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The long-standing quest to determine the superconducting order of SroRuO4 (SRO) has received
renewed attention after recent nuclear magnetic resonance (NMR) Knight shift experiments have
cast doubt on the possibility of spin-triplet pairing in the superconducting state. As a putative
solution, encompassing a body of experiments conducted over the years, a (d + ig)-wave order
parameter caused by an accidental near-degeneracy has been suggested [S. A. Kivelson et al., npj
Quantum Materials 5, 43 (2020)]. Here we develop a general Ginzburg-Landau theory for multiband
superconductors. We apply the theory to SRO and predict the relative size of the order parameter
components. The heat capacity jump expected at the onset of the second order parameter component
is found to be above the current threshold deduced by the experimental absence of a second jump.
Our results tightly restrict theories of d+1ig order, and other candidates caused by a near-degeneracy,

in SRO. We discuss possible solutions to the problem.

I. INTRODUCTION

26 years ago the layered perovskite SraRuO4 (SRO)
was found to harbour unconventional superconductivity
below the modest critical temperature T, ~ 1.5 K'. Its
superconducting order was widely believed to be chiral p-
wave~. This belief was primarily rooted in the absence of
a drop in the nuclear magnetic resonance (NMR) Knight
shift’, and the indications of time-reversal symmetry-
breaking (TRSB) found in muon spin relaxation” (uSR)
and Kerr rotation’ experiments. Chiral p-wave super-
conductors open the possibility of hosting Majorana zero
modes which have intriguing applications to topological
quantum computation”.

Over the years, the number of experimental results not

conforming with the chiral p-wave hypothesis have accu-
mulated’. Among observations difficult to explain within
the chiral p-wave paradigm are indications of gap nodes
inferred from heat capacity™’, heat conductivity'’ and
scanning tunneling microscopy measurements (STM)'',
and the absence of a T,.-cusp under uniaxial strain'
A peak in the accumulated evidence was reached when
the NMR Knight shift experiment was repeated '~ now
finding a substantial reduction in the spin susceptibility
at low temperature. This has launched a renewed focus
on the compound, both experimentally and theoret-
ically

The new NMR experiments '’ appear reconcilable
with a number of even-parity pseudospin singlet order
parameters and possibly the helical p-wave pseudospin
triplet order parameters. However, the options are be-
ing narrowed down as thermodynamic shear elastic mea-
surements'’ and uSR'“ suggest that the superconducting
order is likely two-component, at least at temperatures
well below T,.. A very recent NMR experiment at low
magnetic fields casts further doubt on odd-parity order

(restricting any odd-parity component to be < 10% of the
primary component), leaving pseudospin-singlet pairing
as the most likely scenario. Recently, two putative solu-
tions to the long-standing puzzles have been proposed.

A chiral d-wave order parameter (irreducible represen-
tation (irrep.) Eg4 of Dyp in the group theory nomen-
clature) could explain TRSB and the observed jump in
the shear elastic modulus cgg Indeed the behaviour
of T, and Trrsp under both hydrostatic pressure and
La substitution’ is similar, suggesting a symmetry pro-
tected degeneracy such as this one. It was shown that a
chiral d-wave can be stabilized by including certain k.-
dependent spin-orbit coupling (SOC) terms at sufficiently
large Hund’s coupling””. However, the prevailing belief
has been that the material is effectively two-dimensional
(2D) """, a belief which has recently been examined and
to some extent confirmed”"“"°°. Furthermore, the hori-
zontal line node that the d;,+id, . order possesses, would
likely conflict with the experimental evidence of vertical
line nodes "

Another possibility, solving the latter issue, is an
accidental (near-)degeneracy between a d,2_,» and
Gry(a?—y?)-Wave order parameter”". This scenario has the
potential of explaining both features of the temperature
vs. strain phase diagram, indications of TRSB, vertical
line nodes, and the shear elastic modulus jump. How-
ever, although various theories find d-wave order as the
leading instability”~=""~ """ an exotic g-wave order be-
coming competitive currently lacks support from calcu-
lations using the relevant band structure. Moreover, an
accidental near-degeneracy would imply the presence of
a secondary, possibly small, heat capacity jump at a tem-
perature Trrsp < T.. Despite intensive search for a sec-
ond jump in high-precision measurements ”, such an ob-
servation remains elusive. On the other hand, such a
secondary heat capacity jump has been observed for the



multicomponent superconductor UPt3, which is believed
to have chiral f-wave order

Here we address the feasibility of a d + ig order pa-
rameter in SRO by taking on a microscopic perspective
to discuss the heat capacity anomaly. We first develop
the framework for a general multiband, multi-component
Ginzburg-Landau (GL) theory where the expansion co-
efficients depend on the band structure. Our theory re-
duces to that of Gor’kov’’ for quadratic bands and a
single-component s-wave order parameter. Using band
and gap structures applicable to SRO we find, by nu-
merical minimization of the free energy, that the g-wave
component prefers to have a magnitude of about 71% of
the d-wave component at low temperature. We calculate
the expected secondary heat capacity jump and evaluate
it numerically as a function of the order parameter com-
ponent sizes. The results predict a second jump larger
than what is seen experimentally, meaning fine-tuning
would be required in any possible d + ig scenario. The
same conclusion is reached for other near-degeneracy op-
tions.

Finally, variations of the general theory developed here
could also prove to have applications to exotic (chiral)
superconductors™’ outside the scope of SRO, like FeAs-
based systems” ', UTes" ", and URusSis™

II. THEORY: MULTIBAND
GINZBURG-LANDAU

In this section we develop a generic expansion of the
free energy in the order parameter close to the critical
temperature for a multiband superconductor. We ini-
tiate the approach for a general multi-component order
parameter on the lattice. We vindicate the theory in the
case of a single-component s-wave order parameter for
quadratically dispersing bands, for which we reproduce
well-established results’’. Then we consider the case of
two nearly degenerate pseudospin singlet order parame-
ter components.

A. General formalism

We start with a single-particle tight-binding Hamilto-
nian in orbital/spin space. Due to the presence of spin-
orbit coupling we transform to the band/pseudospin basis
in which the Hamiltonian is diagonal,

Hy =Y &u(P)chy (P)cuo (p)- (1)

H,0,P

Above, &,(p) is the dispersion of band p (1 = «, 5,7 in
the case of SRO), and o =1}, |} denotes pseudospin, with &
being the opposite pseudospin of o. The sum over p runs
over the first Brillouin zone. ch(p) creates an electron
in band p with pseudospin o. See Appendix B for further
details of the non-interacting Hamiltonian. In this work

we choose to focus on pseudospin singlet pairing. The
pseudospin singlets that we find will have a spin-triplet
component, which, however, is small"”. We shall consider

TABLE 1. One-dimensional, even-parity (pseudospin sin-
glet) irreducible representations of the tetragonal point group
Dy~ '. Lattice harmonics of order parameters are listed in
the Balian—Werthamer basis™", A,, = [ido(0)oy]se’, Where
0 is the polar angle (2D)

Irrep. Name Lattice harmonics of do(6)
A1y s’ >0 | an cos(4nh)

A29 Gay(x2—y2) ZZO:O bn Sln([4n + 4]9)
Big dy2 2 >, en cos([4n + 2]0)

n=0
Bsg day D2 o dnsin([4n 4 2]0)

the pseudospin-singlet Cooper pairing terms Hgc as per-
turbations to the normal-state Hamiltonian Hy close to
the critical temperature, where

Hsc =Y Y [Auu(p)chs (P) clo (~p) +hec]. (o)

o0 P

Here A, (p) is the pseudospin-singlet order parameter of
band p corresponding to irrep. a. The sum over p runs
over the Fermi surface sheet |£,(p)| < w. ~ kT, where
we < W is an electronic cutoff small compared to the
bandwidth W. Considering only intra-band terms is jus-
tified if the superconducting gap is small compared to the
energy separation of the bands at the Fermi level, which
indeed is satisfied in SRO where these energy scales are
on the order of 0.5 meV'" and 100 meV"", respectively.
We shall focus on the tetragonal point group Dy, for
which the relevant one-dimensional irreps are listed in
Table I and visualised in Fig. 1.

Proceeding with the Ginzburg-Landau (GL) approach
we expand the free energy density in the (multi-
component) order parameter close to the critical temper-
ature” (see also Refs. 27, 11, 50-51). We assume that
the critical temperature of the order parameter in irrep. a

(63 \_
8
n .
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FIG. 1. Symmetries of the even-parity order parameters in
channel (a) Aig, (b) A2g, (c) Big, (d) Ba2g. The black lines
display the Fermi surface applicable to the three-band case of
SroRuOy4, where the three bands are denoted by «, 3, and ~.
The Fermi surface is obtained using tight-binding parameters
listed in Appendix B, as extracted from density functional
theory ™

is T,,. As the superconducting phase is entered, the cor-
rections to the normal state free energy, AF = Fsc — Fx,



are caused by the superconducting terms of Eq. (2). The
corrections can be evaluated using the Gibbs average of
the S-matrix””»""""

FIG. 2. The pseudospin-singlet Cooper pair operator shown
diagrammatically as a two-fermion composite operator.

AF = —T'n(S), (3)
8
S:TTexp(—/O dr Hsc(7)), (4)

where 8 = 1/T (with kg = 1), 7 = —if is imaginary
time, and 7, is the time-ordering operator. The loop
expansion of AF', involving only connected diagrams, is
given by

AF =-T((S).—1)

8 B
;/O dTl/O dry (T- [Hsc(m1)Hsc(m2)] ),

%

Pictorially this consists of closed connected diagrams
with only external A legs produced by combinations of
the Feynman diagram of Fig 2.

To calculate the first and second terms of Eq. (5) for a
weakly coupled superconductor (which is valid near the
critical temperature), bare Green’s functions are intro-
duced as

Cup.mi —12) = ~(Trcun(p.1)ely (. 72)). (6)

This can be expressed in the Matsubara representation:
Gu(p,wn) = 1/(iw, — &.(p)), with fermionic Matsubara
frequencies w,, = %(Qn + 1) for integer n. We evaluate

T (7 ’ the second and fourth order contributions of Eq. (5), with
Rl ; dr - '/0 dry (T7 [Hsc(m1) - - - Hso(7a)] e corresponding diagrams shown in Fig. 3 (a) and (b), and
(5) find the free energy, AF = AF®) + AF®,
J
AF = Z (Zaau(pa T)|Aau(p)|2 + Zﬁ{ai}u({pi}vT)Azlu(pl)Azzu(pQ)Aa3u(p3)Aa4u(p4)>7 (7)
pooap ai,p;
aa/t(p7 T) =-T Z G,u(pv wn)Gu(fpv *Wn) +Teq Z Gu (p7 wn)Gu(*pa *wn>|T:TCQ7 (8)

T
B{ai}u({pi}7 T)= Efalazaaaﬂspl,p35p1-,p45p27p35p27p4 Z Gu(plawn)Gu(PQaWn)Gu(*psv *wn)Gu(*Pm —wn),  (9)

fa1a2a3a4 = 60.10.360.20.4 + 5(11(1450,2(13 + 50.10,250.3(14 -

In aqu(p, T) we subtracted off the contribution evaluated
at T, to ensure that AF has a well-defined minimum for
T<T,,.

B. Specific limit

In this section we consider a specific limit of the ex-
pression for the free energy derived above, and we verify
previously-established results in this limit. The details

(10)

25(11 az 502 as 5a3a4 .

(

are listed explicitly in Appendix A, we summarize the
results here.

To verify the theory we consider the simplifying case
of (i) assuming a single-component s-wave order parame-
ter, and (ii) quadratic bands in two dimensions. The as-
sumption (i) amounts to setting A, (p) = Aa,,u = Ap-
This allows us to pull the order parameters in Eq. (7)
outside the p sums and perform the Matsubara sums an-
alytically. The resulting functions are sharply peaked
around the Fermi surface, and the p sums can be con-
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FIG. 3. The (a) second order and (b) fourth order diagrams contributing to the free energy of Eq. (5).

Aa3u(p3>
N AZQ;L (pZ)

A;1M<z;1> Ly Sl

The algebraic

expressions corresponding to panel (a) and (b) are given in Eq. (8) and (9), respectively. The single-component, quadratic
band case resulting in Egs. (12) and (13) corresponds to fixing a1 = a2 = a3 = as = Aig4 here.

verted to integrals which can be evaluated in closed form
for quadratic bands. The final result for quadratically
dispersing bands, £,(p) = p?/(2m,,), is

AF = 3 (3T T8+ AuDIAIY), (1)

&, (T, T,) = %” (; - 1) , (12)

Bu(m) = 22 7¢0)

. T2 3272’
with p, = Vm,/(2r) being the density of states, ¢
is the Riemann zeta function, and where we assumed
that T/T, — 1 < 1. This is equivalent to the result of
Gor’kov

In the more general case we assume that A,,(p) =
A%A,,.(p). Here, A,,(p) are normalized order parame-
ters belonging to irrep. a of the crystal point group, and
AY are the amplitudes of a given irrep, which are the vari-
ational parameters over which we want to minimize our
free energy. We note that these variational parameters
do not depend on the band label i since the relative am-
plitude of the gaps of a given irrep on the different bands
is assumed fixed in A, (p). The free energy becomes

AF =3 6a(T, Tea) |80 + ) _Bla (T)ALAGAGL AL,

(14)

(13)

where the expressions for the GL coefficients &, and B{ai}
are found in Appendix A.

III. APPLICATION TO SRO

In this section we apply the theory developed in Sec. 11
to the multiband case of SRO. In Sec. III A we calcu-
late the temperature-dependent order parameter weights.
This is contrasted with the calculation of Sec. ITI B, where
we estimate the heat capacity jump expected at the onset
of a second order parameter component as a function of
the two component sizes.

A. The relative order parameter weight

To minimize the free energy of Eq. (7), we employ
the gap ansdtze listed in Tab. I. Specifically, we fit
the ansétze to the order parameters resulting from the
microscopic weak-coupling RG calculation of Ref. 24,
thereby including order parameter anisotropies expected
for SRO (see Appendix D for details). For the band struc-
ture we work with a (2D) three-band model (which in-
cludes spin-orbit coupling), based on density functional
theory This model is presented in Appendix B.
We feed in the band structure of the «, £, and =y
bands and evaluate Egs. (8) and (9) numerically us-
ing Monte-Carlo integration with the two-parameter the-
ory AF[{A¢Auu(p), iAo XApu(p)}] = AF[Ag, X]. The
function AF[Ap, X] is minimized over the two scalar ar-
guments: the overall gap size Ag and the relative weight
X as a function of temperature. In the two-parameter
theory the d + ig hypothesis is addressed by specifying
a = Big and b = Ay,. In addition to Ref. 24 several other
RG calculations have been performed~”" , finding
slightly different competing order parameters. However,
one should not expect the shape of A,,(p) for a given
a and p to be vastly different in the multiple different
approaches.

The resulting form of X (T') determined from minimiza-
tion of AF is shown in Fig. 4, employing a realistic three-
band dispersion described in Appendix B, with the cor-
responding Fermi surface shown in Fig. 1. The value of
X quickly tends to a value > 0.6 as the temperature is
lowered through Trrsp < Teo.

B. The heat capacity anomaly

In a recent uSR experiment'® two temperature scales
were probed under uniaxial strain: T, and Trrsp as de-
termined from the heat capacity jump and the abrupt
change in the muon spin relaxation rate, respectively.
The results indicate that (i) there is a sharp onset of
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FIG. 4. The weight X(T'), with an order parameter of the
form A(p) = Ao(T)[Ap,,0 (p) + iX (T) Ay, (p)] for Tox =
1.48 K and T,z = 1.44 K. This result is obtained using the
GL coefficients Egs. (A16) and (A17).

TRSB at Trrsp S Te (with Trrsp/Te = 0.94 when av-
eraged over four samples), and (ii) that the two temper-
atures split increasingly under uniaxial strain.

However, measurements of the heat capacity resolved
under uniaxial strain did not observe any secondary heat
capacity jump, as would be expected with the onset of
a second order parameter component ' This re-
sulted in the experimental bound, deduced from the mea-
surement resolution' ', that any secondary jump would
have to be less than about 1/20 of the primary one

In this section we incorporate the above constraints by
assuming that T, = T.; = 1.48 K and T3 = 1.44 K, and
we emphasize that the results below remain fairly insen-
sitive to small variations in Torsg. The heat capacity is
evaluated with

1) =233 B2

with quasiparticle energies E,,(p) = (£.(p)2+|A,(p)[?)2
and f(z) = (1+exp(Bz))~! denoting the Fermi function.
Assuming that the order parameter takes the form

A(p) = Do (1= T/T)* Au(p),
+ ’L.Ao_’b (1 — T/TTRSB)% Ab(p)

(where band indices are suppressed) leads to the following
expressions for the ratio of the secondary (T' = Trrsp)
to the primary (7' = T.) heat capacity jump

_ AC ’ /AC

 Trrsp |T=Trrss/ T. IT=T.

_ (Ao,b Tcl >2 <|Ab(p)|21(p)>FS
Ao,a TTRSB (|1Aq p)|2>FS ’

I(p):/ooodu (cosh[(u +2(p)?) D (18)
(

2(p) = No,aAa(p) (1 — Trrse/Te)? /(2TrrsB).  (19)

(16)

(17)

N

=

Here the Fermi surface average is evaluated as (f)rs =

Z =D fS ( z5n p), where v, (p) = |VE,(p)| is the
Fermi Velomty, p# is the density of states (see Eq. (B6)),
and where the integral runs over Fermi surface sheet S,,.

A colour plot of n for the d + ig scenario (a = By,
and b = Ay,) is shown in Fig. 5 along with the cur-
rent experimental threshold, n < 0.05'%"”. For the order
parameters we use those obtained in Ref. 24, as well de-
scribed by the three leading lattice harmonics listed in
Appendix D. In Fig. 5 (b) we display the expected spe-
cific heat anomaly for parameters close to the experimen-
tal threshold, and in Fig. 5 (¢) we show the specific heat
for the GL solution of Sec. IITA.

The results suggest that the order parameter of
Eq. (16) appears consistent with experiments'”'’ when
Ao, Ay, S 0.6A¢,p,,. This should be compared with the
results of minimizing the GL theory in Fig. 4, for which
Ao,4,, ~ 0.71A¢,B,, and the second heat capacity jump
is greater than the experimental threshold. The result in-
dicates that, in order to be consistent with experiment,
a second order parameter component would need to be
smaller than that predicted with our theory. Details of
the heat capacity calculation are listed in Appendix E.

We note that Trrsp is not well-known from experi-
ments. However, the size of the jump found in our theory
is relatively independent of Trrrsg. The importance of
the value of Trrgp is that if it is too close to T, then the
two heat capacity jumps will not be able to be resolved
in experiments. We note that when strain is applied,
the difference between T, and Trrgp increases . How-
ever, even under applied strain, no second heat capacity
jump is observed'”. Our formalism can be extended to
the strained case by using the appropriate band structure
and band gaps — we leave this to future work.

An ultrasound spectroscopy experiment recently
mapped out the symmetry-resolved elastic tensor of
SRO"’. The results indicate discontinuous jumps in the
compressional elastic moduli (A;4) and in only one of the
shear elastic moduli (Bg,). This observation would be
consistent with a two-component order parameter where
the two components, if belonging to different irreps, form
bilinears only in these two channels. As deduced from the
direct product table of the irreps in Table I, this would
be the case for By + Az, and for Ay + iBay. How-
ever, only the first of these cases would have symmetry-
protected line nodes and thereby offer a robust explana-
tion of the observed heat capacity”, heat conductivity ",
and STM measurements' . In Appendix D we examine
the order parameter combination A;4+iBy, for complete-
ness. The same conclusion that the heat capacity jump
is inconsistent with the experimental data is reached for
this order parameter, and the qualitative features remain
fairly insensitive to the precise order parameters used.
From a microscopic perspective this latter order param-
eter, s’ + id, was recently found to be a viable candidate
when including longer-range Coulomb terms in a random
phase approximation scheme
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FIG. 5. Heat capacity anomaly for a Biy + ¢A24 order pa-
rameter in SRO. Panel (a): Contour lines for the ratio of
the second heat capacity jump to the primary heat capacity
jump, n, from Eq. (17), with Trrsg = 1.43 K and T, = 1.48 K
using order parameters with three lattice harmonics (see Ap-
pendix D). The parameter space consistent with the current
experimental threshold, n < 0.05, is marked by the cross-
hatched region'”'”. For the dispersion we use the (2D) three-
band model listed in Appendix B. Panel (b): Specific heat at
the point marked with “%” in panel (a). Panel (c): Specific
heat for the GL solution of Sec. III A. The normalized specific
heat per temperature is compared to the data of Ref. .

IV. CONCLUSIONS

In this paper, we have examined the d + ig-wave order
parameter hypothesis as a candidate model for the super-
conductivity in SRO. We developed a generic multiband,

multi-component Ginzburg—Landau theory for tetrago-
nal lattice systems. We found that the theory favours a
g component with magnitude of 71% of the d components
at low temperature. On the other hand, the lack of ob-
servation of a second heat capacity jump'® requires the
g-wave component to be less than about 60% of the d-
wave component. Together, these two results place tight
restrictions on any possible d + ig scenario. Although
the d + ig candidate may reconcile a number of experi-
ments, a robust justification for a near-degeneracy of d
and g-wave order parameters is yet to be found. This
outstanding issue is even more apparent when bearing in
mind that numerous calculations based on realistic band
structures have yet to find a competitive g-wave order
parameter ! #22-21,26,27,30,58-61

The continued squeezing of the range of acceptable the-
oretical scenarios compatible with experiment suggests
that further experimental results might need revisiting.
In the end, SRO might be more similar to the cuprates
than previously thought, and interface experiments have
hinted at time-reversal symmetry-invariant superconduc-
tivity””. One could imagine the scenario of a cuprate-like
dy2_y2-wave order parameter, where the apparent obser-
vation of TRSB originates from an anisotropic order pa-
rameter component caused by dislocations, magnetic de-
fects, or domain walls®’, or mechanisms not intrinsically
related to superconductivity”’.

We also note that yet another order parameter candi-
date, of the form d+ip, has recently been suggested based
on the near-degeneracy between even and odd-parity or-
der parameters in the 1D Hubbard model®”. This order
can potentially reconcile junction experiments suggesting
odd-parity order’”"*~"" with other indications of a nodal
dowavel0:11,13,14

The current experimental situation taken at face
value appears to leave somewhat exotic options that
at least would require further microscopic examination.
These new hypotheses warrant careful (re-)examination
in hopes of unifying theory and experiment to converge
on a solution to the pairing symmetry puzzle in SRO.
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Appendix A: Specific instances of the GL theory
1. General expressions for the Ginzburg—Landau coefficients

Here we consider the Ginzburg-Landau theory derived in the main text. Assuming A,,(p) = A2A,,(p). Here,
Aqu(p) are the normalized RG gaps and A are the amplitudes of a given irrep, which are the variational parameters
over which we want to minimize our free energy. We note that these variational parameters do not depend on the
band label u since the relative amplitude of the gaps of a given irreps on the different bands is already fixed from our
calculation of the RG gaps. In this case the theory of Egs. (7), (8), (9) reduces to

AF = AF® 4 ARG Zaa T, To)| A2 + Zﬁ{a T.)AY A% AO A24>, (A1)

(T L) = Y [Auslp) (—TZGH<p,wn>GH<—p,—wn>+TcaZGu<p,wn>Gu<—p,—wn>|TTm) (A2)

n, L, P n n
P T * *
/B{lli}(T) = *falazasaz;Aaw(p) Aazu(p) Aazu(p)Aaw(p)
X Z G p7 wn P, wn)Gu(*pv *wn)Gu(*lh *wn)- (A?’)

Here fo,asasa, 15 @s given in Eq. (10). The frequency sums of Eq. (A2) and (A3) are evaluated analytically, and we
arrive at the following GL coefficients

AF = Zaa (T, To)| A +Zﬂ{a T)AY AJALAS), (A4)
- _ tanh [fu( )/(2T)] _ tanh [§,(p)/(2T2 )] | 2 A
Gl Ti) =V Y = e ey ) B (45)
- d
Blaiy(T) = fa1a2a3a4ﬁ Z/ ﬁ h(&u(P)/T)Aa,u(P) Aasp(P) Aas(P)Aayyu(P), (A6)
n
where we have used the fact that the RG gaps are real, and where we introduced
_ sinhz—=
hz) = 423(1 + cosh ) (A7)
For two irreps
AF = a1 (T, Toa)| A1 + Go(T, Tua) | As)? (A8)
+ Brinn (T)|Ar]* + Brioa(T) (41412 [A2)? + ATAS? + AT2AZ) + Bazaa(T)| Mg,
= A2 |:641(T> Te1) + ao(T, Tc2)X2] + A} [Bllll(T) + 231122(T)X2 + B2222(T)X4 ;
- _ dp tanh |8, (p)/(2T)]  tanh [€.(P)/(2Tea)] | o 2 A
(T, Tea) Vzﬂ:/ (2m)d ( 26, (p) 2¢,(p) )‘ an(P)[%s (A9)
~ \% d
B1111(T) = Z o273 / Tpd h(&u(p)/T)Av(p)*, (A10)
51122 2T3 )/T)Alu( )2A2u(p)27 (A11)

Bagan (T Z2T3/ (p)/T)A2,u(p)". (A12)

2. Single s-wave component

Here we consider the Ginzburg—Landau theory under the assumptions of (i) a single-component s-wave order
parameter, and (ii) quadratic bands in 2D. Under these simplifying assumptions we reproduce the results originally
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obtained by Gor’kov’’. We assume an s-wave order parameter, i.e. Ag,(p) = A, = Ay so the free energy simplifies
to

AF = AF® 4 AR = Z (G (T, T AWE + Bl c)|AM|4>, (A13)
TZG p, wn wn + T ZG/" D, WW)G;/,( p, 7wn)|T:Tma (A14)

n,p
Z G P, wn P» wn)Gu(_pa _Wn)Gu(_pa _wn)~ (A15)

The frequency sums of Eq. (A2) and (AS) are evaluated analytically, and we arrive at the following GL coefficients

gy [P (tanh[,(p)/(T)] _ tanh[6,(p)/(2.)]
Wt =V [l (G o ) o
5.T) = 5 [ s Mep)/T) (a17)

upon replacing the momentum sums by Zp -V (;Tp)d, where V' is the unit cell volume. We have used the fact

that the integrands are sharply peaked about the Fermi surface and so we can extend the integral over p from an

integral over the Fermi surface to an integral over the entire Brillouin zone. Next, we evaluate Eq. (A16) and (A17)

for quadratic bands in 2D, ¢, (p) = %, with p = |p| and m, being the effective mass of band p, and with the
i

Brillouin zone integrals [ dp — fooo dp pfo% d¢. To evaluate the basic integral of Eq. (A17), %fooo d
we make use of the following series expansions:

2

U sinh u—u
4u3(14coshu)?’

oo

T+ cosh(z) = cosh™?(x/2) = 4e™ " ngo(flyl(l +n)e e, (A18)
e p2m+1
sinh(z) —z = Z AT (m + D)0(m + 2)’ (A19)
N n 1 — 1-x
2D e = =276 (A20)

By equating the resulting expression for §,, with the result derived by Gor’kov"’, we find that
€3 \FZ 93-21) I -1
3271'2 4TI+ 1)1+ 3)

877 o (1—-2-272")((2n)
7T~ (2n+1)2n+2)(2n+3)

(21 -2)=
(A21)

((3) =

where ((0) = —1/2. In fact, both of the terms inside the sum of Eq. (A21) individually yield a series expansion for
¢(3):

_ 8n? s ¢(2n)
(B =—7%" = (2n 4 1)(2n + 2)(2n + 3)227 (A22)
872 ¢(2n)

¢ =- (A23)

7;0 (2n+1)(2n +2)(2n +3)

The most rapidly convergent series of the two, Eq. (A22), along with plenty of other variations, was discovered by
Chen and Srivastava''. The latter one, however, does not appear to have been discussed in the literature.
Finally, for the coefficients &, we assume that 7//T, — 1 < 1 and retain the leading term in a Taylor expansion.

The result is
. pu (T
— -1 A24
U= (Tc ) (A24)

3, = Pu 7C(3)
T2 32727

(A25)
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with p, = Vm,/(2m) being the density of states and ¢ the Riemann zeta function. This is equivalent to the result of
Gor’kov’’. Repeating the above exercise for linearly dispersing bands, &,(p) = v,p, results instead in

T
Gy = puln2 < - 1) , (A26)
T.
B = —2n (A27)
" 1672

where now p, = VT./(27mv7).

3. Including fluctuations

In general the order parameter could depend on the center-of-mass momentum (|g| < kr), which would allow us
to describe spatial fluctuations of the superconducting order parameter. Eq. (2) would then read:

Hse = % D [Dau(p,@)che (P+a/2) ¢ (~p +a/2) + hic], (A28)

where A, (p,q) is the pseudospin-singlet order parameter of band p corresponding to irrep. a. When repeating the
steps of Sec. IT A with the above order parameter we now find the following generalized versions of Egs. (7), (8), (9):

AF = AF® 4 AFD =37 (37 a0u(p.a. 1) Auu(p, @) (A29)
M a,p,q
+ Z 5{ai}u({pi}v {qi}7 T)Aalﬂ(plv Q1)*Aa2l¢(p2v qZ)*Aaglt(pSa qS)Aa4#(p4a Q4)>,
@iyP;sq;
q q
aau(pv q, T) = _TZ Gu(p + §awn)Gu(_p + 53 _Wn) + T Z Gu(pa wn)G,u(_pa _Wn)|T:Twa (ASO)
T
B{Gi}ﬂ({pi}’ {qi}’T> = 5fa1a2“3a46P1+q717113+q736171*q71a174*q74 szq*szPS*qTa P2+L;7P4+q74 (ASI)
q q q q
X zn:Gu(Pl + évwn)Gu(Pz + ?szn)Gu(*pg + ?Sa —wn)Gpu(—py + 747 —Wn),
fala2a3a4 = 50«1(135(12(14 + 50.1(1460.2(13 + 5(11042 5(13(14 - 26041‘12 6a2a3 6043”44' (A32)

Appendix B: Tight-binding model

We consider an effective yet accurate two-dimensional, three-band, tight-binding model for SroRuOy,

Hi =Y pl(k)hs (k) (k), (B1)
k,s

where (k) = [coz.5(K), Cyss(K), Coy—s(k)]T and where s € {1,]} denotes spin and a € {zz,yz,ry} denotes the
d-orbitals of the Ruthenium atoms in SRO which are relevant close to the Fermi energy. The matrix hy(k) is well
approximated by the 3 x 3 block diagonal matrix

exz(k) —isA  iA
ho(k) = | ishA  e,.(k) —sh |, (B2)
—iA =X egy(k)
where spin-orbit coupling is parametrized by A, and the above energies are given by

eip(ky, k1) = —2t1 cos ky — 2o cos(2k||) — 2tz cosky — 4ty coskjcosky

— 4t5 cos (2k”) cosk| — 2tg cos (3k”) — u1p, (B3)
eop (ky, ky) = —2t1 [cos kg + cos k] — 4ty cos ky cos ky,

— dt3 [cos(2ky) cos(ky) + cos(2ky) cos(k, )| — 4ta cos(2k,) cos(2k,)

— 215 [cos(2ky) + cos(2k, )] — 4tg [cos(3k, ) cos(ky) + cos(3k,) cos(ky)]

— 4t7 [cos(3ky) + cos(3ky)] — pap, (B4)
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TABLE II. Tight-binding parameters for Egs. (B2) and (B3).

Parameter t1 to ts ta ts tg 11D A
Value [meV] 296.2 —57.3 52.6 —15.6 —15.1 —11.6 315.6 —50.7

TABLE III. Tight-binding parameters for Eq. (B4).

Parameter t1 to t3 ta ts ts tr U2D
Value [meV] 369.5 123.2 20.4 13.9 —6.0 3.2 2.8 432.5

with the identifications e,,(k) = e1p(kg, ky), €yz(k) = e1p(ky, ky), and ey (k) = eap(ky, ky). We extract the tight-
binding parameters, via the Wannier functions for the Ru 54 electron orbitals, resulting from a fully relativistic density
functional theory calculation which includes spin-orbit coupling'”:””. Extracted parameters are listed in Table IT and
ITI. We now diagonalize the single-particle Hamiltonian by going from the orbital/spin basis with electron operators

0.71
_ 0.6
S
=
05
S —_—
0.4 — 3
0.0 | | 0.3 7 ‘
0.0 /3 . 21 /3 7T 0.0 /4 /2
o

(a) (b)

FIG. 6. (a) Fermi surface sheets resulting from the model of Eq. (B1), and (b) the Fermi velocity as a function of the in-plane
angle 6 (0') for bands 8 and v (), cf. Ref.

cqs(k) to the band/pseudospin basis with electron operators c,,(k), where p € {«, 3,7} denotes the three bands
of SRO which intersect the Fermi energy and o € {{},|} denotes pseudospin. In the band/pseudospin basis the
tight-binding Hamiltonian is diagonal:

Hi =) &ulk)cho(R)euo (k). (B5)

0.k

The resulting Fermi surface sheets and Fermi velocities are shown in Fig. 6. A recent high-resolution ARPES experi-
ment'~ deduced the Fermi velocities at the Fermi level for bands 5 and . Compared to this experiment the effective
model used here is seen to capture the correct behaviour for vy, but the behaviour of vg (the curvature) is slightly
off. Quantitatively, however, this discrepancy is too small to affect the results obtained here in any noticeable way.
This was checked explicitly by comparing the results for 7 in Eq. (17) to those obtained with v, (k) =1 eVa fixed.

Serving as a supplementary calculation the relative band densities at the Fermi level produced with this model are
pu/prot = 0.163, 0.314, 0.523 for u = «, 3,7, respectively, with

dk 1
Z —/SM (22 Ve, (R (BY)

where S, is the Fermi surface sheet corresponding to band p. These values may be compared to those obtained with
other models.
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TABLE IV. Lattice harmonics coefficients of the A14 and Az4 order parameter (see Tab. I) obtained at J/U = 0.20 of Ref.
normalized such that maxg ,, Aq,(0) = 1.

[k a1,p az,p as,u K bo,u b1, b2,

« 4+0.855  40.007  +0.067 o +0.269 —0.127 +40.038
B8 —0.225 —-0.329 +40.116 B —0.895 —0.062 +0.052
o1 —-0.097 -0.296 —0.303 ¥ —-0.022 -0.219 +0.150

TABLE V. Same as in Table IV but for symmetry channels B4 and Bz, (see Tab. I).

H Co,p Clp C2,u M do,p. dip da,p

«@ —0.912 —-0.011 —-0.078 «@ —0.120 +0.010 —0.051
B +0.783  40.143  +0.022 153 4+0.943 —-0.060 —0.099
y 4+0.358 40.288 —0.007 ¥ —0.492 —0.230 +0.0004

Appendix C: Comparison of Hamiltonians

Fig. 7 shows the comparison of the results for X (T') using two different Hamiltonians for the bandstructure of SRO.

0.8
0.6 1
S 041
o
0.2 1
—— DFT Hamiltonian
0.0 ARPES Hamiltonian

025 050 075  1.00 125  1.50
T(K]

FIG. 7. Comparison of the numerical result for X(T) with the order parameter combination A(p) = Ao(T)[AB,,u(P) +
iX(T)A Ay, u(p)] using two different Hamiltonians. The DFT Hamiltonian is described in App. B, the ARPES Hamiltonian is
described in Ref. 24. The results are very similar.

Appendix D: Order parameters and further plots

The lattice harmonics for the order parameters of Tab. I are in general band-dependent. The microscopically
obtained gap structures of Ref. 24 (at J/U = 0.20) can be well described by the lowest three lattice harmonics. The
result of a fitting procedure of the order parameters of symmetries A14, A2g, B1g, and By, are listed in Table IV and V,
and shown in Fig. 8. We note that these order parameters strictly were obtained for a different band structure (i.e. a
three-dimensional dispersion based on a band structure fit) than that described in App. B, though the quantitative
differences are small in terms of the Fermi surface physics. For the purpose of quantifying the heat capacity anomaly in
a realistic model we take these order parameters as reasonable input for the Ginzburg-Landau minimization procedure,
while noting that the framework developed here is general and may be employed for other input order parameters in
future work.

To supplement the results for the heat capacity ratio n shown in Fig. 5, Fig. 9 shows the result of the same
calculation using only the leading lattice harmonic. Comparing the two figures shows that including more structure
in the order parameter increases the size of the parameter space compatible with experiment °. Moreover, Fig. 10
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000 025 050 075 100 125 1.50 0.00 025 050 075 100 125 1.50
0 0
(a) (b)
a
p kz=0
L0 — e
05 s
= 021 <
S 0.0%
<02 e
05 s ez
-1.0
000 025 050 075 100 125 150

FIG. 8. Order parameters from Ref. 24 for J/U = 0.20 (full lines) and lattice harmonics fits (dashed lines) for irreps. (a) Aig,
(b) Azg, (c) Big, and (d) Bag-

1.0 1.0
0.8 0.8
0.6 0.6

0.4 0.4

: . 0.2 ' . ‘ 0.2
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FIG. 9. The same as described in the caption of Fig. 5 but using only the leading lattice harmonics from Table I for (a) a
Big + iAag order parameter, and (b) a A4 + iB2g order parameter.

shows the outcome of the same calculation for the alternative order parameter combination A ,+iBs,, using the three
leading lattice harmonics from Table IV and V here, respectively. For this order parameter combination the results
indicate compatibility with experiments when Ag p,, < 0.44¢ 4,,. Finally, Fig. 11 shows the results of minimizing

~

the GL theory of Sec. II for the Ay, 4 iBy, order parameter.
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FIG. 10. The same as described in the caption of Fig. 5 but here for an order parameter of the form Ai, + iBag, using the
advanced order parameters with the three leading lattice harmonics from Table IV and V.
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FIG. 11. The weight X (T'), with an order parameter of the form A(p) = Ao(T)[Ax;,u(p) + i X (T)ABy,u(p)] for Tex = 1.48 K
and Teo = 1.44 K. This result is obtained using the GL coefficients Egs. (A16) and (A17).

Appendix E: Second heat capacity jump

The heat capacity jump at Trrsp is determined by the discontinuity in 9|A|?/9T, as seen from the normalized
expression (the constant v, below is defined such that 1 = C(T)/(Ty,)|r>7.)""

o0 2|A,(p,D)|?
T =T / d€<§2+|A“(p’T)|2_%| G (1)
Ty,  4Ar2(kpT)? J_ Coshz(E“(p)) Fs’
2kpT

where the Fermi surface average is evaluated as

_ 1 dp_ A
Wres = 5 Z/s @) ()’ (2)

where v, (p) = |V&,(p)| is Fermi velocity of band p. Assuming a gap function of the following form
AP, T) = Ao(T)[A1u(p) + iX(T) Az (p)], (E3)
the free energy of Eq. (A8) is minimized by
81 (T Te1)Brio (D) =62(TTe)Biun (D) g1 T« Trpep

X(T)2 = { @2(T,Te2)Pr122(T)—Ba22a (T)én (T, Ter) (E4)
0 for T' > Trgrss,
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and
dQ(T7TC2)ﬂ~1122(T)_BzzzggT)&l(T7Tcl) for T < Trass

_1
) 2~ ( 31122(T)27B2222(T)31111(T)
A T = _O“1~ sdel E5
oT) 261111(T) for Trrsp < T < T (E5)
0 for T > T,
one can derive
A T 2 |TrrsB+e 1w~ T _ 0a3(T\Te2) i T P T
9Au(p, T 1 = B (T) o7 Brin ( )(_ @1122( )Alu(P)Q +A2#(p)2), (E6)
B1111(T)

or 2 Br122(T)2 — ooz (T)Pr111(T)

TTRsB—€
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