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Abstract 

The potential widespread adoption of Electric Vehicles (EVs) has received considerable attention 

across the globe. However, as a promising technology for both EVs and smart grid, Vehicle-to-Grid 

(V2G) tended to receive much less attention. This paper developed an agent-based joint EV and 

V2G model to simultaneously simulate how EVs and V2G might diffuse across space and over time, 

with empirical findings from a questionnaire survey in Beijing. In particular, random forest models 

were developed with the survey data to generate each agent’s preferences and attitudes towards EVs 

and V2G. The joint model also considered three typical levels of social influence, i.e., global 

influence, neighbor effect, and friendship effect, in the diffusion of EVs and V2G. Finally, the joint 

model was tested through several “what-if” scenarios, considering different V2G prices, EV/V2G 

advertisement intensities, and vehicle purchase restrictions. The survey results suggested that 67.7% 

of the respondents were familiar with EVs, but only 3.3% of them were familiar with V2G. However, 

over 70% of them would/might try V2G given that they had an EV. The model results suggested 

that the number of CV applicants was 6.19 times that of BEV applicants in 2030 in the baseline 

scenario, and only 27.8% of BEV users adopted V2G. Furthermore, V2G selling price, EV/V2G 

advertisement, and dedicated PHEV purchase permits were not very influential to the diffusion of 

V2G. The outcomes would be helpful for EV- and V2G-related stakeholders in policy making and 

technology investment.  

 

Keywords: Electric Vehicle; Vehicle-to-Grid; Agent-based Modelling; Diffusion Model; Spatial 

Modelling 
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1 Introduction  

The past decade has witnessed a burgeoning interest from the worldwide automotive industry in 

both energy-saving and low-carbon vehicle technologies (Raines, 2009). Electric vehicles (EVs) 

have received considerable attention from various automotive companies and startups (e.g., Tesla, 

Nio, Rivian, WM Motor, and Nikola Motors). As these environmentally-friendly vehicles are 

expected to reduce carbon emissions, decarbonize the transport sector, and fight climate change, 

governments support the adoption of EVs through various policies and regulations (Chen et al., 

2018; Markewitz et al., 2012; van der Steen et al., 2015). For example, the Chinese government 

strongly supports EVs by releasing dozens of policies, such as subsidies for purchasers and EV 

manufacturers, zero-emissions vehicle mandate (a mandatory requirement for vehicle 

manufacturers to produce a certain number of electric vehicles), tax exemptions, and developing 

charging infrastructures. New Zealand sets a target of 64,000 EVs by 2021 and implements several 

policies, such as supporting the development of charging posts, exempting road use charges, and 

providing funds for innovation. With the efforts of various countries, the global sales volume of EVs 

achieved a new record in 2019 of 2.1 million units, and totaling approximately 7.2 million 

(International Energy Agency, 2020).  

With the accelerated development and surging adoption of EVs, Vehicle-to-Grid (V2G), an 

important technology for both EV users and the grid, was invented in 1997 (Kempton and Letendre, 

1997). V2G offers a reciprocal flow of power between EVs and the power grid system (Kempton et 

al., 2001). In the context of V2G, an EV thus becomes a mobile energy-storage device and could 

potentially benefit the power grid system through spinning reserve, load peak shifting and voltage 

and frequency regulation (Amamra and Marco, 2019), so as to make the grid system efficient, stable, 

and reliable (Yilmaz and Krein, 2013). Furthermore, V2G would also help to integrate renewable 

energy (e.g., wind and solar energy) into the power grid system and thus would bring environmental 

benefits as well (Kempton and Tomić, 2005). As an ancillary service to EV users, V2G could also 

potentially promote the uptake of EVs, as EV users could receive rewards by participating in a V2G 

scheme, which would help to save the EV cost. For example, a recent study by Chen et al. (2020) 

found that adding V2G capability to EV attributes could facilitate the EV adoption in the five Nordic 
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countries, i.e., Denmark, Finland, Iceland, Norway, and Sweden. One of the first projects of V2G 

was conducted in North America from 2009 to 2014, where 140 PHEVs were used to test the 

capability of V2G (V2G Hub, 2020). Then, the Tokyo Institute of Technology conducted a small-

scale experiment using 5 EVs from 2010 to 2013, which reduced peaks by 12.7%. Meanwhile, 

Nissan started a large-scale vehicle-to-building (electricity is sent to buildings from vehicles) project, 

aiming to provide power back for households. Up to now, there are dozens of pilot projects 

worldwide.  

However, V2G still stays at an experimental stage. Moreover, existing studies tended to focus on 

the technical perspective of V2G, but neglect its social dimensions (Sovacool et al., 2018). It 

remains unclear whether people are willing to adopt V2G, and how V2G might diffuse over time 

and across space. In response, this paper will investigate the diffusion of V2G from both empirical 

and theoretical perspectives, considering the diffusion of EVs as a precondition. Specifically, it will 

provide insights into people’s willingness to adopt EVs and V2G with survey data collected in 

Beijing in 2020. Based on the empirical findings, an agent-based EV-V2G joint model is developed 

to simulate the adoption of EVs and V2G simultaneously over time and across time. Although a 

large variety of agent-based EV diffusion models have been developed (see Section 2.1 below for a 

review), this paper will be focused on the modelling of V2G diffusion and consider the EV adoption 

as a precondition of the V2G diffusion in the EV-V2G joint model. With the joint model, we can 

further explore how EVs and V2G might diffuse at the individual level within various “what-if” 

scenarios. The results are expected to be helpful for power companies and policymakers to promote 

the development of both EVs and V2G, for example, through policymaking, infrastructure planning, 

and technology investment. Therefore, the proposed EV-V2G model is exploratory in nature, and is 

not for prediction purpose.  
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2 Literature Review 

2.1 Adoption of Electric Vehicles (EVs) 

People’s willingness to adopt EVs could be influenced by various factors, including 

sociodemographic characteristics, vehicle price, environmental awareness, EV subsidies, and 

vehicle characteristics (e.g., limited driving range) (Zhuge and Shao, 2019). To understand and 

predict people’s willingness and preferences, various models and methods have been used, including 

discrete choice models and agent-based models (Zhuge et al., 2019). In general, discrete choice 

models (e.g., multinominal logit model and mixed logit model) can relate influential factors (e.g., 

vehicle price) to people’s EV adoption behaviors; while agent-based modeling, which is a typical 

approach to exploring dynamic complex systems, can simulate the EV adoption behavior at the 

individual level over time (Al-Alawi and Bradley, 2013). Attempts have also been made to couple 

discrete choice models with agent-based models (Brown, 2013), so as to use discrete choice models 

to simulate agent’s heterogeneous behaviors (e.g., vehicle purchase behavior).  

In an agent-based EV market model, consumer agent generally plays a dominant role. Based on 

specific rules, each consumer agent can make decisions autonomously, considering the potential 

interactions with other connected agents, such as the government and automakers agents. Previous 

agent-based EV market models mainly differ from each other in the behavioral rules of agents 

involved. For example, in the model developed by Silvia and Krause (2016), the behavioral rules of 

consumer agents were developed with eight survey questions associated with consumers’ attributes 

and driving habits, vehicles’ characteristics, and the market environment. With the model, Silvia 

and Krause further tested four EV-related policies, namely city fleet, charger, incentives, and policy 

hybrid. In the model by Eppstein et al. (2011), consumer agents would choose a vehicle with the 

highest relatively desirability that was quantified with the consideration of the relative cost, the 

social and media influences, and relative benefits of the vehicle. With this model, penetration rates 

of PHEVs were predicted in scenarios with various incentives. Furthermore, some agent-based EV 

market models also tried to simulate consumer agents’ behavior using utility functions (considering 

both agents’ and vehicles’ attributes), with the assumption that agents will always adopt the vehicle 
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with the highest utility. For instance, Shafiei et al. (2012) modeled consumer agents’ behavior using 

a multinominal logit (MNL) model. More specifically, given a set of candidate vehicles, each 

consumer agent’s probability to buy them was associated with the consumer’s preference towards 

attributes of vehicles, social influences, and market conditions. The model provided insights into 

the effects of fuel prices, vehicle taxes, and charging concerns on the market penetrations of internal 

combustion engines (ICE) and EVs. Adepetu et al. (2016) developed an agent-based ecosystem 

model that used a utility function to calculate agents’ relative desirability for each pair of vehicles. 

The model could be used to investigate how policies and EV-related technology change would 

influence the adoption of EVs, and further explored the effects of the EV adoption, for example, on 

the electricity load. Likewise, in the model by Wolf et al. (2015), agents’ decision on vehicle 

purchase was made based on the rule of maximizing their benefits and emotions. The model was 

applied to assess the impact of three policies associated with consumers’ transport mode choices.  

 

2.2 Adoption of Vehicle-to-Grid (V2G) 

Previous studies tended to focus on technical aspects of V2G with much less attention paid to 

social dimensions of V2G (Sovacool et al., 2018). However, understanding and modeling people’s 

willingness and preferences towards V2G are of great importance to the development of V2G. 

As V2G still stays at its experimental stage, previous studies generally investigated influential 

factors of V2G adoption and the potential market of V2G with questionnaire survey data, for 

example, using discrete choice models. In 2009, the University of Delaware carried out three choice 

experiments in a survey in the US, aiming at estimating the potential market of EVs, consumers’ 

preference towards V2G contracts, and the potential need for V2G-EVs, respectively. In total, 3029 

respondents participated in the experiments. Based on the first two choice experiments, Parsons et 

al. (2014) used a latent class random utility model to assess how designs of EVs and V2G contracts 

would influence consumers’ choices. Based on the third experiment, Hidrue and Parsons (2015) 

developed a standard binary logit model and a latent class model to assess the potential market of 

V2G by comparing consumers’ willingness to pay and costs of V2G projects. The results of the 
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analysis held a negative attitude towards the potential market of V2G, and suggested to design more 

flexible contracts for promoting the adoption of V2G. More recently, Noel et al. (2018) launched 

another choice experiment across five Nordic countries, and used mixed logit models to compare 

preferences towards EVs and V2G among the five countries. They found that people’s preferences 

towards V2G might vary across countries. Lee et al. (2020) conducted a contingent valuation survey 

in South Korea and found that the mean willingness to accept V2G was USD 106.01. Furthermore, 

for those respondents who were unwilling to accept V2G, they were mainly concerned about the 

restrictions specified in a V2G contract and battery degradation.  

Some attempts have also been made to explore the potential market of V2G and the impacts that 

V2G diffusion might bring (e.g., to the electricity price) by using agent-based models. For example, 

Freeman et al. (2017) developed an hourly economic model to simulate intelligent individuals’ 

participation in V2G in five years. With this model, Freeman et al. designed three scenarios (i.e., 

work-hour price-taker V2G, Arbitrage-guided V2G with perfect information, and user-defined 

selling price V2G) to test the economic benefits that V2G could bring to adopters, and further test 

the influence of carbon tax on V2G adoption. Wolinetz et al. (2018) simulated whether plug-in 

electric vehicle (PEV) owners would adopt a utility-controlled charging (UCC) program using a 

latent-class choice model. In particular, market shares were explicitly considered for each consumer 

agent. By integrating a PEV market model and an electricity system model, they further developed 

four scenarios to assess the impacts of UCC on the electricity price, the integration of renewable 

energy, and the adoption of PEVs. Likewise, Wehinger et al. (2010) presented a model that asked 

agents to optimize their actions about transportation based on a reinforcement learning approach. 

This model was further used to assess the impacts of V2G on the electricity price.  

 

2.3 Research Gaps and Aims  

As a precondition of the diffusion of V2G, the uptake of EVs has received considerable attention 

in previous studies: lots of efforts have been made to understand the influential factors to the 

adoption of EVs, and further to explore the diffusion of EVs at the individual level, for example, 
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using discrete choice models and agent-based models. On the other hand, as V2G is still at the initial 

stage of its development, previous studies were mostly focused on technical aspects of V2G, but 

paid significantly less attention to its social aspects. It remains unclear how people’s willingness to 

adopt V2G, and further how V2G might diffuse over time. In response, this paper will provide 

insights into people’s willingness to adopt EVs and V2G with survey data in Beijing. Based on the 

empirical findings, we will develop a spatial joint EV-V2G model to simultaneously simulate the 

diffusion of EVs and V2G at the micro-scale. Such joint modeling of the EV and V2G diffusion has 

received scant attention in previous studies. Furthermore, we will explore the future of EVs and 

V2G with the joint model through a set of “what-if” scenarios, so as to understand how different 

policies and strategies would promote the development of EVs and V2G. The outcomes would be 

helpful for both EV- and V2G- related stakeholders, such as vehicle manufacturers, policymakers, 

and power companies. 

 

3 Study Area, Data Sources, and Empirical Findings 

3.1 Study Area: Beijing, China  

3.1.1 The Development of EVs and V2G in Beijing 

As the capital of China, Beijing has put intense efforts into the development of new energy 

vehicles, especially BEVs, as evident from its monetary and non-monetary policies. EV subsidy is 

a typical monetary policy. Before 26 June 2019, BEV purchasers in Beijing could receive subsidies 

from both central and local governments (The People's Government of Beijing Municipality, 2019). 

In terms of non-monetary policies, BEV purchasers do not need to go through the license plate 

lottery policy (Zhuge et al., 2020), and BEV users are exempted from the end-number license plate 

policy (Zhuge and Shao, 2019), which are typical types of traffic restriction in some of China’s 

cities. With these supportive policies, the EV penetration rate is on the rise. The number of 

alternative fuel vehicles (nearly all of them were BEVs) in Beijing reached 324,000 in 2019, 

accounting for about 7% of the total number of alternative fuel vehicles in China (Beijing Transport 
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Institute, 2020). Unlike EVs, V2G is still in the experimental stage in Beijing, with few attempts 

made. For example, the Beijing Electric Power Corporation conducted a project with 288 intelligent 

charging stations in Beijing's urban areas (Wang, 2020). The project was comprised of two phases: 

the first phase tested the system stability and the second focused on achieving Vehicle-to-Home 

(V2H). 

3.1.2 The License Plate Lottery Policy in Beijing 

The license plate lottery policy is one typical traffic restriction policy in many cities of China, 

and it has been implemented in Beijing in 2011 (see Table 1 for specific rules). For residences who 

meet the requirements, they can apply for either a New Energy Vehicle (NEV) license plate or a 

Conventional Vehicle (CV) one. It should be noted that nearly all private NEVs in Beijing are BEVs, 

and PHEVs are treated as one CV type. As a result, the potential PHEV and CV purchasers need to 

compete for a limited number of so-called CV license plates.  

Table 1. The License Plate Lottery Policy in Beijing 

Type of 

License 

Plate 

Applicable 

Vehicles 

Number of License 

Plates Available 

each Year 

Application 

Requirements 

Rule 

NEV 

License 

Plate 

NEV (Note: 

nearly all of 

them are 

BEVs in 

Beijing) 

54,000 1) Having a 

driving license 

2) Having no 

vehicle 

 

First-come-first-served 

basis; applicants are put 

on a waiting list when 

no plate is available 

CV 

License 

Plate 

Including 

CVs (e.g., 

petrol ar) and 

PHEVs 

38,000 Randomly allocate a 

fixed number of 

purchase permits to 

applicants 

 

3.2 Survey Data on EV and V2G Adoption  

We conducted a questionnaire survey in Beijing to collect essential information on the adoption 

behavior of EVs and V2G. The empirical findings from the survey were further used to define 

behavioral rules of agents in the EV-V2G joint model (see Section 4).  
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3.2.1 Questionnaire Design 

A questionnaire was designed to collect respondents’ information. The questionnaire includes 

four parts: Part 1 was to collect socio-demographic attributes; Part 2 was to collect information on 

the familiarity with and willingness to buy EVs; Part 3 was to collect information on the familiarity 

with V2G and willingness to adopt V2G; and Part 4 was to collect information on the attitudes 

towards V2G price and social influences. More details about the questionnaire design can be found 

in Appendix 1.1 of the Supplementary Materials. 

3.2.2 Survey Design 

As shown by Fig. 1, the survey was conducted in Beijing, covering 6 central administrative 

regions (out of 16), namely Dongcheng (DC), Xicheng (XC), Chaoyang (CY), Fengtai (FT), 

Haidian (HD), and Shijingshan (SJS), which had a population of 11.7 million in 2018, accounting 

for 54.2% of the total population (Beijing Municipal Bureau of Statistics, 2019). In total, these 6 

central districts had around 118,000 private alternative fuel vehicles (note: nearly all of them were 

BEVs) in 2018, accounting for 74%. Paper-based questionnaires were distributed by 10 survey 

assistants at shopping malls across these central districts from 10th to 12th January 2020. This design 

of survey allowed us to easily approach respondents from different backgrounds and to provide 

them with additional explanations about the definition, benefits, and drawbacks of V2G, because 

most of the respondents were not familiar with this emerging technology. The number of 

questionnaires distributed in each district was directly proportional to its population size. Eventually, 

we obtained 402 samples in total, which was over the target sample size of 385 (determined by the 

formula by Krejcie and Morgan (1970)). The distribution of the respondents can be found in 

Appendix 1.2 of the Supplementary Materials.  
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(a) Population (Unit: Ten Thousand) (b) Actual Sample Size of each District 

 

(c) Comparisons between Population Size, Private AFV Fleet, Actual Sample Size  

Fig. 1. Population size, Private Alternative Fuel Vehicle (AFV) Fleet and Actual Sample Size 

of each District 

 

3.3 Empirical Findings of the Adoption of Electric Vehicles (EVs) and 

Vehicle-to-Grid (V2G) 

3.3.1 Familiarity with EVs and V2G 

In general, people should first become familiar with new technology (e.g., EVs and V2G) and 
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then become willing to buy or use it. Fig. 2-(a) and Fig. 2-(b) present respondents’ familiarity with 

EVs and V2G respectively. 67.7% (49.9% + 7.8%) of the respondents were familiar with EVs, and 

17.8% of them had a driving experience with EVs. However, only a small fraction of them (3.3%) 

were familiar with V2G, and 25.7% of them had heard about V2G, but knew little about it. In 

addition, we used a cross-table to explore the relationship between familiarity with EVs and V2G, 

and the result indicated that they were statistically associated with each other (see Appendix 1.3 in 

Supplementary Materials). 

  

(a)Familiarity with EVs (b) Familiarity with V2G 

Fig. 2. Familiarity with EVs and V2G 

3.3.2 Willingness to Buy EVs 

Fig. 3 shows the willingness to buy EVs and its relationship with the familiarity with EVs. As 

shown by Fig. 3-(a), overall, only 13.2% of the respondents would purchase a BEV, while 19.1% of 

them would purchase a PHEV. Moreover, 43.0% and 55.7% of them might purchase a BEV and 

PHEV, respectively. These indicated that people tended to be more willing to purchase a PHEV than 

BEV. One reason might be that PHEVs run on both electricity and petrol, and users can get PHEVs 

either recharged through charging facilities (e.g., charging posts) or refueled at refueling stations 

(e.g., petrol stations). We further used a cross-tabulation to investigate the respondents’ familiarity 
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with EVs and their willingness to buy a BEV/PHEV (see Fig. 3-(b) and -(c)). Overall, with the 

increase in familiarity with EVs, people tended to be more willing to buy a BEV or PHEV. For 

example, among those people who were not familiar with EVs, only 7.1% of them would buy a 

BEV and 12.6% of them would buy a PHEV; while among those people who were familiar with 

EVs and also had driving experience with EVs, 17.1% and 30% of them would purchase a BEV and 

PHEV respectively. Furthermore, we quantified the relationship between familiarity and willingness 

for both BEVs and PHEVs with Pearson’s chi-square test. The results suggested that people’s 

willingness to buy a PHEV tended to be more significantly associated with their familiarity with 

EVs, according to Pearson’s chi-square values (specifically, 10.9 and 12.9 for BEVs and PHEVs 

respectively).  

 

(a) Respondents’ Willingness to Buy an EV 

  

(b) Familiarity with EVs & Willingness to Buy 

a BEV 

(c) Familiarity with EVs & Willingness to 

Buy a PHEV 
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Fig. 3. Respondents’ Willingness to Buy an EV and the Relationship between Willingness to 

Buy an EV and Familiarity with EVs 

3.3.3 Willingness to Adopt V2G 

Fig. 4 shows respondents’ willingness to adopt V2G in two different scenarios given that 

respondents had a BEV and PHEV respectively. Essentially, most respondents might/would try V2G 

if they had an EV (either BEV or PHEV), but there was no significant difference between PHEV 

and BEV users in their willingness to adopt V2G. Specifically, around 74.5% (9.1% + 65.4%) of 

the respondents were interested in V2G given that they had a BEV; while 72.8% (6.6% + 66.2%) of 

them would or might use V2G given that they had a PHEV. 

 

Fig. 4. Willingness to Adopt V2G with a BEV/PHEV 

 



 

15 

 

4 An Agent-based Joint Model of Electric Vehicles (EVs) and 

Vehicle-to-Grid (V2G) Diffusion 

4.1 The Framework of the EV-V2G Joint Model 

With the empirical findings from the survey data in Beijing, we developed a spatial agent-based 

joint model of EV and V2G adoption to simultaneously simulate how EVs and V2G would diffuse 

over time and across space at the individual level. Specifically, the EV-V2G joint model is composed 

of several sub-models, which can be grouped into two modules (see Fig. 5): population synthesis 

and simulation. Through population synthesis, we generated a synthetic population containing 

agents, as well as their socio-demographic attributes, residential locations, social networks, and 

preferences and attitudes towards EVs and V2G. An introduction to the population synthesis is given 

in Section 4.2. The simulation module is composed of two models, namely an EV market model 

and a V2G market model. In the EV market model, the government will issue a specific number 

(NLicense) of driving licenses to those eligible agents at random. Then, EV-related stakeholders (e.g., 

government and vehicle manufacturers) will promote the development of EVs through 

advertisement. The potential influence of advertisement on adoption was also known as global 

influence, which was a type of social influence. Due to the global influence, the potential adopters 

will become more familiar with EVs and thus more likely to purchase an EV. The proportion of 

agents exposed to EV advertisement is used to measure the intensity of EV advertisement (IGlobEV). 

Further, the model can simulate how potential vehicle purchasers apply for license plates through 

the lottery policy. Here, the model considers potential purchasers’ willingness to buy EVs as well 

as the three types of social influence (i.e., global influence by EV advertisement, neighbor effect 

based on residential locations, and friendship effect based on social networks). As a result, the 

potential purchasers will be grouped into CV and BEV applicants who would apply for the limited 

numbers of CV and BEV license plates, respectively. It is worth noting that the potential PHEV 

purchasers will become CV applicants, as PHEVs are treated as CVs in the Beijing lottery policy. 

Finally, a specific number of CV and BEV license plates will be allocated to those applicants each 

year. Since owning an EV is a precondition of adopting V2G, only EV owners can enter the V2G 
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market. Similarly, the V2G model also simulates the V2G advertisement provided by V2G-related 

stakeholders (e.g., government and power grid companies), so as to quantify the so-called global 

influence on the V2G adoption; and the intensity of V2G advertising (IGlobV2G) is measured by the 

proportion of agents exposed to V2G advertisement. Then the model simulates the adoption of V2G, 

considering potential adopters’ willingness to use V2G (with empirical findings from Section 3.3.3), 

as well as the three types of social influence (i.e., friendship effect, neighbor effect, and global 

influence). 
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Fig. 5. The Framework of Agent-Based EV-V2G Joint Model 

 

4.2 Population Synthesis  

As aforementioned, a population synthesizer is used here to first generate a synthetic population, 
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as well as their socio-demographic characteristics (e.g., age and income), using a classical algorithm, 

Iterative Proportion Fitting (IPF) (see Section 4.2.1). Then, each agent will be allocated with a 

residential location (see Section 4.2.2), to quantify the so-called neighbor effect in the adoption of 

EVs and V2G. Further, agents will be linked with a social network (see Section 4.2.3), to quantify 

the so-called friendship influence in the diffusion of EVs and V2G. Finally, random forest models 

will be developed with the survey data to generate each agent’s preferences and attitudes towards 

EVs and V2G (see Section 4.2.4), based on which this model can further quantify their willingness 

to adopt EVs and V2G.  

4.2.1 Iterative Proportion Fitting (IPF)  

Population synthesis is a critical step in urban micro-simulation. There are various population 

synthesizers: see the study of Müller and Axhausen (2010) for a review. Here, we use a classical 

population synthesizer, Iterative Proportion Fitting (IPF) to generate a synthetic population, with 

macro-level distributions of control variables (from statistical yearbook) and micro-level sample 

data (from the questionnaire survey). The central idea of IPF is to fit individual-level distributes of 

control variables, such as age and gender, aimed to minimize the gap between the generated and 

observed distributions: see Müller and Axhausen (2010) for a detailed model specification.  

4.2.2 Residential Location Choice Model 

Residential location choice of agents might be influenced by various factors, such as accessibility 

and housing price (Zhuge et al., 2016). In this model, a simple residential location choice model is 

applied to find a house for each agent in the synthetic population based on the evidence that there 

is a strong correlation between housing price and household income. For example, Wu et al. (2013) 

found that high-income households tended to live closer to the city center where housing prices 

were generally high, based on a survey in Beijing. Therefore, we simply assigned those housing 

properties with a higher selling price to those households with a high income. After allocating 

residential locations to each agent, we would be able to further quantify the so-called neighbor effec: 

we here defined that a pair of agents are neighbors to each other if the distance between their 

residential locations is shorter than a specific range Dneighbor.  
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4.2.3 Social Network Model for Linking Agents in the Population  

Each agent in the synthetic population had a social network, based on which we could quantify 

the friendship effect in the diffusion of EVs and V2G. Given a population, we used a social network 

model to link agents as friends, aimed to represent the real network degree (i.e., the number of 

friends that an agent has, denoted as Nfriend). Specifically, we generated each link between a pair of 

agents based on a random graph G (N, L) (Bollobás, 1985), fitting the total number of links L. L was 

calculated by equation (2). 

𝐿 = 𝑁 ∗ 𝐷/2                                                             (2) 

Where, N denotes the total number of agents; D denotes the network degree. In the Beijing 

scenario, we set D to 12 according to the empirical finding about the social network in Beijing from 

the work by Zhuge and Shao (2019). Specifically, a questionnaire survey was conducted in Beijing 

from September, 2015 to March, 2016 to collect data on individual social networks, with 651 

samples obtained. In the survey, participants were asked to tell the number of friends that they had, 

based on which we estimated the degree of social network in Beijing (Zhuge and Shao, 2019).  

4.2.4 Generating Agents’ Preferences and Attitudes towards EVs and V2G 

According to the empirical findings in Section 3.3, each agent had its preferences and attitudes 

towards EVs and V2G. We developed ordered logit models and random forest models to link the 

survey participants’ socio-demographic attributes with their preferences and attitudes towards EVs 

and V2G, so as to predict (or generate) preferences and attitudes for each agent in the synthetic 

population. Random forest is a classical type of Artificial Intelligence (AI) algorithm for 

classification and regression (Ho, 1995), which is comprised of a collection of classification and 

regression trees (CARTs) (Steinberg and Colla, 2009). The model first trains each tree by a randomly 

selected subset and then takes the most voted result as the final output: see the work by Criminisi et 

al. (2011), Pal (2005), and Shi and Horvath (2006) for model specification. We evaluated the 

performances of ordered logit models and random forest models with a set of agents’ attitudes and 

preferences, including the familiarity with EVs/V2G, willingness to adopt a BEV/PHEV, 

willingness to adopt V2G with a BEV/PHEV, and attitudes towards influential factors about V2G. 
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The results suggested that random forest models outperformed ordered logit models according to 

the prediction accuracies. Specifically, the average accuracies for ordered logit models and random 

forest models were 64.1% and 87.0%, respectively (see Appendix 2.2 in Supplementary Materials 

for more details). Therefore, random forest models were used to generate each agent’s attitudes and 

preferences towards EVs and V2G in the Beijing scenarios. 

 

4.3 Simulating the Adoption of Electric Vehicles (EVs) 

We developed an algorithm to simulate how an agent applies for a license plate under the so-

called license plate lottery policy (see Section 3.1.2). The algorithm is composed of six steps below 

(see Fig. 6): 
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Fig. 6. An Algorithm for Simulating How Agents Apply for a License Plate in the Lottery Policy  

Step 1: checks whether an agent is qualified for applying for a driving license with two conditions: 

1) having a driving license; 2) not having a vehicle. If the agent passes the two conditions, it will 

become a potential vehicle purchaser, and will enter the vehicle market; otherwise, it will not enter 

the market in the current loop (i.e., in this simulation year). 

Step 2: quantifies social influences by Equation (3). Social influences are commonly considered 

as an influential factor to the diffusion of new technologies, such as EVs (Axsen et al., 2013; Liao 

et al., 2017; Pettifor et al., 2017). For example, an empirical study by Zhuge and Shao (2019) found 

that social influences accounted for 9.7% of the total importance among the typical influential 

factors to the adoption of EVs in Beijing, including vehicle price (32.3%), vehicle usage (28.1% ), 
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environmental awareness (9.6%), purchase-related policies (12.4%) and usage-related policies 

(7.8%). Here, the three types of social influence, namely friendship effect, neighbor effect, and 

global influence, accounted for 5.0%, 2.0% and 2.8%, respectively. Therefore, a few attempts have 

been made to incorporate social influences into the EV diffusion models as a variable (Eppstein et 

al., 2011; Shafiei et al., 2012). For example, an EV market model by Zhuge et al. (2019) included 

social influences into its utility function for simulating vehicle choices of consumers in the EV 

market. Therefore, our model also considers three types of social influence I = (1, 2, 3), namely 

friendship effect (i = 1), neighbor effect (i = 2), and global influence (i = 3). It is defined that an 

agent will be influenced by its friends (if at least one of its friends has an EV and also is sensitive 

to the friendship effect), its neighbors (if at least one of its neighbors has an EV and also it is 

sensitive to the neighbor effect), and the EV advertisements (if it is exposed to any advertisement 

and also it is sensitive to the global influence).  

𝑆𝐼 = 𝛴𝑖=1
3 𝑊𝑖 ∗ 𝐶1𝑖 ∗ 𝐶2𝑖                                             (3) 

Where, Wi denotes the weight of social influence i, which indicates the extent to which the 

social influence i will influence the adoption of BEVs. According to an empirical finding in 

Beijing from the work by Zhuge and Shao (2019), the weight of the friendship effect in the 

adoption of EVs in Beijing was two times those of the neighbor effect and the global influence. 

Therefore, W1, W2, and W3 are set to 2, 1, and 1 in our Beijing scearnio, respectively. C1i and C2i 

are two binary variables. If the agent is influenced by social influence I, then C1i =1; otherwise, 

C1i =0. If the agent was sensitive to social influence I, then C2i =1; otherwise, C2i =0. Whether an 

agent is sensitive to a specific type of social influence is determined by a random forest model, 

which was developed with empical findings in Beijing (see Appendix 2.2 in the Supplemenatry 

Materials).  

Step 3: quantifies the EVs purchase intentions of an agent according to its willingness to buy a 

BEV/PHEV (which is the primary determinant in vehicle purchase) and the three types of social 

influence (which is the secondary determinant). Specifically, this model will first check an agent’s 

willingness and then will further check whether the agent will be influenced by EV advertisement, 

its friends, and its neighbors. As set in the Beijing questionnaire, the willingness to buy a 

BEV/PHEV is grouped into four categories, namely “will buy”, “may buy”, “may not buy”, and 
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“will not buy” (see Appendix 1.1 in Supplementary Materials). The social influences of BEV/PHEV 

can be quantified by Equation (9) with five different scores, ranging from 0 to 4 (note: 4 means that 

the agent is influenced by all the three types of social influence, and 0 means that it is not influenced 

by any type of social influence). Given the four categories for the willingness to buy a BEV/PHEV 

and the five categories for the three types of social influence, we developed a classification method 

(see Fig. 7) to group an agent into one of the twenty classes. Those agents with a higher class (i.e., 

a higher willingness and a higher value of social influence) will be more likely to purchase an EV.  

 

Fig. 7. Quantifying EVs Purchase Intentions with Twenty Classes  

Step 4: determines whether the agent will apply for an EV license plate through the lottery policy 

according to the agent’s intentions to purchase EVs, following a specific rule: if the agent’s purchase 

intention is greater than a specific threshold (TBEV and TPHEV for BEV and PHEV, respectively), it 

will apply for an EV license plate; if the intention is equal to TEV, it has a specific probability of 

applying for an EV license plate (PBEV and PPHEV for BEV and PHEV, respectively). Note that TBEV 

and PBEV are key model parameters and will be calibrated by comparing the simulated and observed 

numbers of EV applicants in the Beijing scenario (see Section 5.1.2). If the agent decides to apply 

for an EV license plate, the algorithm will go to Step 5; otherwise, it will go to Step 6. 

Step 5: further compares the agent’s intentions to purchase a BEV and PHEV. It is assumed that 

the agent will always choose the EV type with the higher intention value. Furthermore, the agent 
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will become a BEV applicant in the case where the purchase intentions of BEV and PHEV were the 

same, because in Beijing, BEV owners can receive additional benefits, such as exemption from the 

so-called end-number license plate policy (Lu et al., 2020). This algorithm will check the applicant’s 

preference towards EVs in each simulation step until it finally gets a license plate, or the simulation 

is finished. 

Step 6: determines whether the agent will apply for a CV license plate. It is defined that if the 

agent’s BEV purchase intention is lower than a specific threshold (TCV), then it will apply for a CV 

license plate; if it is equal to TCV, it has a specific probability of applying for a CV license plate 

(PCV); otherwise, it will not apply for a license plate in the current simulation step. TCV and PCV are 

another two key model parameters to be calibrated (see Section 5.1.2). 

 

4.4 Simulating the Adoption of V2G 

We developed another algorithm to simulate the process of V2G adoption (see Fig. 8), based on 

the simulation of EV adoption, as an agent should have an EV before adopting V2G. The algorithm 

is composed of five steps: 

⚫ Step 1: checks whether the agent is an EV owner: if yes, the algorithm will move to Step 2; 

otherwise, it will stop, and the agent will not adopt V2G in this simulation year. 

⚫ Step 2: checks whether the price of selling electricity back to the grid (PV2G) (which is 

determined by the power company) is higher than what the agent expects; if yes, the algorithm 

will move to Step 3; Otherwise, it will stop, and the agent will not adopt V2G in this simulation 

year. 

⚫ Step 3: quantifies the agent’s V2G adoption intention based on their willingness to adopt V2G 

with a BEV/PHEV and social influences of V2G, which is similar to the approach to 

quantifying the EV adoption intention (see Section 4.3). It is worth noting that we distinguish 

between BEV and PHEV owners when quantifying their willingness to adopt V2G, according 

to the empirical findings from the Beijing survey data (see Section 3.3.3). 
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⚫ Step 4: checks whether the agent will adopt V2G. Specifically, if the agent’s V2G adoption 

intention is greater than a specific threshold (TBEVV2G and TPHEVV2G for BEV and PHEV owners 

respectively), it would adopt V2G. Otherwise, it will not adopt V2G in this simulation year. 

 

Fig. 8. An Algorithm for Simulating the Process of Adopting V2G with a BEV/PHEV 

 

5 Exploring the Joint Adoption of EV and V2G in Beijing 

5.1 Scenario Description 

5.1.1 A Synthetic Population in Beijing  

Beijing was used as a case study to examine the performance of the proposed EV-V2G joint 

model. We initialized the joint model by generating a virtual Beijing population using the population 

synthesis method in Section 4.2. We compared the generated and observed distributions of control 
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variables, including age, gender, education level, number of family members, driving license, BEV 

ownership, and CV ownership. The results suggested that the distributions were well-matched with 

a mean absolute percentage error of 0.35% (see Appendix 2.1 in supplementary materials for more 

details). In total, the synthetic population comprised 215,36 agents, which meant each agent 

represented 1,000 citizens in reality. This would help to save computing time. Furthermore, each 

agent would be treated as a representative of a household, and would be responsible for making 

household-level decisions, such as vehicle purchase. Fig. 9 shows the spatial distribution of agents 

based on their residential locations, suggesting that most agents live in the central districts of Beijing. 

The joint EV-V2G model was implemented in NetLogo (Tisue and Wilensky, 2004), which is one 

of the most-used platforms for agent-based modeling.  

 

Fig. 9. Residential Location of Agents in the Synthetic Population 

5.1.2 Model Calibration  

The joint EV-V2G model was calibrated in three ways: first, we calibrated the model with 

empirical findings from the Beijing survey data as far as possible. For example, we set the weights 

of global influence, neighbor effect, and friendship effect to 1, 1, and 2, respectively, according to 

the empirical findings of social influences from Beijing (Zhuge and Shao, 2019). Specifically, the 

study suggested that global influence, neighbor effect, and friendship effect accounted for 2.8%, 
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2.0% and 2.8%, respectively, using the survey data collected from September 2015 to March 2016. 

Second, we set some of the parameters according to our experience. For example, we used a radius 

of 400 meters to search for neighbors for each agent, to quantify the so-called neighbor effect. For 

these parameters, we conducted a sensitivity analysis to examine how different parameter ranges 

would influence the outputs of interest. Third, we calibrated the remaining key parameters by 

minimizing the gap between the observed and simulated outputs of interest, including the numbers 

of BEV and CV license plate applicants in 2019 and 2020. These parameters included the threshold 

of applying for a BEV license plate (TBEV), the probability of applying for a BEV license plate (PBEV), 

the threshold of applying for a CV license plate (TCV), and the probability of applying for a CV 

license plate (PCV). For example, when calibrating the vehicle market sub-model in the joint model, 

we first tested the sub-model with the 20 classes of BEV purchase intention, and compared the 

outcomes against the observed data (in both 2019 and 2020) to find the optimal class which can 

minimize the gap between the simulated and observed numbers of BEV applicants (see Fig. 10-(a) 

and -(b)); then, we further tested PBEV from 0% to 100% to minimize the total absolute error for the 

two years: we found a minimum total absolute error of 3.88% (specifically, -2.19% and 1.69% in 

2019 and 2020, respectively), with PBEV of 84%, as shown in Fig. 10-(c). Likewise, PCV and PCV 

could be calibrated: they were finally set to class 7 (see Fig. 10-(d) and -(e)) and 84% (see Fig. 10-

(f)) respectively, with a total absolute percentage error of 3.61% (specifically, 0.21% and 3.34% in 

2019 and 2020, respectively). More details on the model parameterization can be found in Appendix 

2.3 in supplementary materials. 

  

(a) Comparing the Observed and Simulated 

Numbers of BEV Applicants in 2019 with TBEV 

from Class 1 to 20 

(b) Comparing the Observed and Simulated 

Numbers of BEV Applicants in 2020 with TBEV 

from Class 1 to 20 
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(c) Comparing the Observed and Simulated 

Numbers of CV Applicants in 2019 with TCV 

from Class 1 to 20 

(d) Comparing the Observed and Simulated 

Numbers of CV Applicants in 2020 with TCV 

from Class 1 to 20 

  

(e) The Total Absolute Error for the Number 

of BEV Applicants in 2019 and 2020 with PBEV 

from 0% to 100% 

(f) The Total Absolute Error for the Number of 

BEV Applicants in 2019 and 2020 with PCV 

from 0% to 100% 

Fig. 10. EV Market Model Calibration Results 

5.1.3 Reference and “What-if” Scenarios 

We first set up a reference scenario and ran the calibrated model from 2021 to 2030, with an 

assumption that the vehicle market would evolve as before. To test the sensitivity of some important 

model parameters (i.e., Dneighbor and TBEVV2G) and how EV- and V2G-related policies (i.e., V2G price, 

V2G advertisements, EVs advertisements, and PHEV permit) would influence the diffusion of EVs 

and V2G, we set up another six “what-if” scenarios that would be compared against the reference 

scenario. A summary of some key settings of both reference scenario and “what-if” scenarios can 

be found in Table 5. Please note that the results from the scenarios V2GBEV and Neighb are 

discussed in Appendix 3.6 and Appendix 3.7 of the Supplementary Materials. 
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Table 5. Comparing the Differences between the “What-If” and Reference Scenarios 

 V2G Price 

Proportion of Agents 

Exposed to V2G 

Advertisements 

Proportion of 

Agents Exposed to 

EVs Advertisements 

PHEV Permit 
Threshold of 

Adopting V2G 

Definition of 

Neighbor 

Reference Scenario 

(See Section 5.2) 

30% greater than 

the charging fee 
30% 70% No PHEV permit Class 14 400 Meters 

V2GPrice  

(See Section 5.3.1) 

0%, 10%, 50% 

and 100% greater 
30% 70% No PHEV permit Class 14 400 Meters 

V2GGlobal 

 (See Section 5.3.2) 
30% greater  

10%, 50%, 70% and 

90% 
70% No PHEV permit Class 14 400 Meters 

EVGlobal  

(See Section 5.3.3) 
30% greater  30% 

10%, 30%, 50% 

and 90% 
No PHEV permit Class 14 400 Meters 

PHEVPermit  

(See Section 5.3.4) 
30% greater  30% 70% 

Treating PHEV as an 

EV type in the license 

plate lottery policy 

Class 14 400 Meters 

V2GBEV  

(See Appendix 3.6) 
30% greater 30% 70% No PHEV permit 

Class 11, 12, 13, 

15, 16 and 17 
400 Meters 

Neighb  

(See Appendix 3.7) 
30% greater  30% 70% No PHEV permit Class 14 

200, 600, 800 and 

1000 Meters  
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5.2 Reference Scenario (RefSc) 

Fig. 11 shows the expansion of BEV, CV, and V2G markets from 2021 to 2030. Due to the limited number 

of CV permits in the license plate lottery policy, the number of CV owners increased slightly from 4.40 

million in 2021 to 4.74 million in 2030, with an average yearly growth rate of 0.8%. However, the actual 

CV demand increased faster, as evident from the number of CV applicants. Specifically, the number of CV 

applicants increased from around 3.96 million in 2021 to 5.16 million in 2030, with an average yearly growth 

rate of 3.22%. Furthermore, the number of CV applicants was much higher than that of BEV applicants: for 

example, in 2030, the number of CV applicants was 6.19 times that of BEV applicants. This indicated that 

BEVs were still much less attractive than CVs, though BEV owners received several benefits, such as EV 

subsidies and exemption from the end-number license plate policy. In terms of V2G diffusion, the number 

of V2G adopters was relatively low during the whole period. Specifically, the number of V2G-BEV adopters 

(i.e., BEV owners adopting V2G) was 232,000 in 2030, accounting for 27.8% of the whole BEV population. 

It is worth noting that PHEVs and CVs shared the so-called CV purchase permits. However, almost no people 

are interested in PHEV, due to its much higher sale price and no EV subsides for PHEV buyers. Therefore, 

in this Reference Scenario (RefSc), we did not simulate the PHEV diffusion. However, we set up a scenario 

to explore how a different vehicle purchase permit allocation method (i.e., PHEV and BEV purchasers share 

the so-called EV purchase permits) would influence the diffusion of EVs and V2G (see Section 5.3.4). 
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Fig. 11. Diffusion of EV and V2G from 2021 to 2030 in Reference Scenario (RefSc) 

Fig. 12 shows the spatial distributions of BEV owners (Fig. 12-(a) and -(b)), BEV applicants (Fig. 12-(d) 

and -(e)), and V2G-BEV adopters (Fig. 12-(g) and -(h)) based on their residential locations. It could be found 

that BEV owners were mostly located in the two core districts of Beijing (i.e., Dongcheng and Xicheng 

districts) in 2021, with a few of them located in other districts (see Fig. 12-(a)). In 2030, the clusters of BEV 

owners in central districts (including Dongcheng, Xicheng, and Haidian, Chaoyang, Fengzhou, and 

Shijingshan districts) became much larger, indicating the BEVs diffused across space, while the numbers of 

BEV owners in the suburbs and outer suburbs were still small (see Fig. 12-(b)). In terms of BEV applicants, 

most of them were located in the central districts in 2021, with a few of them located in the other districts 

(see Fig. 16-(d)). In 2030, the cluster of BEV applicants became much larger, indicating that more people in 

the central districts were interested to buy BEVs (see Fig. 12-(e)). For V2G-BEV adopters, there were no 

significant large clusters, indicating that V2G appeared not to diffuse across space.  

We further compared the difference between 2021 and 2030 in the densities of license plate applicants, 

BEV owners, and V2G-BEV adopters at the district level. According to the spatial difference, the central 

districts tended to get much more BEV owners and license plate applicants, relative to their district areas 

(see Fig. 16-(c) and -(f)). In particular, the new sub-center of Beijing, Tongzhou district, also got more license 
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plate applicants than other districts in suburban areas. Furthermore, the spatial patterns of BEV owners and 

V2G-BEV adopters were almost the same, suggesting that those districts with more BEV owners were more 

likely to had more V2G adopters. 

   

(a) BEV Owners in 2021 (b) BEV Owners in 2030 (c) Spatial difference in BEV Owners 

between 2021 and 2030 

   

(d) BEV Applicants in 2021 (e) BEV Applicants in 2022 (f) Spatial difference in BEV 
Applicants between 2021 and 2030 

   

(g) V2G-BEV Adopters in 2021 (h) V2G-BEV Adopters in 2030 (i) Spatial difference in BEV-V2G 

Adopters between 2021 and 2030 
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Fig. 12. Spatial Distributions of BEV Owners, BEV Applicants, and V2G-BEV Adopters in RefSc 

 

To validate the model, we further compared the simulated spatial patterns of BEV owners in 2021 against 

the observed spatial patterns of BEV owners in 2019, as shown in Fig.13. It can be found that the agent-

based model could well represent the spatial patterns of BEV owners at the district level. In other words, the 

model could represent the real-world diffusion of EVs in Beijing to some extent, and thus could be further 

used to explore how different policies might influence the adoption through “what-if” scenarios.  

  

(a) Observed Spatial Patterns of BEV Owners in 

2019 

(b) Simulated Spatial Patterns of BEV Owners  in 

2021 

Fig. 13. Comparing Observed and Simulated Spatial Patterns of BEV Owners 

 

5.3 “What-If” Scenarios 

5.3.1 Scenario V2GPrice: Exploring the Influence of V2G Selling Price 

As discussed in Section 4.1, BEV owners would adopt V2G only if the price of selling electricity back to 

the grid (PV2G) was higher than the price they expect (compared to the charging fee). Hence, the selling price 

might be an influential factor in the V2G diffusion. Here, we developed four scenarios (i.e., V2GPrice1.0, 
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V2GPrice1.1, V2GPrice1.5, and V2GPrice2.0) to explore how different selling prices PV2G (i.e., 0%, 10%, 

50%, and 100% greater than the charging fee) would influence the adoption of V2G.  

Fig. 14 compares the V2G diffusion from 2021 to 2030 in Scenarios V2GPrice and RefSc. Overall, the 

difference between the scenarios in the number of V2G adopters was small, suggesting that the price of 

selling electricity back to the grid (PV2G) could only influence the V2G diffusion to a limited extent. In 2030, 

the scenarios with a lower selling price tended to get more V2G adopters. For those scenarios with a selling 

price of 30% greater than the charging fee or above (i.e., RefSc, V2GPrice1.5, and V2GPrice2.0), there was 

almost no difference in the number of V2G adopters, indicating that the selling price could only be influential 

within a specific range. Therefore, power companies were suggested not to apply a too high selling price, 

because once the selling price exceeded a specific threshold (i.e., 30% greater than the charging fee in this 

case), a further increase in selling price would not promote the adoption of V2G.  

 

Fig. 14. Influences of Parameter PV2G on the Number of V2G-BEV Adopters 

5.3.2 Scenario V2GGlobal: Exploring the Influence of V2G Advertisement 

V2G advertisement might influence the adoption of V2G through the so-called global influence of V2G, 
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which was one kind of social influence. At the early stage, V2G-related stakeholders, such as government 

and power companies, would increase the exposure of agents to V2G advertisement (IGlobV2G), so as to 

increase the global influence. To examine how the number of agents exposed to V2G advertisements would 

influence the V2G diffusion, we set up another four scenarios (i.e., V2GGlobal0.1, V2GGlobal0.5, 

V2GGlobal0.7, and V2GGlobal0.9), in which the percentages of agents exposed were set to 10%, 50%, 70%, 

and 90%, respectively.  

Table 6 shows the differences between Scenario V2GGlobal and RefSc. The total numbers of V2G 

adopters in V2GGlobal and RefSc were almost the same at the end of the simulation (i.e., in 2030), but there 

were small differences before 2028. For those scenarios with a higher percentage of agents exposed to V2G 

advertisement, they tended to have more V2G adopters at the beginning: for example, increasing the 

percentage from 10% to 90% could increase the number of V2G adopters by 28.5% in 2022. However, the 

global influence became gradually ineffective as the market evolved. Therefore, V2G-related stakeholders 

(e.g., government and power companies) were suggested to promote the adoption of V2G through V2G 

advertisement only at the early stage of V2G development, but not to invest too much after the number of 

V2G adopters exceeded a specific threshold (about 150,000 in this case). Furthermore, there were slight 

spatial differences between Scenarios V2GGlobal and RefSc in the number of V2G adopters (see Fig. A6 in 

supplementary materials), likely because of the slight difference between the scenarios in the total number 

of V2G adopters. 

Table 6. Influences of Parameter IGlobV2G on the Number of V2G-BEV Adopters 

Note: We used the number of V2G-BEV adopters for RefSc in this table, and used the relative percentage 

difference for the other “what-if” scenarios. 

5.3.3 Scenario EVGloalal: Exploring the Influence of EV Advertisement 

The so-called global influence might also influence the adoption of EVs through, for example, EV 

Scenario 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

V2GGlobal0.1 0% -19% -5% -5% -4% -4% -4% 1% 1% 0% 

RefSc 36000 52000 64000 81000 98000 120000 139000 150000 190000 232000 

V2GGlobal0.5 0% 2% 5% 2% 3% -1% 1% 0% 0% -1% 

V2GGlobal0.7 0% 2% 5% 2% 4% 1% -1% 2% 1% 0% 

V2GGlobal0.9 0% 4% 5% 6% 8% 4% 2% 3% 2% 0% 
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advertisement. Therefore, we set up four scenarios (i.e., EVGlobal0.1, EVGlobal0.3, EVGlobal0.5, and 

EVGlobal0.9) to explore how different percentages of agents exposed to EV advertisement (i.e., 10%, 30%, 

50%, and 90%) would influence the adoption of BEV, and further V2G.  

As shown in Fig. 15, increasing the percentage of agents exposed to EV advertisement would influence 

the adoption of EVs to some extent. For example, when the percentage of agents exposed increased from 

10% to 30%, the number of BEV applicants increased by 9.5% in 2030 (from 1,059k to 1,160k applicants), 

according to Scenarios EVGloal0.1 and EVGloal0.3. However, after the percentage of agents exposed 

exceeds 30%, a further increase could not heavily influence the number of BEV adopters, as evident from 

the comparison among Scenarios EVGloal0.3, EVGloal0.5, RefSc, and EVGloal0.9. Therefore, EV-related 

stakeholders (e.g., local authorities and vehicle manufacturers) were suggested not to put too much effort 

into the promotion of EVs through advertisement. Although EV advertisement could influence the BEV 

purchase intention to some extent, it had little influence on numbers of BEV adopters and V2G adopters, 

due to the license plate lottery policy (specifically, the fixed number of BEV purchase permits).  

 

Fig. 15. Influences of EV Advertisements on the Numbers of BEV Applicants 
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5.3.4 Scenario PHEVPermit: Exploring the Influences of PHEV Permit 

In Beijing, PHEV license plate applicants need to compete for a limited number of the so-called CV license 

plates with general CV applicants, as PHEV is treated as one CV type. However, PHEV sale price tends to 

be much higher than that of CV, which appears to be one of the main reasons for the low adoption rate of 

PHEV in Beijing (Zhuge et al., 2020). In PHEVPermit, we investigated how a different license plate lottery 

policy in which PHEV was treated as one EV type, would influence the diffusion of EVs and V2G. 

As shown by Fig. 16-(a), PHEVs were not competitive with CVs or BEVs, as evident from a much smaller 

number of PHEV owners (19,000) in 2030 (only accounting for 2.3% of EVs). It was likely because EV 

license plates were issued on a first-come-first-serve basis. As a result, those agents who had applied for EV 

license plates for BEVs before 2021 (when the lottery policy started to treat PHEV as an EV type) would be 

first issued with a license plate. Although they could choose PHEVs instead of BEVs in the simulation if 

their PHEV purchase intention was higher than that of BEV, only a few applicants did change their minds. 

However, PHEVs still would have a great potential market in Beijing, as the total number of PHEV 

applicants reached 875,000 in 2030, which is close to the number of BEV applicants (1,105,000), as shown 

in Fig. 16-(c). In addition, the increase in PHEV applicants decreased the numbers of both the CV and BEV 

applicants (see Fig.16-(b) and -(c) respectively) , because some of them became PHEV applicants in this 

scenario. Also, we found significant changes in the spatial patterns of CV and BEV applicants (see Appendix 

3.5 in supplementary materials). In terms of V2G adoption, only 1000 PHEV owners adopt V2G in 2030, 

accounting for 5% of the total number of PHEV owners. On the other hand, the total number of V2G adopters 

did not change a lot, because the number of BEV owners only decreased slightly in PHEVPermit, and the 

number of V2G-BEV adopters (i.e., BEV owners adopting V2G) was almost not influenced by this different 

lottery policy.  
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(a) PHEV Owners and V2G-PHEV Adopters                          (b) CV Applicants 

 

(c) BEV and PHEV Applicants        (d) BEV Owners and V2G-BEV Adopters 

Fig. 16 Influence of the PHEV Permit on Diffusion of EV and V2G 

5.4 Discussion on Scenario Analysis  

We set up the reference scenario (i.e., baseline) to explore the future of EVs and V2G in Beijing with an 

assumption that both EVs and V2G would diffuse as before (see Section 5.2), and further explored how 

different EV- and V2G- related policies would influence the diffusion of EV and V2G within several “what-

if” scenarios (see Section 5.3), compared to the reference scenario.  

In the reference scenario, we found that only 10.3% of BEV owners adopted V2G in 2021, but the 

proportion increased to 27.8% in 2030, indicating that the V2G diffused at a relatively higher rate than BEV. 

There were two possible reasons: first, there was only a specific number of BEV purchase permits allocated 

each year, due to the license plate lottery policy. As a result, the number of BEV adopters could only increase 
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at a certain rate; while there was no constraint on the V2G adoption. Second, the social influences 

(particularly neighbor and friendship effects) became stronger over time, due to the increase in the number 

of V2G adopters. Specifically, when more and more BEV owners adopted V2G, their friends and neighbors 

would be increasingly influenced, and may finally adopt V2G as well.  

Based on the “what-if” scenarios, we identified two possible ways to promote the adoption of V2G.  

First, it would be possible to encourage BEV applicants to adopt V2G, given that the price of selling 

electricity back to the grid was 1.3 times of the original electricity price in the context of V2G. However, a 

higher selling price had little influence on the uptake of V2G. This was likely because the selling price was 

used as a condition to screen BEV adopters in the V2G model: only those BEV adopters whose expected 

selling price is lower than the selling price set by the power grid could become a potentially V2G adopter. 

This means that setting the selling price to be 1.3 times of the original electricity price could satisfy most of 

the BEV owners who would become a potential V2G adopter.  

Another possible way to promote the adoption of new technologies is to get those potential adopters to 

become familiar with the technologies through advertising (i.e., global influence). Our scenario analysis 

suggested that advertising tended to be more effective to adoption of BEVs than that of V2G. Specifically, a 

higher percentage of agents exposed to V2G advertisement could help to promote the adoption of V2G to 

some extent at the early stage, but V2G advertisement became less influential later. This was likely because 

BEV owners’ V2G adoption intention was quantified with both their willingness to adopt V2G and social 

influences, and global influence was just one type of social influences. For those scenarios with a lower 

percentage of agents exposed to V2G advertisement, their social influences could also become stronger with 

more and more their friends and neighbors adopting V2G. As a result, these scenarios could have more V2G 

adopters at a later stage. Therefore, stakeholders (e.g., power companies) are suggested to use advertising as 

a promotion approach only at the early stage of V2G development. Although a higher percentage of agents 

exposed to BEV advertisement could significantly increase the number of BEV applicants, but it had almost 

no influence on the number of final BEV adopters due to the purchase constraint (i.e., the license plate lottery 

policy), and thus had almost no influence on the V2G adoption either.   
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6 Conclusions 

This study explored the diffusion of Electric Vehicles (EVs) and Vehicle-to-Grid (V2G) from both 

empirical and theoretical perspectives. According to the empirical findings, familiarity with EVs was a 

important factor in people’s willingness to adopt EVs, especially for PHEVs. However, we found that 32.3% 

of respondents were not familiar with EVs. Furthermore, those people who were familiar with EVs and had 

EV driving experience tended to be more willing to buy EVs. Therefore, the EV-related stakeholders, such 

as local authorities and vehicle manufacturers, are suggested to get citizens to become familiar with EVs. 

For example, citizens should be provided with more information about EVs, such as vehicle’s profiles and 

benefits, so that they could become familiar with EVs. Also, citizens should be offered more opportunities 

to drive EVs, for example, in demonstration projects, as real-world EV driving experience could increase 

the probability of buying EVs. For the adoption of V2G, the survey suggested that only a small fraction of 

people in Beijing (3.3%) were familiar with V2G, and 25.7% of them had heard V2G before, but knew little 

about it. Also, we found that most of the respondents might/would try V2G if they had an EV (either BEV 

or PHEV), indicating a promising V2G market in Beijing. From a theoretical perspective, we developed an 

agent-based EV-V2G joint model to simulate the diffusion of EVs and V2G over time, with the empirical 

findings from the Beijing survey data. In the Reference Scenario (RefSc), we found that the number of CV 

applicants was 6.19 times that of BEV applicants, and only 27.8% of BEV users adopted V2G. Furthermore, 

V2G selling price, EV/V2G advertisement and dedicated PHEV purchase permits were not very influential 

to the diffusion of V2G.  

In the future work, we will further improve the joint EV-V2G model in the following two aspects: First, 

we will further improve the V2G model by considering different V2G contract types. Specifically, EV users’ 

willingness to adopt V2G is associated with the specific requirements (e.g., plug-in time and reward) in the 

agreement (or contract) signed with the power grid company. Therefore, in the improved V2G model, we 

can further simulate how EV users’ choose between different V2G contract types if they are interested in 

V2G. Second, we will incorporate a more realistic social network model into the EV-V2G joint model to 

consider the heterogeneous influences between the linked agents. Specifically, we will distinguish between 

strong and weak social ties in their influences on the diffusion of information on EV and V2G adoption. In 
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general, a pair of friends which are connected with a strong tie tend to contact more frequently, and thus 

would have a higher chance to receive the adoption information from their friends. Furthermore, we will 

also consider agents’ sensitivity to the adoption information, as some of agents would be more likely to be 

influenced by the information received. Third, we will further test the joint model through more “what-if” 

scenarios, and explore how different EV- or V2G- related policies, technologies, and infrastructures could 

influence the adoption of V2G.  
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