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Abstract

Background: Ultrasonound is used to identify anatomical structures during regional anaesthesia and to guide needle

insertion and injection of local anaesthetic. ScanNav Anatomy Peripheral Nerve Block (Intelligent Ultrasound, Cardiff,

UK) is an artificial intelligence-based device that produces a colour overlay on real-time B-mode ultrasound to highlight

anatomical structures of interest. We evaluated the accuracy of the artificial-intelligence colour overlay and its perceived

influence on risk of adverse events or block failure.

Methods: Ultrasound-guided regional anaesthesia experts acquired 720 videos from 40 volunteers (across nine

anatomical regions) without using the device. The artificial-intelligence colour overlay was subsequently applied. Three

more experts independently reviewed each video (with the original unmodified video) to assess accuracy of the colour

overlay in relation to key anatomical structures (true positive/negative and false positive/negative) and the potential for

highlighting to modify perceived risk of adverse events (needle trauma to nerves, arteries, pleura, and peritoneum) or

block failure.

Results: The artificial-intelligence models identified the structure of interest in 93.5% of cases (1519/1624), with a false-

negative rate of 3.0% (48/1624) and a false-positive rate of 3.5% (57/1624). Highlighting was judged to reduce the risk of

unwanted needle trauma to nerves, arteries, pleura, and peritoneum in 62.9e86.4% of cases (302/480 to 345/400), and to

increase the risk in 0.0e1.7% (0/160 to 8/480). Risk of block failure was reported to be reduced in 81.3% of scans (585/720)

and to be increased in 1.8% (13/720).
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Conclusions: Artificial intelligence-based devices can potentially aid image acquisition and interpretation in ultrasound-

guided regional anaesthesia. Further studies are necessary to demonstrate their effectiveness in supporting training and

clinical practice.

Clinical trial registration: NCT04906018.

Keywords: anatomy; artificial intelligence; machine learning; regional anaesthesia; translational AI; ultrasonography;

ultrasound
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Editor’s key points

� Ultrasound-guided regional anaesthesia facilitates

precision, safety, and effectiveness of peripheral

nerve block, but it is technically challenging without

advanced training.

� The use of ScanNav™ (Intelligent Ultrasound, Cardiff,

UK), an artificial intelligence-based device that pro-

duces a colour overlay on real-time ultrasound im-

ages to highlight anatomical structures of interest,

was evaluated.

� Experts reviewed 720 ultrasound videos, with and

without ScanNavTM highlighting, to assess accuracy

and perceived effect on regional anaesthesia safety

and efficacy.

� The device showed high true-positive/true-negative

and low false-positive/false-positive rates in identi-

fying key anatomical structures for the performance

of nine peripheral nerve blocks.

� Further studies are necessary to demonstrate its

effectiveness in supporting training and clinical

practice.
g 1. Example of the colour overlay produced by ScanNav when scann

b; purple, pleura; red, subclavian artery; and yellow, supraclavicular-
The use of ultrasound as image guidance for regional anaes-

thesia was first described in 19891 and is now the predominant

technique used to guide needle insertion and local anaesthetic

deposition.2 Ultrasound-guided regional anaesthesia (UGRA)

can be used to avoid risks associated with general anaes-

thesia,3 enhance operating theatre efficiency, and reduce

hospital length of stay.4 Evidence also supports a role in

improving outcomes after surgery4,5 and in mitigating the

need for systemic analgesia with dangerous side-effects, such

as opioids.2,4

However, patient access to UGRA can be limited by the

availability of a specialist with prerequisite knowledge and

skills.6 Fundamental skills are the acquisition and interpreta-

tion of optimal ultrasound images, which involves identifica-

tion of key sono-anatomical structures.7 Assistive artificial

intelligence (AI) technology could play a role in the future

practice of UGRA through supporting ultrasound scanning.8,9

ScanNav Anatomy Peripheral Nerve Block (Intelligent Ultra-

sound, Cardiff, UK) uses deep learning based on the U-Net

architecture10 to produce a colour overlay on real-time B-mode

ultrasound and highlight structures of interest in UGRA (Fig 1;

Supplementary files AeE). The AI models in this system have

been trained on more than 800,000 ultrasound images.11

Training data are presented to the algorithm as paired
ing during a supraclavicular-level brachial plexus block. Blue, first

level brachial plexus nerves (trunks/divisions).
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unmodified ultrasound image and labelled colour overlay

(highlighting the relevant structures on that image). Over time,

the algorithm learns to make associations between the

labelled region and data in the image. When deployed, it is

thus able to make predictions on data in new images and

provide a colour overlay on real-time ultrasound. (Further in-

formation on the training data is available in Supplementary

file F.) It is envisaged that a real-time colour overlay will draw

attentional gaze of the operator to the key anatomical struc-

tures. Previous work supports the concept that it can aid in

acquisition of the correct ultrasound view and correct identi-

fication of structures of interest on that view.12

In this prospective external validation study, experts in

UGRA acquired ultrasound scans (without use of ScanNav),

and further experts evaluated performance of the AI models.

Accuracy of the colour overlay was assessed in relation to key

anatomical structures. The perceived potential for high-

lighting to modify the risk of adverse events (i.e. risk of needle

trauma to nerves, arteries, pleura, and peritoneum) and block

failure was also evaluated.

Methods

Ethical approval for the collection of ultrasonography scans

from healthy volunteers was granted by the Oregon Health &

Science University (OHSU) Institutional Review Board

(STUDY00022920). The study was registered with ClinicalTrials.

gov (NCT04906018).
Ultrasonography scan collection

The process of scan acquisition and review is summarised in Fig

2. Four UGRA experts were recruited from the anaesthesia
• Data
  ○ Age
  ○ Gen
  ○ Hei

• Four
• Scan
• Nine

• Asse
  ○ Acc
  ○ Pot

• If two

Participant enters study

Ultrasound scan recorded

AI colour overlay applied

Reviewer 2Reviewer 1 Reviewer 3

Consensus opinion

Fig 2. Summary of study workflow. AI, artificial intelligence; PNB, perip
faculty at OHSU after providing written informed consent. All

were board-certified attending anaesthesiologists who had

completedadvanced training inUGRA (fellowship or equivalent)

and regularly use these techniques in their clinical practice.

Forty healthy adult subjects were recruited for scanning

after providing written informed consent. Exclusion criteria

were age <18 yr and known pathology affecting the areas

scanned. Scanning was performed using the SonoSite X-Porte

(HFL50xp and L38xp linear probes or C60xp curvilinear probe)

andPX (L15e5 andL12-3 linear probes orC5-1 curvilinear probe)

ultrasound machines (FUJIFILM SonoSite, Bothell, WA, USA).

Each expert scanned 10 subjects (bilaterally) without

ScanNav over anatomical regions relevant to nine specific

peripheral nerve blocks (PNBs). Upper-limb block regions

scanned included the interscalene-level brachial plexus, up-

per trunk of the brachial plexus, supraclavicular-level brachial

plexus (SC), and the axillary-level brachial plexus (AxBP)

blocks. Thoracoabdominal block regions included the erector

spinae plane (ESP) and rectus sheath (RSB) blocks. Lower-limb

block regions comprised the suprainguinal fascia iliaca,

adductor canal/distal femoral triangle, and popliteal-level

sciatic nerve blocks.

A total of 720 scans were performed. For each scan, the

scanner stated when they had acquired what they felt to be

the optimal view. This frame and the preceding 10 s of the scan

were used for later review. Predictive colour overlay, derived

by ScanNavTM, was subsequently applied to the ultrasound

clips obtained in the acquisition protocol.

Key anatomical structures and adverse events

Nerves, arteries, pleura, and peritoneum were considered as

safety-critical structures (although the pleura, in the context
 recorded for 40 participants:

der
ght, weight, BMI

 UGRA experts each scan 10 subjects
Nav Anatomy PNB not used at this stage
 regions scanned (both sides of the body): 720 scan

ssments:
uracy of highlighting
ential to modify risk of adverse events/block failure

 or more expert reviewers agree on an assessment

heral nerve block; UGRA, ultrasound-guided regional anaesthesia.

http://ClinicalTrials.gov
http://ClinicalTrials.gov
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of the ESP block, is not typically in view when the needle is

inserted,13 and thus, risk of pneumothorax is low). Target

structures for UGRA include peripheral nerves and fascial

planes. Therefore, highlighting of the rectus sheath and fascia

iliaca and the transverse process of thoracic vertebrae were

assessed. The structures for each PNB are detailed in Table 1.

Expert reviewer evaluation

Six additional UGRA experts were recruited for analysis of the

highlightingon the recorded scans.Threewerebased in theUSA

(board-certified attending anaesthesiologists) and three in

Europe (consultant anaesthetist or equivalent). All had

completedadvanced training inUGRA (fellowship or equivalent)

and regularly use these techniques in their clinical practice.

Unmodified ultrasound scans and colour-highlighted scan

pairs were presented to expert reviewers via an online plat-

form. Videos in the pair played simultaneously with the expert

reviewers at liberty to play/pause at their discretion and view
Table 1 Key anatomical structures for ultrasonography-guided regio

Peripheral nerve block
region

Nerve Ar

Interscalene-level brachial
plexus block

C5 and C6 nerve roots

Upper-trunk block Upper trunk of brachial plexus
Supraclavicular-level
brachial plexus block

Trunks/divisions of brachial
plexus

Su

Axillary-level brachial
plexus block

Musculocutaneous, median,
ulnar, and radial nerves

Ax

Erector spinae plane block

Rectus sheath block
Suprainguinal fascia iliaca
block

De
i

Adductor canal block Saphenous nerve Fe
Popliteal-level sciatic nerve
block

Sciatic nerve Po

Table 2 Perceived accuracy assessment by peripheral nerve block. FN
rate; TPr, true-positive rate.

Peripheral nerve block True positive True negative F

TPr Structures TNr Structures F

Interscalene-level
brachial plexus block

0.908 139 0.033 5 0

Upper-trunk block 0.896 69 0.013 1 0
Supraclavicular-level
brachial plexus block

0.958 226 0.025 6 0

Axillary-level brachial
plexus block

0.951 366 0.026 10 0

Erector spinae plane
block

0.638 97 0.250 38 0

Rectus sheath block 0.968 149 0.000 0 0
Suprainguinal fascia
iliaca block

0.702 106 0.060 9 0

Adductor canal block 0.872 136 0.032 5 0
Popliteal-level sciatic
nerve block

0.875 140 0.106 17 0

Average/total 0.879 1428 0.056 91 0
multiple times. Scans were labelled with the subject age, sex,

and BMI. Three expert reviewers assessed each scan inde-

pendently: none knew the scans allocated to other expert re-

viewers or the outcome of their evaluation. A consensus view

was taken for each assessment; in cases where no majority

was reached, this was classified as ‘no consensus’.

For the relevant structures in each scan, reviewers were

asked to appraise highlighting accuracy and associated

adverse events through the following statements:

(i) The [colour] highlighting for the [anatomical structure]

(a) Correctly identifies the [anatomical structure] (true

positive; TP)

(b) Is in the wrong location (false positive; FP)

(c) Is not present and the [anatomical structure] is not

present (true negative; TN)

(d) Is not present but the [anatomical structure] is present

(false negative; FN)
nal anaesthesia safety and block success.

tery Serosal plane Bone Fascia

bclavian artery Pleura

illary artery

Pleura Transverse
process

Peritoneum Rectus sheath
ep circumflex
liac artery

Fascia iliaca

moral artery
pliteal artery

r, false-negative rate; FPr, false-positive rate; TNr, true-negative

alse positive False negative Accuracy
(TPrþTNr)

Total
structures

Pr Structures FNr Structures

.013 2 0.046 7 0.941 153

.052 4 0.039 3 0.909 77

.008 2 0.008 2 0.983 236

.003 1 0.021 8 0.977 385

.000 0 0.112 17 0.888 152

.032 5 0.000 0 0.968 154

.219 33 0.020 3 0.762 151

.000 0 0.096 15 0.904 156

.006 1 0.013 2 0.981 160

.030 48 0.035 57 0.935 1624
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(ii) Regarding the risk of [specific adverse event], the high-

lighting seen in this clip

(a) Increases the risk of [specific adverse event]

(b) Does not change the risk of [specific adverse event]

(c) Reduces the risk of [specific adverse event]

(iii) Regarding the risk of block failure, the highlighting seen in

this clip

(a) Increases the risk of block failure

(b) Does not change the risk of block failure

(c) Reduces the risk of block failure

Statistical analysis

As this study used a clinical and subjective assessment of the

AI models, descriptive statistics of both accuracy and efficacy

(perceived influence on risk of adverse event or block failure)
Table 3 Influence of highlighting on risk of adverse events and block

Peripheral nerve block Increase No change

% Structures % Str

Nerve injury/postoperative neurological symptoms (where nerves h
Interscalene-level brachial plexus
block

5.0 4 10.0 8

Upper-trunk block 0.0 0 62.5 50
Supraclavicular-level brachial
plexus block

2.5 2 2.5 2

Axillary-level brachial plexus
block

0.0 0 33.8 27

Adductor canal block 0.0 0 72.5 58
Popliteal-level sciatic nerve block 2.5 2 0.0 0
Average/total 1.7 8 30.2 145

Local anaesthetic systemic toxicity (where arteries highlighted)
Supraclavicular-level brachial
plexus block

2.5 2 2.5 2

Axillary-level brachial plexus
block

2.5 2 1.2 1

Suprainguinal fascia iliaca block 0.0 0 8.8 7
Adductor canal block 0.0 0 2.5 2
Popliteal-level sciatic nerve block 1.2 1 25.0 20
Average/total 1.2 5 8.0 32

Pneumothorax (only where pleura highlighted)
Supraclavicular-level brachial
plexus block

0.0 0 1.2 1

Erector spinae plane block 0.0 0 25.0 20
Average/total 0.0 0 13.1 21

Peritoneum violation (only where peritoneum highlighted)
Rectus sheath block 1.2 1 13.8 11
Average/total 1.25 1 13.75 11

Block failure (all blocks)
Interscalene-level brachial plexus
block

3.8 3 10.0 8

Upper-trunk block 2.5 2 8.8 7
Supraclavicular-level brachial
plexus block

1.2 1 1.2 1

Axillary-level brachial plexus
block

0.0 0 8.8 7

Erector spinae plane block 3.8 3 15.0 12
Rectus sheath block 2.5 2 10.0 8
Suprainguinal fascia iliaca block 1.2 1 0.0 0
Adductor canal block 0.0 0 30.0 24
Popliteal-level sciatic nerve block 1.2 1 0.0 0
Average/total 1.8 13 9.3 67
have been reported in amanner that reflects clinical use. As all

structures for a block region can be present or absent on any

single scan, the reported accuracy is presented for each PNB

and overall. Accuracy was defined as the sum of the true-

positive rate (TPr; TP/total structures) and true-negative rate

(TNr; TN/total structures). Rates of false positive (FPr) and false

negative (FNr) were similarly calculated but reported inde-

pendently because of the clinical implications of discrimi-

nating between FP and FN.
Results

Mean age of the scan subjects was 41.2 (minemax: 23e64;

standard deviation [SD] 13.4) yr, and mean BMI was 28.9

(19.7e40.4; 6.1) kg m�2, with an equal male:female ratio.
failure.

Reduce No consensus Total
structures

uctures % Structures % Structures

ighlighted)
73.8 59 11.2 9 80

37.5 30 0.0 0 80
93.8 75 1.2 1 80

56.2 45 10.0 8 80

21.2 17 6.2 5 80
95.0 76 2.5 2 80
62.9 302 5.2 25 480

92.5 74 2.5 2 80

91.2 73 5.0 4 80

81.2 65 10.0 8 80
96.2 77 1.2 1 80
70.0 56 3.8 3 80
86.2 345 4.5 18 400

97.5 78 1.2 1 80

55.0 44 20.0 16 80
76.2 122 10.6 17 160

82.5 66 2.5 2 80
82.50 66 2.5 2 80

78.8 63 7.5 6 80

81.2 65 7.5 6 80
93.8 75 3.8 3 80

70.0 56 21.5 17 80

68.8 55 12.5 10 80
83.8 67 3.8 3 80
97.5 78 1.2 1 80
62.5 50 7.5 6 80
95.0 76 3.8 3 80
81.2 585 7.6 55 720



Fig 3. Examples of the artificial-intelligence colour overlay for each peripheral nerve block studied. ALM, adductor longus muscle; AS,

anterior scalene; BPN, brachial plexus nerves (trunks/divisions); CPN, common peroneal (fibular) nerve; CTf, fascia overlying conjoint

tendon; C5, C5 nerve root; C6, C6 nerve root; DCIA, deep circumflex iliac artery; ESM, erector spinae muscle group (and overlying muscles);

FA, femoral artery; FI, fascia iliaca; H, humerus; I, ilium; IM, iliacus/iliopsoas muscle; McN, musculocutaneous nerve; MN, median nerve;

Pe, peritoneum and contents; Pl, pleura; R, first rib; RA, rectus abdominis muscle; RN, radial nerve; RSa, anterior layer of rectus sheath; RSp,

posterior layer of rectus sheath; SaN, saphenous nerve/nerve complex; ScA, subclavian artery; SCM, sternocleidomastoid muscle; SM,

sartorius muscle; TN, tibial nerve; TP, transverse process; UN, ulnar nerve; UT, upper trunk of the brachial plexus.

222 - Bowness et al.
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Accuracy

Table 2 shows a summary of the accuracy assessments made

by the expert reviewers. Twenty-one key anatomical struc-

tures were considered across nine PNBs. Each PNB region was

scanned 80 times; thus, a total of 1680 key anatomical

structures were assessed, each one by three expert re-

viewers. Amajority view of expert opinionwas determined in

1624 structures (96.7%); no consensus was reached in 56

(3.3%).

Mean accuracy (TPrþTNr) was 93.5% (1519/1624; TPr 87.9%

and TNr 5.6%; minemax accuracy: 76.2e98.3; SD 6.7; 95% con-

fidence interval [CI]: 89.1e97.9). Rate of structure misidentifi-

cation (FPr) was 3.0% (48/1624; 0e21.9; SD 6.6; 95% CI: 0.0e7.3)

and non-identification of a structure (FNr) was 3.5% (57/1624;

0e11.2; SD 3.7; 95% CI: 1.1e5.9). Further detail for each block

and structure is presented in Supplementary file F.

Adverse events and block failure

Table 3 shows a summary of the influence of device high-

lighting on perceived adverse events according to assessments

made by remote experts. Examples of this highlighting are

shown in Fig 3 and Supplementary files AeE. Further infor-

mation is presented in Supplementary file F.

Nerve highlighting was considered to reduce the risk of

nerve injury in 62.9% of cases (302/480; minemax range:

21.2e93.8%), with no change in 30.21% (145/480; 0e72.5%) and

an increase in 1.7% (8/480; 0e5.0%). Artery highlighting was

considered to reduce the risk of vascular injection in 86.2%

(345/400; 70.0e96.25%), with no change in 8.0% (32/400;

1.25e25.0%) and an increase in 1.2% (5/399; 0e2.5%). Pleura

highlighting (present in SC and ESP) was considered to reduce

the risk of pneumothorax in 76.25% (122/160; 55.0e97.5%), with

no change in 13.1% (21/160; 1.25e25.0%), with no reported

cases of increased risk. Peritoneum is only visible in the RSB;

highlighting was considered to reduce the risk of peritoneum

violation in 82.5% (66/80), make no difference in 13.8% (11/80),

and increase the risk in 1.2% (1/80).

Highlighting was considered to reduce the risk of block

failure in 81.2% (585/720; minemax range: 62.5e97.5%), make

no difference in 9.3% (67/720; 0e30.0%), and increase the risk in

1.8% (13/720; 0e3.8%).

Discussion

This study is reported according to the Consolidated Stan-

dards of Reporting Trials-Artificial Intelligence guidelines.14

Most prior AI studies of anatomical structure recognition

from UGRA images or videos have consisted of data sets from

fewer subjects, assessing fewer structures or on fewer videos/

images. Of those published, other than this report, only Gun-

gor and colleagues15 assessed a commercially available clin-

ical device with clinically relevant endpoints.

We found that ScanNavTM identified anatomical structures

essential to safe and efficacious UGRA on real-time ultrasound

in 93.5% of cases. The acquisition and interpretation of

optimal ultrasound images are fundamental to the practice of

UGRA and are a limiting step for non-experts.3,11 Medical im-

age interpretation is known to be fallible and subjective, even

amongst experts.16e18 Data gathered in this study demon-

strate the opportunity to augment human interpretation of

ultrasound images during UGRA scanning. The structures

highlighted by the AI models closely match those that an
international consensus of expert opinion recommends that

non-experts identify when performing these procedures.13

Subjective expert opinion was that highlighting would

reduce the risk of recognised complications in 62.9e86.2% of

scans. The potential for unintentional needle trauma of a

safety critical structure is another limiting factor in the prac-

tice of UGRA. Despite the known benefits of UGRA, the ma-

jority of patients undergoing surgery amenable to UGRA

techniques are not offered a PNB.6 Such assistive technology

has the potential to reduce complications of UGRA and remove

a barrier to clinical practice.

Highlighting by ScanNav in this study was perceived to

reduce block failure in 81.2% of scans (according to subjective

expert opinion). Ultrasound guidance is associated with

improved success rates of PNB, faster onset of sensory block,

and reduced incidence of vascular injury and local anaesthetic

systemic toxicity.2,19 However, there is still a failure rate to

each technique, and the downturn in elective operations

conducted during the recent pandemic has led to a commonly

held concern over a lack of opportunities to acquire the

necessary skills. Medical societies are attempting to promote

widespread adoption and standardisation of UGRA.6,13,20,21 To

support the implementation of these aims, innovation is

needed to support clinicians in the delivery of safe and effi-

cacious UGRA.

We show that ScanNavTM holds potential to support ultra-

sound scanning in UGRA andmitigate the risk of complications

or block failure. The device has gained regulatory approval for

clinical use in Europe (April 2021), and data from this study

contribute to evidence submitted for regulatory review in the

USA. This and other similar devices could in time support the

widespread practice by non-experts or even novices for

ultrasound-guided procedures throughout medicine. For

example, emergency-department physicians are often familiar

with point-of-care ultrasound and interventional procedures,22

and such assistive technology may aid the practice of UGRA in

this setting. Its use for painful interventions currently carried

out under sedation obviates the risk of airway compromise,

reduces the burden of monitoring, and provides a prolonged

pain-free period to facilitate hospital discharge or act as a bridge

to definitive treatment (e.g. for hip fractures). BeyondUGRA, use

of AI in image interpretation has broader implications across

medicine and potentially all of ultrasonography,23 from

screening for developmental dysplasia of the hip24 to diagnosis

of breast cancer.25 The democratisation of ultrasonography will

help ensure that patients have access to the most appropriate

interventions, supporting the performance of ultrasound-based

interventions by non-experts whilst maintaining relevant clin-

ical standards.26

The authors recognise limitations to this study. Firstly, our

findings must be followed by clinical studies to determine if

the predicted benefits are realised in patient outcomes. In

particular, use of ultrasound itself has not been shown to

reduce the incidence of nerve injury or postoperative neuro-

logical symptoms.2 Assessing the impact of any ultrasound

augmentation technology will require rigorous evaluation.

Secondly, the remote expert panels reviewing the videos and

highlighting were not present when the subject was scanned.

Contemporaneous viewing and interpretation of the ultra-

sound image provide a richer source of information for the

operator, and the expert-panel assessments may have been

different with this additional knowledge. However, this limi-

tation is attenuated by the fact that three remote experts



224 - Bowness et al.
assessed each video and could play/pause/review them at any

point, changing their assessment if required. Multiple practi-

tioners and the luxury of time or changing clinical opinion are

often not afforded to physicians in clinical practice. Thirdly,

this study is a subjective assessment of the device according to

expert opinion. This is particularly true for findings relating to

efficacy and safety. Additional studies are in progress to

conduct an objective and pixel-by-pixel assessment of AI

highlighting accuracy for structure boundaries (compared

with expert interpretation). Whilst this will be useful, it should

be noted that such assessmentsmay not always correlate with

clinical usefulness, and there is a need for measures of per-

formance beyond accuracy.27 The current assessment has

been chosen to be consistent with requirements for reporting

device performance for regulatory approval published by the

US Food and Drug Administration,28 which recommends that

definitions (e.g. accuracy and FPr/FNr) should be consistent

with the intended use of the device. However, it should be

noted that there aremultiple methods of reporting accuracy of

medical devices or tests.29 Finally, multiple investigators in

this study have been involved with the development and

regulatory evaluation of this device. The authors hope that, as

the technology becomes more widely available, more anaes-

thetists will engage in detailed study of this and similar de-

vices to determine their true value to our clinical practice.

Whilst further clinical data on patient outcomes are

required to confirm the predicted benefits, these data present

the case for the accuracy of ScanNavTM and the potential

safety and efficacy benefits in UGRA. This study marks a shift

in ultrasonography-guided regional anaesthesia, where tech-

nological progress is not restricted to image generation but

also to image interpretation.
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