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Highlights 

● Equations of the Miyata-Choi-Camassa model that includes the free-surface effect (MCC-FS model) are 
extended to solve bottom time-varying problems.  

● Waves generated by a moving obstacle on the bottom in a two-layer fluid system with a free surface is 
numerically simulated by use of the extended MCC-FS model. 

 
1 Introduction 

Internal wave is a common phenomenon in nature. Internal waves are generated by disturbances in the density 
stratified lakes and oceans. The model derived by Miyata (1985), Choi & Camassa (1999) (MCC, hereafter) is widely 
used to study large-amplitude internal waves in a two-layer fluid system. However, most of the studies on the MCC 
model are confined to the flat-bottom cases (Camassa et al., 2006; Jo & Choi, 2008; Kodaira et al., 2016; La Forgia & 
Sciortino, 2019; Zhao et al., 2020) or the cases where bottom only varied with space (Choi & Camassa, 1996; Choi et 
al., 2020).   

For time-varying bottom in a two-layer fluid system, Grue et al. (1997) studied internal waves generated by a 
moving obstacle on the bottom by solving Euler’s equations under the rigid-lid assumption (Euler-RL solution). Zhao et 
al. (2014) and Zhao & Duan (2014) used the two-layer high-level Green-Naghdi model to investigate the free-surface 
effect on the generated internal waves by comparing with Euler-RL solution of Grue et al. (1997). 

In this paper, we will extend the MCC model that includes the free-surface effect (MCC-FS model) to solve bottom 
time-varying problems. This paper is organized as follows. The governing equations and boundary conditions of the 
extended MCC-FS model are described in Section 2. Numerical results of internal waves generated by a moving 
obstacle on the bottom in a two-layer fluid system with a free surface are presented and discussed in Section 3. 
Conclusions are reached in Section 4. 
 
2 MCC-FS model 

In this paper, we consider a two-layer fluid system with a free surface, shown in Figure 1. The two fluids are 
assumed to be inviscid, immiscible and incompressible. The origin of the Cartesian coordinate system is at the 
undisturbed interface between the two fluids. The mass densities of the upper and lower layers are ρ1 and ρ2, 
respectively. The undisturbed depths of the upper and lower layers are h1 and h2, respectively. The free surface, interface 
and bottom are expressed by z = η1 (x, t), z = η2 (x, t) and z = η3 (x, t), respectively. 

In the MCC-FS model, the governing equations include the mass conservation equations and the momentum 
conservation equations (Euler’s equations), which in two dimensions can be written as 
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where u and w are horizontal and vertical velocity components, respectively, p is the pressure and g is gravitational 
acceleration. i = 1 represents the variables for the upper-fluid layer and i = 2 represents the variables for the lower-fluid 
layer. 
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Figure 1 Sketch of a two-layer fluid system with a free surface 
 

The boundary conditions for the upper-fluid layer are written as 
1 1
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The boundary conditions for the lower-fluid layer are written as 
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The dynamic boundary condition at the interface between the two-fluid layers is written as 
1 2 2ˆ     at  ( , ).p p z x tη= =  (5) 

In the MCC-FS model, the depth-averaged horizontal velocity for each layer is defined as  
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The equations of the MCC-FS model for the flat bottom, i.e., z = η3 (x, t) = −h2, can be written as (see e.g., Kodaira 
et al., 2016) 
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In this paper, we extend the MCC-FS model to study the physical problem where the bottom varies with time and 
space, and hence Equations (7c) - (7d) are modified. The derivation process will be presented in the workshop. 
 
3 Numerical results  

Here, we numerically study the internal waves generated by a moving ellipse obstacle on the bottom in a two-layer 
fluid system with a free surface as shown in Figure 1. The parameters are the same as those given by Grue et al. (1997). 
Mass densities of the upper and lower layers are ρ1 = 787.3kg/m3 and ρ2 = 1000kg/m3, respectively. Undisturbed depths 
of the upper and lower layers are h1 = 0.12m and h2 = 0.03m, respectively. The major-semi axis and the minor-semi axis 
of the moving ellipse obstacle are L1/2 = 10h2 = 0.3m and B1/2 = 0.1h2 = 0.003m, respectively. The constant velocity of 
the obstacle is U = 1.1c0 = 0.252m/s, where c0 = [gh1h2(ρ2−ρ1)/(ρ2h1+ρ1h2)]1/2 is the linear long-wave speed. The initial 
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center position of the moving obstacle is at x = 0m. 
We use the MCC-FS model to simulate the physical problem in time domain. We note that this case belongs to the 

shallow-configuration case (h1/h2 = 4/1) and the MCC-FS model can provide accurate results. Snapshots of the surface-
wave elevation, internal-wave elevation and bottom at two different moments are shown in Figure 2.   
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Figure 2 Snapshots of the elevations at different moments 

 
As shown in Figure 2, surface waves in the depression form and internal waves in the elevation form are generated. 

With the time marching, the number of generated waves increases. At t (g/h2)1/2 = 1920, three complete surface waves 
with amplitude b/h2 = −0.08 and three complete internal waves with amplitude a/h2 = 0.86 are observed. 

Next, we compare the internal-wave elevation results of the MCC-FS model with the results of the computational 
fluid dynamics (CFD) software, STAR-CCM+ and Euler-RL solution of Grue et al. (1997) and at t (g/h2)1/2 = 1920, as 
shown in Figure 3. We note that in the STAR-CCM+ simulations, the free-surface effect is included.  
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Figure 3 Comparison of internal-wave elevation obtained by the MCC-FS model, STAR-CCM+ and Euler-RL solution of 

Grue et al. (1997) at t (g/h2)1/2 = 1920 
 
From Figure 3, we observe that four complete internal waves have been generated through the Euler-RL solution. 

While results of the MCC-FS model and STAR-CCM+ show that only three complete internal waves have been 
generated. Furthermore, the wave speed is smaller in the MCC-FS and STAR-CCM+ results compared with the Euler-
RL solution. These differences are caused by the rigid-lid approximation introduced by Grue et al. (1997). Since the 
density ratio between the two fluids is not close to 1, the free-surface effect should be considered (Lamb, 1932), which 
is also observed in results shown in Figure 3. 

The surface-wave elevation obtained by the MCC-FS model and STAR-CCM+ at t (g/h2)1/2 = 1920 is shown in 
Figure 4. We observe that three complete surface waves in the depression form have been generated. The amplitude of 
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the surface waves reaches b/h2 = −0.08, which also implies that the free-surface effect should be included for this case 
where ρ1 / ρ2 = 0.7873.  
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Figure 4 Surface-wave elevation obtained by the MCC-FS model and STAR-CCM+ at t (g/h2)1/2 = 1920 

 
4 Conclusions 

In this paper, we extend the equations of the MCC-FS model to solve bottom time-varying problems. The internal 
waves generated by a moving obstacle on the bottom in a two-layer fluid system with a free surface is then numerically 
simulated. By comparing the MCC-FS results with the STAR-CCM+ results and the Euler-RL solution of Grue et al. 
(1997), we find that the number of generated waves is fewer and the wave speed is smaller when the free-surface effect 
is considered. Since the density ratio between the two fluids is not always close to 1, the rigid-lid approximation 
introduces larger errors in this case and the free-surface effect should be considered.  
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