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Abstract
The Dice similarity coefficient (DSC) is both a widely used metric and loss function for biomedical image segmentation 
due to its robustness to class imbalance. However, it is well known that the DSC loss is poorly calibrated, resulting in 
overconfident predictions that cannot be usefully interpreted in biomedical and clinical practice. Performance is often the 
only metric used to evaluate segmentations produced by deep neural networks, and calibration is often neglected. However, 
calibration is important for translation into biomedical and clinical practice, providing crucial contextual information to 
model predictions for interpretation by scientists and clinicians. In this study, we provide a simple yet effective extension 
of the DSC loss, named the DSC++ loss, that selectively modulates the penalty associated with overconfident, incorrect 
predictions. As a standalone loss function, the DSC++ loss achieves significantly improved calibration over the conventional 
DSC loss across six well-validated open-source biomedical imaging datasets, including both 2D binary and 3D multi-class 
segmentation tasks. Similarly, we observe significantly improved calibration when integrating the DSC++ loss into four 
DSC-based loss functions. Finally, we use softmax thresholding to illustrate that well calibrated outputs enable tailoring of 
recall-precision bias, which is an important post-processing technique to adapt the model predictions to suit the biomedical 
or clinical task. The DSC++ loss overcomes the major limitation of the DSC loss, providing a suitable loss function for 
training deep learning segmentation models for use in biomedical and clinical practice. Source code is available at https://​
github.​com/​mlyg/​DiceP​lusPl​us.
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Introduction

Image segmentation describes a per-pixel classification 
task, involving partitioning an image into semantic regions 
based on regional pixel characteristics [1]. However, class 
imbalance is frequently observed in biomedical image seg-
mentation tasks, where objects, such as tumours or cell 
nuclei often occupy a small area relative to the background 
tissue [2]. This can hinder per-pixel classification accuracy 
and could result in poor segmentation results on biomedi-
cal images. To evaluate segmentation quality, the two most 
popular metrics used are the Dice similarity coefficient 
(DSC) and the Jaccard Index. Both metrics measure spatial 
overlap and are therefore generally robust to class imbal-
ance [3, 4].

To incorporate automated image segmentation meth-
ods for biomedical applications, not only is segmentation 
quality important, but it is necessary that predictions are 
well calibrated [5–7]. Calibration measures how similar 
the probabilities assigned to model predictions reflect 
the real-world underlying uncertainty. In the context of 
medical image segmentation, a well calibrated model 
is expected to output predictions with probabilities that 
match the confidence of an expert human annotator 

performing manual delineation, or similarly, to match 
the distribution of segmentations produced by a group of 
expert annotators.

Importantly, even small differences in imaging hard-
ware or image acquisition parameters may lead to a domain 
shift that could significantly affect neural network perfor-
mance, and without proper calibration, result in overcon-
fident predictions that could provide false reassurance and 
cause potential harm [8]. Calibration also provides crucial 
contextual information to the corresponding segmentation 
output, which is useful for guiding clinical decision mak-
ing, such as planning for surgical resection or image-guided 
interventions.

The cross entropy (CE) loss is the most widely used loss 
function for classification, favoured because of its well cali-
brated prediction outputs, but it is susceptible to class imbal-
ance and regularly underperforms in these situations, par-
ticularly when very small segmentation targets are involved 
[9, 10]. In contrast, the DSC loss is, similar to its respec-
tive evaluation metric, robust to class imbalance and has 
been successfully applied to a variety of biomedical image 
segmentation tasks [11–13]. However, it is well known that 
optimising the DSC loss results in poorly calibrated, over-
confident predictions (Fig. 1) [6, 14, 15].

Fig. 1   Deep learning-based biomedical image segmentation pipe-
line. During training, model predictions are compared to ground truth 
annotations, with model parameters iteratively updated based on the 
optimisation goal defined by the loss function. During deployment, 
the model is used for inference, generating a segmentation mask and 
associated softmax values, which are accessible by the scientist or cli-
nician. Top: Using the DSC loss results in overconfident model pre-

dictions, demonstrated by the extreme softmax values illustrated by 
the heatmap, despite significant false positive (FP) and false negative 
(FN) predictions. Bottom: In contrast, using the DSC++ loss pro-
duces well calibrated predictions that, with a lower certainty, capture 
the more difficult-to-segment small-diameter retinal vessels. The col-
ours corresponding to the softmax values are shown by the colour-bar 
on the right
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The dichotomy between the CE loss, which provides 
well calibrated but often suboptimal segmentations, and 
the DSC loss—which produces higher quality segmenta-
tions but results in poorly calibrated predictions—suggests 
that neither loss function is appropriate for clinical use.

To overcome these challenges in biomedical image 
segmentation, considerable research has focused on 
either modifying the CE loss to improve robustness to 
class imbalance, or improving the calibration of net-
works trained using the DSC loss. The Focal loss is a 
variant of the CE loss that addresses the issue of class 
imbalance by down-weighting the contribution of easy 
examples enabling learning of harder examples [16]. 
Similarly, the exponentially weighted CE loss down-
weights correctly predicted samples, but is better suited 
for smaller degrees of class imbalance [17]. In contrast 
to directly modifying the CE loss, approaches to improve 
DSC loss calibration generally focus on modifying the 
network or applying post hoc calibration. Performing 
dropout during inference, known as Monte Carlo (MC) 
dropout, was shown to approximate Bayesian neural 
networks and improve calibration [6, 7, 18]. Other net-
work modifications where improved calibration was 
observed include Platt scaling, which involves fitting a 
logistic regression model using model outputs, as well 
as auxiliary networks, which are a generalised version of 
Platt scaling that instead uses a convolutional layer [19, 
20]. Avoiding network modifications, deep ensembles 
involve averaging predictions from multiple, randomly 
initialised networks, outperforming MC dropout for both 
performance and calibration [6, 7, 21]. However, ensem-
bling of multiple networks is not only computationally 
expensive to train, but significantly increases inference 
time and is therefore of limited use in real-time appli-
cations. Finally, improved calibration was observed by 
initially training a network using the DSC loss, followed 
by fine-tuning using the CE loss [7].

Despite various modifications to the CE loss, the seg-
mentation performance remains generally worse than using 
the DSC loss [10]. In contrast, while the modifications to 
improve the DSC loss calibration result in comparable cali-
bration to the CE loss, they require pipeline modifications, 
limiting uptake by the research community as well as clini-
cal applicability.

The main contributions of this work may be summarised 
as follows: 

1.	 We identify the reason for the poor calibration observed 
with networks trained using the DSC loss, and provide a 
reformulation, named the DSC++ loss, which directly 
addresses the issue.

2.	 We demonstrate significantly improved calibration using 
the DSC++ loss over the DSC loss, measured using the 

negative log likelihood (NLL) and Brier score, across 
six well-validated open-source datasets, including 2D 
binary and 3D multi-class segmentation tasks.

3.	 We demonstrate that the DSC++ loss may be readily 
incorporated to improve the calibration of other DSC-
based loss functions.

4.	 We combine softmax thresholding with the DSC++ loss 
to enable tailoring of the recall-precision bias for the 
biomedical or clinical task.

Material and Methods

In this section, we first introduce the CE loss and its variant, 
the Focal loss, followed by the DSC loss. We then identify 
the cause of the poor calibration using the DSC loss, and use 
this to derive the DSC++ loss. After introducing softmax 
thresholding, the section finally concludes with details on the 
experimental setup and implementation.

CE Loss

CE measures the difference between two probability distribu-
tions y and p. The CE loss is among the most widely used 
loss function in machine learning, and in the context of image 
segmentation, y and p represent the true and predicted distribu-
tions over class labels for a given pixel, respectively. The CE 
loss, ( LCE ), is defined as:

where yi,c uses a one-hot encoding scheme corresponding to 
the ground truth labels, pi,c is a matrix of predicted values 
generated by the model for each class, and where indices i 
and c iterate over all pixels and classes, respectively. The CE 
loss is a strictly proper scoring rule, superficially equivalent 
to the NLL, and therefore yields consistent probabilistic pre-
dictions [22].

Focal Loss

The Focal loss ( LF ) is an extension of the cross entropy loss 
developed to address the issue of class imbalance in classifica-
tion tasks [16].

The Focal loss uses a modulating factor � to reduce the 
contribution of easy examples to the overall loss:

where � is a vector of class weights, pi,c is a matrix of 
ground truth probabilities for each class, and LCE is the cross 
entropy loss as defined in Eq. (1). The Focal loss is equiva-
lent to the cross entropy loss when � = 1.

(1)LCE(y, p) = −
1

N

N
∑

i=1

C
∑

c=1

yi,c ⋅ log
(

pi,c
)

,

(2)LF = �

(

1 −
(

pi,c
))�

⋅ LCE,
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DSC Loss

CE and the Focal loss are based on pixel-wise error, 
and therefore in class imbalanced situations, using the 
CE-based losses results in over-representation of larger 
objects in the loss, and consequently under-segmentation 
of smaller objects. Often the segmentation target in bio-
medical imaging tasks occupies a small area relative to the 
size of the image, limiting its use as a segmentation quality 
metric or loss function [10].

In contrast, the DSC is a spatial overlap index and is 
therefore robust to class imbalance, and is defined as:

where the DSC loss ( LDSC ) is:

DSC++ Loss

The optimisation goal, for both the CE and the DSC loss, 
is for the neural network to produce confident, and correct, 
predictions matching the ground truth label. However, 
neural network overconfidence is a well known phenom-
enon associated with the DSC loss, but not with the CE 
loss. To understand this difference, we provide an equiva-
lent definition of the DSC loss LDSC (Eq. (4)), in terms of 
true positive (TP), false negative (FN) and false positive 
predictions (FP):

noting that the DSC score is the harmonic mean of precision 
and recall, where:

When both classes are present in equal frequency, the 
errors associated with the FP and FN predictions are not 
biased towards a particular class. However, in class imbal-
anced situations, high precision, low recall solutions are 
favoured, with over-prediction of the dominant class [23]. 
Combined with an optimisation goal that favours confident 
predictions, this results in networks producing extremely 
confident, and often incorrect, predictions of the dominant 
class in regions of uncertainty.

(3)DSC =
1

C

C
�

c=1

2
∑N

i=1
pi,cyi,c

∑N

i=1
pi,c +

∑N

i=1
yi,c

,

(4)LDSC = 1 − DSC.

(5)LDSC = 1 −
2TP

2TP + FP + FN
,

(6)Recall =
TP

TP + FN
,

(7)Precision =
TP

TP + FP
.

To overcome this issue, we reformulate the DSC loss to 
more heavily penalise overconfident predictions. First, we 
define another equivalent formulation of the LDSC , identi-
cal in structure to Eq. (5):

where p0i,c is the probability of pixel i belonging to class 
c, and p1i,c is the probability of pixel not belonging to class 
c. Similarly, y0i is 1 for class c and 0 for all other classes, 
and conversely y1i takes values of 0 for class c and 1 for all 
other classes.

To penalise overconfidence for uncertain regions, we 
apply the focal parameter, � , directly to the FP and FN pre-
dictions, defining the DSC++ loss ( LDSC++):

The DSC++ loss achieves selective penalisation of the 
overconfident predictions by transforming the penalty from 
a linear to an exponentially weighted penalty. When � = 1 , 
the DSC++ loss is identical to the DSC loss. When 𝛾 > 1 , 
overconfident predictions are more heavily penalised, with 
increasing values of � resulting in successively larger penal-
ties applied. Higher � values therefore favour low confidence 
predictions. The optimal � value balances the maintenance 
of confident, correct predictions while simultaneously sup-
pressing confident but incorrect predictions.

Softmax Thresholding

While the softmax function is not a proxy for uncertainty, the 
distribution of well calibrated softmax outputs is closely related 
to the underlying uncertainty, even for out-of-distribution data 
[24, 25]. To generate a class labelled segmentation output, the 
argmax function assigns each pixel with the associated class 
based on the highest softmax value. Rather than using the arg-
max function, we use a variable threshold that enables manual 
adjustment of model outputs to favour either precision or recall. 
Here, we define the output of a model using an indicator func-
tion, describing a per-pixel operation that compares the soft-
max output for the segmentation target, s, to a given softmax 
threshold T :

With this generalisation, the argmax function may be 
restated as a special case where T = 0.5 . Higher values of T  
favour precision, while lower values favour recall.

(8)

LDSC = 1 −
1

C

C
�

c=1

2
∑N

i=1
p0i,cy0i,c

2
∑N

i=1
p0i,cy0i,c +

∑N

i=1
p0i,cy1i,c +

∑N

i=1
p1i,cy0i,c

,

(9)

LDSC++ = 1 −
1

C

C
�

c=1

2
∑N

i=1
p0i,cy0i,c

2
∑N

i=1
p0i,cy0i,c +

∑N

i=1
(p0i,cy1i,c)

�
+
∑N

i=1
(p1i,cy0i,c)

�
.

(10)Is =

{

1 if s < T

0 otherwise
.
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Dataset Descriptions and Evaluation Metrics

To evaluate our proposed loss function, we select six pub-
lic, well-validated biomedical image segmentation data-
sets. For retinal vessel segmentation, we use the Digital 
Retinal Images for Vessel Extraction (DRIVE) dataset [26]. 
The DRIVE dataset consists of 40 coloured fundus photo-
graphs obtained from diabetic retinopathy screening in the 
Netherlands, with an image resolution of 768 × 584 pixels. 
The Breast UltraSound 2017 (BUS2017) dataset consists 
of 163 ultrasound images of breast lesions with an average 
image size of 760 × 570 pixels collected from the UDIAT 
Diagnostic Centre of the Parc Taulí Corporation, Sabadell, 
Spain [27]. Furthermore, we include the 2018 Data Science 
Bowl (2018DSB) dataset, which contains 670 light micros-
copy images for nuclei segmentation [28]. For skin lesion 
segmentation, we use the ISIC2018: Skin Lesion Analysis 
Towards Melanoma Detection grand challenge dataset. This 
dataset contains 2,594 images of skin lesions with an aver-
age size of 2166 × 3188 pixels [29]. For colorectal polyp 
segmentation, we use the CVC-ClinicDB dataset, which 
consists of 612 frames containing polyps with image reso-
lution 288 × 368 pixels, generated from 23 video sequences 
from 13 different patients using standard colonoscopy inter-
ventions with white light [30]. Finally, for 3D multi-class 
segmentation, we use the Kidney Tumour Segmentation 
2019 (KiTS19) dataset [31]. This dataset contains 300 arte-
rial phase abdominal CT scans, with voxel-level kidney and 
kidney tumour annotations. We exclude the 90 scans without 
associated segmentation masks, and further exclude another 
6 scans (case 15, 23, 37, 68, 125 and 133) due to issues with 
the ground truth quality [32].

For all the experiments, except for the DRIVE dataset, 
which is already partitioned into 20 training and 20 test 
images, we randomly partitioned the other five datasets 
into 80% development and 20% test set. For all datasets, we 
further partitioned the development set into 80% training 
set and 20% validation set. Except for the CVC-ClinicDB 
and KiTS19 datasets, image resolutions are downsampled 
using bilinear interpolation. For KiTS19, we performed 
on-the-fly random sampling of patch size 80 × 160 × 160 , 
with patch-wise overlap of 40 × 80 × 80 . A summary of the 

datasets, image resolutions and data partitions are presented 
in Table 1.

To assess the loss functions, we select two evaluation 
metrics each for calibration and performance. For calibra-
tion, we use the NLL and Brier score, both strictly proper 
scoring rules. The NLL is equivalent to the CE loss in 
Eq. (1), while the Brier score (Brier) computes the mean 
squared error between predicted probability scores and the 
true class labels:

For both metrics, a lower score corresponds to better 
calibration.

For performance, we use the DSC as previously defined, 
and the Intersection over Union (IoU), also known as the 
Jaccard Index:

Contrary to the calibration metrics, a higher DSC or Jac-
card score corresponds to better performance.

Implementation Details

For our experiments, we leveraged the Medical Image Seg-
mentation with Convolutional Neural Networks (MIScnn) 
open-source Python library [33]. This is based on the Keras 
library using the Tensorflow backend, and all experiments 
were carried out using NVIDIA P100 GPUs.

Images were resized as described previously and nor-
malised per-image using the z-score. We applied on-the-fly 
data augmentation with probability 0.15, including scaling 
(0.85–1.25× ), rotation ( −15◦ to +15◦ ), mirroring (vertical 
and horizontal axes), elastic deformation ( � ∈ [0, 900] and 
� ∈ [9.0, 13.0] ) and brightness (0.5–2×).

To investigate the effect of altering � on the DSC++ loss, 
we perform a grid search, evaluating values � ∈ [0.5, 5].

To evaluate the loss functions, we trained the standard 
U-Net, with model parameters initialised using the Xavier 
initialisation [34]. We trained each model with instance 

(11)Brier =
1

C

1

N

C
∑

i=1

N
∑

i=1

(yi − pi)
2.

(12)Jaccard =
TP

TP + FP + FN
.

Table 1   Summary of the dataset 
details and training setup used 
in these experiments

For KiTS19, the image resolution refers to the patch size used for training

Dataset Segmentation #Images Image resolution #Training #Validation #Test

DRIVE Retinal vessel 40 512 × 512 16 4 20
BUS2017 Breast tumour 163 128 × 128 104 26 33
2018DSB Cell nucleus 670 256 × 256 428 108 134
ISIC2018 Skin lesion 2596 512 × 512 1661 417 518
CVC-ClinicDB Colorectal polyp 612 288 × 384 392 98 122
KiTS19 Kidney/Kidney tumour 204 80 × 160 × 160 130 33 41



	 Journal of Digital Imaging

1 3

normalisation, using the stochastic gradient descent opti-
miser with a batch size of 1 and initial learning rate of 0.1 
[35]. For convergence criteria, we used ReduceLROnPlateau 
to reduce the learning rate by 0.1 if the validation loss did 
not improve after 25 epochs, and the EarlyStopping callback 
to terminate training if the validation loss did not improve 
after 50 epochs. To compromise for the large patch size used 
for training on the KiTS19 dataset, we used a stricter conver-
gence criteria of 5 epochs and 10 epochs for the ReduceL-
ROnPlateau and EarlyStopping callbacks respectively.

To evaluate the effect of substituting the DSC loss for 
the DSC++ loss in several DSC-based variants commonly 
used to achieve state-of-the-art results, we selected the 
Tversky loss, Focal Tversky loss, Combo loss and Unified 
Focal loss [10, 23, 36, 37].

The Combo loss ( LCombo ) is a compound loss function 
defined as the weighted sum of the DSC and modified CE 
loss ( LmCE ) [37]:

where:

The parameters � and � take values in the range [0, 1], 
controlling the relative contribution of the DSC and CE 
terms to the loss, and the relative weights assigned to false 
positives and negatives, respectively. Optimising models 
with the Combo loss has been observed to improve per-
formance, as well as produce visually more consistent 
segmentations over models trained using the component 
losses [38].

To overcome the high precision, low recall bias associ-
ated with the DSC loss, the Tversky loss ( LTversky ) modifies 
the weights associated with the FP and FN predictions 
[23]:

where the Tversky index (TI) is defined as:

where � and � control the FP and FN weightings, 
respectively.

To handle class imbalanced data, the Focal Tversky loss 
( LFT ) applies a focal parameter � to alter the weights asso-
ciated with difficult to classify examples [36]:

(13)LCombo = �
(

LmCE

)

− (1 − �) ⋅ DSC,

(14)

LmCE = −
1

N

N
∑

i=1

�
(

yi ln
(

pi
))

+ (1 − �)
[(

1 − yi
)

ln
(

1 − pi
)]

.

(15)LTversky =

C
∑

c=1

(1 − TI),

(16)TI =

∑N

i=1
p0iy0i

∑N

i=1
p0iy0i + �

∑N

i=1
p0iy1i + �

∑N

i=1
p1i, y0i

,

𝛾 < 1 increases the degree of focusing on harder examples.
Finally, the Unified Focal loss ( LUF ) generalises distri-

bution-based and region-based loss functions into a single 
framework [10], and is defined as the weighted sum of 
the Asymmetric Focal loss ( LAF ) and Asymmetric Focal 
Tversky loss ( LAFT):

where:

where the TI is redefined as:

The three hyperparameters are � , which controls the 
relative weights of the two component losses, � , which 
controls the relative weighting of positive and negative 
examples, and � , which controls the relative weighting of 
easy and difficult examples.

We used the optimal hyperparameters as described in 
the original papers, detailed in Table 2. For each loss func-
tion, we substituted the DSC component of the loss for the 
DSC++ loss, setting � = 2.

To test for statistical significance, we used the Wilcoxon 
rank sum test. A statistically significant difference was 
defined as p < 0.05 . We use bootstrapping to calculate the 
standard errors for each metric. To evaluate effect of soft-
max thresholding, we selected thresholds T ∈ [0.05, 0.95] 
using the DSC and DSC++ loss on the DRIVE dataset.

(17)LFT =

C
∑

c=1

(1 − TI)
1

� ,

(18)LUF = �LAF + (1 − �)LAFT,

(19)

LAF = −
�

N
yi∶r log

(

pt,r
)

−
1 − �

N

∑

c≠r

(

1 − pt,c
)�

log
(

pt,r
)

,

(20)LAFT =
∑

c≠r

(1 − TI) +
∑

c=r

(1 − TI)1−� ,

(21)TI =

∑N

i=1
p0iy0i

∑N

i=1
p0iy0i + (1 − �)

∑N

i=1
p0iy1i + �

∑N

i=1
p1iy0i

.

Table 2   Hyperparameter settings used in these experiments for the 
DSC and cross entropy-based loss functions

Hyperparameter

Loss � � � � �

Focal 0.5 - 2 - -
Tversky 0.3 0.7 - - -
Focal Tversky 0.3 0.7 4

3
- -

Combo 0.5 0.5 - - -
Unified Focal - - 0.5 0.6 0.5
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Results

In this section, we first describe the results for the hyperpa-
rameter experiments using the DSC++ loss, before compar-
ing the DSC loss, CE loss, Focal loss and DSC++ loss on 
five 2D binary segmentation tasks, followed by on one 3D 
multi-class segmentation task. Next, we compare the per-
formance and calibration of various DSC-based loss func-
tions with and without the DSC++ modification. Finally, we 
compare the effects of softmax thresholding using the DSC 
and DSC++ loss on recall-precision bias.

DSC++ Loss Hyperparameter Tuning

The results for the hyperparameter experiments using the 
DSC++ loss are shown in Table 3.

Most noticeable is the significant decrease in the NLL 
with values of 𝛾 > 1 . The NLL decreases with increasing 
� , appearing to plateau at � = 2 . Similarly, Brier score 
decreases with increasing � , with the lowest Brier scores 
at � values of 2 and 2.5. With � = 2 , there is a statisti-
cally significance difference in NLL ( p = 6 × 10−8 ) and 
Brier ( p = 2 × 10−7 ) scores compared to the DSC loss. 
However, above this range, increasing gamma leads to an 
increase in NLL and Brier score. In terms of performance 

metrics, the highest DSC and Jaccard scores were 
observed with � = 2 , at 0.808 and 0.678 respectively. 
There is no statistically significant difference between 
the DSC and Jaccard scores using different � values, sug-
gesting that the improved calibration score does not come 
at the cost to performance.

To understand whether � improves calibration scores by 
reducing model overconfidence, Fig. 2 shows an example 
of the softmax probability outputs for an example test set 
image.

With increasing � values, there is a reduction in overcon-
fident model predictions, in comparison to the DSC loss 
( � = 1 ), where model predictions are concentrated at the 
extremes. Importantly, the low confidence areas are con-
centrated around the difficult to segment smaller retinal ves-
sels, providing a plausible approximation of the underlying 
uncertainty.

Loss Function Comparisons

2D Binary Segmentation

The CE loss, Focal loss, DSC loss and DSC++ loss were 
evaluated on five, 2D binary biomedical imaging datasets. 
Based on the results from the hyperparameter investigation, 
we set � = 2 for the DSC++ loss. The results are shown in 
Table 4.

Firstly, there was a statistically significant difference 
between the NLL using DSC++ loss compared to the DSC 
loss, across all datasets (DRIVE: p = 6 × 10−8 , BUS2017: 
p = 0.01 , 2018DSB: p = 8 × 10−13 , ISIC2018: p = 1 × 10−12 
and CVC-ClinicDB: p = 2 × 10−11 ). There was no signifi-
cant difference between the NLL values using the CE, Focal 
or DSC++ loss. The DSC++ loss achieved the lowest Brier 
score for all five datasets, with statistically significant dif-
ferences observed on the DRIVE ( p = 2 × 10−7 ), ISIC2018 
( p = 0.01 ) and CVC-ClinicDB ( p = 0.04 ) datasets com-
pared to the DSC loss. The DSC++ loss achieved the highest 
DSC score for four out of the five datasets, and the highest 
Jaccard score for three out of the five datasets. In contrast, 
the CE-based loss achieved the lowest performance scores 
across all datasets, with the Focal loss achieving the lowest 
Dice and Jaccard score for four out of the five datasets. A 
statistically significant difference ( p < 0.05 ) was observed 
on the DRIVE dataset for both the DSC and Jaccard scores 
between the DSC++ and CE-based losses.

Example segmentations using each loss function for the 
five datasets are shown in Fig. 3. Visually, the best segmen-
tations are observed using the DSC++ loss. While model 
predictions derived from CE-based losses appear well 
calibrated, the segmentation quality is generally poor. In 
contrast, the DSC loss, despite very confident predictions, 

Table 3   Calibration and performance of the DSC++ loss on the 
DRIVE dataset with different � values

The standard errors are shown in brackets. The best scores are denoted 
in bold

Uncertainty Performance

Gamma NLL ( ↓) Brier ( ↓) Dice ( ↑) Jaccard ( ↑)

0.5 0.281 
( ±0.019)

0.033 
( ±0.001)

0.804 
( ±0.003)

0.673 ( ±0.004
)

1.0 0.204 
( ±0.014)

0.031 
( ±0.001)

0.804 
( ±0.003)

0.672 ( ±0.05)

1.5 0.067 
( ±0.005)

0.026 
( ±0.001)

0.804 
( ±0.004)

0.673 ( ±0.005
)

2.0 0.041 
( ±0.003)

0.024 
( ±0.001)

0.808 
( ±0.003)

0.678 ( ±0.004
)

2.5 0.038 
( ±0.002)

0.024 
( ±0.001)

0.804 
( ±0.003)

0.673 ( ±0.05)

3.0 0.038 
( ±0.002)

0.027 
( ±0.001)

0.797 
( ±0.004)

0.664 ( ±0.006
)

3.5 0.035 
( ±0.002)

0.031 
( ±0.001)

0.804 
( ±0.004)

0.672 ( ±0.005
)

4.0 0.038 
( ±0.002)

0.034 
( ±0.001)

0.796 
( ±0.004)

0.661 ( ±0.006
)

4.5 0.039 
( ±0.002)

0.042 
( ±0.001)

0.795 
( ±0.004)

0.660 ( ±0.005
)

5.0 0.041 
( ±0.002)

0.048 
( ±0.001)

0.794 
( ±0.004)

0.658 ( ±0.006
)
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Fig. 2   The effect of altering � on the softmax prediction outputs. Top: 
input image and ground truth segmentation. The pink arrows high-
light example areas where segmentation quality differs. Middle: the 
softmax predictions for each model trained using the DSC++ loss 

with different � value are displayed as heatmaps. Bottom: Histogram 
plots showing the softmax predictions and corresponding number of 
pixels

Table 4   Calibration and 
performance of different loss 
functions on five biomedical 
imaging datasets

The standard errors are shown in brackets. The best scores are denoted in bold

Calibration Performance

Dataset Loss NLL ( ↓) Brier ( ↓) Dice ( ↑) Jaccard ( ↑)

Drive CE 0.051 ( ±0.003) 0.024 ( ±0.001) 0.798 ( ±0.004) 0.664 ( ±0.005)
Focal 0.048 ( ±0.002) 0.036 ( ±0.001) 0.795 ( ±0.005) 0.660 ( ±0.007)
DSC 0.204 ( ±0.013) 0.031 ( ±0.001) 0.804 ( ±0.003) 0.672 ( ±0.005)
DSC++ 0.041 ( ±0.003) 0.024 ( ±0.001) 0.808 ( ±0.003) 0.678 ( ±0.004)

BUS2017 CE 0.020 ( ±0.005) 0.014 ( ±0.003) 0.787 ( ±0.037) 0.690 ( ±0.041)
Focal 0.019 ( ±0.004) 0.020 ( ±0.003) 0.770 ( ±0.041) 0.673 ( ±0.042)
DSC 0.137 ( ±0.046) 0.022 ( ±0.005) 0.784 ( ±0.038) 0.688 ( ±0.042)
DSC++ 0.034 ( ±0.016) 0.013 ( ±0.004) 0.842 ( ±0.031) 0.756 ( ±0.034)

2018DSB CE 0.033 ( ±0.003) 0.019 ( ±0.002) 0.912 ( ±0.006) 0.845 ( ±0.009)
Focal 0.044 ( ±0.004) 0.028 ( ±0.002) 0.904 ( ±0.007) 0.832 ( ±0.010)
DSC 0.167 ( ±0.019) 0.025 ( ±0.002) 0.916 ( ±0.006) 0.852 ( ±0.009)
DSC++ 0.033 ( ±0.004) 0.019 ( ±0.002) 0.916 ( ±0.006) 0.850 ( ±0.009)

ISIC2018 CE 0.083 ( ±0.010) 0.036 ( ±0.003) 0.863 ( ±0.008) 0.787 ( ±0.009)
Focal 0.068 ( ±0.005) 0.041 ( ±0.002) 0.865 ( ±0.008) 0.793 ( ±0.009)
DSC 0.373 ( ±0.037) 0.044 ( ±0.003) 0.883 ( ±0.006) 0.812 ( ±0.008)
DSC++ 0.086 ( ±0.011) 0.034 ( ±0.003) 0.882 ( ±0.006) 0.811 ( ±0.008)

CVC-ClinicDB CE 0.041 ( ±0.008) 0.015 ( ±0.002) 0.870 ( ±0.014) 0.796 ( ±0.017)
Focal 0.028 ( ±0.004) 0.014 ( ±0.002) 0.893 ( ±0.013) 0.828 ( ±0.015)
DSC 0.167 ( ±0.033) 0.019 ( ±0.003) 0.884 ( ±0.014) 0.817 ( ±0.016)
DSC++ 0.037 ( ±0.007) 0.013 ( ±0.002) 0.894 ( ±0.013) 0.829 ( ±0.015)
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Fig. 3   Example segmentations, with softmax predictions visualised as a heatmap, for each loss function for each of the five datasets. The image 
and ground truth are provided for reference. The pink arrows highlight example areas where segmentation quality differs

Table 5   Calibration and performance of different loss functions on the KiTS19 dataset

The standard errors are shown in brackets. The best scores are denoted in bold

Kidney Kidney tumour

Calibration Performance Calibration Performance

Loss NLL ( ↓) Brier ( ↓) Dice ( ↑) Jaccard ( ↑) NLL ( ↓) Brier ( ↓) Dice ( ↑) Jaccard ( ↑)

CE 0.012 ( ±0.005) 0.007 ( ±0.003) 0.896 ( ±0.012) 0.819 ( ±0.017) 0.031 ( ±0.003) 0.012 ( ±0.002) 0.188 ( ±0.035) 0.124 ( ±0.025)
Focal 0.012 ( ±0.004) 0.008 ( ±0.003) 0.911 ( ±0.009) 0.841 ( ±0.014) 0.020 ( ±0.002) 0.011 ( ±0.002) 0.301 ( ±0.043) 0.213 ( ±0.035)
DSC 0.050 ( ±0.022) 0.008 ( ±0.003) 0.818 ( ±0.019) 0.710 ( ±0.026) 0.124 ( ±0.021) 0.014 ( ±0.003) 0.232 ( ±0.035) 0.153 ( ±0.027)
DSC++ 0.017 ( ±0.007) 0.007 ( ±0.003) 0.911 ( ±0.008) 0.841 ( ±0.013) 0.045 ( ±0.006) 0.012 ( ±0.002) 0.429 ( ±0.041) 0.311 ( ±0.036)
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produces considerable false positive predictions such as in 
the BUS2017 example, as well as false negative predictions 
as seen in the CVC-ClinicDB example.

3D Multi‑class Segmentation

The performance of the CE loss, Focal loss, DSC loss and 
DSC++ loss was further evaluated on the KiTS19 dataset, 
a 3D multi-class segmentation task. The results are shown 
in Table 5.

The DSC++ achieved significantly better calibration 
scores compared to the DSC loss across both classes (Kid-
ney: p = 3 × 10−8 , Kidney tumour: p = 2 × 10−8 ). In con-
trast, there was no significant difference in calibration scores 
between the DSC++ loss and CE-based losses. In terms of 
segmentation quality, the DSC++ achieved the best perfor-
mance with a DSC score of 0.911 and 0.429 for the kidney 
and kidney tumour segmentation respectively. The DSC 
score on the kidney tumour class using the DSC++ loss 
significantly outperformed the other loss functions (DSC: 
p = 2 × 10−6 , CE: p = 4 × 10−7 , Focal: p = 0.0002).

Example segmentations using each loss function on 
the KiTS19 dataset is shown in Fig. 4. The DSC++ loss 

produces accurate and well calibrated segmentations, for 
both kidney and kidney tumour class. The DSC loss pro-
duces false positive predictions with high confidence, most 
noticable with the kidney tumour class. The CE-based losses 
produce poor quality kidney tumour segmentation, with 
associated over-segmentation of the kidney.

Incorporating the DSC++ Loss into Other Dice‑Based 
Loss Functions

The DSC loss forms the basis for several other region-based 
loss functions, and therefore we investigate the effect of inte-
grating the DSC++ loss modification into these loss func-
tions. The results are shown in Table 6.

The DSC-based variants appear to all inherit the poorly 
calibrated nature of the DSC loss, except for the two com-
pound loss functions, the Combo loss and the Unified Focal 
loss, which also incorporate the CE-based variants. Using 
the DSC++ loss led to significant improvements in calibra-
tion for all loss functions compared, for both the NLL and 
Brier scores. Similarly, the highest performance, measured 
using the DSC and Jaccard scores, was obtained using the 
DSC++ variants.

Fig. 4   Example segmentation, with softmax predictions visualised as a heatmap, for each loss function. The image and ground truth are provided 
for reference. The pink arrows highlight example areas where segmentation quality differs
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Softmax Thresholding

The effect of softmax thresholding on the performance of the 
DSC and DSC++ loss for the DRIVE dataset are shown in 
Fig. 5. The DSC loss predictions display almost no variation 
across the entire range of softmax thresholds. In contrast, 
there are significant variations in recall and precision scores 

using the DSC++ loss. Importantly, considerable increases 
in recall or precision between T = 0.3 and T = 0.7 did not 
affect the DSC score. The DSC++ loss enables models to 
be tailored to provide either very high recall or precision 
values, with little effect on the DSC score. For example, the 
model achieved a precision of 0.923 and DSC of 0.748 at 
T = 0.8 , and recall of 0.923 and DSC of 0.761 at T = 0.2.

Table 6   Calibration and 
performance of the DSC-based 
loss functions, using either the 
original loss functions (Tversky, 
Focal Tversky, Combo and 
Unified Focal) or substituting 
the DSC component of the 
loss for the DSC++ loss 
(Tversky++, Focal Tversky++, 
Combo++ and Unified 
Focal++)

� is set to 2 for the DSC++ variants. The standard errors are shown in brackets. The best scores are denoted 
in bold

Calibration Performance

Loss NLL ( ↓) Brier ( ↓) Dice ( ↑) Jaccard ( ↑)

Tversky 0.144 ( ±0.011) 0.034 ( ±0.001) 0.807 ( ±0.003) 0.676 ( ±0.004)
Tversky++ 0.033 ( ±0.003) 0.025 ( ±0.001) 0.810 ( ±0.003) 0.681 ( ±0.004)
Focal Tversky 0.142 ( ±0.011) 0.033 ( ±0.001) 0.807 ( ±0.003) 0.677 ( ±0.004)
Focal Tversky++ 0.036 ( ±0.003) 0.024 ( ±0.001) 0.810 ( ±0.003) 0.680 ( ±0.004)
Combo 0.063 ( ±0.004) 0.025 ( ±0.001) 0.802 ( ±0.004) 0.669 ( ±0.005)
Combo++ 0.050 ( ±0.003) 0.024 ( ±0.001) 0.802 ( ±0.003) 0.670 ( ±0.005)
Unified Focal 0.056 ( ±0.004) 0.026 ( ±0.001) 0.810 ( ±0.003) 0.680 ( ±0.004)
Unified Focal++ 0.039 ( ±0.003) 0.024 ( ±0.001) 0.810 ( ±0.003) 0.681 ( ±0.004)

Fig. 5   The effect of softmax thresholding on the recall and precision 
using models trained with the DSC and DSC++ loss on the DRIVE 
dataset. Top: Recall, precision and DSC scores at different softmax 
thresholds for the DSC and DSC++ loss. The vertical bars represent 

the 95% confidence intervals. Bottom: Example segmentation output 
at different softmax thresholds. The false positives are highlighted in 
magenta, and the false negatives are highlighted in green
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Discussion

In this work, we identified the weights associated with the 
FP and FN predictions as the reason for the poor calibra-
tion associated with the DSC loss, and used this to pro-
vide a reformulation, known as the DSC++ loss, which 
uses a � parameter to more heavily penalise overconfident 
predictions. We observed significantly improved calibra-
tion using the DSC++ loss over the DSC loss, measured 
using the NLL and Brier scores, across six well-validated 
open-source datasets, including both 2D binary and 3D 
multi-class segmentation tasks. Furthermore, we dem-
onstrated that the variants of the DSC loss inherit poor 
calibration, while those using DSC++ variants led to sig-
nificant improvements in calibration. Finally, we evaluated 
the effect of softmax thresholding on the DSC loss and 
DSC++ loss, where little variation in recall or precision 
was observed with the DSC loss, in comparison to the 
significant variation achievable using the DSC++ loss.

Modifying the loss function, rather than the network or 
training setup, is the most intuitive solution to improve cali-
bration. This is because with optimal training, it is the loss 
function that primarily determines the calibration quality of 
the resulting segmentation outputs. Optimisation with the 
DSC loss will encourage overconfident predictions (Fig. 1), 
and therefore methods—such as MC dropout or deep ensem-
bling—may improve calibration, but do not address the 
direct cause of the issue. Importantly, both MC dropout and 
deep ensembling significant increase inference time, with the 
latter requiring additional computational resources to handle 
predictions from multiple networks. Furthermore, MC drop-
out requires modifying networks to include dropout layers, 
and this may not be compatible with certain architectures.

We also explored the synergistic effect of softmax thresh-
olding, together with well calibrated outputs, to enable tai-
loring towards high recall or high precision output states 
(Fig. 5). For biomedical or clinical use, generally high recall 
is favoured, especially when the role of automatic segmenta-
tion systems is to support human operators in reducing false 
negative predictions, for example with polyp identification 
during colonoscopy [39]. As shown in Fig. 5, it is possible to 
identify even the small-diameter retinal vessels when recall is 
prioritised. It is possible to optimise models to produce high 
recall or precision outputs, such as the Tversky loss modifi-
cation of the DSC loss [23]. However, after model training, 
it is not possible to further modify the recall-precision bias, 
which would instead require the training of a new model. 
Softmax thresholding is used during post-processing and is 
therefore independent of the model, enabling flexible and 
reversible control over the recall-precision bias. Even without 
softmax thresholding, the uncertainty associated with well 
calibrated predictions can highlight regions of interest which 

may be missed when interpreting poorly calibrated predic-
tions (Figs. 3 and 4).

Given the widespread use of these functions, it is impor-
tant to consider whether there are any reasons to not replace 
them with these alternatives. The one apparent limitation 
of using the DSC++ loss over the DSC loss is additional 
hyperparameter tuning required. However, we investigated 
a large range of � values (Table 3 and Fig. 2), and observed 
that performance was not significantly affected, while the 
calibration improves significantly, even with small values 
of � . Moreover, we selected a � value of 2 based on results 
from the DRIVE dataset, and this appeared to generalise 
well across the other five datasets, with consistently signifi-
cant improvements to calibration (Tables 4 and 5). There-
fore, even small � parameter values appear to be effective, 
and optimal choices for � generalise well across datasets, 
suggesting that the � parameter is relatively easy to optimise.

It is less clear whether the DSC++ loss should be 
favoured above other loss functions. Besides calibration, 
the DSC++ loss suffers from the same limitations as the 
DSC loss, namely the unstable gradient, resulting from gra-
dient calculations involving small denominators [14, 40]. 
While there is currently little empirical evidence relating 
the unstable gradient to suboptimal performance, it has been 
suggested that incorporating the CE loss helps to mitigate 
the unstable gradients generated by the DSC loss [41]. Our 
experiments confirm previous results that compound loss 
functions generally perform better [9, 10]. However, even 
if the DSC++ cannot replace these loss functions, we have 
shown that replacing the DSC component of loss functions 
with the DSC++ loss leads to significant improvements 
in calibration, as well as evidence of better performance 
(Table 6).

In future work, we will investigate the effect of gradient 
instability on the performance of the DSC++ loss. It would 
be important to evaluate the performance on highly class 
imbalanced datasets, where gradient stabilisation may be 
expected to be more important. Furthermore, it would be 
useful to evaluate networks trained using the DSC++ loss 
on out-of-distribution data, to test whether the model predic-
tions remain well calibrated.

Conclusion

In this study, we identified the main reason behind neural 
network overconfidence when training deep learning-based 
image segmentation models using the DSC loss, and pro-
vided a simple yet effective modification, named the DSC++ 
loss, that directly addresses the issue. After evaluating the 
performance and calibration of both the DSC loss and 
DSC++ loss across six well-validated biomedical imaging 
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datasets, as well as systematically analysing the softmax 
predictions, it is clear that the DSC loss is not suitable for 
training neural networks for use in biomedical or clinical 
practice. In contrast, the DSC++ loss, together with its syn-
ergistic effect using softmax thresholding, produce model 
outputs that are useful to interpret, and readily adjustable to 
provide high recall or precision outputs. Compared with pre-
vious methods used to improve the calibration of networks 
trained using the DSC loss, the DSC++ loss provides the 
most intuitive, readily accessible solution that is an impor-
tant contribution towards the goal of deploying deep learn-
ing image segmentation systems into biomedical or clinical 
practice.
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