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ABSTRACT Brain-machine interfaces (BMI) are tools for measuring neural activity in the brain, used to
treat numerous conditions. It is essential that the next generation of intracortical BMIs is wireless so as
to remove percutaneous connections, i.e. wires, and the associated mechanical and infection risks. This
is required for the effective translation of BMIs into clinical applications and is one of the remaining
bottlenecks. However, due to cortical tissue thermal dissipation safety limits, the on-implant power con-
sumption must be strictly limited. Therefore, both the neural signal processing and wireless communication
power should be minimal, while the implants should provide signals that offer high behavioural decoding
performance (BDP). The Multi-Unit Activity (MUA) signal is the most common signal in modern BMIs.
However, with an ever-increasing channel count, the raw data bandwidth is becoming prohibitively high due
to the associated communication power exceeding the safety limits. Data compression is therefore required.
To meet this need, this work developed hardware-efficient static Huffman compression schemes for MUA
data. Our final system reduced the bandwidth to 27 bps/channel, compared to the standard MUA rate of
1 kbps/channel. This compression is over an order of magnitude more than has been achieved before, while
using only 0.96 uW/channel processing power and 246 logic cells. Our results were verified on 3 datasets
and less than 1% loss in BDP was observed. As such, with the use of effective data compression, an order
more of MUA channels can be fitted on-implant, enabling the next generation of high-performance wireless
intracortical BMIs.

INDEX TERMS Brain–machine interfaces, embedded systems, FPGA, Huffman encoding, neural data
compression, neural decoding, multi-unit activity, real-time signal processing, reconfigurable hardware.

I. INTRODUCTION
A. WIRELESS INTRACORTICAL BRAIN-MACHINE
INTERFACES
BMIs are devices for connecting electronics to the nervous
system. They function as a parallel nervous system, bypassing
injuries in the nervous system or other obstacles, and are used
in treatment of a wide range of conditions, from paraplegia,
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to paralysis and Locked-in syndrome [1], and more [2], [3].
BMIs come with different levels of invasiveness, where intra-
cortical BMIs are the most invasive with electrodes being
placed directly into brain tissue [4]. As a result, they give the
highest spatial and temporal resolution of neural data, where
they can measure the firing rates of individual neurons in the
local vicinity of the electrode.

Historically, intracortical BMIs have used physical per-
cutaneous connections, e.g. wires breaching the skin. These
connect the electrodes in the brain to an external device
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that decodes the neural signals, typically a computer
[1], [2], [3]. However, these percutaneous connections intro-
duce significant infection and mechanical risks. They also
degrade the quality of life of the user. This is why the move
to wireless communication and powering is essential for
the effective translation of intracortical BMIs into clinical
applications, and it is one of the remaining bottlenecks [4],
[5], [6]. In Wireless intracortical BMIs (WI-BMI), a small
implant, placed on the brain or inside the skull, commu-
nicates wirelessly with a device outside the body, where
further computationally intensive processing or decoding is
done. Additionally, having millimeter or sub-mm scale free-
floating WI-BMIs would be optimal in terms of minimizing
potential injury and foreign body response in the brain [4].

B. MULTI-UNIT ACTIVITY
The most common signal in modern WI-BMIs is the Multi-
Unit Activity (MUA) signal. When a neuron fires in the
vicinity of an electrode, the electrode inductively measures
a short, sharp voltage spike. MUA consists of measuring the
timing of these spikes, assigning each spike on the same
electrode to the same putative neuron, and binning the result
at some temporal resolution, i.e, the binning period (BP).
As such, each electrode channel outputs an integer value
which is updated every BP, where the number represents how
many spikes occurred on the channel in the BP. A typical BP
is 1ms, since spikes last approximately 2ms. At a 1ms BP,
assuming only 1 bit per sample, that corresponds to a bit rate
(BR) of 1 kbps/channel. This is a significant improvement
over the raw broadband signal, which is typically sampled at
some 16 bits/sample at 20 kHz, giving a BR of approximately
320 kbps/channel. The MUA extraction process, along with
the extraction process of other common intracortical signals
and their typical BRs, is given in Fig. 1 in the context of
a typical WI-BMI data flow. The MUA signal is the most
common signal since it is well-understood, easy to extract [7],
has good decoding performance [8] and has relatively low
bandwidth.

C. HEATING IN WI-BMIs
Heating is a major issue with WI-BMIs. It is known that
heating tissue can cause irreparable damage [9]. This places
important limits on acceptable heat dissipation into tissue
from cortical implants, however safe levels of heat dissipa-
tion into cortical tissue are still poorly understood [9], [10].
The common standard is that power is strictly limited in
WI-BMIs to an approximately 1 ◦C temperature increase
or 1.6mW/g of specific absorption rate (SAR) in tissue
[4], [9], [11]. In the context of heating due to absorption of
radio frequencies (RF), the IEEE standard C95.1-2019 gives
limits for SAR heating depending on RF frequency [12].
However, it specifies that the understood SAR limits in brain
tissue are generally derived from models and lack rigorous
studies in live animals or humans, with significant variance
between models [12]. FDA regulations further dictate that
the local heat increase of brain tissue due to intracortical

implants should be limited to only 0.5 ◦ [13]. In muscle and
lung tissue, it is understood that up to 40mW/cm2 heat flux
can be allowed, however the limit is likely lower in cortical
tissue [9]. We will assume a maximum heat flux limit of
10mW/cm2 to hopefully provide a reasonable safety margin.

D. COMMUNICATION POWER
Communication power, alongside power management and
the front-end ADC, is one of the most power-hunger mod-
ules for wireless implants. Therefore, there has been sig-
nificant interest in lowering the communication energy per
bit to keep the implant within heat flux limits. The most
common data communication schemes for WI-BMIs are
implemented using different shift keying (amplitude, phase,
on-off) [14], [15], [16], [17], [18]. They are the most power-
efficient solutions for implants; however, their BRs are
below 20Mbps. The ultra-wideband uplink proposed in [19]
achieved 46Mbps with 118.3 pJ/bit.

The implantable microsystems that are designed and
fabricated based on full-custom application specific inte-
grated (ASIC) are more power-efficient than microcontroller
and field-programmable gate array (FPGA) based solutions
[20], [21]. However, the design process of FPGAs is signifi-
cantly less expensive and easier compared to that of ASICs.
FPGAs also benefit from increased flexibility for program-
ming, which better accommodates algorithmic changes. As a
result, it is typical for researchers to use FPGAs to validate
theASIC’s performance before full development of theASIC.
Therefore the system in this work is implemented in a FPGA
target. As such, this work assumes a system communication
energy of 20 nJ/bit [22], which is state-of-the-art for FPGAs
(Table 1). The average communication power per channel can
then be calculated from the BR, given in (bps/channel):

Comm. power = BR× Comm. energy per bit (1)

E. DATA COMPRESSION IN WI-BMIs
For a 10mW/cm2 heat flux and a 2.5mm × 2.5mm scale
implant, this gives a rough upper power budget of 625µW.
Assuming the entire implant power budget goes into com-
munication and a communication energy of 20 nJ/bit for an
FPGA-based WI-BMI [22], this translates into a maximum
BR of 31.25 kbits/s. Therefore, such an implant could only
communicate 31 MUA channels if all of the power was
used for communication. This ignores that there are hardware
static power requirements, as well as the front-end amplifiers,
ADC, and any other necessary on-board processing to extract
the MUA signal from the raw broadband recording.

Therefore, for the next generation of WI-BMIs, some form
of data compression is necessary, even for MUA signals.
Data compression comes in two forms. The first, is lossy
compression, i.e. feature extraction. Moving from the raw
broadband signal to MUA is a form of lossy compression,
where information that is assumed to not be of interest
to the final application is eliminated or degraded, saving
on bandwidth. The second form of compression is lossless
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TABLE 1. Wireless data communication power consumption comparison.

TABLE 2. Huffman encoder example. For the given frequencies and
codeword lengths, the compressed data has an average length of
0.8 × 1 + 0.1 × 2 + 0.07 × 3 + 0.03 × 3 = 1.4 bits, versus the 2 bits that
are normally required to represent 4 symbols with a fixed-length
encoding.

compression, where smaller codewords are given to more
likely symbols; the basis of Information Theory [25].
However, many lossless compression algorithms consume
significant hardware resources, e.g. Lempel-Ziv, Arithmetic,
and Adaptive Huffman encoding.

In WI-BMIs, the available hardware resources are
extremely few. As such, this work uses Static Huffman (SH)
encoding, which is implemented in hardware as a small
number of Look-Up Tables (LUT). The basic concept is that
one pre-trains a SH encoder on representative MUA data
and then implements it on the implant as unchanging LUTs
that give Huffman codewords to the measured MUA data.
If the SH encoder is appropriate to the data it encounters
on-implant, it compresses the data. An example of a Huffman
encoder is shown in Table 2. As long as the MUA data
tends to have smaller firing rates (FR), the SH encoder in
Table 2 will effectively compress the data. A SH encoder is as
minimal an encoder as can be achieved in hardware, making
it attractive for WI-BMIs. Additionally, Huffman encoding is
optimal among algorithms that encode each symbol individu-
ally, making SH encoding effective while remaining simple.
SH encoders were used in [26] to good effect to compress
various intracortical neural signals (Entire Spiking Activity,
Extracellular Action Potential, Local Field Potential) at dif-
ferent sample resolutions.

F. PRIOR WORK IN THE COMPRESSION OF MUA
It was proposed in [27] and [6] that increasing the MUA BP
from the standard 1ms may be an efficient way to lossily
compress MUA data. This will be investigated in this paper.
However, this compression is lossy because increasing the BP

reduces the temporal resolution of theMUAfiring times. This
could cause two problems.

The first is increased delay in BMI-user experience. When
we increase the BP, we increase the maximum possible lag
between a neuron firing and the data being communicated off-
implant. However, in [28], it was shown that the mean human
reaction time in 120 healthy 18-20 medical students was
larger than 220ms for both auditory and visual stimuli. There
are no other significant delays in theMUAWI-BMI data flow
other than the spike counting, as the communication and other
processing of the data occur on the ns scale. Therefore, a BP
of 100ms should be relatively well tolerated for motor decod-
ing applications in terms of delay in user experience. From
another perspective, it may also be worth considering that
BMIs, with small BPs, may give users superhuman reaction
times, which may be very desirable or even considered an
unfair advantage in certain circumstances.

The second potential issue with increasing BP is reduction
in Behavioral Decoding Performance (BDP). The reduced
temporal resolution of neural firing times may reduce our
decoding ability. However, the effect of varying MUA BP
between 1 and 150ms on BDP was investigated in [27].
The BDP was measured as the mean Pearson correlation
coefficient between the actual and predicted X and Y axes of
a free hand movement in non-human primates. It was found
that increasing BP had a slight but statistically significant
negative effect onBDP. TheBDP reduced by 0.85%per 10ms
increase in BP, using a Long-Short Term Memory (LSTM)
Neural Network (NN) decoder. Furthermore, [29] found that,
for SUA signals, there was no difference in hand kinematic
decoding ability between BPs of 10-100ms for LSTM, Feed-
forward NN, and Wiener filter neural decoders. However,
they also found that, when using Kalman filter decoders,
increasing the SUA BP up to 50ms improved the decoding,
although not to the level of the NN decoders. Additionally,
a 100ms BP for motor decoding is a common choice by
researchers [29], [30], [31].

As such, the effect of MUA BP on BDP is not clear, and
it has been hypothesised that it likely varies by decoding
algorithm and decoded task [6]. The effect of BP and limiting
the dynamic range ofMUA data on compression and BDP are
one important aspect that will be further investigated in this
paper.
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FIGURE 1. Typical BMI data processing and compression flow, with common extracted features / lossy compressions of intracortical broadband data. The
numerical values beneath the signals give approximate BRs per channel for that signal. LFP: Local Field Potential, equal to the lowpassed broadband at
approx. 300 Hz. EAP: Extracellular Action Potential, equal to the highpassed broadband at approx. 300 Hz. MUA: Multi-Unit Activity, equal to the unsorted
thresholded spike activity from the EAP. SUA: Single-Unit Activity, equal to the sorted thresholded spike activity from the EAP. ESA: Entire Spiking Activity,
equal to the enveloped rectified EAP signal, giving an envelope of unsorted spiking activity.

G. THIS WORK
In this work, we propose and compare multiple hardware
efficient MUA compression schemes. As this is the first
study on compressing MUA signals, we also evaluated how
using one or multiple SH encoders, saturating the dynamic
range, using on-implant histograms to add adaptivity into
SH encoders, and setting different BPs can compress the
data and affect the behavioral decoding quality. Our goal is
to seek the best MUA compression algorithm with minimal
resources to reduce data bandwidth so as to reduce the on-
implant power (processing and communication power) with-
out degrading BDP, while also keeping the signal temporal
resolutionwithin an acceptable range. Themain contributions
of this work are summarised below:
• Empirically showing the degree to which increas-
ing MUA BP lossily decreases the communication
bandwidth.

• Limiting the dynamic range of MUA data to reduce the
communication bandwidth.

• The use of SH encoders for the compression of MUA
data.

• The use of a sample histogram with mapping to add
adaptivity to SH encoders.

• The use of multiple SH encoders, with assignment via a
sample histogram, to add adaptivity to SH encoders.

• A novel ML algorithm for the offline selection of the
best combination of SH encoders.

• A holistic analysis of the effects of MUA data com-
pression on total implant power, BDP, hardware require-
ments, and temporal resolution of output data in a
extremely low-power FPGA target.

• The use of statistical analysis to calculate the maximum
amount of channels that could be hosted on-implant

within power budget limits, given the variable-codeword
lengths.

The rest of this paper is structured as follows. Section II
detailed describes the dataset used in this work and different
compression schemes. Section III shows the results of com-
pression, decoding, and related hardware power consumption
and resource usage. Trading-off among these metrics, a rec-
ommended setting is given. Section IV discusses some design
consideration based on the results and Section V concludes
this paper.

II. MATERIALS AND METHODS
The public datasets were loaded with Python 3.8 and
MATLAB 2020a, the analysis was performed in Python 3.8,
and the FPGA design in Modelsim Lattice Edition and
iCEcude2 2020. The analysis Python code and FPGA Ver-
ilog code and designs have all been made publicly available
at [32]. The formatted data and results have been made
available at [33]. Researchers can use these to select their
own compression system depending on their overall system
requirements.

A. DATASETS
To get a broad sample of MUA conditions, three pub-
licly available datasets were used. These are summarised
in Table 3, and further details are given in Supplemental
Material, Section 2. For each dataset, the SUA data was intra-
channel collated to MUA, then binned to the desired BP. The
behavioral data was resampled to the same BP resolution
using linear interpolation.

1) BEHAVIORAL DATA
In this work, the X and Y-axis cursor velocities in the hand
reaching tasks were used as the observed behavioral data.
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TABLE 3. Dataset summaries.

The BDP is defined in this work as the across-axes aver-
age Pearson correlation coefficient r between the predicted
and observed X and Y-axis velocities. In the Brochier et al.
dataset, the behavioural data consisted of labelled actions.
As these were not continuous measurements, the behavioral
decoding for the Brochier et al. dataset was not analysed in
this work so as to keep the BDP metric consistent. The BDP
metric is given in Eq. 2:
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(2)

where Vxoi and Vxpi are the observed and decoder-predicted
X-axis cursor velocities at sample i, Vyoi and Vypi are the
equivalents for the Y-axis, and n is the number of samples
in the recording.

2) TRAINING-TESTING DATA SPLIT
The data was split into training (A) and testing (B) data. This
was because many different systems with different parame-
ters were considered, e.g. different BPs and S values, different
module combinations, etc. Therefore, the training data was
used to identify a well-performing system. The final system
was then tested on the test data B so as to give an unbiased
estimate of the system performance on new data.

The Flint dataset was split so that the first 4 days of record-
ing sessions were included in A. This corresponded to 10 out
12 recording sessions. The remaining 2, taking place over
another day, were used as testing data and included in set B.
The Brochier dataset was all included in the testing data B.

Finally, the Sabes dataset was split so that data from subject
Indy was included in A, and the data from subject Loco was
included in B. This was done so that the testing data included
data from completely new subjects. This strengthened the test
data, allowing us to test the system on new subjects to see if
the BR performance and BDP were as desired.

B. COMPRESSION MODULES
The full system overview is given in Fig. 3. Different module
combinations (Detailed in Section. II-B5) were investigated
and a full grid search of all system parameters was performed.
We investigated each system in terms of BDP, temporal res-
olution, hardware resources and on-implant power consump-
tion. That allowed us to analyse and trade-off among different
metrics of interest for a WI-BMI so as to identify the best
configuration. Finally, we tested the selected configuration on
neural data from new subjects, and confirmed its compression
and behavioral decoding performance. Details of the modules
are given below.

1) BINNING AND SATURATION
Two lossy compression steps have been applied to compress
the MUA data. Binning the MUA data at a certain BP to
obtain the FR is a primary means of compressing the MUA
data. We also investigated saturating the FR at a maximum
value S−1 to limit its dynamic range, where all FRs> (S−1)
were set to (S − 1). This means that there are fewer FR val-
ues that can be communicated, reducing the communication
bandwidth. In order to test how different BP and S values
can affect the compression and decoding performance, BPs of
{1, 5, 10, 20, 50, 100}ms and S values of {3, 5, 7, 9} were
tested.

These two operations perform a lossy compression to
MUA signal, and therefore the degree to which they
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FIGURE 2. (a) A random sample of 100 channels’ MUA FR probability
distributions with a 100 ms BP. (b) Average MUA FR probability
distribution for each analysed dataset, with a 100 ms BP.

degrade the BDP was evaluated. The method is described
in Section. II-C.

2) SH ENCODING
Applying SH encoders can losslessly compress the MUA
data. As in Table 2, the idea is to give shorter codewords to
more common values in an extremely hardware-efficient way.
In this case, we give shorter codewords to more common FRs.
The SH encoders were of length S, i.e. they had S input values
and output codewords.

SH encoders need to be trained before use on represen-
tative data. Based on our observation on various record-
ings, we found that the firing rate distribution on average
followed a decaying exponential, where smaller FRs were
more common than larger FRs. This is shown in Fig. 2.
As such, we trained the SH encoders on a decaying exponen-
tial, so they gave shorter codewords to smaller FRs. Further
details are given in the Supplemental Material, Section 3. The
SH encoder is represented by the ‘Encoder(s)’ block in Fig. 4.
The use of multiple SH encoders will be discussed soon in
Section II-B4.

3) FIRING RATE MAPPING USING HISTOGRAM
As shown in Fig. 2 (b), for BP ≤ 100ms, smaller MUA FRs
are on average more common than larger ones. However,
as can be observed in Fig. 2 (a), this is not always the
case for each individual channel. As such, assigning shorter
codewords to smaller FRs will not always give optimal com-
pression. Here we investigate the use of a sample histogram
to address this problem. The beginning of each channel’s

recording was used to fill a sample histogram. This histogram
was then used to estimate the relative frequencies of the FRs
for each channel. The most common FRs in the histogram
were then, for the rest of the data in each channel, assigned the
shortest codewords via a hardware-efficient sorting (Supple-
mental Material Section 6.3). This was referred to as mapping
the most common FRs to the shortest codewords, given the
sample histogram estimate. As such, some semi-adaptability
was introduced into the SH encoders. A demo histogram
sorting and mapping process is represented in Fig. 3.

This module is represented by the ‘Histogram’, ‘Sorter’
and ‘Mapper’ blocks in Fig. 4.We considered histogram sizes
of d = {0, 2, 4, 6} bits/bin, where there were S bins. Once
2d samples had been measured, the histogramwas considered
to be full and was then used to estimate the FR frequencies.
In the case of d = 0 bits, no histogram, sorting or mapping
was used.

4) UTILISING MULTIPLE SH ENCODERS
Multiple SH encoders can be used to increase the on-implant
compression adaptiveness. This works by using the sample
histogram to estimate which encoder would compress each
channel the best. Each channel is then assigned its optimal
encoder. Such assignment was obtained by taking the dot
product of the histogram and the Codeword Length Vector
(CLV) for each encoder. Dividing the dot product by BP
and 2d gives the BR. As such, we assigned each channel to
the encoder that gave the channel histogram the smallest dot
product (i.e. BR).

To give more information, the CLV is a vector of integers
that represent the length of each of the SH codewords. For
example a SH encoder of

{0, 10, 110, 111}

would have an CLV of

{1, 2, 3, 3}

The dot product gives the total size of that channel’s com-
municated data after compression using an equivalent SH
encoder.

For a SH encoder of size S, there are h possible non-
redundant (i.e. with unique CLVs) SH encoders. We designed
a custom Machine Learning (ML) offline algorithm to select
the top co-performing u encoders from amongst all h possible
encoders. In other words, this selected the best combination
of u SH encoders by using offline MUA training data. This
ensured that we had the best u encoders on-implant that
channels could be assigned to, with u ∈ [Z+, 1 ≤ u ≤ h].
The multiple on-implant SH encoders are represented by
the ‘Encoder Assigner’ and ‘Encoder(s)’ block in Fig. 4.
If u = 1 there was only one encoder on-implant, and so
assignment was redundant since all channels went to the same
encoder. We considered u values of {1, 2, 3, 5, 7, 10, 15, 20}.
The ML algorithm is further detailed in Section 3.3 of

the Supplemental Material. It is an offline algorithm used in
selecting which u SH encoders go on-implant, and is not itself
present on-implant.
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FIGURE 3. Use of a sample histogram to improve bit rates. A sample histogram is derived from the beginning of each channel’s recording. It is then
sorted using a hardware-efficient sorting, where smaller indices are given to more common firing rates. The sorting is stored as a mapping, used to sort
the rest of the data, i.e. the to-be-compressed data. The data is then compressed after mapping, where if a firing rate was found to be the xth most
common in the sample histogram, it was given the xth shortest codeword. As such, the data histogram is approximated by taking a sample, and if the
sample is well-representative of the rest of the data, this may help shorter codewords be given to more common firing rates, improving compression.
In the example we can see the mapped compressed data requires only 9 bits, relative to the unmapped compressed data which requires 14 bits.

5) MODULE COMBINATIONS
The modules included in each system configuration are given
in Table 4. Similarly, the total parameter space investigated
for the data compression is given in Table. 5.
There are in total 5 combinations. The first is the sim-

plest system with only the binner and saturation, referred
to as the ‘Only Binning’ system. The others use Huffman
encoding, where the binned and saturated data goes straight
to SH encoding. If multiple encoders are implemented, his-
togram and encoder assignment modules are needed in a
calibration phase to select the best encoder for each channel.
If we assume the FR data is not distributed according to a
decaying exponential, the sorter and mapper are needed to
map the more common FRs to shorter codewords. Therefore,
the remaining four combinations are according to w/ or w/o
mapping and u = 1 or u > 1.We refer to the one combination
using all modules as the ‘Full System’. The FPGA implemen-
tation of the different modules is included in Supplemental
Material, Section 6.

6) COMMUNICATION POWER ESTIMATION
For each parameter combination in Table. 5, we measured the
compressed data BR using the training data A. From the BR,
we derived the communication power from Eq. 1.

C. DETERMINING THE IMPACT OF LOSSY COMPRESSION
ON BEHAVIOURAL DECODING PERFORMANCE
Lossy compression involves losing information. In this case,
the lossy aspects are increasing the BP, which reduces the
temporal resolution of the neural data, and decreasing S,
which saturates the data at an FR of S − 1. It is important
to ensure that the lossy compression does not lose key infor-
mation needed for the final application. In this case, the final

application is the behavioral decoding of hand kinematics,
which is a standard BMI behavioral measure.

As such, to ensure that not too much relevant information
is lost, a behavioral decoder was implemented. It was used
to decode the hand X and Y-axis velocities, using the BDP
metric from Eq. 2. The input to the decoder was the binned
and saturated neural data, for BP values of {1, 5, 10, 20,
50, 100}ms. To be exhaustive in our behavioral analysis,
S values from 2 to 59 were investigated for their effect on
BDP. However, due to the impossibility of automating all of
the hardware optimisation, only S values of {3, 5, 7, 9} were
investigated for the compression work.

AWiener Cascaded Filter (WCF) was used for the decoder.
WCFs have been found to have good decoding neural per-
formance relative to other simple decoders, although they
have generally found to not be as effective as deep learning
methods [8], [29], [36]. However, their training times are
significantly shorter [36]. As such, in this work they were
used to investigate the relationship between S, BP and BDP.
In this work, the WCF code from [8] was used. 5-fold cross-
validation (hyper-)parameter optimisation was performed,
and the details given in the Supplemental Material, Section 4.
Once the parameters were optimised for each S and BP, the
BDP was calculated for each combination using separate
testing data.

III. RESULTS
A. THE IMPACT OF LOSSY COMPRESSION
1) THE IMPACT OF LOSSY COMPRESSION ON BIT RATE
It was proposed in [27] and [6] that increasing BP would loss-
ily compress MUA data, but neither evaluated how efficient
that compression is. To the best of the author’s knowledge,
the degree of the effect is empirically shown for the first time
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FIGURE 4. Compression data flow for each configuration. In the full system, a portion of the data is used for on-implant calibration, i.e. used to train a
sample histogram for mapping and encoder selection. The mapping and selected encoders are then transferred to the main compression data flow, where
the rest of the data is compressed. In the version without sorting and mapping, i.e. the ‘Without Mapping’ configuration, the green shaded modules are
removed. If only u = 1 Huffman encoder is used on-implant, then the orange shaded module is removed, as no assignment is necessary. Finally, in the
‘Only Binning’ configuration, no on-implant calibration is performed, and the data goes straight from binner to transmission without a encoder.

TABLE 4. Required modules for each system configuration. The histogram is used for both assignment of encoders to channels, and for sorting/mapping
of FRs. The system configurations vary if assignment is required or not, e.g. if only 1 encoder is considered, or if the histogram is to be sorted or not. The
configuration also varies if no Huffman compression is considered, in which case only a binner and saturation are required.

TABLE 5. Considered subset of analysed parameter space.

in this work. The BR required to communicate a channel
of binned data is equal to m/BP (bps/channel), where m
is the number of bits required to represent the unsaturated
dynamic range (S ′) of the FR. There is an approximately
linear relationship between the lossless FR dynamic range
and BP (Fig. 5 (a)). This produces a positive, approximately
logarithmic effect on m from increasing BP (Fig. 5 (b).
As such, merely increasing BP decreases the communication
bandwidth (m/BP), relative to a lower BP (Fig. 5 (c)).

Saturating the FR range by setting the dynamic range S to
S < S ′ can obviously further reduce the BR, as the BR is
proportional to the dynamic range to be transmitted. That is
not the only advantage of saturating. If a SH encoder is used,
a large glossary of the possible FRs to be compressed means
a large SH codebook. Limiting the max FR from 10s to less
than 10 can significantly reduce the size of the on-implant SH
encoder and therefore reduces the power and resources.

2) IMPACT OF LOSSY COMPRESSION ON BDP
Fig. 6 (a) shows the BDP vs. BP and S results averaged
across the Flint and Sabes datasets. Examples of observed and
predicted behavioral data are shown in Fig. 6 (b-d).

Fig. 6 (a) shows that the BDP improves as a function of
BP, and is unaffected by S if S is large enough. For BP ≤
20ms, even S = 2, i.e. binary representation, is not lossy
enough to affect the BDP. For BP at 50 or 100ms, S = 3 or 5
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FIGURE 5. (a) A plot of S′ = max(X )+ 1, the dynamic range of the MUA
FRs, as a function of BP, where X is the multi-channel MUA data. (b) The
number of bits m = ceiling(log2(S′)) required to losslessly represent the
dynamic range S′ as a function of BP, without any lossless compression.
(c) The communication bitrate m/BP (bps/channel) required to
communicate a dynamic range of S′ . (a-c) The analysed MUA data X , from
which S′ is measured, is the entirety of the training data A.

are large enough to have less than 2% BDP degradation.
For example, a 100ms BP and an S value of 5 would give
a BR of ceiling(log2(S ′))/BP = 30 bps/channel, while using
no lossless compression. A typical bit rate of MUA signal
is 1 kbps. Therefore, a 33 times bandwidth reduction can be
easily achieved with just the use of binning and saturation
lossy compression, with minor to no degradation on BDP.

B. THE IMPACT OF STATIC HUFFMAN ENCODING
The SH encoder is a lossless compression operation applied
after binning and saturating. Fig.7 shows the reducing effect
on BR from the addition of just a single SH encoder.

Overall, roughly another 50% bandwidth reduction can be
achieved by using a single SH encoder. Moreover, as bene-
fited from the saturation, the SH encoder with a small code-
book can be implemented with only minor resources (less
than 100 logic cells) consuming negligible power compared
to the binner.

C. THE IMPACT OF IMPROVING ADAPTIVENESS
Using an on-implant histogram to map FRs and select a suit-
able encoder from multiple on-implant encoders can improve
the adaptiveness of the compression. This can be especially
effective when the distribution of FRs to be compressed is
unlike in the training data.

FIGURE 6. (a) Behavioral decoding performance (BDP) as a function of BP
and S. Each S/BP combination was parameter optimised on 5-fold CV,
with the results averaged from the Sabes lab and Flint datasets.
(b-d) Example observed vs. predicted X-axis velocities from 5-fold CV,
with corresponding BDP (r) for random Flint recording and parameter
combinations during parameter optimisation at a BP of 5 ms.

According to our results, using histogram to map FR can
reduce the BR by another 5% to 20% as the histogram size
increases. This improvement is only noticeable when the BP
is 50ms or 100ms because longer BPs cause the FR distri-
bution to vary more from the standard decaying exponential.
In which case, increasing the histogram size estimates the
true distribution more accurately, and so provides a more
accuratemapping, making the effect of the histogram notable.
However, the FR distribution of short BPs varies less, which
makes the mapping mostly redundant. Mapping the FR with
local information can even degrade the compression perfor-
mance, regardless of BP, when the histogram size is too small.
This is because if the beginning of the recording is not rep-
resentative of the rest of it, our mapping may be maladaptive
and perform worse than the assumed decaying exponential.
As such, larger histogram sizes are more reliable.
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FIGURE 7. Boxplot of bit rates of all compression systems with and
without Huffman encoding at u = 1. This shows that the addition of a
single SH encoder improves compression performance by more than
2 times on average.

Using more encoders does not bring significant improve-
ment on BR. We noticed that the same encoder is nearly
always selected even when there are multiple available
encoders. This ‘best’ encoder was the one trained on a sharp
decaying exponential, where the CLV was of form [1, 2, . . . ,
S − 1, S − 1]. That suggests, on the one hand, that our ML-
based encoder training algorithm works well in selecting the
best encoder; on the other hand, the FR distribution when
BP is less than 100ms does not vary enough to require the
adaptiveness provided by having more than one encoder.

The adaptiveness however comes with hardware costs.
The on-implant histogram, dot product and sorting are all
resource-hungry. We have done intensive hardware opti-
misation and the details are provided in Supplementary
Section 6 and 7, but their resource occupation can still be the
bottleneck of the whole system.

D. SYSTEM CONFIGURATION SELECTION
In previous sections, we have shown how different modules
can contribute to the MUA data compression, and their cost
on BDP and/or hardware. Next we will determine the best
system configuration.

We finalised a configuration by empirically testing all
combinations of different modules, BP, S, histogram size
and the number of encoders shown in Tables. 4 and 5.
We then traded off between the system behaviour decoding
performance (BDP), behavioural decoding temporal resolu-
tion (BDTP, i.e. the temporal resolution we had of the neural
data), hardware total power (communication + processing)
and resource usage as shown in Fig. 8 (a). Each point stands
for one parameter setting and different colors represent the
system operating at different BP. The points high up on the
resources axis indicate systems with larger S, histogram size
or more on-implant encoders. The points that are perpendic-
ular to the rest, with low resources but high power, are the
setting with only the binner at different S values, as these had
low hardware usage but higher communication power since
no lossless compression was used.

The best trade-off is shown in Table 6. As this is the first
system on MUA data compression and a massive parameter

space is involved, it is worthy to provide some findings and
considerations on how the system is selected.

1) THE SELECTION OF BP AND S
BP in our design is directly equal to the temporal resolution
BDTP. Increased BP or BDTP can bring higher BDP and
lower communication power as the firing rates are transmitted
less frequently. However, S needs to be sufficient for high
BPs to enable sufficient BDP. It was observed that at a BP of
100ms and S = 3 that the BDP suffered significantly. This
can be observed in both Fig. 6 (a) and Fig. 8 (a) as a cluster
of dark points (100ms BP) with low BDP. As such, given
sufficient S, increasing the BP is a very attractive prospect.
It needs to be balanced with the desired temporal resolution
of the decoded output, but BP should be able to be increased
significantly without negatively affecting user experience,
as discussed earlier in Section I-F.

In our case of behavioural decoding, 50ms can be a good
choice. It is conservative in terms of the impact on user delay,
while also having high BDP and low communication power.
As such, we selected a BP of 50ms. Furthermore, according
to Fig. 6, when the BP is 50ms, limiting the FR dynamic range
to 3 produces a 2% BDP degradation. As such we selected
BP = 50ms, S = 3.

2) THE SELECTION OF THE NUMBER OF ENCODERS
AND HISTOGRAM SIZE
As previously stated, using more than one encoder does
not significantly reduce BR and therefore is not considered.
Using no SH encoder can be especially resource-saving.
However, the approx. 50% bandwidth reduction brought by
a single SH encoder can significantly reduce the communi-
cation power and therefore the total power. The points that
belong to a perpendicular segment relative to the rest of the
data in Fig. 8 show how the addition of SH can significantly
reduce communication power.

With respect to the histogram size, though it needs more
resources, it improves the compression while the resource
usage is still acceptable. To get more insight, we focused
in on Fig. 8 (a) with BDTP = 50ms, resources < 260 and
dynamic power < 2.2µW /channel, shown in Fig. 8 (b). The
bottom four points from left to right are the configurations
with one encoder, S = 3, and histogram sizes of [0, 2, 4, 6]
bits/bin respectively. It makes sense, in terms of scaling with
channel count, to prioritise the lowest power configuration.
This is because resources are roughly static at 246 with
increased channel count, which is acceptable. Additionally,
BDP increases somewhat logarithmically with channel count
according to neuron dropping curves [37], [38], and BDTP
is unaffected. However, power increases roughly linearly
with channel count, making it the parameter that scales least
well. Therefore as long as the resource usage is acceptable,
reducing the power consumption should be the first priority.
However, for resource-constrained scenarios, the bottom left
setting can be selected which is the configuration without
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TABLE 6. Chosen system parameters and encoder for testing and associated training (A) and testing (B) results. For the training and testing results, all
data in A and B were respectively used.

histogram, i.e. no mapping, where the encoder compresses
the binned firing rate directly (for data flows see Fig. 4).

E. TESTING DATA RESULTS
Next, we looked at testing our chosen system on data it
had not seen yet. Given our chosen system parameters, sum-
marised in Table 6, we determined the BR and BDP on the
testing data B, also shown in Table 6.

1) COMMUNICATION POWER RESULTS
For the Flint, Sabes and Brochier data in B, the across-
channel-and-recording average BRs were 26.5, 27.8, and
20.6 bps/channel respectively, corresponding to dynamic
power/chan values of 1.49, 1.52 and 1.37 µW. These are
highly similar to those in the training data, where the averages
for the Flint and Sabes data were 26.4 and 27.8 bits/s/chan
and 1.49 and 1.52 µW respectively. This is especially sig-
nificant for the Sabes and Brochier test data, which con-
sisted of subjects that were completely separate from the data
in A. This means that the system effectively compressed data
from 3 entirely new non-human primate subjects. This can
be compared to the 40 bps/channel produced by the Only
Binning configuration where no Huffman encoder is used
(ceiling(log2(3))/(50 ×10−3)).

2) BEHAVIORAL DECODING RESULTS
The BDPwas measured for the Sabes and Flint datasets using
the testing data in B. Each channel was split 90-10% into
training and testing sets. S and the BP were fixed at 3 at
50ms respectively, and as in Section II-C the WCF hyper-
parameters and pre-processing parameters were 5-fold cross-
validated on the training set. The best parameters for each
BP/S combination were taken, and the BDP measured on the
testing set.

The average BDP for the Flint dataset was 0.724, and
for the Sabes data it was 0.616. These BDP values from B
are significantly lower than in the training data A. At first
glance this is worrying, since it may suggest the compres-
sion scheme was overly lossy and too much behavioural
information was lost. However, close examination of the
results indicate that the tested system’s BDP values are lower
because the recordings have less behavioral information in
them, or the recording quality is less good, etc. This is shown

FIGURE 8. (a) Integrated results: BDP and BDTP values for different
resources and dynamic power consumption levels. (b) Sample of
integrated results, with BP/BDTP X 50 ms, resources < 260, dynamic
power < 2.2µW/chan for our 128 channel system. The outlined triangle
represents the chosen system configuration for our tested system. Note
that the color bars for (a) and (b) are distinct.

by comparison of Fig. 5 and 8 in the Supplemental Material,
as well as Fig. 6 in the main manuscript. In particular for the
Sabes test data, they show that the data seemed to suffer from
a few recordings with very low BDPs (e.g. at approx. 0.4),
which dragged down the average to significantly below the
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median BDP. A larger amount of Sabes test recordings per-
formed quite well (approx. 0.7), although they still generally
performed worse than the train A data. As such, the test
recordings seem to simply be of worse quality than the train
recordings.

Furthermore, across all test recordings, the tested system’s
compression did not negatively affect the BDP by more than
1.62% compared to the top observed BDP for each recording
across all BP and S, and for the overwhelming majority of
recordings the impact was 0. This is encouraging, as it shows
that the quality of the recordings was the decisive factor in
the BDP, not the lossy compression.

The main takeaway for the BDP results is that reducing
S to 3 for a BP of 50ms had no significant negative effect
on BDP. It is expected that if the recording quality is similar
to that in the training data, higher BDPs will result. It is
also likely that using more advanced deep learning decoders
would result in higher BDPs [8], [27], [29].

IV. DISCUSSION
A. THE NUMBER OF CHANNELS SUPPORTED BY
THE POWER BUDGET
As discussed in Section I-E, for a 2.5mm × 2.5mm scale
FPGA implant with a 625µWpower budget, one could wire-
lessly transmit up to 31 channels if all the on-implant power
was used for communicaiton. In practice, with a static FPGA
power of 162µW, negligible spike detection power [7] and
a processing power for the 1ms binner of 0.96µW/channel,
a maximum of 22 channels could be measured on-implant.

However, our chosen system’s power consumption
depends on variable-length codewords. Therefore, there
is a risk that the BRs will be higher than the expected
∼27 bps/channel as given in Table 6. For example, one might
measure a handful of particularly active channels, and this
may increase the BR. If one chooses the number of channels
on-implant so as to be close to the permitted power budget,
and the channels are more active than expected, this may pro-
duce more heat than desired. As such, it warrants choosing
the number of channels based on a statistical understanding
of the worst case scenarios.

As such, we took random samples of the channels. For
sample size z ∈ Z+, we took 100,000 samplings of z random
channels. For each random sampling Y , from the channels’
summed BRs we obtained the resulting total system power P
using the estimates in Equation 3:

PY =
z∑
i=1

(BRi)× Comm.Energy+ z

×Processing Power+ Static FPGAPower

PY =
z∑
i=1

(BRi)× 20 nJ/bit+ z

×0.96µW/channel+ 162µW (3)

where BRi is the BR of the ith channel in sampling Y , where
1 ≤ i ≤ z, i ∈ Z+.

It was then determined, for each number of channels z,
what percentage of random channel combinations exceeded
the desired power budget B:

p(z) =
1
105

105∑
Y=1

(PY > B) (4)

where (PY > B) is a boolean value equal to 1 if PY > B
and 0 otherwise. As such, p(z) gave a permutation derived
p-value for each number of channels z not exceeding the
power budget.

Using our chosen architecture and power budget of
B= 625µWand averaged across our 30CV runs, it was found
that from the training data results that having up to 304 chan-
nels never exceeded the power budget. Having 305 chan-
nels had a p-value of ∼5e-4 of not exceeding the power
budget with p(305) = 55/105, and 306 channels or higher
had significant chances of exceeding the power budget of
p(z > 305) > 0.05. As such, we think having approximately
300 channels for our 2.5mm × 2.5mm FPGA hardware is
ideal assuming the given power estimates hold true, while
staying within a conservative heating safety margin. As such,
by compressing theMUA data one can send out over 13 times
as many channels as when sending out the raw MUA data
for a similarly sized FPGA device. In ASIC, this difference
would likely be far more pronounced, given the reductions
in dynamic and static power. However, the contribution of
the front-end amplifier and ADC would need to be included
as they would likely be integrated. Given that ADCs with
power consumption as low as 0.87µW/channel have been
achieved [39], there is reason to believe that impressive chan-
nel counts could be obtained at mm-scale in ASIC.

B. CONFIGURATION SELECTION CONSIDERATIONS
The configuration selection can be application-dependent.
It warrants mentioning that 100ms BPs for behavioral decod-
ing are common in the literature [6], [30], [31]. Therefore,
a >50ms BP system could also be of interest. Additionally,
if increased BDP is an absolute priority, then a configuration
with a higher S may be appropriate. However, one should
consider that if increased power is required as a result, this
can reduce the amount of allowable channels for an implant
of the same size, perhaps reducing the final BDP. Simi-
larly, if a system has only a few recording channels, where
communication power does not dominate, one may choose
a system that significantly reduces hardware requirements
over marginally reducing BR, e.g. a ‘Without Mapping’
configuration.

All results and hardware designs are made publicly avail-
able, and researchers are free to select from them for their
own system designs.

C. THE EFFECT OF BP ON BDP
We found that BDP increases as a function of BP between
1 and 100ms. Although this differs from some other results
that used different decoders [27], it has also been theorised

117526 VOLUME 10, 2022



O. W. Savolainen et al.: Hardware-Efficient Compression of Neural Multi-Unit Activity

in the literature that we should expect BDP results to vary by
decoded behavior and decoding algorithm [6]. Reference [27]
found that increasing BP reducedBDP, but it used Long-Short
Term Memory (LSTM) neural network decoders, which are
a form of deep decoder. It is unsurprising that a deep decoder
that can exploit long-term temporal dependencies to find
extra information in high-precision timing of neural firing
rates compared to a simpleWCF decoder. As such, the differ-
ence between the relationship between BP and BDP in Fig. 6
and [27] is not surprising.

D. GENERALISING THE RESULTS TO OTHER BEHAVIORS
How well lossy compression has performed depends on the
final use of the data, and whether any key information has
been lost. In this work, the final outcome was the decoded
hand kinematics, which are a standard BMI behavioral mea-
sure [8], [27], [30], [34], [35], [40]. Therefore, although
the lossy aspect of the compression system is tailored to a
specific task, it is a general task that is ubiquitous across
BMI research. Additionally, the lossy aspect of the data com-
pression scheme is very simple: increasing the BP, which
is standard during BMI behavioral decoding [6], [30], [31],
[40], [41], and saturating the MUA data, which had only a
negligible effect on BDP for this task.

For this hand kinematic task, the system’s BDP was tested
on a completely new subject, ‘Loco’ of the Sabes dataset,
and for all tested recordings the BDP was at most negligibly
reduced by data compression (1.6% in the worst case, 0% in
most cases). For the Flint test recordings (new recordings on
the same Flint subject as in the training data), the BDP was
similarly unaffected by lossy compression. As such, we can
say that the performance of the compression system was
robust across different subjects, which is a very significant
result. However, we cannot say the same across tasks. It is
our belief that the results will probably be consistent across
tasks decoded from the motor cortex, but if not, then S can
simply be increased or BP varied.

Future work will look at decoding hand-writing kinemat-
ics, using the publicly available data from [2]. As such, so far
we can only say that the tested compression scheme gener-
alised very well to 3/3 new subjects in terms of compression,
and to 1/1 new subject in terms of behavioral decoding for
hand kinematic tasks in WI-BMIs.

E. FIXED LENGTH vs. VARIABLE LENGTH CODEWORDS
AND BIT-FLIP ERRORS
It warrants mentioning that lossless compression works by
giving variable length codewords to symbols. Due to the
multiplexed encoding of MUA, this makes losslessly com-
pressed MUA data more vulnerable to bit flip errors mak-
ing the multiplexed communicated data block undecodable.
As such, some noisy channel encoding or decreasing the BP
may be necessary, assuming the bit flip error rate is suffi-
cient to warrant it. This would increase the BR marginally,
and is discussed further in the Supplemental Material,
Section 8.

F. MULTI-CHANNEL COMPRESSION
Future workwill consider compressing the entireMUA signal
across channels, whereas this work looked at compressing
intra-channel MUA. It may be that some dimensionality
reduction is possible, or that correlations between adjacent
channels can be taken advantage of as in [42] to further
compress the data without reducing BDP or other metric of
interest.

On-going work is looking at methods to compress the
MUA in ‘asynchronous’ architectures, where the MUA FR
is only communicated for a channel if it is larger than 0 for
the given time period. Preliminary results show that, for BPs
higher than or equal to 20ms, the methods in this paper are
superior. For BPs lower than 20ms, asynchronous methods
seems to perform best.

V. CONCLUSION
In conclusion, our objective was to reduce the MUA
data bandwidth so as to reduce the MUA-based WI-BMI
power consumption and prevent tissue heating and damage.
We eventually achieved nearly 40 times MUA bandwidth
reduction from 1kbps/channel to 27bps/channel with 2%
decoding degradation on training data, and less than 1% on
testing data. Such a distinguishable achievement is made by
a binner at 50ms BP, a dynamic range limited to 3 possible
values, hardware efficient mapping using a histogram size of
6 bits and losslessly compressing the resulting signal with
a pre-trained static Huffman encoder. Our results have been
across validated using 3 datasets (Flint, Sabes and Brochier)
and 3 new subjects suggesting consistent compression perfor-
mance. The system has been implemented on a FPGA plat-
form using 246 logic cells, consuming only 0.96µW /channel
and can accommodate more than 300 channels within 4kB
RAM. All results and hardware designs are made publicly
available, and researchers are free to select from them for
their own system designs.
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