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Highlights 7 

● Visual and auditory cortex represent unheard acoustic information during lip reading 8 

● Auditory cortex emphasizes the acoustic envelope 9 

● Visual cortex emphasizes a pitch signature 10 

● Tracking of unheard features in auditory cortex is associated with behavior 11 

Abstract  12 

Speech is an intrinsically multisensory signal and seeing the speaker's lips forms a cornerstone of 13 

communication in acoustically impoverished environments. Still, it remains unclear how the brain exploits 14 

visual speech for comprehension and previous work debated whether lip signals are mainly processed along 15 

the auditory pathways or whether the visual system directly implements speech-related processes. To probe 16 

this question, we systematically characterized dynamic representations of multiple acoustic and visual 17 

speech-derived features in source localized MEG recordings that were obtained while participants listened 18 

to speech or viewed silent speech. Using a mutual-information framework we provide a comprehensive 19 

assessment of how well temporal and occipital cortices reflect the physically presented signals and speech-20 

related features that were physically absent but may still be critical for comprehension. Our results 21 

demonstrate that both cortices are capable of a functionally specific form of multisensory restoration: during 22 

lip reading both reflect unheard acoustic features, with occipital regions emphasizing spectral information 23 

and temporal regions emphasizing the speech envelope. Importantly, the degree of envelope restoration was 24 

predictive of lip reading performance. These findings suggest that when seeing the speaker's lips the brain 25 

engages both visual and auditory pathways to support comprehension by exploiting multisensory 26 

correspondences between lip movements and spectro-temporal acoustic cues.  27 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.481292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481292
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Keywords 28 

Speech entrainment, lip-reading, audio-visual, speech tracking, language, MEG 29 

  30 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.481292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481292
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

1. Introduction 31 

Speech is an intrinsically multisensory stimulus that is often conveyed via both acoustic and visual signals. 32 

Visual speech contains information that becomes particularly important in circumstances when the acoustic 33 

signal is impoverished, such as by background noises or distractors (Ross et al., 2007; Sumby and Pollack, 34 

1954). In these cases listeners typically look at the speaker's face to achieve a genuine multisensory benefit 35 

for comprehension, which in the brain is mediated by an enhanced cortical encoding of acoustic and 36 

phonemic speech features (Giordano et al., 2017; Mégevand et al., 2020; O’Sullivan et al., 2017; Zion 37 

Golumbic et al., 2013). However, in situations where only visual speech cues are available, i.e. during silent 38 

lip reading, visual signals allow comprehension also when the respective acoustic information is absent (Besle 39 

et al., 2008; Calvert et al., 1997; Calvert and Campbell, 2003; Grant and Seitz, 2000).  40 

How exactly the brain represents the information derived from visual speech and how it exploits this for 41 

comprehension remains debated. One possibility is that visual speech is represented in regions of the 42 

auditory pathways, possibly exploiting speech-specific processes of the auditory system. Neuroimaging 43 

studies support this view by demonstrating the activation of the auditory cortex when participants view the 44 

articulation of words or pseudo-words, but not when viewing non-speech gestures (Bernstein et al., 2002; 45 

Besle et al., 2008; Calvert et al., 1997; Calvert and Campbell, 2003; Pekkola et al., 2005; Sams et al., 1991). 46 

Along this line, a recent study has suggested that the auditory cortex can reflect the unheard acoustic 47 

envelope of a spoken narrative (Bourguignon et al., 2020), presumably because auditory regions restore this 48 

temporal speech-related signature from the seen trajectory of the lip movements. Given that the 49 

representation of speech signals in temporally-aligned neural activity is essential for comprehension 50 

(Brodbeck and Simon, 2020; Giraud and Poeppel, 2012; Obleser and Kayser, 2019), this can be seen as indirect 51 

evidence that the auditory system supports lip reading by restoring key signatures of the underlying acoustic 52 

information based on the visual input.  53 

Another view is that the visual system directly contributes to establishing speech representations separately 54 

from those established along the auditory pathway (Bernstein et al., 2011; O’Sullivan et al., 2017; Ozker et 55 

al., 2018). Visual speech contains temporal information that can be predictive of subsequent acoustic signals 56 

and allows mapping visual cues onto phonological representations (Campbell, 2008; Lazard and Giraud, 57 

2017). Importantly, the visual cortex tracks dynamic lip signals (Park et al., 2016) and, as suggested recently, 58 

may also restore the unheard acoustic envelope of visually presented speech (Hauswald et al., 2018; Suess 59 

et al., 2022). Importantly, the evidence that visual speech induces information about the unheard speech 60 

acoustics along both auditory and the visual pathways may not be mutually exclusive, as both may contribute 61 

to a supramodal frame of reference for speech (Arnal et al., 2009; Rauschecker, 2012). 62 

Many questions concerning a potential duality of acoustic speech-related representations during silent lip 63 

reading remain open (Bernstein and Liebenthal, 2014). First, each putative representation (in auditory and in 64 

visual cortex) was reported in a separate study and may have emerged mainly due to the specific stimuli or 65 
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the specific analysis approach that was being applied (Bourguignon et al., 2020; Hauswald et al., 2018). 66 

Hence, it remains unclear whether both auditory and visual regions reflect acoustic speech features in 67 

parallel. Second, previous studies mainly capitalized on one-dimensional characterizations of the relevant 68 

sensory signals, such as the broadband speech envelope or the lip aperture. However, the cerebral encoding 69 

of speech is intrinsically multidimensional, and reflects temporal acoustic features such as the overall 70 

envelope or its derivative and spectral features such as pitch (Metzger et al., 2020; O’Sullivan et al., 2017; 71 

Oganian and Chang, 2019; Teoh et al., 2019). This raises the question of whether the previously observed 72 

restoration of acoustic speech-related information is tied to specific features, i.e. whether auditory regions 73 

preferentially encode the speech envelope or spectral features during lip reading. Third, it remains unclear 74 

whether a genuine acoustic feature is indeed represented independently of the physically observed lip 75 

movements and vice-versa. Alternatively, it may be previously reported restoration effects are largely 76 

explained by encoding of amodal information shared between both visual and acoustic modalities, which 77 

could be relayed to early sensory regions mainly by top-down processes. And finally, the behavioral relevance 78 

of the cerebral encoding of auditory speech features during lip reading remains unclear, as previous work 79 

mostly focused on neural signals but did not obtain direct measures of speech perception in natural language 80 

at the same time.  81 

We systematically probed dynamic representations of acoustic and visual speech-related features in 82 

temporal and occipital brain regions during listening and viewing speech in the same participants using a 83 

mutual information approach (Daube et al., 2019; Keitel et al., 2018). This allowed us to provide a 84 

comprehensive assessment of how well temporal and occipital regions reflect either acoustic speech features 85 

or information about the lip trajectory, independently of each other, and both during hearing purely acoustic 86 

speech or while only seeing the speaker (lip reading). We probed the four main questions outlined above and 87 

found that both regions reflect unheard acoustic speech-related features independently of the physically 88 

observed lip movements. This ‘restoration’ of acoustic information in the temporal, but not the occipital, 89 

cortex was predictive of comprehension performance across participants.  90 

2. Materials and Methods 91 

The data analyzed in this study has been collected and analyzed in previous studies (Keitel et al., 2020, 2018). 92 

The analyses conducted here pose new questions and provide novel results beyond the previous work. 93 

2.1 Participants and data acquisition 94 

Data was collected from 20 native English speaking participants (9 female, age 23.6 ± 5.8 years mean ± SD). 95 

Due to prominent environmental artefacts in the MEG recordings, data from two participants were excluded 96 

from further analysis. Thus, the analyzed data is from 18 participants (7 female). All participants were 97 

screened for hearing impairment prior to data collection (Koike et al., 1994), had normal or corrected-to-98 
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normal vision and were all right-handed (Oldfield, 1971). All participants provided written informed consent 99 

and received monetary compensation of 10£/h. The experiment was approved by the College of Science and 100 

Engineering, University of Glasgow (approval number 300140078) and conducted in compliance with the 101 

Declaration of Helsinki. 102 

MEG data was collected using a 248-magnetometer whole-head MEG system (MAGNES 3600 WH, 4-D 103 

Neuroimaging) with a sample rate of 1 kHz. Head positions were measured at the beginning and end of each 104 

run, using five coils placed on the participants’ heads. Coil positions were co-digitized with the participant’s 105 

head-shape (FASTRAK®, Polhemus Inc., VT, USA). Participants were seated in an upright position in front of a 106 

screen. Visual stimuli were displayed with a DLP projector at 25 frames per second, a resolution of 1280 × 107 

720 pixels, and covered a visual field of 25 × 19 degrees. Acoustic stimuli were transmitted binaurally through 108 

plastic earpieces and 370-cm long plastic tubes connected to a sound pressure transducer and were 109 

presented in stereo at a sampling rate of 22,050 Hz. 110 

2.2 Stimulus material 111 

The stimulus material comprised two structurally equivalent sets of 90 unique matrix-style English sentences. 112 

Each sentence was constructed with the same sequence of linguistic elements, the order of which can be 113 

described with the following pattern [filler phrase, time phrase, name, verb, numeral, adjective, noun]. One 114 

such sentence for example was ‘I forgot to mention (filler phrase), last Thursday morning (time phrase) Marry 115 

(name) obtained (verb) four (numeral) beautiful (adjective) journals (noun)’. For each element, a list of 18 116 

different options was created and sentences were constructed so that each single element was repeated ten 117 

times. Sentence elements were randomly combined within each set of 90 sentences. To measure 118 

comprehension performance for each sentence, a target word was defined in each sentence: either the 119 

adjective (first set of sentences) or the numeral (second set). Sentences lasted on average 5.4 ± 0.4 s (mean 120 

± SD, ranging from 4.6 s to 6.5 s) and lasted a total of approximately 22 minutes. The speech material was 121 

spoken by a male British actor, who was tasked to speak clearly and naturally and to move as little as possible 122 

while speaking to assure that the lips center stayed at the same place in each video frame. Audiovisual 123 

recordings were gathered with a high-performance camcorder (Sony PMW-EX1) and an external microphone 124 

in a sound attenuating booth.  125 

Participants were presented with audio-only (A), audiovisual (AV) or visual-only (V) speech material in three 126 

conditions (Keitel et al., 2018). However, for the present analysis we only focus on the A and V conditions, as 127 

in these one can best dissociate visual- and auditory-related speech representations given that only one 128 

physical stimulus was present. Furthermore, during the AV condition comprehension performance was near-129 

ceiling (Keitel et al., 2020), making it difficult to link cerebral and behavioral data. To match the behavioral 130 

performance in the A and V condition, the acoustic speech was embedded in environmental noise. The noise 131 

for each trial was generated by randomly selecting 50 individual sounds from a set of sounds recorded from 132 
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natural, everyday sources or scenes (e.g. car horns, talking people, traffic). For each participant the individual 133 

noise level was adjusted, as described previously (Keitel et al., 2020). 134 

2.3 Experimental Design 135 

Each participant was presented with each of the 180 sentences in three conditions (A, V and AV). The order 136 

of the conditions was fixed for all participants as A, AV and then V. Each condition was divided into 4 blocks 137 

of 45 sentences each, with two blocks being ‘adjective’ and two ‘number’ blocks. For each participant, the 138 

order of sentences within each block was randomized. The first sentence of each block was a ‘dummy’ trial 139 

that was subsequently excluded from analysis. During each trial, participants either fixated a dot (in A 140 

condition) or a small cross overlaid onto the mouth of the speaker’s face (in V condition). In the A condition, 141 

each sentence was presented as the respective audio recording, i.e. the spoken sentence, together with the 142 

background noise. In the V condition, only the video of the speaker’s face was presented and no sound was 143 

present. After each trial, four response option words (either adjectives or written numbers) were presented 144 

on the screen and participants had to indicate using a button press which word they had perceived. Inter-145 

trial intervals were set to last about two seconds. 146 

2.4 Preprocessing of stimulus material 147 

From the stimulus material we extracted the following auditory and visual features. In the auditory domain, 148 

we derived the broadband envelope, the slope of the broadband envelope and the pitch contour. To derive 149 

the broadband envelope we filtered the acoustic waveform into twelve logarithmically spaced bands 150 

between 0.1 and 10 kHz (zero-phase 3rd order Butterworth filter with boundaries: 0.1, 0.22, 0.4, 0.68, 1.1, 151 

1.7, 2.7, 4.2, 6.5, 10 kHz) and subsequently took the absolute value of the Hilbert transform for each band 152 

(Bröhl and Kayser, 2020). The broadband amplitude envelope was then derived by taking the average across 153 

all twelve band-limited envelopes and was subsequently down-sampled to 50 Hz. We computed the slope of 154 

this broadband envelope by taking its first derivative (Oganian and Chang, 2019). To characterize the pitch 155 

contour we extracted the fundamental frequency over time using the Praat software (‘to Pitch' method with 156 

predefined parameters) (Boersma and van Heuven, 2001). This was done using the original acoustic 157 

waveform at a sampling rate of 22,050 Hz. The resulting pitch contour was again down sampled to 50 Hz. All 158 

three acoustic features together are labelled AudFeat in the following. 159 

From the video recordings we derived the horizontal and vertical opening of the lips, the area covered by the 160 

lip opening, and its derivative. The lips were extracted based on the color of the lips in the video material 161 

using a custom-made algorithm. From these we determined the contour of the lip opening based on 162 

luminance values and deriving connected components from these (Giordano et al., 2017). The results were 163 

visually inspected to ensure accurate tracking of the lips. From this segmentation of the lip opening we 164 

derived the total opening (in pixels) and estimates of the respective diameters along the horizontal and 165 

vertical axes: these were defined between the outermost points along the respective horizontal (vertical) 166 
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axis. These signals were initially sampled at the video rate of 30 fps. As for the auditory features, we 167 

computed the slope of the lip area. The time series of these visual features were then linearly interpolated 168 

to a sample rate of 50 Hz. Because the horizontal and vertical mouth openings are partially correlated with 169 

each other and with the total mouth opening, we selected the total area and the horizontal width as signals 170 

of interest, as the latter is specifically informative about the acoustic formant structure (Plass et al., 2020). 171 

We grouped the total lip area, it’s temporal derivative and the lip-width as signatures of lip features (LipFeat), 172 

which are of the same dimensionality as the acoustic features (AudFeat) described above. 173 

For each of these features we derived its power spectrum and cross-coherence with the other features using 174 

MATLAB’s ‘pwelch’ and ‘mscoher’ functions using a window length of 3 s with 50% overlap and otherwise 175 

predefined parameters. The resulting spectra were log transformed and averaged across sentences. To 176 

visualize the cross-coherences we first obtained key frequency ranges of interest from our main results (c.f. 177 

Fig. 3) and averaged the coherences within two ranges of interest (0.5 - 1 Hz and 1 - 3 Hz). This was done to 178 

illustrate the stimuli’s spectral properties in the relevant frequency ranges.  179 

2.5 MEG preprocessing 180 

Preprocessing of MEG data was carried out using custom MATLAB scripts and the FieldTrip toolbox 181 

(Oostenveld et al., 2011). Each experimental block was processed separately. Individual trials were extracted 182 

from continuous data starting 2 s before sound onset and until 10 s after sound onset. The MEG data were 183 

denoised using a reference signal. Known faulty channels (N=7) were removed. Trials with SQUID jumps (3.5% 184 

of trials) were detected and removed using FieldTrip procedures with a cut-off z-value of 30. Data were band-185 

pass filtered between 0.2 and 150 Hz using a zero-phase 4th order Butterworth filter and subsequently down 186 

sampled to 300 Hz before further artefact rejection. Data were visually inspected to find noisy channels (4.37 187 

± 3.38 on average across blocks and participants) and trials (0.66 ± 1.03 on average across blocks and 188 

participants). Noise cleaning was performed using independent component analysis with 30 principal 189 

components (2.5 components removed on average). Data were further down sampled to 50 Hz and bandpass 190 

filtered between 0.8 and 30 Hz using a zero-phase 3rd order Butterworth filter for subsequent analysis. 191 

2.6 MEG source reconstruction 192 

Source reconstruction was performed using Fieldtrip, SPM8, and the Freesurfer toolbox based on T1-193 

weighted structural magnetic resonance images (MRIs) for each participant. These were co-registered to the 194 

MEG coordinate system using a semi-automatic procedure (Gross et al., 2013; Keitel et al., 2017). MRIs were 195 

then segmented and linearly normalized to a template brain (MNI space). We projected sensor-level time 196 

series into source space using a frequency-specific linear constraint minimum variance (LCMV) beamformer 197 

(Van Veen et al., 1997) with a regularization parameter of 7% and optimal dipole orientation (singular value 198 

decomposition method). The grid points had a spacing of 6 mm, thus resulting in 12,337 points. For whole-199 

brain analyses, a subset of grid points corresponding to cortical gray matter regions only was selected (using 200 
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the AAL atlas, Tzourio-Mazoyer et al., 2002), yielding 6,490 points in total. Within these we defined auditory 201 

and visual regions of interest (ROI) based on the brainnetome atlas (Yu et al., 2011). The individual ROIs were 202 

chosen based on previous studies that demonstrate the encoding of acoustic and visual speech features in 203 

occipital and superior temporal regions (Di Liberto et al., 2018; Giordano et al., 2017; Keitel et al., 2020; Teng 204 

et al., 2018). As auditory ROI we included Brodmann area 41/42, caudal area 22 (A22c), rostral area 22 (A22r) 205 

and TE1.0 and TE1.2. As visual ROI we defined the middle occipital gyrus (mOccG), occipital polar gyrus (OPC), 206 

inferior occipital gyrus (iOccG) and the medial superior occipital gyrus (msOccG).  207 

2.7 MEG analysis 208 

Source reconstructed MEG data were analyzed using a mutual information (MI) framework (Ince et al., 2017). 209 

The analysis relies on the notion that a significant temporal relation between cerebral signal and sensory 210 

features is indicating the cerebral encoding (or tracking) of the respective features by temporally entrained 211 

brain activity (Bröhl and Kayser, 2020; Keitel et al., 2018; Park et al., 2016). In the following we use the term 212 

‘tracking’ when referring to such putative cerebral representations characterized using MI (Obleser and 213 

Kayser, 2019). To quantify the tracking of a given stimulus feature, or of a feature group, we concatenated 214 

the trial-wise MEG data and features along the time dimension and filtered these (using 3rd order 215 

Butterworth IIR filters) into typical frequency bands used to study dynamic speech encoding: 0.5 - 1 Hz, 1 - 3 216 

Hz, 2 - 4 Hz, 3 - 6 Hz and 4 - 8 Hz (and 0.5 - 8 Hz). These were chosen based on previous work (Bröhl and 217 

Kayser, 2020; Etard and Reichenbach, 2019; van Bree et al., 2020; Zuk et al., 2021). The first 500 ms of each 218 

sentence were discarded to remove the influence of the transient sound-onset response. To compute the MI 219 

between filtered MEG and stimulus features, we relied on a complex-valued representation of each signal, 220 

which allowed us to include both the amplitude and phase information in the analysis: we first derived the 221 

analytic signal of both the MEG and stimulus feature(s) using the Hilbert transform and then calculated the 222 

MI using the Gaussian copula approach including the real and imaginary part of the Hilbert signals (Daube et 223 

al., 2019; Ince et al., 2017).  224 

In a first step, we used this framework to visualize the tracking of AudFeat and LipFeat within the entire 225 

source space. This was mainly done to assert that the predefined ROIs used for the subsequent analysis 226 

indeed covered the relevant tracking of these features (Fig. 2). This analysis relied on a frequency range from 227 

0.5 to 8 Hz and a range of stimulus-to-brain lags from 60 to 140 ms after stimulus onset. For the main analysis, 228 

we quantified the tracking of auditory or visual features and their dependencies specifically in each ROI (Fig. 229 

3,4,5). To facilitate these analyses, we first determined the optimal lags for each feature, ROI and frequency 230 

band, given that the encoding latencies may differ between features and regions (Giordano et al., 2017). For 231 

this we determined at the group-level and for each feature group (i.e. AudFeat and LipFeat) and for each ROI 232 

and frequency band the respective lag yielding the largest group-level MI value (across participants and both 233 

A only and V only trials): for this we probed a range of lags between 0 and 500 ms in 20 ms steps. For the 234 
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subsequent analyses, we used these optimal lags and averaged MI values obtained in a time window of -60 235 

to 60 ms around these lags (computed in 20 ms steps).  236 

Our hypotheses concerned both the MI between each feature group and the MEG and the statistical 237 

dependence of the tracking of each group on the tracking of the respective other group. To address this 238 

dependency, we determined whether the tracking of each feature group (in a given ROI and frequency band) 239 

is statistically redundant with (or possibly complementary to) the other group. For this we calculated the 240 

conditional MI between MEG and one feature group, partialling out the respective other group (Fig. 3, CMI 241 

values) (Giordano et al., 2017; Ince et al., 2017). Similarly, we also determined the conditional MI between 242 

the MEG and each individual feature, obtained by partialling out all other visual and auditory features (Fig. 243 

4). To be able to compare the MI and CMI estimates directly, we ensured that both estimates had comparable 244 

statistical biases. To achieve this, we effectively derived the MI as a conditional estimate, in which we 245 

partialled out a statistically-unrelated variable. That is, we defined  246 

MI(feature ; MEG) ≅ MI(feature ; MEG| time_shifted_feature)  247 

Here, time_shifted_feature is a representation of the respective feature(s) with a random time lag and hence 248 

no expected causal relation to the MEG. Each MI estimate was obtained by averaging this estimate over 2,000 249 

repeats of a randomly generated time-shifted feature vector. To render the (conditional) MI estimates 250 

meaningful relative to the expectation of zero MI between MEG and stimulus features, we furthermore 251 

subtracted an estimate of the null-baseline of no systematic relation between signals. This was obtained by 252 

computing (conditional) MI values after randomly time-shifting the stimulus feature(s) and averaging the 253 

resulting surrogate MI estimates over 100 randomizations. 254 

2.8 Relating MI to comprehension performance 255 

The behavioral performance for each participant and condition was obtained as the percent correctly (PC) 256 

reported target words (obtained in a 4-choice task). To relate the tracking of specific features to 257 

comprehension performance, we accounted for potential spurious correlations between these due to the 258 

respective signal-to-noise ratio in each participants’ dataset. This was implemented using multiple 259 

regression, in which we predicted the PC in the visual trials based on i) the individual MI for aud env in the 260 

temporal ROI and the MI for aud pitch in the and occipital ROI as the primary variables of interest, and ii) the 261 

tracking of LipFeat (MI) in the occipital ROI in visual trials and iii) the tracking of AudFeat in the temporal ROI 262 

in auditory trials. The last two serve as potentially confounding variables, as they provide a proxy to the 263 

overall SNR of the speech and lip tracking in the respective dataset. By focusing on aud env / aud pitch in the 264 

temporal / occipital ROIs respectively, we predicted task performance based on the individual features that 265 

were most associated with the tracking of AudFeat (c.f. Fig. 4B,C). To establish these regression models, we 266 

z-scored the MI values of interest (variables i - iii) and the PC across participants. For the confounding 267 

variables, we applied the z-scoring for each frequency band and subsequently averaged the z-scored values 268 

across bands. For each frequency band, we created a single model containing all target and confounding 269 
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variables. From the respective models we obtained the significance of each predictor of interest. 270 

Furthermore, we compared the predictive power of this full model with that of a reduced model not featuring 271 

the predictors of interest (variable i). From the likelihoods of each model we derived the relative Bayes factor 272 

(BF) between these based on the respective BIC values obtained from each model. For visualization we used 273 

partial residual plots using the procedure described by Velleman and Welsch (Velleman and Welsch, 1981). 274 

This procedure was applied to each individual feature of interest (i.e. aud env and aud pitch). 275 

2.9 Statistical analysis 276 

Statistical testing was based on a non-parametric randomization approach incorporating corrections for 277 

multiple comparisons (Nichols and Holmes, 2003). To test whether the group-level median MI (or CMI) values 278 

were significantly higher than expected based on the null hypothesis of no systematic temporal relation 279 

between sensory features and MEG, we proceeded in a similar fashion as in previous work (Bröhl and Kayser, 280 

2020; Giordano et al., 2017): we obtained a distribution of 2,000 MI values between randomly time-shifted 281 

MEG and the stimulus vectors, while keeping the temporal relation of individual features to each other 282 

constant. This distribution was obtained for each participant, frequency band, feature (AudFeat and LipFeat), 283 

ROI (temporal, occipital) and condition (A-only, V-only) separately. To correct for multiple comparisons, we 284 

generated a maximum distribution across all dimensions except frequency bands, given that the MI values 285 

decreased considerably across bands (c.f. Fig. 3). We then tested the group-level median against the 99th 286 

percentile of this maximum distribution as a significance threshold, which effectively implements a one-sided 287 

randomization test at p < 0.01 corrected for all dimensions except frequency bands. To test for differences 288 

between MI and CMI values for a given condition, band and ROI, we also used a permutation approach 289 

combined with a Wilcoxon signed-rank test: first, we established the respective true Wilcoxon z-statistic 290 

between MI and CMI values; then we created a distribution of surrogate z-statistics under the null hypothesis 291 

of no systematic group-level effect, obtained by randomly permuting the labels of MI and CMI values 5,000 292 

times. From this we obtained the maximum across features, bands, ROIs and conditions to correct for 293 

multiple comparisons and used the 99th percentile of this randomization distribution to determine the 294 

significance of individual tests.  295 

The CMI values for individual features in Figure 4 were compared using a one-way repeated measure Kruskal-296 

Wallis rank test, followed by a post-hoc Tukey Kramer multiple comparison. We used the same procedure to 297 

test for differences between CMI values in the sub-areas composing each ROI (Table 1). To test CMI values 298 

between hemispheres, we used a Wilcoxon signed rank test (Table 2). The resulting p-values were corrected 299 

for false discovery rate using the Benjamini-Hochberg procedure within each set of comparisons (Benjamini 300 

and Hochberg, 1995). In all tests an alpha level of ɑ < 0.01 was deemed significant. For all statistical tests we 301 

provide exact p-values, except for randomization tests where the approximate p-values were smaller than 302 

the inverse of the number of randomizations. 303 
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 304 
Fig. 1. Stimulus material and experimental methodology. Acoustic and visual features were extracted from audiovisual 305 

speech material and were used to quantify their cerebral tracking during audio-only and visual-only presentations. (A) 306 

The stimulus material consisted of 180 audiovisual recordings of a trained actor speaking individual matrix-style English 307 

sentences. From video recordings we extracted three features describing the dynamics of the lip aperture: the area of lip 308 

opening (lip area), its slope (lip slope), and the width of lip opening (lip width); collectively termed ‘LipFeat’. The top row 309 

depicts three video frames illustrating the lip contour. From the audio waveform we extracted three acoustic features: 310 

the broadband envelope (aud env), its slope (aud slope), and a measure of dominant pitch (aud pitch); collectively termed 311 

‘AudFeat’. (B) Trial-averaged percent correctly (PC) reported target words in auditory (A-only) and visual-only (V-only) 312 

conditions, with dots representing individual participants. (C) Logarithmic power spectra for individual stimulus features. 313 

For reference, a 1/f spectrum is shown as a dashed grey line. (D) Coherence between pairs of features averaged within 314 

two predefined frequency bands (0.5 - 1 Hz left; 1 - 3 Hz right, see Methods for details). 315 

3. Results 316 

3.1 Acoustic and visual features are tracked in temporal and occipital cortices 317 

Participants were presented with either spoken speech (A-only trials) or a silent video of the speaking face 318 

(V-only trials) and were asked to report a target word for each sentence in a 4-choice comprehension task. 319 

Previous work has shown that in this dataset temporal and occipital brain regions reflect auditory and visual 320 

speech signals respectively (Keitel et al., 2020). We extend this observation to the entire group of acoustic 321 

(AudFeat) or lip features (LipFeat) using a mutual information (MI) approach (Fig. 2). The whole-brain maps 322 

demonstrate the expected prevalence of acoustic (visual) tracking in temporal (occipital) regions. Given that 323 
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our main questions concerned the tracking of features specifically in occipital and temporal brain regions, we 324 

focused the subsequent work on atlas-based regions of interest (Fig. 2; red and blue shaded areas).  325 

 326 

Fig. 2. Tracking of auditory and visual features in MEG source space. The figure shows group-level median MI values 327 

for auditory (AudFeat; panel A) and lip features (LipFeat; panel B) in the frequency range from 0.5 - 8 Hz (n = 18 328 

participants). (C) Colored shading indicates regions of interest: temporal regions in red include Brodmann area 41/42, 329 

caudal area 22 (A22c), rostral area 22 (A22r) and TE1.0 and TE1.2; occipital regions in blue include middle occipital gyrus 330 

(mOccG), occipital polar gyrus (OPC), inferior occipital gyrus (iOccG) and medial superior occipital gyrus (msOccG). 331 

3.2 Temporal and occipital cortex represent acoustic speech features during silent lip reading  332 

To address the main questions of whether temporal and occipital cortices represent auditory and visual 333 

speech features during lip reading, we performed a comprehensive analysis of the tracking of both features 334 

across a range of frequency bands during auditory (A-only) and visual (V-only) conditions (MI values; Figure 335 

3). Importantly, to determine whether the tracking of each feature group is possibly redundant with the 336 

tracking of the respective other feature group, we derived conditional MI values for each feature group, 337 

obtained by partialling out the respective other group (CMI values). By comparing MI and CMI values we can 338 

test, for example, whether the temporal ROI tracks the unheard speech envelope during silent lip reading 339 

also when discounting for the actually presented lip trajectory. In the following we discuss the results per 340 

sensory modality and region of interest.  341 

As expected, when listening to speech (A-only), the temporal ROIs significantly track auditory features 342 

(AudFeat) in all frequency bands tested (Fig. 3, top row, red MI data; non-parametric randomization test, all 343 

bands: p < 5 x 10-5). This tracking persists when discounting potential contributions of the not-seen visual 344 

features (red CMI data all individually significant: p < 5 x 10-5), though in some bands the CMI values were 345 
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significantly lower than the unconditional MI (Wilcoxon signed rank test comparing MI vs. CMI, 2 - 4 Hz: Z = 346 

3.59, 3 - 6 Hz: Z = 3.68, 4 - 8 Hz: Z = 3.42, all comparisons: p < 2 x 10-5). During the same auditory trials, lip 347 

features are only marginally reflected in the temporal ROI, as shown by low but significant MI and CMI values 348 

above 1Hz (Fig. 3, top row, blue MI and CMI data; all bands above 1 Hz: p < 5 x 10-5). This tracking of visual 349 

features was significantly reduced when partialling out the physically presented auditory features (2 - 4 Hz: 350 

Z = 3.59, 3 - 6 Hz: Z = 3.68, 4 - 8 Hz: Z = 3.42, all comparisons: p < 2 x 10-5).  351 

During lip reading (V-only), the temporal ROI tracks the unheard auditory features, particularly below 1 Hz 352 

(Fig. 3, 2nd row, red MI data; all bands: p < 5 x 10-5). Except in the 2 - 4 Hz range, the temporal ROI tracks the 353 

unheard AudFeat to a similar degree as when discounting the actually presented visual signal (significant red 354 

CMI values, all bands: p < 5 x 10-5): there were no significant differences between MI and CMI values except 355 

one band (2 - 4 Hz: Z = 3.42, p < 1 x 10-4, see asterisks). The physically presented lip movements during these 356 

V-only trials were also tracked significantly in the temporal ROI (Fig. 3, 2nd row; cyan MI and CMI data, 1 - 6 357 

Hz: p < 5 x 10-5) but the CMI values were only marginally above chance level, suggesting that genuine visual 358 

representations in temporal regions are weak.  359 

As expected, during lip reading (V-only) the occipital ROI tracks lip features (LipFeat) across frequency bands 360 

(Fig. 3, bottom row, cyan MI values; all bands: p < 5 x 10-5). Again, this tracking persists after partialling out 361 

the non-presented acoustic features (cyan CMI values; all bands: p < 5 x 10-5), although the CMI values were 362 

significantly lower than the MI (all bands above 1 Hz: Z ≥ 3.72, p < 2 x 10-5). This indicates some redundancy 363 

between the tracking of the physically present lip trajectory and that of the unheard auditory features. 364 

Confirming this, occipital tracking of the physically presented lip signals emerges in parallel with that of the 365 

non-presented auditory features (Fig. 3, bottom panel, red MI data; all bands: p < 5 x 10-5). This occipital 366 

tracking of unheard auditory features was significantly reduced when partialling out the lip signal (MI vs. CMI 367 

data; all bands above 1 Hz: Z ≥ 3.72, p < 2 x 10-5) but remained statistically significant (red CMI data; all bands: 368 

p < 5 x 10-5). 369 

Finally, when listening to speech (A-only), the occipital ROI shows significant but weak tracking of auditory 370 

(Fig. 3, 3rd row, red MI data; 1 - 6 Hz: p < 5 x 10-5) and visual features (cyan MI data; only 3 - 6 Hz: p < 5 x 371 

10-5), suggesting that purely acoustic signals have a weak influence on occipital brain regions. 372 

Collectively, these results show the expected representations of auditory features in temporal cortex during 373 

listening to speech and of lip features in occipital cortex during lip reading. In addition, they reveal that during 374 

lip reading, both temporal and occipital regions represent unheard auditory features and do so 375 

independently of co-existing representations of the physically presented lip movements. In the auditory 376 

cortex this ‘restoration’ of auditory signals prevails in the low delta band (0.5 - 1 Hz), in the visual cortex this 377 

emerges in multiple bands.  378 
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 379 
Fig. 3. Feature tracking across regions of interest and conditions. For both conditions (A-only and V-only) and ROIs 380 

(temporal and occipital) the figure illustrates the strength of feature tracking for presented and physically not-present 381 

features (MI values) and the respective strength of tracking after partialling out the respective other feature group (CMI 382 

values). Each panel depicts (from left to right) the MI for AudFeat, the CMI for AudFeat partialling out LipFeat, the MI for 383 

LipFeat, and the CMI for LipFeat partialling out AudFeat. Dots represent individual participants (n = 18). Bars indicate 384 

the median, 25th and 75th percentile. The grey dashed line indicates the 99th percentile of the frequency-specific 385 

randomized maximum distribution correcting for all other dimensions. Conditions below a group-level significance 386 

threshold of 0.01 are greyed out. Brackets with asterisks indicate significant differences between MI and CMI values, 387 

based on a Wilcoxon signed-rank test (* p < 0.01, ** p < 0.005, *** p < 0.001). Units for MI and CMI are in bits. 388 

To obtain an estimate of the effect size of the restoration of the unheard AudFeat during lip reading we 389 

expressed these CMI values relative to those of the tracking of the respectively modality-preferred inputs of 390 

each ROI (Fig. 4A): for temporal regions the tracking of AudFeat during A-only trials and for occipital regions 391 

the tracking of LipFeat during V-only trials. In the temporal ROI, the restoration effect size, i.e. the tracking 392 

of AudFeat during lip reading, was about a third as strong as this feature’s tracking while directly listening to 393 

speech (Fig. 4A; top row; AudFeatV-only /AudFeatA-only; 0.5 - 1 Hz: median = 0.37, 1 - 3 Hz: median = 0.24). In 394 

the occipital ROI, the tracking of AudFeat was about half as strong or stronger compared to the tracking of 395 

lip features when seeing the speaker (Fig. 4A; bottom row; AudFeatV-only /LipFeatV-only; 0.5 - 1 Hz: median = 396 

0.84, 1 - 3 Hz: median = 0.4). Albeit smaller than the tracking of the respective modality-preferred sensory 397 
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inputs, the restoration of unheard auditory features still results in a prominent signature in temporally 398 

aligned brain activity in both cortices.  399 

3.3 Feature tracking is bilateral and prevails across anatomical brain areas 400 

Having established the tracking of auditory and lip features in both temporal and occipital ROIs, we probed 401 

whether this tracking is possibly lateralized in a statistical sense and whether it potentially differs among the 402 

anatomical areas grouped into temporal and occipital ROIs respectively. For this analysis we focused on the 403 

conditional tracking of each feature group. Comparing CMI values among anatomical areas (averaged across 404 

hemispheres) for each ROI (occipital, temporal), frequency band (0.5 - 1 and 1 - 3 Hz), condition and feature 405 

group revealed a significant effect of area for AudFeat tracking in the temporal ROI during A-only trials (Table 406 

1; 0.5 - 1 Hz: ꭓ2(3) = 27.02, p = 4.7 x 10-6, ε2 = 0.35; 1 - 3 Hz: ꭓ2(3) = 29.62, p = 2.7 x 10-6, ε2 = 0.39; p-values 407 

FDR-corrected). Post hoc comparisons revealed that in both bands, tracking of AudFeat was higher in A41/42 408 

and A22c compared to TE1.0/1.2 and A22r (Tukey-Kramer test, all tests p < 10-5). The effect of Area was close 409 

to but not significant for LipFeat tracking in the occipital ROI during V-only trials (0.5 - 1 Hz: ꭓ2(3) = 12.3, p = 410 

0.026, ε2 = 0.14; 1 - 3 Hz: ꭓ2(3) = 14.57, p = 0.012, ε2 = 0.17). Importantly, these results suggest that while the 411 

tracking of auditory features was stronger in the early auditory regions during A-only trials, the restoration 412 

of unheard auditory features during lip reading emerges to a similar degree among the individual temporal 413 

and occipital areas. 414 

We performed a similar analysis comparing the CMI values within temporal or occipital ROIs between 415 

hemispheres. This revealed no significant effects of hemispheres (Table 2), hence offering no evidence for a 416 

statistical lateralization of feature tracking in the present data.  417 

   0.5 - 1 Hz 1 - 3 Hz 

ROI Anatomical 
area 

AudCMI Chisq; pval LipCMI Chisq; pval AudCMI Chisq; pval LipCMI Chisq; pval 

A-only trials 

AC A41/42 0.97 27.02 ; 
4.7e-05 

0.096 2.47 ; 0.59 0.19 29.62 ; 
2.7e-05 

0.032 5.14 ; 0.32 

 TE1.0/1.2 0.56 0.099 0.11 0.028 

 A22c 0.86 0.098 0.18 0.033 

 A22r 0.5 0.093 0.095 0.029 

VC mOccG 0.1 3.50 ; 0.47 0.073 0.66 ; 0.88 0.025 2.71 ; 0.58 0.02 1.97 ; 0.66 

 OPC 0.09 0.069 0.025 0.02 

 iOccG 0.11 0.068 0.027 0.021 

 msOccG 0.11 0.074 0.029 0.021 

V-only trials 

AC A41/42 0.33 4.59 ; 0.36 0.1 5.14 ; 0.32 0.034 5.24 ; 0.32 0.027 1.00 ; 0.85 

 TE1.0/1.2 0.25 0.088 0.031 0.028 
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 A22c 0.34 0.1 0.035 0.027 

 A22r 0.22 0.085 0.028 0.029 

VC mOccG 0.13 3.90 ; 0.44 0.17 12.30 ; 
0.026 

0.045 8.20 ; 0.13 0.15 14.57 ; 
0.012 

 OPC 0.14 0.19 0.06 0.2 

 iOccG 0.14 0.2 0.048 0.17 

 msOccG 0.11 0.11 0.039 0.082 

 418 

Table 1. Feature tracking in individual anatomical areas within temporal and occipital ROIs. The table lists 419 

CMI values and a statistical comparison between the individual atlas-defined areas (Kruskal-Wallis tests, 420 

reporting chi-squares and p-values). Bold numbers indicate statistically significant results. P-values are FDR-421 

corrected within this Table. 422 

  0.5 - 1 Hz 1 - 3 Hz 

ROI Hemisphere AudCMI Z; pval LipCMI Z; pval AudCMI Z; pval LipCMI Z; pval 

A-only trials 

AC left 0.8 1.20 ; 
0.59 

0.094 -0.33 ; 
0.74 

0.13 -0.81 ; 
0.59 

0.028 -1.11 ; 
0.59 

 right 0.64 0.099 0.15 0.031 

VC left 0.1 -0.37 ; 
0.74 

0.07 -0.33 ; 
0.74 

0.027 0.81 ; 
0.59 

0.021 0.63 ; 
0.65 

 right 0.1 0.072 0.025 0.02 

V-only trials 

AC left 0.31 0.89 ; 
0.59 

0.098 0.76 ; 
0.59 

0.035 0.85 ; 
0.59 

0.025 -1.85 ; 
0.26 

 right 0.26 0.091 0.03 0.03 

VC left 0.11 -2.24 ; 
0.2 

0.14 -2.98 ; 
0.046 

0.043 -1.68 ; 
0.3 

0.13 -2.07 ; 
0.21 

 right 0.15 0.2 0.054 0.18 

 423 

Tab. 2. Feature tracking in each hemisphere. The table lists CMI values and a statistical comparison between 424 

hemispheres (Kruskal-Wallis tests, reporting chi-squares and p-values). P-values are FDR-corrected within this 425 

Table. 426 

3.4 Occipital cortex reflects pitch more than other acoustic features during lipreading 427 

Having established that occipital and temporal regions track unheard auditory features, we then asked how 428 

individual features contribute to these representations. For this we focused on the key condition of interest: 429 

the tracking of AudFeat in the delta range in V-only trials (Fig. 4 B,C). We quantified the CMI for each 430 

individual feature, while discounting the evidence about all other left-out visual and auditory features, hence 431 

focusing on the unique tracking of each individual acoustic feature.  432 
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For the temporal ROI this revealed the prominent tracking of aud env (Fig. 4B). In the in the 0.5 - 1 Hz band 433 

only the CMI for aud env was above chance (p < 5 x 10-5) and there was a significant effect of feature (Kruskal-434 

Wallis rank test ꭓ2(2) = 9.27, p = 9.1 x 10-4, ε2 = 0.14). Post-hoc tests revealed that the CMI for aud env differed 435 

significantly from that of aud slope (Tukey-Kramer test, p = 6.2 x 10-4; the other comparisons were not 436 

significant; p = 0.35 for env vs. slope and p = 0.22 for slope vs. pitch). In the 1 - 3 Hz band, the tracking of all 437 

auditory features was significant (all features: p < 5 x 10-5) and there was no significant effect of features 438 

(ꭓ2(2) = 4.14, p = 0.13, ε2 = 0.04).  439 

For the occipital ROI, this revealed a dominance of aud pitch (Fig. 4C). In the 0.5 - 1 Hz band, only the CMI of 440 

aud pitch was above chance (p < 5 x 10-5), a direct comparison revealed a significant effect of features (0.5 - 441 

1 Hz: ꭓ2(2) = 18.28, p = 1.07 x 10-4, ε2 = 0.32) and post-hoc tests revealed a significant difference between aud 442 

pitch and aud slope (p = 7.03 x 10-5), while the other comparisons were not significant (p = 0.26 for pitch vs. 443 

env and p = 0.02 for env vs. slope). In the 1 - 3 Hz range, the tracking of all features was significant (all features: 444 

p < 5 x 10-5), there was a significant effect of features ꭓ2(2) = 19.2, p = 6.77 x 10-5, ε2 = 0.34), and post-hoc 445 

tests revealed a significant difference between pitch and slope (p = 3.61 x 10-5), while the other comparisons 446 

were not significant (p = 0.05 for pitch vs. env and p = 0.12 for env vs. slope). Collectively these results suggest 447 

that the restoration of acoustic information in occipital regions emphasizes spectral features, while in 448 

temporal regions this emphasizes the temporal speech envelope. 449 

 450 
Fig. 4. Modality dominance and tracking of individual auditory features during lip reading. (A) Comparison of the 451 

tracking of unheard AudFeat over the tracking of the modality-preferred sensory input in each ROI (i.e. AudFeat during 452 
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A-only trials in the temporal ROI; LipFeat during V-only trials in the occipital ROI). (B,C) Tracking of individual auditory 453 

features during V-only trials conditioned on all other auditory and lip features in temporal (B) and occipital (C) ROIs. 454 

Brackets with asterisks indicate levels of significance from one-way Kruskal-Wallis rank test with post-hoc Tukey-Kramer 455 

testing (* p < 0.01, ** p < 0.005, *** p < 0.001). Dots represent individual data points. Bars indicate the median, 25th 456 

and 75th percentile. The grey dashed line indicates the 99th percentile of the frequency-specific randomized maximum 457 

distribution correction for all other features. Units in (A) are a ratio, in panels (B) and (C) units are in bits. 458 

3.5 Tracking of auditory features is associated with lip reading performance 459 

Finally, we probed the relevance of the restoration of unheard auditory features during silent lip reading for 460 

comprehension. For this we probed the predictive power of the MI about specific auditory features in either 461 

ROI for comprehension performance during V-only trials (Fig. 5). We specifically focused on the tracking of 462 

aud env in the temporal ROI and of aud pitch in the occipital ROI as the dominant feature-specific 463 

representations (c.f. Fig. 4B,C). Using linear models we predicted comprehension scores across participants 464 

based on the tracking indices of interest and while discounting for potential confounds from differences in 465 

signal-to-noise ratio.  466 

The results show that variations in comprehension scores are well predicted by the collective measures of 467 

feature tracking (0.5 - 1 Hz: R2 = 0.74, 1 - 3 Hz: R2 = 0.8). Importantly, the tracking of aud env in the temporal 468 

ROI was significantly predictive of lip reading performance (0.5 - 1 Hz: β = 0.6, p = 0.037; 1 - 3 Hz: aud env β 469 

= 0.6, p = 2.8 x 10-4), while tracking of pitch in the occipital ROI was not (0.5 - 1 Hz: β = -0.13, p = 0.56; 1 - 3 470 

Hz: β = -0.026, p = 0.91). This conclusion is also supported by Bayes factors for the added predictive power of 471 

aud env and aud pitch to these models (aud env in the temporal ROI; 0.5 - 1 Hz: BF = 3.12; 1 - 3 Hz: BF = 26.34; 472 

aud pitch in the occipital ROI; 0.5 - 1 Hz BF = 0.3; 1 - 3 Hz BF = 0.24). 473 
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 474 
Fig. 5. Association between lip reading performance and tracking of auditory features. Across participants the tracking 475 

of aud env during V-only trials in the temporal ROI but not the tracking of aud pitch in the occipital ROI was significantly 476 

associated with comprehension performance (PC) across participants in visual trials. Graphs show partial residual plots, 477 

dots represent individual data points and the line indicates the linear fit to the target variable from the full regression 478 

model. 479 

4. Discussion 480 

Natural face-to-face speech is intrinsically multidimensional and provides the auditory and visual pathways 481 

with partly distinct acoustic and visual information. These pathways could in principle focus mainly on the 482 

processing of their modality-specific signals, effectively keeping the two input modalities largely separated. 483 

Yet, many studies highlight the intricate multisensory nature of speech-related representations in the brain, 484 

including multisensory convergence at early stages of the hierarchy (Bernstein and Liebenthal, 2014; Crosse 485 

et al., 2015; Schroeder et al., 2008; Schroeder and Lakatos, 2009) as well as in classically amodal speech 486 

regions (Keitel et al., 2020; Mégevand et al., 2020; Scott, 2019). However, as the present results point out, 487 

the auditory and visual pathways are also capable of ‘restoring’ information about an absent modality-488 

specific speech component. While seeing a silent speaker, both auditory and visual cortices track the 489 

temporal dynamics of the speech envelope and spectral features respectively, in a manner that is 490 

independent on the physically presented lip movements. Importantly, these ‘restored’ representations of 491 
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acoustic speech features relate to participants’ comprehension, suggesting that they may form a central 492 

component of silent lip reading.  493 

4.1 Auditory and visual cortex reflect acoustic speech features during lip reading 494 

We systematically quantified the tracking of auditory and visual speech features during unisensory auditory 495 

and visual (lip reading) conditions in dynamically entrained brain activity. As expected, this analysis confirmed 496 

that early auditory and visual regions reflect acoustic and visual signals respectively at the time scales of delta 497 

(< 4 Hz) and theta (4 - 8 Hz) band activity, in line with a large body of previous work (Aiken and Picton, 2008; 498 

Bauer et al., 2020; Doelling et al., 2014; Giraud and Poeppel, 2012; Haegens and Zion Golumbic, 2018; Obleser 499 

and Kayser, 2019). In addition, we found that during lip reading both regions contained significant 500 

information about the unheard auditory features, also when discounting for the physically presented lip 501 

movements. This representation of acoustic features prevailed in the low delta band in auditory and the delta 502 

and theta bands in the visual cortex. Interestingly, this representation emphasized the temporal speech 503 

envelope in auditory cortex and spectral features (i.e. pitch) in the visual cortex. These results not only 504 

support that both regions are active during lip reading (Besle et al., 2008; Calvert et al., 1997; Calvert and 505 

Campbell, 2003; Ludman et al., 2000; Luo et al., 2010), but directly show that they contain temporally and 506 

feature-specific representations derived from lip movements that are also relevant for comprehension. 507 

These results advance our understanding of how the brain exploits lip movements for speech-related 508 

processes in a number of ways. The restoration of auditory features during silent lip reading had been 509 

suggested in two previous studies, one showing the coherence of temporal brain activity with the non-510 

presented speech envelope (Bourguignon et al., 2020) and another showing the coherence between occipital 511 

activity and the envelope (Hauswald et al., 2018; Suess et al., 2022). Yet, these studies differed in their precise 512 

experimental designs, their statistical procedures revealing the ‘restoration’ effect, and did not probe a direct 513 

link to comprehension performance. The present data demonstrate that such tracking of auditory speech-514 

derived features indeed emerges in parallel and in the same participants, and, importantly, predicts 515 

comprehension. This suggests that perceptually relevant and possibly linked mechanisms may underlie the 516 

simultaneous processing of visual speech along visual and auditory pathways. In addition, our data show that 517 

this restoration emerges across a wider range of time scales as reported before (Bourguignon et al., 2020), 518 

and also when discounting for the physically present lip signals. The latter is particularly important, as the 519 

mere coherence of dynamic brain activity with the acoustic speech envelope may otherwise simply reflect 520 

those aspects of the physically-present visual speech that is directly redundant with the acoustic domain 521 

(Daube et al., 2019). Finally, our data suggest that this restoration is largely bilateral and emerges across a 522 

number of anatomically-identified areas, suggesting that it forms a generic property of the respective 523 

pathways.  524 

Based on the same dataset as analyzed here, we recently showed that the identity of task-relevant words 525 

can be classified from the activity in multiple brain regions during lip reading and listening to speech (Keitel 526 
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et al., 2020). While this previous study suggested that lip reading is facilitated by processes in early visual 527 

regions, the respective analysis focused on lexical identity and did not consider the individual features that 528 

may carry or contribute to such lexical information. The present results hence complement our previous work 529 

by demonstrating the alignment of temporal and occipital activity to the dynamics of the lip contour and 530 

specific acoustic features. 531 

4.2 Lip reading activates a network of occipital and temporal regions 532 

Previous work has shown that lip movements activate a network of temporal, parietal and frontal regions 533 

(Bourguignon et al., 2020; Calvert et al., 1997; Capek et al., 2008; O’Sullivan et al., 2017; Ozker et al., 2018; 534 

Paulesu et al., 2003; Pekkola et al., 2005) and that both occipital and motor regions can align their activity to 535 

the dynamics of lip movements (Park et al., 2018, 2016). The present data substantiate this, but also show 536 

that the representation of the physically visible lip trajectory along visual pathways is accompanied by the 537 

representation of spectral acoustic features, a type of selectivity not directly revealed previously (Suess et 538 

al., 2022). Spectral features are vital for a variety of listening tasks (Albouy et al., 2020; Bröhl and Kayser, 539 

2020; Ding and Simon, 2013; Tivadar et al., 2020, 2018), and oro-facial movements provide concise 540 

information about the spectral domain. Importantly, as shown recently, seeing the speaker’s mouth allows 541 

discriminating formant frequencies and provides a comprehension benefit particularly when spectral speech 542 

features are degraded (Plass et al., 2020). This suggests a direct and comprehension-relevant link between 543 

the dynamics of the lip contour and spectral speech features (Campbell, 2008). Hence, a representation of 544 

acoustic features during silent lip reading may underlie the mapping of lip movements onto phonological 545 

units such as visemes, a form of language-specific representation emerging along visual pathways (Nidiffer 546 

et al., 2021; O’Sullivan et al., 2017).  547 

Our results corroborate the notion that multisensory speech reception is not contingent only on high-level 548 

and modality-neutral representations. Rather, they suggest that cross-modal correspondences between 549 

auditory and visual speech exist along a number of dimensions, including basic temporal properties (Bizley 550 

et al., 2016; Chandrasekaran et al., 2009) as well as mid-level features, such as pitch or visual object features, 551 

whose representation is traditionally considered to be modality specific (Crosse et al., 2015; Plass et al., 2020; 552 

Schroeder et al., 2008; Zion Golumbic et al., 2013). Previous work has debated whether visual speech is 553 

mainly encoded along the auditory pathways or whether occipital regions contribute genuine speech-specific 554 

representations (O’Sullivan et al., 2017; Ozker et al., 2018). Our results speak in favor of occipital regions 555 

supporting speech reception by establishing multiple forms of speech-related information, including those 556 

aligned with the acoustic domain revealed here, and those establishing visemic categories based on 557 

complementary visual signals (Nidiffer et al., 2021; Suess et al., 2022). Which precise occipital areas and by 558 

which patterns of connectivity they contribute to comprehension remains to be investigated, but both kinds 559 

of representations may well emerge from distinct temporal-occipital networks (Bernstein and Liebenthal, 560 

2014). While visemic information may be driven by object-related lateral occipital regions, the more auditory-561 
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aligned representations such as the restoration of spectral signatures may be directly driven by the 562 

connectivity between occipital areas and superior temporal regions, which play a key role for audio-visual 563 

speech integration (Arnal et al., 2009; Lazard and Giraud, 2017).  564 

In the auditory cortex, the alignment of neural activity to the unheard speech envelope may reflect the 565 

predictive influence of visual signals on guiding the excitability of auditory pathways via low frequency 566 

oscillations (Schroeder et al., 2008). This alignment of auditory cortical activity to attended or expected 567 

sounds is well documented and has been proposed as a cornerstone of multisensory speech integration in 568 

general (Lakatos et al., 2008; Schroeder and Lakatos, 2009; Stefanics et al., 2010). One hypothesis is that this 569 

alignment may facilitate the segmentation or parsing of the speech stream (Ding et al., 2016; Giraud and 570 

Poeppel, 2012; Meyer et al., 2017). In this light the restoration of the speech envelope during lip reading 571 

suggests that such segmentation processes along the auditory pathways align to the presumed or expected 572 

acoustic counterpart underlying the received visual signal. This process would then act in parallel to visemic 573 

analysis in the visual pathway, and imply central functions of both auditory and visual pathways in lip reading.  574 

5. Conclusion 575 

Lip reading induces representations of the dynamic lip contour along visual pathways. Our results show that 576 

the brain derives representations of acoustic speech features from this sensory input as well, reflecting a 577 

form of restoration of acoustic speech-related features in auditory and visual cortices. In the auditory cortex 578 

these restored representations are predictive of lip reading performance, suggesting that they may form a 579 

central component of multisensory comprehension benefits. 580 
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