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Abstract Introduction: As a direct bridge between the

brain and the outer world, brain-computer interface

(BCI) is expected to replace, restore, enhance, sup-

plement, or improve the natural output of brain. The

prospect of BCI serving humans is very broad. However,

the extensive applications of BCI have not been fully

achieved. One of reasons is that the cost of calibration

reduces the convenience and usability of BCI. Methods:

In this study, we proposed a calibration-free approach,

which is based on the ideas of reinforcement learning

and transfer learning, for P300-based BCI. This ap-

proach, composed of two algorithms: P300 linear upper

confidence bound (PLUCB) and transferred PLUCB

(TPLUCB), is able to learn during the usage by ex-

ploration and exploitation and allows P300-based BCI
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to start working without any calibration. Results: We

tested the performances of PLUCB and TPLUCB us-

ing stepwise linear discriminant analysis (SWLDA), a

commonly-used method that needs calibration, as a base-

line in simulated online experiments. The results showed

the merits of PLUCB and TPLUCB. PLUCB can quickly

increase the accuracies to the level of SWLDA. TPLUCB

has surpassed SWLDA in the sample accuracy since

it starts running. Both PLUCB and TPLUCB have

the ability to keep improving the classification perfor-

mance during the process. The overall sample accura-

cies (73.6± 4.8%, 73.1± 4.9%), overall symbol accura-

cies (80.4 ± 12.8%, 79.6 ± 14.0%), F-measures (0.45 ±
0.06, 0.44±0.06) and information transfer ratios (ITR)

(36.4±9.1, 35.5±9.8) of PLUCB and TPLUCB are sig-

nificantly better than those of SWLDA (overall sample

accuracy : 58.8± 3.8%, overall symbol accuracy : 69.0±
18.3%, F-measure: 0.38± 0.04, ITR: 28.7± 10.7). Con-

clusions: The proposed approach, which doesn’t need

calibration but outperform SWLDA, is a very good op-

tion for the implementation of P300-based BCI.

Keywords P300 BCI · Reinforcement learning ·
Transfer learning · Calibration-free

1 Introduction

Brain-computer interface (BCI) is a direct bridge be-

tween the brain and the outer world. BCI can trans-

mit the information of the brain, bypassing the periph-

eral nervous system and muscle [1]. The exciting ad-

vances in the field of BCI have attracted research in-

terests in various applications [1–3]. BCI is expected

to replace, restore, enhance, supplement, or improve

the natural output of the brain [1, 4, 5]. Since cross-

session and cross-subject variabilities exist in electroen-
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2 Zhihua Huang et al.

cephalogram (EEG), the classifier used to detect EEG

needs to be trained before every use. Training before

every use, which is often called calibration, is very time-

consuming. The cost of calibration is one of very impor-

tant factors hindering the widespread use of BCI [1].

Research has been carried out to reduce the cali-

bration cost of BCI. There are two different approaches.

The first one is to transfer knowledge to new users from

previous users. The basis of this approach is transfer

learning theory [6–9]. By applying transfer learning,

very little or even no data is required for calibration

when a new user comes in. The second approach is to

randomly initiate a classifier and then continuously up-

date it during using BCI. The initial classifiers may per-

form poorly and the classifiers will adapt to the users

through continuous updating. This approach is based

on the theory of online learning or reinforcement learn-

ing [4, 10–12].

Some studies of applying transfer learning in BCI

are described as follows. In 2009, Fazli et al [13] re-

ported an attempt to generalize an ensemble of clas-

sifiers derived from a large EEG database of motor

imagery BCI to new subjects. In 2014, Kindermans et

al [14] proposed a probabilistic framework with inter-

subject transfer learning that could cancel the need

of event-related potential (ERP) spelling BCI for cal-

ibration. In 2017, Gayraud et al [15] applied the op-

timal transport to develop a method having the po-

tential to cancel the need of P300 speller BCI for cal-

ibration. In 2018, Qi et al [16] proposed a method to

reduce calibration times by using the Riemannian dis-

tance measurement to select similar ERP samples. In

2019, Hübner et al [17] used learning from label pro-

portions as a new classification approach and proved its

value for the visual ERP BCI. In 2020, the investigation

of Lee et al [18] showed that convolutional neural net-

work (CNN) combined with large ERP samples could

achieve calibration-free in a P300 speller BCI. In the

same year, the work of Li et al [19] demonstrated that

the combination of xDAWN spatial filter and Rieman-

nian Geometry Mean can make the data from different

subjects comparable, and has the potential to general-

ize a fixed classification method.

Also, there are some studies on adapting BCI classi-

fiers to users by reinforcement learning or online learn-

ing. Early in 2006, Buttfield et al [20] presented their

investigation of adapting the classifiers to the subjects’

EEG by online learning. In 2014, Kindermans et al [21]

attempted to bypass the calibration recording by uti-

lizing an unsupervised trained classifier, which was ini-

tialized randomly and then updated during usage. In

the same year, Grizou et al [22] proposed a method

without the need for calibration, which could contin-

uously update the inference about the interpretation

of EEG signals of BCI users as new data comes in.

In 2015, Bauer et al [4] applied a Bayesian model of

neurofeedback and reinforcement learning to study the

impact of threshold adaptation of classifiers on opti-

mizing restorative BCIs. In 2018, for emotional state

prediction, Liu et al [23] proposed a new method that

modified the predictor during the online training iter-

ations by exploiting the reward. In 2020, Ma et al [24]

presented an adaptive projected sub-gradient method

whose coefficients are adjusted online as data arrive se-

quentially. They evaluated its performance through an

ERP-based BCI experiment.

Among all types of BCIs, P300-based BCI, proposed

by Farwell et al [25] in 1988, has been explored in var-

ious applications due to its comparative reliability and

stability [1, 5]. In this study, we focus on seeking an

approach to implementing calibration-free P300-based

BCI. According to the fundamental of reinforcement

learning [4,10,26,27], we proposed a novel method, P300

linear upper confidence bound [26] (PLUCB), to build

P300 predictors for each user without the need of col-

lecting training data. Furthermore, by introducing the

idea of transfer learning [6–9], we developed a new ver-

sion of this method, transferred PLUCB (TPLUCB),

which could quickly optimize calibration-free P300-based

BCI system for each user based on a pool of predictors.

For P300-based BCI, stepwise linear discriminant

analysis (SWLDA) is a commonly-used method [28–

31], which needs calibration. Our results show that the

calibration-free PLUCB and TPLUCB can achieve com-

parable accuracies with SWLDA only after undergoing

a brief updating and subsequently reach the high points

of accuracy that are significantly higher than those of

SWLDA. PLUCB and TPLUCB can not only allow

starting P300-based BCI without any calibration, but

also achieve better performance than SWLDA. They

provide a very good option for implementing a P300-

based BCI.

Extensive research suggests that bringing together

artificial intelligence and cognitive science would ben-

efit both [32]. The proposed approach, which is used

to address a BCI issue, originates from the principles

of reinforcement learning and transfer learning, which

both closely relate to cognitive science [32]. This study,

in which artificial intelligence and cognitive science are

tightly linked, is a further example of mutual promotion

of artificial intelligence and cognitive science.

2 Methods

In the field of neuroscience, reinforcement learning is

a cognitive process in which a person utilizes previ-
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ous experience to improve his/her strategy. The neu-

ral basis of reinforcement learning has been explored

in various ways [33, 34]. In the area of machine learn-

ing, reinforcement learning, one of three basic machine

learning paradigms, aims to learn an optimal or nearly

optimal policy that maximizes the expected cumula-

tive reward through exploration and exploitation [10].

Inspired both by the fields, we proposed PLUCB for

P300-based BCI.

2.1 PLUCB algorithm

In accordance to the fundamental of multi-armed ban-

dit problem [26,27], we model the problem of detecting

P300 as a 2-armed bandit problem with context infor-

mation. For each subject, a set of arms, A = {ap, an},
is given. The arms ap and an both are indicators. Ev-

ery time, PLUCB choose one from ap and an according

to its strategy. The choice is its judgement. The arm

ap represents that P300 is considered to exist in the

EEG epoch and the arm an indicates that no P300 is

considered to exist in the EEG epoch.

Formally, the algorithm PLUCB proceeds in dis-

crete trials t = 1, 2, 3, · · · . In trial t, PLUCB observes

the context et ∈ Rd, a d-dimensional feature vector

summarizing the information of the current EEG epoch,

evaluates ap and an using et and its arm-selection strat-

egy, and chooses an arm at ∈ A. Here, the EEG epoch

is considered to have P300 if at = ap, or not if at = an.

In a setting of copying experiment of P300 BCI, the

experiment platform knows whether P300 exists in the

EEG epoch or not. PLUCB can receive payoffs about

its choice from the experiment platform.

Let rt,p and rt,n respectively be the payoffs of ap
and an in Trial t.{
rt,p = 1, rt,n = 0 if P300 exists

rt,p = 0, rt,n = 1 otherwise
(1)

After Trial t, PLUCB updates its arm-selection strategy

with et, rt,p and rt,n.

The total T-trial payoff is defined as
∑T

t=1 rt,at
,

and the optimal expected T-trial payoff is defined as

E[
∑T

t=1 rt,a∗t ], where a∗t is the arm with a maximum

expected payoff in Trial t. Moreover, the T-trial regret

of PLUCB can be defined by

R(T )
M
= E[

T∑
t=1

rt,a∗t ]−E[

T∑
t=1

rt,at
] (2)

The goal of PLUCB is to minimize R(T ). We assume

that the expected payoff of an arm a is linear in et with

an unknown coefficient vector θ. For all t, we have

E[rt,a|et] = θ>a et, a ∈ A (3)

In trial t, let D ∈ Rt×d, D = [e1, e2, · · · , et]> represent

the contexts of the t trials and ra = [r1,a, r2,a, · · · , rt,a]>

for all a ∈ A indicate the payoffs of the t trials. Apply-

ing ridge regression [35] to {(D, ra)|a ∈ A}, the esti-

mates of θa can be obtained as follows:

θ̂a = (D>D + Id)−1D>ra, a ∈ A (4)

where Id is a d× d identity matrix.

For simplicity, we use Φ to represent D>D + Id.

When components in ra are independently conditioned

on corresponding rows in D, according to [36], we have:

|E[rt+1,a|et+1]− θ̂>a et+1| ≤ α
√
e>t+1Φ

−1et+1, a ∈ A (5)

with the probability at least 1 − δ, where α = 1 +√
ln(2/δ)/2, both δ and α are constants. Eq. 5 gives a

tight upper confidence bound for the expected payoff

of arm a. From Eq. 5, we can derive an arm-selection

strategy for Trial t+ 1:

at+1 = arg max
a∈A

(
θ̂>a et+1 + α

√
e>t+1Φ

−1et+1

)
(6)

Based on the above fundamental, PLUCB, expressed as

Algorithm 1, is proposed to implement calibration-free

P300 BCI.

Algorithm 1 P300 linear upper confidence bound

(PLUCB)

Input: α ∈ R+

1: Φ← Id (d-dimensional identity matrix)
2: ba ← 0d×1 (d-dimensional zero vector), a ∈ A
3: for t = 1, 2, 3, · · · , T do
4: observe the features et ∈ Rd

5: θ̂a ← Φ−1ba, a ∈ A
6: pt,a ← θ̂>a et + α

√
e>t Φ

−1et, a ∈ A
7: at = arg maxa∈A pt,a
8: output at as the decision for Trial t
9: observe the payoffs rt,a, a ∈ A

10: Φ← Φ+ ete>t
11: ba ← ba + rt,aet, a ∈ A
12: end for

2.2 TPLUCB algorithm

On a BCI platform where PLUCB is included, any per-

son can use P300 BCI without having to calibrate it.

PLUCB is based on the fundamental of reinforcement

learning. When we consider this problem from the per-

spective of transfer learning, there is still room for im-

proving this approach.

Suppose that N subjects, {Si|i = 1, · · · , N}, have

used the PLUCB BCI platform before a new subject,
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4 Zhihua Huang et al.

Fig. 1 The framework of TPLUCB. Before a new subject, Snew, comes, TPLUCB has obtained {Φi, bia|i = 1, · · · , N, a ∈ A}
by learning during the interactions with the source subjects {Si|i = 1, · · · , N}. TPLUCB starts running for Snew using
{Φi, bia|i = 1, · · · , N, a ∈ A} and keep improving the classification performance according to the feedbacks of the BCI platform.

Snew, comes. In the view of transfer learning [6–9],

we have the source domain DS = {P (Xi
a), Di, ria|i =

1, · · · , N, a ∈ A}, where, Xi
a is a random variable and

indicates the situation of the feature vectors of Si un-

der the condition a, P (Xi
a) represents the probability

distribution of Xi
a, Di ∈ RT×d is a matrix consisting

of the d-dimensional vectors of Si in T trials, ria is a

T -dimensional payoff vector of Si in T trials under the

condition a. Obviously, DS is valuable for Snew. We

further propose transferred PLUCB (TPLUCB) as de-

scribed in Fig. 1.

The interactions between {Φi, bia} and Si in Fig.

1 show that, before Snew starts using the BCI plat-

form, the algorithm TPLUCB has learned P (Xi
a) from

(Di, ria) and obtained {Φi, bia}, the knowledge represen-

tation about P (Xi
a), for all i and a. All {Φi, bia} can be

viewed as a pool of predictors. The target domain can

be described as DT = {P (Xnew
a ), Dnew, rnewa |a ∈ A},

where, Xnew
a is a random variable and indicates the sit-

uation of the feature vectors of Snew under the condi-

tion a, P (Xnew
a ) represents the probability distribution

of Xnew
a , Dnew ∈ RM×d is a matrix consisting of the

d-dimensional vectors of Si in M trials, rnewa is a M -

dimensional payoff vector of Snew in M trials under the

condition a. In this study, Dnew and rnewa are null or

have very small amount of data, we need to estimate the

probability of a feature vector of Snew under condition

a.

According to the fundamental of transfer learning

[6–9] and our previous study [37], only a few source sub-

jects share similar probability distribution with Snew.

Formally, it can be expressed as {P (Xi
a) ∼ P (Xnew

a )|a ∈
A, i ∈ N ,N ⊂ {1, · · · , N}, |N | � N}, where ∼ means

that the two probability distributions are similar.

As shown in Fig.1, TPLUCB has represented its

knowledge on P (Xi
a) with {Φi, bia} for all i and a. As

shown in Eq. 5, when {Φi, bia} is used to estimate the

probability of a feature vector of Si under condition a,

there exists a tight upper confidence bound for the de-

viation of this estimate under a probability condition.

Therefore, the arm-selection strategy, shown as Eq. 6,

can be derived from the upper bound. The underly-

ing logic is that, the larger the objective value in Eq.

6, the more likely this estimate is to be close to reality.

When we seek the most appropriate knowledge from the

source domain for the arm-selection strategy of Snew,

this logic remains valid. So, the knowledge about P (Xi
a)

can help Snew to start using P300 BCI when Dnew and

rnewa are null.

After Dnew and rnewa begin to have data, TPLUCB

exploits the feature vectors and payoffs from Snew to

update the arm-selection strategy of Snew. The process
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Fig. 2 Illustration of the symbol selection procedure on the BCI platform. This course includes 3 steps. Step 1 cues the current
target for 2.4 s using an ellipse frame, as shown in the first screen. Step 2 contains six sequences of flashes. In each sequence,
each of the 12 groups of symbols is flashed one time in a random order. Step 2 is shown in the section of the second screen
to the third screen. The intensification of the flash lasts 80 ms and the interval between the successive intensification onsets is
120 ms. Step 2 lasts 120ms× 12× 6 = 8640ms in total. Step 3 presents the result of symbol detection for 1s, as shown in the
fourth screen.

is presented by the interactions between {Φi, bia} and

Snew in Fig.1. Compared to PLUCB, TPLUCB does

not initiate {Φi, bia} with the identity matrix and zero

vector, but it starts with the knowledge learned from

Si. For Snew, the update does not change the proba-

bility basis of the arm-selection strategy, but its knowl-

edge representation. So, Eq. 6 still applies. In summary,

TPLUCB can be formally described as Algorithm 2, in

which i ∈ {1, · · · , N}, a ∈ A.

Algorithm 2 Transferred P300 linear upper confidence

bound (TPLUCB)

Input: α ∈ R+

1: obtain {Φi, bia} for all i and a through PLUCB
2: for t = 1, 2, · · · , T do
3: observe the features et ∈ Rd

4: θ̂ia ← (Φi)−1bia for all i and a

5: pit,a ← (θ̂ia)>et + α
√
e>t (Φi)−1et for all i and a

6: at = arg maxa,i pit,a
7: output at as the decision for Trial t
8: observe the payoffs rt,a for all a
9: Φi ← Φi + ete>t for all i

10: bia ← bia + rt,aet for all i and a
11: end for

3 Experiment and data

3.1 Experiment platform

Based on BCI2000 [28], we developed a P300 BCI plat-

form that supports Chinese pinyin. In the BCI plat-

form, a standard 6 × 6 matrix of symbols [25] is used

to present stimuli according to checkerboard stimulus

paradigm, which can reduce the errors caused by the

flashes of non-target rows or columns that are adja-

cent to the target [38]. Before starting an experiment,

the BCI platform randomly rearranges the 36 symbols

in an inner matrix of 6 × 6. In a sequence, the BCI

platform flashes the six groups of symbols in the pre-

sentation matrix corresponding to six rows of the inner

matrix one time in a random order, then flashes six

other groups of symbols in the presentation matrix cor-

responding to six columns of the inner matrix one time

in a random order. The flash interfaces are shown in

Fig. 2.

In the BCI platform, the number of sequences is

configurable. The main characteristic of the BCI plat-

form is that the symbols in the presentation matrices

are not English characters but the symbols of Chinese

pinyin, which are composed of the initial consonant,

vowel or tone. The BCI platform supports subjects to

successively select the initial consonant, vowel or tone

of a Chinese character. Fig. 2 illustrates the procedure

of selecting the initial consonant for a Chinese charac-

ter. The procedures of selecting the vowel or tone for a

Chinese character are similar.

3.2 Subjects

Twenty right-handed BCI-naive university students (10

males, 10 females) were recruited to participate in this

study. They were at the age of 19 - 28 with the mean

at 23 and the standard deviation at 2.35. The exclusion

conditions include visual or neurological disorders, head

trauma and any drug use that would affect nervous sys-

tem function. Before the experiments, the subjects were

asked to wash their hair. This experiment was approved

by the Institutional Review Board at Fuzhou University

(No. FZUBCI003, 8-Sep-2018). In accordance with the

Helsinki Declaration of Human Rights, informed con-
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sents for the experimentation were obtained from all

subjects after a detailed explanation of the study.

3.3 Experiment paradigm

All subjects performed two sessions respectively at two

different times. The first session used a pseudo-detector.

That is, in the first session, the outcomes provided for

the subjects were generated by the BCI platform ac-

cording to the configured error rates, and the subjects

were told that a real detector was working. Before the

second session, a real classifier was trained on the data

of the first session by SWLDA. In the second session,

the classifier was used to detect P300 and the detec-

tion of the symbols was implemented by synthesizing a

group of successive detections of P300. Each session in-

cluded 14 runs. In each run, the subjects selected 18

symbols of Chinese pinyin. For each symbol, six se-

quences of flashes were presented. Every time a symbol

was selected by the platform, it was presented to the

subject.

A procedure of selecting a symbol on the BCI plat-

form is illustrated in Fig. 2. It includes three steps.

The first screen of Fig. 2 is Step 1, in which the cur-

rent target is cued for 2.4s using an ellipse frame. Step

2 contains six sequences of flashes. In each sequence,

each of the 12 groups of symbols is flashed once. There

is no break in-between sequences. The intensification of

the flash lasts 80 ms and the interval between the suc-

cessive intensification onsets is 120 ms. The section of

the second screen to the third screen in Fig. 2 presents

Step 2, in which the subjects are instructed to silently

count how many times the target has been flashed to
keep their attention. The fourth screen in Fig. 2 repre-

sents Step 3, in which the result of symbol detection is

presented.

3.4 EEG data

EEG signals were recorded by a 64-channel Neuroscan

system, including the EEG cap, the amplifier, and the

signal acquisition software. For convenience, we only

recorded the EEG signals of 32 channels, which were:

FP1 FP2 F7 F3 Fz F4 F8 FT7 FC3 FCz FC4 FT8 T7

C3 Cz C4 T8 TP7 CP3 CPz CP4 TP8 P7 P3 Pz P4

P8 PO7 PO8 O1 Oz O2. The sampling rate was set to

1000 Hz.

The raw EEG signals were firstly processed by com-

mon average reference and finite impulse response with

the order at 64 and the frequency range of 0.5-30Hz.

Here, each symbol selection underwent 12 × 6 = 72

flashes, and the 800 ms EEG signals following the flash

onsets were processed for each flash. For brevity, we de-

fined the onset moment of the first flash during a symbol

selection as 0 ms. Every EEG segment from -300 ms to

9320 ms was cut out from the raw EEG signals.

Next, each EEG segment was normalized by sub-

tracting the mean of -300 to 0 ms on each channel

and dividing it by the median of standard deviations

of all channels during -300 to 0 ms. Then, every 800 ms

EEG epoch following a flash onset was extracted from

the EEG segments and transformed into et, the 120-

dimensional feature vector of trial t, by averaging every

40 ms on the channels of Fz, Cz, Pz, Oz, PO7 and PO8.

Accordingly, {rt,a|t = 1, · · · , T, a ∈ A} were labelled in

the light of the feedback of the BCI platform. For each

subject, et and rt,a from Session 1 and Session 2 were

gathered respectively into his/her training set and test

set, in which t = 1, · · · , T is in the order of online exper-

iment. The training sets were constructed after Session

1 and before Session 2, and were used only by SWLDA.

The test sets were constructed after the two sessions,

and were used in the simulated online experiments of

PLUCB and TPLUCB.

3.5 Simulated online experiment

In this study, we used SWLDA, a frequently-used clas-

sifier in P300 BCI [28–31], as the baseline to evaluate

the proposed PLUCB and TPLUCB. For SWLDA, the

classifiers were calibrated on the training sets (from the

first session) and applied in the corresponding second

sessions, which are real online experiments. For PLUCB

and TPLUCB, simulated online experiments were car-

ried out directly on the test sets (from the second ses-
sions) without any calibration on the training sets. We

assess the performances of PLUCB and TPLUCB by

comparing PLUCB and TPLUCB with SWLDA.

Without undergoing any calibration, PLUCB was

directly applied to each test set. PLUCB proceeded in

the order of t = 1, 2, 3, · · · , T . After completing the

testing of PLUCB on the 20 subjects, we had {Φi, bia|i =

1, · · · , 20, a ∈ A} and went ahead to test TPLUCB.

When the Ith subject was tested, we used {Φi, bia|i ∈
S,S = {1, · · · , 20} − {I}, a ∈ A} as known knowledge

from source subjects. Likewise, TPLUCB was directly

applied to each test set without any calibration and

proceeded in the order of t = 1, 2, 3, · · · , T . A process

of PLUCB or TPLUCB for each t is called a round.

In Round tc, PLUCB and TPLUCB both updated

their respective arm-selection strategies according to

rtc,a and etc , and utilized the updated arm-selection

strategy to process {et|t = tc + 1, · · · , T} respectively.

Let Ncorrect and Nall respectively represent the num-

bers of the correctly classified et and all et in {et|t =
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A calibration-free approach to implementing P300-based brain-computer interface 7

tc + 1, · · · , T}, then Ncorrect

Nall
is called the sample accu-

racy of PLUCB or TPLUCB at Round tc.

During the testing, every 72 successive sample clas-

sification results were synthesized into the result of de-

tecting a symbol. Let N ′correct and N ′all respectively rep-

resent the numbers of the correctly detected symbols

and all symbols corresponding to {et|t = tc+1, · · · , T},
then

N ′correct
N ′all

is called the symbol accuracy of PLUCB

or TPLUCB at Round tc.

For PLUCB, the way of synthesizing successive sam-

ple classification results to detect a symbol is described

as follows. The first step is to compute ξr. ξr =
∑

t(pt,ap−
pt,an

), where, r ∈ {1, · · · , 6} indicates a row of the in-

ner symbol matrix, t ∈ Tr, Tr represents the set of

the round numbers when the rth row symbols of the

inner symbol matrix are flashed during the interaction

for the current symbol, pt,ap
and pt,an

are the results of

the algorithm PLUCB at Round t. The second step is to

calculate ξc, where c ∈ {1, · · · , 6} represents a column

of the inner symbol matrix, in a similar way to the first

step. The final step is to determine the current symbol

by r̂ and ĉ, where r̂ = arg maxr ξr and ĉ = arg maxc ξc.

For TPLUCB, the first and second steps of PLUCB

synthesization are used to accumulate successive sam-

ple classification results of each source subject model.

Let ξir and ξic represent the accumulated results of the

model of the ith source subject, then the current sym-

bol is determined by r̂ and ĉ, where r̂ = arg maxr,i ξ
i
r

and ĉ = arg maxc,i ξ
i
c.

We tested PLUCB and TPLUCB in another way

as well. PLUCB and TPLUCB only processed et when

proceeding in the order of t = 1, 2, 3, · · · , T . After T

rounds, the sample accuracy and symbol accuracy of

PLUCB or TPLUCB on {et|t = 1, · · · , T} of a subject

were respectively called overall sample accuracy and

overall symbol accuracy of PLUCB or TPLUCB on the

subject. F-measure (F1) of PLUCB or TPLUCB on a

subject is calculated by Eq. 7 [39]:

F1 =
2× precision× recall
precision+ recall

(7)

where precision is the ratio of the number of the sam-

ples correctly classified as P300 to the number of the

samples classified as P300, and recall is the ratio of the

number of the samples correctly classified as P300 to

the number of the P300 samples. Information trans-

fer ratio (ITR) in bits/min is calculated by Eqs. 8 and

9 [40]:

B = log2N+P log2 P+(1−P ) log2[(1−P/(N−1))] (8)

ITR = B × (60/Dur) (9)

Fig. 3 Experimental block diagram

where N is the number of the symbols in the presenta-

tion matrix, P is the overall symbol accuracy, and Dur

is the time (in second) needed to convey a symbol.

3.6 Overall experiment description

As shown in Fig. 3, the experimental work includes

Data Acquisition, Test-set Construction, SWLDA Ex-

periment, PLUCB Experiment, TPLUCB Experiment

and Evaluation. The method of Data Acquisition is de-

scribed in the sections of 3.1, 3.2, 3.3 and 3.4. The con-

struction of training sets is included in Data Acquisi-

tion. The online SWLDA Experiment is conducted in

the process of Data Acquisition. Following Data Ac-

quisition, the procedures (Test-set Construction) de-

scribed in the 3.4 section are conducted to generate

the test sets. Subsequently, the simulated online exper-

iments of PLUCB and TPLUCB (PLUCB Experiment

and TPLUCB Experiment) are carried out on the test

sets. Finally, PLUCB and TPLUCB are evaluated by

the comparison with SWLDA (Evaluation). The meth-
ods of PLUCB Experiment, TPLUCB Experiment and

Evaluation are described in the 3.5 section.

3.7 Statistical analysis

In the stage of Evaluation, t-test and analysis of vari-

ance (ANOVA) are used to assess PLUCB and TPLUCB.

For the evolutions of PLUCB and TPLUCB, t-test is

applied to compare the accuracies at each round. Ac-

cording to the principle of t-test, the normality of the

relevant data sets is confirmed before each t-test. For

each round, t-test is conducted four times to compare

the sample accuracies of PLUCB on all subjects with

those of SWLDA, the symbol accuracies of PLUCB on

all subjects with those of SWLDA, the sample accura-

cies of TPLUCB on all subjects with those of SWLDA,

and the symbol accuracies of TPLUCB on all subjects

with those of SWLDA. For each t-test, the null hypoth-

esis is that the means of the accuracies in the two groups
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8 Zhihua Huang et al.

Fig. 4 Changes of the accuracies over rounds. A round means a process of PLUCB or TPLUCB for each t. In Figure (a),
the 1-200 rounds, 201-400 rounds and 401-10000 rounds are called initial stage, tight stage and superior stage respectively.
The tight stage is marked by the blue frame. The ‘SWLDA’ line represents the mean sample accuracy of SWLDA over 20
subjects (58.79%). The ‘PLUCB’ and ‘TPLUCB’ curves show the changes of the mean sample accuracies of PLUCB and
TPLUCB over rounds respectively. In the initial stage, the mean sample accuracy of PLUCB is significantly lower than that
of SWLDA, however it raises quickly. In the tight stage, the t-tests of the sample accuracies between PLUCB and SWLDA
show no significant difference (p-value>0.05). In the superior stage, the mean sample accuracies of PLUCB are significantly
higher than that of SWLDA. From Round 1, TPLUCB has higher mean sample accuracies than SWLDA. Its mean sample
accuracy increases rapidly until Round 500. After Round 500, the mean sample accuracy of TPLUCB continues to improve at
a slower rate. Before Round 1700, the mean sample accuracy of TPLUCB is higher than that of PLUCB. After Round 1700,
the mean sample accuracy of TPLUCB is slightly lower than that of PLUCB. In Figure (b), the 1-750 rounds, 751-2100 rounds
and 2101-10000 rounds are called initial stage, tight stage and superior stage respectively. The tight stage is also marked by
the blue frame. The ‘SWLDA’ line is the mean symbol accuracy of SWLDA over 20 subjects (68.97%). The ‘PLUCB’ and
‘TPLUCB’ curves show the changes of the mean symbol accuracies of PLUCB and TPLUCB over rounds respectively. In the
initial stage, the mean symbol accuracy of PLUCB is significantly lower than that of TPLUCB, the mean symbol accuracies of
the two are significantly lower than that of SWLDA but both raise fast. In the tight stage, the t-tests of the symbol accuracies
between PLUCB and SWLDA or between TPLUCB and SWLDA show no significant difference (p-value>0.05). In the superior
stage, the mean symbol accuracies of PLUCB and TPLUCB are significantly higher than that of SWLDA and both continue
to improve at slower rates, TPLUCB has a slight advantage over PLUCB in the symbol accuracy.

are equal, and the significant level is 0.05. Regarding

the overall performances, ANOVA is employed to com-

pare the overall sample accuracies, overall symbol ac-

curacies, F-measures and ITRs of PLUCB, TPLUCB

and SWLDA on all subjects. For each performance in-

dex, the null hypothesis of ANOVA is that the means

of the performance values of PLUCB, TPLUCB and

SWLDA are equal, and the significant level is 0.05.

If the null hypothesis of ANOVA is rejected, Tukey-

Kramer multiple-comparison is further used to detect

the pairwise differences of PLUCB, TPLUCB and SWLDA.

4 Results

Fig. 4 presents the accuracies of SWLDA, PLUCB and

TPLUCB. The ‘SWLDA’ lines exhibit the mean sample

accuracy (in Fig. 4a) and the mean symbol accuracy (in

Fig. 4b) of SWLDA on 20 subjects. The ‘PLUCB’ and

‘TPLUCB’ curves in Fig. 4a present the mean sam-

ple accuracies of PLUCB and TPLUCB respectively

for all subjects at each round. Similarly, the ‘PLUCB’

and ‘TPLUCB’ curves in Fig. 4b respectively show the

mean symbol accuracies of PLUCB and TPLUCB for

all subjects at each round. Fig. 4 shows not only the

accuracies of PLUCB, TPLUCB and SWLDA but also

their changes and comparisons.

In Fig. 4a, the 1-200 rounds, 201-400 rounds and

401-10000 rounds are respectively called initial stage,

tight stage and superior stage. In the initial stage, the

sample accuracies of PLUCB are significantly lower than

that of SWLDA. Fig. 5a presents an example of com-

paring PLUCB and TPLUCB with SWLDA in sample

accuracy on each subject at Round 100 in the stage. In

the tight stage, the t-tests of the sample accuracies be-

tween PLUCB and SWLDA show no significant differ-

ence (p-value>0.05). An example of comparing PLUCB
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A calibration-free approach to implementing P300-based brain-computer interface 9

Fig. 5 Comparison of PLUCB and TPLUCB with SWLDA in sample accuracy on each subject. The Y axis represents the
accuracy (Acc) of PLUCB (triangle points) or TPLUCB (square points), the X axis represents the accuracy (Acc) of SWLDA.
Each triangle point represents the comparison on a subject between PLUCB and SWLDA and each square point represents
the comparison on a subject between TPLUCB and SWLDA. Points above the diagonal line indicate that the accuracies of
PLUCB or TPLUCB are higher than those of SWLDA for the subjects. Figure (a) shows the comparison of PLUCB and
TPLUCB with SWLDA at Round 100 in the initial stage. At Round 100, the accuracies of PLUCB are clearly lower than
those of SWLDA for most subjects, whereas the accuracies of TPLUCB are obviously higher than those of SWLDA. The
comparison in Figure (b) is at Round 400 in the tight stage. At Round 400, TPLUCB still outperforms SWLDA in sample
accuracy for most subjects, but PLUCB already has comparable sample accuracy with SWLDA for most subjects. In Figure
(c), the comparison is at Round 3000 in the superior stage. At Round 3000, both of PLUCB and TPLUCB are clearly superior
to SWLDA in sample accuracy for all subjects.

Fig. 6 Comparison of PLUCB and TPLUCB with SWLDA in symbol accuracy on each subject. This figure presents the
comparisons in symbol accuracy in the same way as Fig. 5. The comparison of PLUCB and TPLUCB with SWLDA at Round
500 in the initial stage is shown in Figure (a), in which, for most subjects, the symbol accuracies of PLUCB and TPLUCB are
lower than those of SWLDA. The comparison in Figure (b) is at Round 1500 in the tight stage. At Round 1500, no significant
difference between PLUCB and SWLDA or between PLUCB and SWLDA in symbol accuracy is discovered for most subjects.
In Figure (c), the comparison at Round 8500 in the superior stage is presented. At Round 8500, both PLUCB and TPLUCB
are clearly superior to SWLDA in symbol accuracy for a majority of subjects.

and TPLUCB with SWLDA in sample accuracy on each

subject at Round 400 in the stage is given in Fig. 5b.

In the superior stage, the sample accuracies of PLUCB

are significantly higher than that of SWLDA. An exam-

ple of comparing PLUCB and TPLUCB with SWLDA

in sample accuracy on each subject at Round 3000 in

the stage is shown in Fig. 5c.

In Fig. 4b, the 1-750 rounds, 751-2100 rounds and

2101-10000 rounds are respectively called initial stage,

tight stage and superior stage. In the initial stage, the

symbol accuracies of PLUCB and TPLUCB are signifi-

cantly lower than that of SWLDA. An example of com-

paring PLUCB and TPLUCB with SWLDA in symbol

accuracy on each subject at Round 500 in the stage

is given in Fig. 6a. In the tight stage, the t-tests of

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Zhihua Huang et al.

Fig. 7 Overall performance. The overall sample accuracies, overall symbol accuracies, F-measures and ITRs of PLUCB,
TPLUCB and SWLDA on each subject are shown in Figure (a), (b), (c) and (d), respectively. In Figure (a), the overall
sample accuracies of PLUCB and TPLUCB are obviously higher than those of SWLDA for all subjects. In Figure (b), the
overall symbol accuracies of PLUCB and TPLUCB are higher than those of SWLDA for a majority of subjects. In Figure (c),
both PLUCB and TPLUCB outperform SWLDA in F-measure for most subjects. In Figure (d), both PLUCB and TPLUCB
outperform SWLDA in ITR for most subjects.

the symbol accuracies between PLUCB and SWLDA

or between TPLUCB and SWLDA show no significant

difference (p-value>0.05). Fig. 6b presents an example

of comparing PLUCB and TPLUCB with SWLDA in

symbol classification accuracy on each subject at Round

1500 in the stage. In the superior stage, the symbol

accuracies of PLUCB and TPLUCB are significantly

higher than that of SWLDA. An example of comparing

PLUCB and TPLUCB with SWLDA in symbol accu-

racy on each subject at Round 8500 in the stage is

shown in Fig. 6c.

Fig. 7 presents the four overall performance indices

of the three methods in a histogram manner. Further-

more, for each one of the four overall performance in-

dices, ANOVA was conducted on the performance val-

ues of PLUCB, TPLUCB and SWLDA on all subjects.

The results of ANOVA show that, for all the four over-

all performance indices, there are significant differences

among the three methods (p values<0.05). The follow-

ing Tukey-Kramer multiple-comparison is presented in

Table 1. As shown in Table 1, PLUCB and TPLUCB

both significantly outperform SWLDA in overall sample

accuracy, overall symbol accuracy, F1 and ITR, and no

significant difference between PLUCB and TPLUCB is

discovered for all the four overall performance indices.

5 Discussion

A true calibration-free approach, including the PLUCB

and TPLUCB algorithms, is proposed in this study to

implement P300-based BCI. Both PLUCB and TPLUCB

allow a user to start using P300-based BCI without any

calibration and can improve effectively in accordance

with the feedbacks of the BCI platform during usage.

The difference between PLUCB and TPLUCB lies in
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A calibration-free approach to implementing P300-based brain-computer interface 11

Table 1 Multiple comparisons of the three methods. An empty entry represents that no significant difference is found between
the two methods. According to the Tukey-Kramer multiple-comparison, the symbols ↑ and ↓ represent significantly higher and
lower, respectively. The symbol entries are interpreted row-wise. For example, ↑ of (PLUCB,SWLDA) in Sub-table (a) means
that the overall sample accuracies of PLUCB are significantly higher than those of SWLDA.

that PLUCB does not have any priori knowledge but

TPLUCB has some knowledge transferred from other

persons when beginning working. Compared to the cal-

ibrated methods, the weakness of calibration-free ap-

proach lies in performance. In general, calibration-free

approaches don’t perform so well as calibrated meth-

ods, especially at the initial stage when calibration-free

approaches have not sufficiently adapted to the sub-

jects. The results presented in Figs. 4-6 show the strong

adaptive capacity of the proposed approach.

From the perspective of sample accuracy, the case

is as follows. PLUCB can achieve comparable perfor-

mance with calibrated SWLDA by updating of only

200 rounds, continue to significantly improve by sub-

sequent updating, and finally reach a very high mean

sample accuracy that is almost 15% higher than that

of SWLDA. TPLUCB has outperformed SWLDA from

Round 1, can quickly increase the performance to a high

point that is about 10% higher than that of SWLDA,

and can maintain the trend of improvement while pro-

ceeding.

From the viewpoint of symbol accuracy, the situ-

ation can be described as follows. In the initial stage,

PLUCB undergoes a process of adaption and TPLUCB’s

performance is slightly lower than that of SWLDA.

PLUCB and TPLUCB can both work as well as SWLDA

in the tight stage and significantly surpass SWLDA in

the superior stage. The initial stage in the measurement

of symbol accuracy is longer than that in the measure-

ment of sample accuracy. The advantage of the pro-

posed approach over SWLDA in the measurement of

symbol accuracy is not so significant as that in the mea-

surement of sample accuracy. We infer that the point

was probably missed during synthesizing the successive

sample classification results. Although this problem is

not the core of the proposed approach, the integration

of the successive sample classification results will ob-

viously influence the performance of P300-based BCI.

The observation actually implies a future direction of

improvement for the proposed approach.

Figs. 4-6 mainly exhibit an observation of the per-

formance trends of the proposed approach. Another ob-

servation of the proposed approach is presented in Fig. 7

and Table 1. The overall sample accuracy, overall sym-

bol accuracy, F-measure and ITR in Fig. 7 and Table 1

all reflect the overall performance of the entire evolution

of the proposed approach. The intuition from the graph-

ical presentation in Fig. 7 is that PLUCB and TPLUCB

both are superior to the SWLDA regardless of which

one of the four overall performance indices is used. The

further statistical analyses verify this intuition. Table

1 shows the multiple comparisons of the overall perfor-

mances of PLUCB, TPLUCB and SWLDA.

In summary, the simulated online experiments have

shown that the proposed approach not only allows start-

ing P300-based BCI without any calibration, but also

has significant performance advantages over SWLDA,

a frequently-used method that needs calibration. The

proposed approach is a very good option for the imple-

mentation of a P300-based BCI.

Regarding the comparison of PLUCB and TPLUCB,

TPLUCB can adapt to a new subject more quickly than

PLUCB, but no significant difference of overall perfor-

mance is discovered between PLUCB and TPLUCB.

On the one hand, the goal of TPLUCB is to speed up

the adaption of PLUCB to new subjects. Compared to
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this goal, TPLUCB is successful. On the other hand,

we think that the initial advantage of TPLUCB over

PLUCB is gradually attenuated during the evolutions

and is not finally embodied by the overall performances.

Further work will be carried out to improve the

study.

Firstly, the real online experiments will be carried

out in the future. Since the judgement of TPLUCB

depends on the competition among the models rather

than the combination of the models, only a few models

contribute to the judgement of TPLUCB after a period

of running. Therefore, TPLUCB can be simplified in

the real online environment.

Secondly, the proposed approach can be further im-

proved. We can give several examples. The way of inte-

grating successive sample classification results to detect

a given symbol deserves further exploration. The detec-

tion of error-related potentials is expected to provide

more natural feedbacks. As well, adjusting the assump-

tion that the expected payoff of an arm a is linear in et
probably leads to the emergence of a novel approach.

Finally, it is possible to extend the proposed ap-

proach to other EEG identification problems. There are

two examples. We can conceive that a variation of this

approach is applied to the detection of the intentions of

users to spell or pause, which can help implement a flex-

ible interaction in the context of P300-based BCI [41].

A new version of this approach can be used to detect

event-related synchronization or desynchronization in

motor imagery BCI. We will extend the proposed ap-

proach to new applications in future.

6 Conclusions

Although the prospect of BCI is very attractive, BCI

has not been widely applied. The cost of calibration

is one of the reasons. Inspired by the ideas of rein-

forcement learning and transfer learning, we proposed

a calibration-free approach for P300-based BCI, which

is able to learn during the usage by exploration and ex-

ploitation. The proposed approach includes two algo-

rithms: PLUCB and TPLUCB. Both algorithms sup-

port the P300-based BCI to start working without any

calibration. We assessed the performance trends and

overall performances of the two algorithms through the

simulated online experiments. The results show that

both PLUCB and TPLUCB can quickly adapt to new

users and have obvious advantages over SWLDA, a

commonly-used method that needs calibration, in the

overall performances. In summary, the proposed ap-

proach can be used to implement calibration-free P300-

based BCI.
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