG Low Grade LG Prevalence Accuracy (ACC)
5581 2545 3036 0.456011467 71.74%

Predicted HG True positive False positive
Positive predictive value 

(PPV)
False discovery rate

 (FDR)

2502 1735 767 0.693445244 30.66%

Predicted LG False negative True negative False omission rate
 (FOR)

Negative predictive value 
(NPV)

3079 810 2269 26.31% 0.736927574

True positive rate
 (TPR)

False positive rate
 (FPR)

Positive likelihood ratio
 (LR+)

Diagnostic odds ratio
 (DOR) 

68.17% 25.26% 2.698473116 6.336560594

False negative rate 
(FNR)

 True negative rate 
(TNR) 

Negative likelihood ratio
 (LR−)

F1 score

31.83% 74.74% 0.425857699 0.687537151
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grading predictions, the PLSDA model hits 4,004 times correctly with 3996 failed 

attempts to assign groups. Among the successfully assigned samples, the grading 

prediction hit 68.17% sensitivity and 74.74% specificity. The detailed confusion 

matrix is shown in Table 5-8. This result suggests that the sample size is too small for 

training the grading model, therefore nearly 50% of the testing samples cannot be 

assigned to groups. This also means the grading model still has room for improvement 

in future larger scale population studies.  

 

Figure 5-9 Canonical score plot of PCA-LDA grading model, principle components = 3 
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Table 5-9 Leave-one-out cross-validation results of PCA-LDA grading model (3 principle components) 

As shown in Table 5-9, the 3 components of the PCA-LDA grading model achieved 

exactly the same cross-validation results as the PLS-DA grading model. However, the 

sample size limited the explanatory power of the model, therefore further larger 

population studies are needed exploring the potential of grading based on urinary 

VOCs detection. 

 

5.3.4.3. Classification of invasiveness of cancer groups (staging) 

Among all 38 cancer group members (see Table 5-2), there were 27 members in Ta 

stage when urine samples were collected, 6 in T1 and 5 in T2. Here, we divide the 

samples in two groups: a non-invasive group (including all members with pTa 

diagnosis) and an invasive group (including members with pT1 and pT2 diagnosis). 

Since the non-invasive group are the majority (more than 70%), the classification 

model was unbalanced and therefore the results are only for reference. The potential 

of cancer staging based on urinary VOCs detection needs to be confirmed with larger 

cohort studies in the future. 

Total population High Grade HG Low Grade LG Prevalence Accuracy (ACC)
38 18 20 0.473684211 71.05%

Predicted HG True positive False positive
Positive predictive value 

(PPV)
False discovery rate

 (FDR)

17 12 5 0.705882353 29.41%

Predicted LG False negative True negative False omission rate
 (FOR)

Negative predictive value 
(NPV)

21 6 15 28.57% 0.714285714

True positive rate
 (TPR)

False positive rate
 (FPR)

Positive likelihood ratio
 (LR+)

Diagnostic odds ratio
 (DOR) 

66.67% 25.00% 2.666666667 6

False negative rate 
(FNR)

 True negative rate 
(TNR) 

Negative likelihood ratio
 (LR−)

F1 score

33.33% 75.00% 0.444444444 0.685714286
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Table 5-10 Leave-one-out cross-validation results of PLSDA staging model (4 latent variables) 

From a biophysical point of view, the biogenic VOCs profile are correlated with the 

metabolism alternation of the cancer cells. Cancer cells with different aggressiveness 

may have different VOC profiles. With the cancer progression, the more aggressive 

tumour tissue may start to penetrate deep into the muscle layer which can cause non-

invasive cancer to become invasive. In this case, the VOC’s profile could become 

similar to the former non-invasive but high-grade tumour, or, it could also adapt to the 

new microenvironment and develop new metabolism alternations and generate 

different VOC profiles. The limited evidence of our VOC’s staging model supports the 

former hypothesis; the classification of different grading is better than staging, which 

means that the cancer cells metabolism phenotype, determined according to their 

aggressiveness, have a larger impact on VOC profiles and distinction than their 

microenvironment (decided by tumour tissue progression). Again, this part of the work 

is limited by the small sample size and such hypotheses are based on limited evidence; 

future larger cohort studies may help to further clarify this problem. 

Total population Invasive Non-invasive Prevalence Accuracy (ACC)
38 11 27 0.289473684 57.89%

Predicted Inv True positive False positive
Positive predictive value 

(PPV)
False discovery rate

 (FDR)

11 3 8 0.272727273 72.73%

Predicted Ninv False negative True negative False omission rate
 (FOR)

Negative predictive value 
(NPV)

27 8 19 29.63% 0.703703704

True positive rate
 (TPR)

False positive rate
 (FPR)

Positive likelihood ratio
 (LR+)

Diagnostic odds ratio
 (DOR) 

27.27% 29.63% 0.920454545 0.890625

False negative rate 
(FNR)

 True negative rate 
(TNR) 

Negative likelihood ratio
 (LR−)

F1 score

72.73% 70.37% 1.033492823 0.272727273
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 Comparison with other similar studies 

Study Study size 
n (cancer+control) 

Techniques Sensitivity Specificity Note 

[153] 144 (36+108) Detection dogs 0.41 N/A  
[155] 89 (48+41) HPLC-MS 1.00 1.00 No CV 
[126] 277 (72+205) GC-MS 0.90 0.88  
[93] 75 (24+51) GC-ToFMS 1.00 1.00 Non-VOC 

[157] 85 (50+35) training 
96 (59+37) testing 

GC-MS 0.86 
0.70 

0.86 
0.70 

CV 
External validate 

[54] 89 (30+59) GC+e-nose 0.62 0.70  
[124] 98 (24+74) GC-MOS 0.96 0.95  
[125] 60 (30+30) CP 0.75 0.86 No CV 
Mean 126.6  0.80 0.87  
OURS 79 (38+41) fluorescence 0.84 0.88  

 

 

Table 5-11 Comparison of other studies of urine-based diagnosis of bladder cancer. N/A: Not available; 

CV: cross-validation 

Table 5-11 summarized the clinical studies of using urinary metabolome/VOCs 

biomarkers for diagnosing bladder cancer. Note some of the studies only performed 

classification without the cross-validation, which may have over-fitting occurs of the 

model, therefore the classification accuracy may show higher than the real 

performance. The average study population is 126.6 participants, with mean sensitivity 

of 0.80, specificity of 0.87. If only compare to the e-nose studies, the average study 

population is 82.3 participants, with mean sensitivity of 0.78 and specificity of 0.84. 

No matter compares to overall averages or other e-nose studies our study has better 

sensitivity and specificity.  

5.4. Conclusion 

In this chapter, current studies of diagnosing bladder cancer using urinary VOC 

biomarkers were reviewed. Comparing to the most used detection method GC/LC-MS, 
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the e-nose is one of the potential techniques in development of point-of-care urinary 

VOC diagnosis devices. At the point of writing this thesis, only a few studies have had 

trials using real human urine from bladder cancer patients; the results look promising, 

but more attention with larger sample sizes and continuous investment is needed. 

In this chapter, the system used in Chapter 3 was fully upgraded to adapt the 

requirement of urine tests. To achieve this, the sample processing module and reaction 

chamber were redesigned, a small air-bubbler-like device was used for replacing the 

flowmeter system. Ethic approval for this study was obtained through the East of 

Scotland Research Ethics Service (REC: 17/ES/0003). In total 42 bladder cancer 

patients and 40 non-cancer controls were recruited. After confirmation of pathological 

diagnostic results, the sample population was adjusted to 79, with 38 bladder cancer 

patients and 41 non-cancer controls. 

Using the PLSDA algorithm, a classification model was built. Leave-one-out and 20% 

random Mote Carlo cross-validation were used for validating the performance of the 

model. As a result, the PLSDA model successfully identified over 80% of urine 

samples (86.08% with leave-one-out, 81.76% with Mote Carlo cross-validation) with 

77.42%-84.21% sensitivity and 85.82%-87.80% specificity.  

A grading model was built based on the PLSDA algorithm and leave-one-out and 20% 

random Mote Carlo cross-validation were used for validating the performance of the 

model. As a result, the PLSDA model successfully identified 27 out of 38 urine 

samples with leave-one-out cross-validation 4,004 out of 8000 times, with 3996 failed 

group assignment using 20% random Mote Carlo cross-validation. The cross-

validation sensitivity and specificity of leave-one-out cross-validation was 66.67% and 

75.00%, respectively. However, due to the large numbers of group assignment failures, 

we could only carefully consider the fluorescence urinary VOCs detection system with 

the PLSDA model. The fluorescence urinary VOCs detection system has potential in 
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assisting grading of bladder cancer however more experiments with a larger cohort 

may help to confirm this. 

In conclusion, the fluorescence urinary VOCs detection system successfully classified 

urine samples of bladder cancer patients from those of healthy controls with good 

sensitivity and specificity. This system also shows potential in the classification of 

high-grade and low-grade bladder cancer patients, but further experiments are needed 

to confirm this. These results indicated that using low-cost fluorescence gas sensor 

arrays for non-invasive urinary bladder cancer diagnosis is feasible. Future 

development of novel low-cost portable devices for bladder cancer diagnosis and 

surveillance could benefit from this technique. 
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6. Conclusion and Future Works 

The aim of this thesis was to explore new techniques for bladder cancer diagnosis and 

management, and to address the difficulties of existing diagnosis methods. 

Conventional flexible cystoscopy lacks sensitivity of low-grade cancer and carcinoma 

in situ, while photodynamic enhanced cystoscopy improved the sensitivity but reduced 

specificity, especially with inflamed tissue and tissue that treated with chemotherapy 

and surgery. Conventional non-invasive methods like urinary cytology have very low 

sensitivity and largely depends on the experience and judgement from pathologists. 

Novel urinary biomarker tests like NMP22 and UroVysion have fair sensitivity and 

specificity and significant lower cost comparing to interventional cystoscopy and 

biopsy, however, those techniques were considered as supplementary rather than 

primary diagnosis methods for bladder cancer. 

One of the reasons limiting the uses of urinary biomarker tests is the ease of use, 

UroVysion and FISH involves additional process step during conventional cystoscopy 

and biopsy procedure, while NMP22 or BTA assay does not but they also have lower 

sensitivities, when consider the benefit of urinary tests for bladder cancer diagnosis, 

the extra impact and cost on existing processes are not negligible. 

In order to address the concerns of diagnostic accuracy, ease of use and cost, I think 

using volatile organic compounds (VOCs) as diagnostic biomarkers for bladder cancer 

might be a good idea, biogenic VOCs contain information about nutrients concerning 

human health, from ancient to modern time people have found thousands of VOCs in 

human urine and have linked them with various diseases. Specific to bladder cancer, 

the urinary VOCs are demonstrating different levels or species between cancer cells 

and healthy cells, it may be induced by various metabolism and nutritional changes 

during tumour growth such as oxidative stress, cytochrome p450 detoxication, 
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carbohydrates metabolism (glycolysis/gluconeogenesis pathways), and lipid 

peroxidation. In chapter 2, I reviewed the latest metabolism pathways and possible 

explanation of cancer onset and specific VOCs presenting, and how those VOCs be 

linked with cancer grading and staging, this literature review provided a 

comprehensive biological and medical background of bladder cancer and urinary 

VOCs, and gave a theoretical support for application of urinary VOCs in diagnosis and 

management of bladder cancer. 

In chapter 3, I introduced the physical chemistry and optical principles of fluorescence 

gas sensitive materials. Three major types of fluorescence gas sensitive materials: 

Lewis acid/base dyes, such as porphyrins and metalloporphyrins; dyes responding to 

Bronsted acidic or basic pH indicators; dyes with large permanent dipoles, such as 

zwitterionic solvatochromic dyes, were selected for manufacturing the fluorescence 

urinary VOCs sensors. A total of 16 sensitive materials were tested using a custom-

built detection system. This system was composed of a laser/spectrometer device 

(LAKK-M); a sample processing module, used for turning the liquid sample into gas 

phase; a sensory array, made by different manufacturing methods; a reaction chamber, 

to allow the VOC molecules to interact with the sensor array. The system has several 

versions to suit different applications and a set of hardware and software parts for 

control and communications. This system fulfilled the requirement of a proof-of-

principle medical device prototype for urinary bladder cancer diagnosis, it can handle 

different testing samples with corresponding hardware configurations, with selective 

sensitive materials the cross-responsive sensor array has ability to respond to different 

analytes. 

In chapter 4, I reviewed the basic principle of sensing technology and the common 

techniques used in artificial olfactory device e-nose. As an imitation of the natural 

animal olfactory system, the artificial olfactory device or e-nose follow the same 
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workflow to identify the odours from gas samples. This workflow including olfactory 

receptors generating biological/electric signals from odorous molecules, transmission 

of the signals to the olfactory central nervous system or pattern recognition algorithm, 

and comparing the pattern with odour memory/databases, and finally identifying the 

odour by recall memories/classification functions. This chapter also reviewed the most 

commonly used artificial olfactory sensing technologies including electronic (MOS, 

MOSFET, CP etc.) and non-electronic (QMB, SAW, optical etc.) based sensors. 

Electronic based sensors have advantages, like low costs and easy integration with IC, 

but also have disadvantages, like baseline shifting and vulnerability to interferences. 

Non-electronic based sensors usually have a lower detection limit and better sensitivity, 

but the relevant detecting systems are more complicated and sometimes more 

expensive. In this chapter, the fluorescence sensor array and the detection system were 

tested with 4 literature reviewed urinary VOC biomarkers of bladder cancer: 

ethylbenzene, hexanal, Lauric aldehyde (dodecanal), and nonanoyl chloride. Using 

discrimination analysis with algorithms LDA and PLS-DA, the classification models 

of four urinary VOC biomarkers were built. In verification of such models, leave-one-

out cross validation was used. As a result, all four urinary VOC biomarkers were 

classified correctly, while the leave-one-out cross validation shows that the PLS-DA 

classification model achieved overall 77.75% sensitivity and 93.25% specificity. In 

further tests, the limit of detection of the system was found between low-ppmV to 

medium-ppbV with acceptable discrimination.  

In chapter 5, I further reviewed and compared the current studies of diagnosing bladder 

cancer using urinary VOC biomarkers, from detection dog olfactory tests to the latest 

inexpensive portable e-nose tests. The most frequently used detection method of 

urinary VOCs is GC/LC-MS, it can provide qualitative and quantitative information 

about the compounds profile of human urine; it is powerful and widely used in 
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academic research in this area. However, due to its costs in both money and labour, an 

inexpensive and portable detection method for urinary VOCs is needed. E-nose is one 

of the potential techniques in development of point-of-care urinary VOC diagnosis 

devices. At the point of writing this thesis, only a few studies have had trials using real 

human urine from bladder cancer patients; the results look promising, but more 

attention with larger sample sizes and continuous investment is needed. In this chapter, 

the detection system previously used was fully upgraded to adapt the requirement of 

urine tests. The sample processing module and reaction chamber were redesigned, a 

small air-bubbler-like device was used for replacing the flowmeter system. 38 bladder 

cancer patients and 41 non-cancer controls were recruited for clinical trials of the 

fluorescence sensor array and detection system. A classification model for diagnostic 

purposes was built based on the PLSDA algorithm. Leave-one-out and 20% random 

Mote Carlo cross-validation were used for validating the performance of the model. 

As a result, the PLSDA model successfully identified over 80% of urine samples 

(86.08% with leave-one-out, 81.76% with Mote Carlo cross-validation) with 77.42%-

84.21% sensitivity and 85.82%-87.80% specificity. Using the same data, a grading 

model was built based on the PLSDA algorithm and leave-one-out and 20% random 

Mote Carlo cross-validation were used for validating the performance of the model. 

As a result, the PLSDA model successfully identified 27 out of 38 urine samples with 

leave-one-out cross-validation 4,004 out of 8000 times, with 3996 failed group 

assignment using 20% random Mote Carlo cross-validation. The cross-validation 

sensitivity and specificity of leave-one-out cross-validation was 66.67% and 75.00%, 

respectively. However, due to the large numbers of group assignment failures, we 

could only carefully consider the fluorescence urinary VOCs detection system with 

the PLSDA model. The fluorescence urinary VOCs detection system has potential in 

assisting grading of bladder cancer however more experiments with a larger cohort 

may help to confirm this. 



162 

 

 

In conclusion, this study successfully developed a fluorescence cross-response sensor 

array system for diagnosing bladder cancer by detecting the urinary volatile organic 

compounds. This system was composed of a laser/spectrometer device (LAKK-M); a 

sample processing module, used for turning the liquid sample into gas phase; a sensory 

array, made by different manufacturing methods; a reaction chamber, to allow the VOC 

molecules to interact with the sensor array. On this system, a distinguishing test of four 

urinary VOC biomarkers: ethylbenzene, hexanal, lauric aldehyde, and nonanoyl 

chloride, was undertaken and achieved a sensitivity of 77.75% and a specificity of 

93.25%. In a proof-of-principle clinical trial involving 79 participants (38 bladder 

cancer patients and 41 healthy controls), this system using a PLSDA model 

successfully identified over 80% of urine samples (86.08% with leave-one-out, 81.76% 

with Mote Carlo cross-validation) with 77.42%-84.21% sensitivity and 85.82%-87.80% 

specificity. Further study found this system has potential ability in distinguishing urine 

samples from high-grade and low-grade bladder cancer patients but further 

experimental data in support is needed. 

The ultimate goal of this project is to develop a point-of-care device for bladder cancer 

diagnosis and surveillance. However, the patients who participated in this project were 

all newly-diagnosed bladder cancer patients and did not include anyone with recurring 

cancer or those under treatment, such patients should be included in future works. For 

grading purposes, we found that the current sample size was not big enough for 

building a significant classification model. Future work should use larger sample sizes.  

In order to obtain a large sample size, more patient recruitment and larger study cohorts 

are needed. For possible future multi-centre clinic trails, the current device needs 

further improvement in order to meet the required standard. For point-of-care devices, 

besides from the diagnostic accuracy, the convenience of usage is another important 

factor, including portability, user-friendliness, efficiency and stability of the device. 



163 

 

 

At the moment the device is still a pre-prototype, which means it works normally and 

functionally but is still in the laboratory setup phase and has much room for 

improvement. To reduce the overall size of the device, the urine sample preparation 

module could use an ultrasonic automizer instead of two bubbler bottles. The 

fluorescence spectrometer could also be replaced by miniature spectrometers like 

HAMAMATSU™’s award winning finger-tip sized spectrometer series.   

 

  

Figure 6-1 Potential techniques to minimize the size of the devices: a. ultrasonic automizer. b. finger-

tip sized spectrometers made by HAMAMATSU™ 

Another possible improvement relates to the operation protocol of the system. At the 

moment, we need to run three different programs at the same time to control the whole 

system: one for the spectrometer, one for the flowmeter or sample processing module, 

and one for the mechanical part to control and monitor the reaction chamber. The 

operator needs to rapidly switch between each program for the process to proceed and 

must manually change the spectral filters of the LAKK-M device. This could be further 

integrated into one central controller which would greatly reduce the workload of the 

operator and speed up the overall examination process. 
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Figure 6-2 Example smart phone user interface of future mobile urinary VOCs diagnosis device. Left 

to right: patient information enrolment page; fluorescence sensor data collection page; discriminant 

analysis score demonstration page. 

This study shows a potential technique for developing a novel low-cost, non-invasive 

diagnostic device for bladder cancer. However, as reviewed in the Chapters 2 and 3, in 

addition to bladder or urological cancer, many other cancer types including breast 

[103-105], thyroid [106], colorectal [107-112], esophagogastric [113], gastric [114, 

115], lung [116-121], and pancreatic [122] cancers have been found to have unique 

biogenic VOC signatures. Such findings have been reported for decades, but no 

clinical diagnostic tool based on these findings has been put to use. This is strange and 

there are potential reasons to explain this. Firstly, the study sizes are small due to the 

limitations of equipment (e.g. not every hospital has analytical devices like GC-MS or 

HPLC-MS) and there is a lack of multi-centre clinical trials. Secondly, many biogenic 

VOC pathways are still unclear. When we look back on all the successful cancer 

biomarkers on the market, they all have clear and specific pathways that correlate to 
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one or more characteristics of the cancer being targeting. However, biogenic VOC 

biomarkers sometimes lack such certainty, and this shortcoming remains to be solved 

by molecular biology and metabolomic studies. 

Our study has made a modest contribution to finding a solution to the first difficulties 

encountered in the clinical application of biogenic VOCs. With a low-cost, non-

invasive point-of-care VOC diagnosis device, patient and doctors have access to this 

novel diagnostic technique for the first time. This could inform larger scale multi-

centre trails of biogenic VOCs diagnosis and other possible clinical applications in the 

future. 
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