
Discussion Paper ISSN 2042-2695

No. 1876 
October 2022 

The rise of 
China's 
technological 
power: the 
perspective 
from frontier 
technologies
Antonin Bergeaud
Cyril Verluise



 

   

Abstract 
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increasingly supported by domestic patentees, suggesting the build up of domestic capabilities. 
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1 Introduction

Modern growth theory (Romer, 1990; Aghion and Howitt, 1992) recognizes the central role
of technological progress in long-term economic growth, but at the same time emphasizes
that the nature of technological progress depends on the level of development of each coun-
try (Acemoglu, Aghion, and Zilibotti, 2006). Developing countries typically progressively
catch up by making incremental adjustments to adapt technologies previously developed
by frontier economies. As they get closer to advanced economies, growth requires frontier
innovation which in turn calls for institutional transformations that include competition
policy (Zilibotti, 2017), research education (Krueger and Lindahl, 2001; Aghion et al., 2009;
Goldin and Katz, 2010), external finance (Diallo and Koch, 2018; Rajan and Zingales, 1998),
and improved management practices (Bloom and Van Reenen, 2007)... Failure to implement
a favorable set of institutions to support frontier innovation has shown to be an obstacle to
full economic convergence and to maintain developing countries in a “middle-income trap”.
A country’s capacity to produce and improve frontier innovation is key for developing
countries to join the club of developed economies and for developed countries to remain
in this club.

Despite the central place that frontier innovation takes in growth theory, the empirical
characterization of the diffusion of a specific novel technologies remain empirically tricky.
Economists usually rely on patent data to study innovation, but patents do not come with
immediate ways to delineate a specific frontier technology, all the more when comparing
different countries. As a result, the now well-documented dramatic increase in patenting in
China (in 2019, the Chinese Patent Office filed 1.4 million patents, that is 43% percent of the
world’s total applications) is hard to relate to the actual contribution of China to pushing
the world’s frontier in specific technologies, and to assess the quality of theses patents. By
deploying a set of new statistical methods to the patent corpus, our work is an attempt to
address this question.

From a methodological point of view, researchers might be tempted to use standard tech-
nological classes (e.g. CPC, IPC, USPC) attributed by patent offices to patents in order
to delineate patents contributing to a given technology and study its development. How-
ever, the economic literature has long prevented scholars from doing so. Griliches (1990)
famously called this question “the patent classification problem”. Indeed, the purpose of
patent offices’ classifications is to ease the search of prior art. Resulting classifications are
thus essentially based on techniques, which are not necessarily related to the economists’
notion of technology. In addition, a given technology is usually characterized by a complex
combinations of different classes. For example, Schmookler (1966) reports that a subclass
related to the dispensing of solids contained patents on both manure spreaders and tooth-
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paste tubes.

In this context, our first contribution is to introduce a new general methodological ap-
proach. We extend the automated patent landscaping literature to accurately and consis-
tently retrieve a large set of patents related to specific technologies. Specifically, we extend
the algorithm pioneered by Abood and Feltenberger (2018) which implements a sequence
of machine learning operations to emulate human curation at scale. We add a tractable
amount of human supervision in the loop in order to improve both accuracy and consis-
tency of our results. We then apply it to six novel and representative technologies: additive
manufacturing, blockchain, computer vision, genome editing, hydrogen storage and self-
driving vehicles. These technologies were carefully selected to both cover a large variety of
economic sectors and to ensure conceptual homogeneity. However, the new methodologi-
cal approach that we introduce has been designed to be easily extended to any technology
and its evolution using patent data.

In line with our initial question, our approach allows us to study the role and contribution
of any country with a patent system in the development of these technologies. For the sake
of simplicity, in this paper we restrict our attention to four regions (United States, Europe,
Japan and China which are at the epicenter of the production of radical innovations. Our
second contribution is therefore to use these six technologies to illustrate the recent rise of
China as a technological power. We find that, although very different in nature and in their
level of maturity, these six technologies deliver a surprisingly consistent and clear picture.
The quantitative contribution of the Chinese Patent office to frontier innovation patenting
has been rapidly rising since the early 2000s. China has become the second largest actor of
frontier innovation and is quickly catching up with the US. Our results further suggest that,
although China still exhibits stigmas of a former catching-up economy, these stigmas are on
the downside. The quality and novelty of patents published at the Chinese Patent Office,
in these technologies, has been quickly increasing since the 2000s. By the end of the 2010s,
it had reached the quality level of patents published at the European and Japanese patent
offices. During the same period, frontier technology patenting in China seems to have been
increasingly supported by domestic patentees, and have become increasingly influential
internationally. suggesting the build up of domestic capabilities (Furman, Porter, and Stern,
2002).

Background and Literature Review

Our paper uses the patent corpus to study the development of specific technologies in
different countries, in particular China, and to assess the quality of these contributions. As
such, it relates to different strands of the literature.
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First, there are a number of papers that measure the rise of China as a new technological
power and explore potential explanations. This literature typically reports that China is an
important player, if not the leader, in terms of many indicators of innovativeness. China
concentrated 159 unicorn companies in 2021 according to CB Insight for a total valuation
of more than 500 billion dollars.1 This is much more than Europe (89 for a valuation of 314
billion dollars, including respectively 32 and 138 billion dollars for the UK alone) and Japan
(5 for a valuation of $6.8 billion dollars) but still far behind the US (405 for a valuation of
$1,353 billion dollars). In terms of scientific effort, the importance of China has been rising
for the past 20 years as measured by the number of top cited articles, which places the
country as second scientific powerhouse behind the US.2

This catch up in terms of scientific publications is even more dramatic when it comes to
Artificial Intelligence research (Baruffaldi et al., 2020). This tends to support the view that
China has built the capacity to innovate in the technology of tomorrow, making its catch
up more likely to be sustainable, and avoid the middle-income trap (Fan, 2014). This has
been partly made possible by trade and foreign direct investments (Aghion et al., 2019;
Hu and Jefferson, 2009), but also by subsidies and reforms of property rights (Dang and
Motohashi, 2015).3 However, other scholars argue that China still suffers from stigmas
that penalize its capacity to innovate without the collaboration of other countries (Aghion
et al., 2022). Abrami, Kirby, and McFarlan (2014) explain that while China does not lack
the number of entrepreneurs, inventors or scientists, its institutions are not well-suited to
encourage the development of frontier technologies. For example, every company larger
than 50 employees is required to have a Chinese Communist Party (CCP) representative
and a party liaison. In 2020, Xi Jinping, the general secretary of the CCP openly opposed
the IPO of Ant Group, a large innovative financial company. Aghion, Dewatripont, and
Stein (2008) and Murray and Stern (2007) show that academic freedom and functional IP
institutions are two critical requirements for the production of original research and which
could question the capacity of China to compensate for their lack of freedom with mass
investment in R&D.4

We contribute to this literature by looking as objectively as possible at the relative impor-
tance of China in the development and diffusion of recent frontier technologies that were

1See CB Insights for a list.
2See the OECD Science, Technology and Industry Scoreboard 2017.
3These state subsidies and incentives to file patent applications have led experts to cast some doubt on the
relevance and quality of the average Chinese patent (see e.g. He, 2021). In the empirical analysis, we take
this possibility into account.

4Song, Storesletten, and Zilibotti (2011) and König et al. (2020) use a structural estimation of a dynamic
heterogeneous firm model and report that R&D investment in China seems to be less productive than in
other countries (namely Taiwan).
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chosen and identified without any preconceptions.

We also speak to a recent literature that exploits the patent corpus to study the diffusion of
frontier technologies. These technologies are typically characterized by their radicalness,
novelty, pervasiveness and their capacity to diffuse quickly and to have large impacts but
are also highly uncertain and risky (Rotolo, Hicks, and Martin, 2015). Webb et al. (2018)
look at the evolution in the number of patents filed in the US for a number of modern tech-
nologies such as Artificial Intelligence, Machine Learning, Semiconductor, Drones. . . They
focus on the 1970-2015 period and find that most of these technologies have experienced a
boom in the number of patents and inventors in the past decades mostly driven by US and
Japanese multinationals. They also report a modest but growing contribution of Chinese
inventors and firms to the rise of high tech patenting in the US. In a subsequent work,
Bloom et al. (2021) also used patent data to study the diffusion of 29 disruptive technolo-
gies and their adoption by firms and labor markets in the US. Their findings suggest that
there are long term impacts on the areas that hosted the initial development of these fron-
tier technologies. These two studies focus on the US and attempt to have an overall view
on the role and impact of high tech patenting. In contrast, Bessen and Hunt (2007) use
patent data to analyse specifically the rise in software patenting in the US and compare the
role of increased R&D spending and changes in IP legislation to explain this phenomenon.
Other studies typically conducted by patent offices apply a combination of different meth-
ods to look at the development of patenting in a specific technology and a specific region.5

For example IP Australia (2019) has analyzed the significant increase in patenting related
to Machine Learning. We contribute to this literature by considering six technologies that
cover various subjects and consider patents from the four main global technology contrib-
utors. This allows us to compare countries over time since the birth of these technologies.

Finally, we also contribute to a methodological literature which aims at delimiting tech-
nologies using patents. Historically, Trajtenberg (1990) tackled the classification problem
by manually curating US patents belonging to the Computed Tomography Scanners tech-
nology. This method delivers precise results but is of course too labor-intensive to be
extended to a larger corpus and multiple technologies. Other studies have used a num-
ber of rules combining keywords and Cooperative Patent Classification (CPC) classes to
define a technology and constitute groups. This is the methodology applied for by Webb
et al. (2018)6 and by the patent landscaping literature. For example, the European Patent
Office (EPO) has published a report on patenting in the field of automated vehicles (EPO,
2018). The rules used in these analysis are typically ad hoc and require a high level of exper-

5For a list of such study, see WIPO (2021).
6See Section 2.2 for more details on the selection process.
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tise. Recently, Abood and Feltenberger (2018) introduced a new methodology that aims at
circumventing this difficulty. Their approach, which we present in more details in Section
3.2, allows to emulate human-made technology classification using only a small number
of representative patents as an input. Related approaches have leveraged Natural Lan-
guage Processing and clustering algorithms to construct groups of patents (see Bergeaud,
Potiron, and Raimbault, 2017 for a review). For example, the Fung Institute proposes an
application of automatic labeling using machine learning to automated vehicles.7 Similarly
Giczy, Pairolero, and Toole (2021) have applied a slightly modified version of the Abood
and Feltenberger (2018)’s algorithm to identify patents related to AI. These methodologi-
cal works however do not attempt to measure and compare the diffusion of technologies
across countries and time. We build on their method and adapt both the selection process
of the imputed set of patents and the way the algorithm expands from this initial seed.
Ultimately, our methodology combines a small amount of human work and automated
landscaping to select patents related to a given technology with a high degree of precision
and with no limitation in the geographical coverage and has been designed with the view
of being easily extended to other technologies.

The remaining of this paper is organized as follows: Section 2 details our technology def-
inition and selection procedure; Section 3 presents the automated patent landscaping ap-
proach and how we extend it; Section 4 evaluates the internal and external validity of the
results generated by our algorithm on each of the six technologies; Section 5 documents
the rise of China’s technological power.

2 Technology definition and selection

The interpretation of the results we present in this paper are determined by two fundamen-
tal questions. First, what do economists mean by “technology”? Second, how to select a set
of frontier technologies? We address these two key preliminary questions in this section.

2.1 Definition

Technology is a widely used term and can refer to many different concepts. In the eco-
nomic and innovation literature, we classified its main usages into three categories which
we refer to as “technique”, “functional application” and “application field”. A technique is
a set of processes sharing a common methodological paradigm. Two distinct techniques

7See the webpage of the Fung Institute Capstone Project.
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can share a common goal. For example, TALENs, Zinc Fingers and CRISPR are all distinct
techniques pursuing the same goal of editing the genome. A functional application is a high
level goal which is directly targeted by one or several techniques in the course of their
developments. Examples include computer vision and genome editing. The range of their
market applications can vary and usually exceed a single market. Eventually, an application
field is an existing or newly created economic market which can leverage functional appli-
cation to develop new or improve existing products. Examples of application fields include
smartphones, nuclear power generation, etc...

In this paper, we work at the functional application level. This comes as a natural choice since
we are interested in frontier innovation which has the potential to give advanced economies
a significant growth momentum. Hence, our focus is on technologies which, like General
Purpose Technologies, have the ability to infuse progress in a large range of applications.

2.2 Selection

There are two main ways to define a set of technologies of interest: the supervised and
unsupervised approaches. The most common approach, the “supervised”, is based on hu-
man curation of technology-related documents. This is the approach followed by Webb et
al. (2018) who define a list of technologies in the high-tech segment from prior knowledge.
The second and more recent approach, the “unsupervised”, combines text mining (specifi-
cally “topic modelling” techniques) and technology-related corpus to identify technologies
(e.g. topics) without any use of prior knowledge. Such a method is implemented by Bloom
et al. (2021) who use earnings conference call transcripts to uncover technologies which are
the most frequently cited for their contribution to companies’ momentum (see also Lenz
and Winker, 2020 for an application to scientific fields).

Although extremely appealing, the unsupervised approach presents two limitations in our
context. First, and most importantly, relying on past financial and corporate documents
will invariably miss frontier technologies with still nascent market applications. Second,
existing topic modeling techniques cannot guarantee that the identified “topics” (here tech-
nologies) are conceptually homogeneous. Without any supervision, selected technologies
might (and will) include techniques, functional applications and application fields indif-
ferently. Note that this can be partially addressed by adding a manual curation on top of
the topic modeling results. Hence, in our specific setting, this however attractive approach
appears to be inappropriate.

We opted for the supervised approach but designed a methodology to minimize our own
biases and discipline the selection process. In particular, we sought to restrict to technolo-
gies that are considered as impactful and radical by many different institutions of different
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nature and geographical location. Do to so, we first screened a large number of reports and
articles published at different time and dedicated to breakthrough technologies. These arti-
cles have various sources: international institutions (OECD, 1998; 2016, EPO, 2020) national
agencies (Tarasova and Shparova, 2021, Kennedy, 2015), industry associations (BDI, 2011),
experts (Review, 2021) and consulting companies (McKinsey, 2021; Deloitte, 2021). We took
care to include sources from both developed and developing countries. From those doc-
uments, we listed without any a priori more than 30 technologies in a broad sense. Then
we classified these items into the three aforementioned categories (technique, functional
application and application field) and kept only those entering the “functional application”
category. Eventually, we reviewed the remaining candidates (goals, recent breakthroughs,
expected economic impact, and development stage) with two main objectives in mind: 1)
only keep technologies that have already proven to have market applications or are ex-
pected to do so in the near future and 2) cover a large number of distinct application
fields. From our initial list of technologies, we ended up with six frontier technologies:
additive manufacturing, blockchain, computer vision, genome editing, hydrogen storage
and self-driving vehicles. See Appendix A for more details about how we selected the six
technologies.8

2.3 Six different technologies

Before moving to the description of the automated patent landscaping methodology, we
briefly discuss the characteristics of the six technologies considered in this article and why
they constitute a relevant panorama of frontier technologies at the dawn of the 21st cen-
tury. A brief individual description and discussions about market potential are available in
Appendix A.

Additive manufacturing, blockchain, computer vision, genome editing, hydrogen storage,
and self-driving vehicles are all technologies that are seen as having the potential to funda-
mentally disrupt our daily lives, are growing rapidly, and are receiving large investments.
They are however at different stage of their development. Additive manufacturing, and
computer vision are technologies that have been developed for decades with existing com-
mercial applications. It is usually acknowledged that the first 3D-printing patents are filed
in the first half of the 1980s9 (Forsberg, 2020) and the history of computer vision starts with

8These technologies have been chosen among a large list that include other potential candidate (to name a
few: natural language processing, vertical farming, cultured meat etc...). We do not claim that these six
technologies alone are representative of the entirety of frontier technologies at the dawn of the 21th century.
Our goal is to illustrate the development of innovation in China and other countries using these examples
that are constructed using the methodology presented in this paper.

9Although some sources consider previous patents to related to 3D printing
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the development of digital image scanner in the 1960s. Self-driving vehicles have been the
subject of significant research at least since the 1970s, but the process of developing a fully
autonomous commercial vehicle is not yet complete. Finally, hydrogen storage, genome
editing and blockchain are more recent technologies, even if in some case, research started
many years ago. Figure D1 in the Appendix shows the number of patent publications in
each of these technologies each year (these patents have been selected with a methodology
that we detail in the next section).

These technologies also differ in their development. While Additive manufacturing, com-
puter vision and self-driving vehicles are the subject of massive investment by large indus-
trial groups for several years, startups play a big role in pushing the blockchain technologies
which is very recent and allows firms to scale-up without the need of massive investment
in tangible capital. The development of genome editing technologies remains closely linked
to university laboratories, with an important coordination effort (see e.g. Williams, 2013).
Using a simple classifier based on the name of the assignee, we find that in 2019 about 12%
of patents in genome editing are filed by a university of a public research institution. This
number is below 5% in all other five technologies.10

Last but not least, these six technologies have applications (or potential applications) in a
wide varieties of sectors. Additive manufacturing is already adopted in many different in-
dustrial sectors, blockchain has implication in data processing but also in finance, computer
vision is an important brick of the development of AI systems, genome editing is mostly
concentrated in the pharmaceutical sector, hydrogen storage in energy and self-driving
vehicle in transport.

3 Automated patent landscaping with humans in the loop

In this section, we introduce automated patent landscaping, how it relates with existing
approaches in economics, what are its limitations and how we address them.

3.1 The traditional approach

Delineating a technology in the corpus of patents, or constructing clusters of patents, is a
long-standing issue. Various approaches have been experimented. The three main instru-
ments that have been leveraged are technological classes, citations and keywords. Although

10This classifier is based on a simple model that assign patents in a category “academic institution” or not
based on the name of the assignee. The model can be found here.
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all of these instruments carry some valuable information, they are also affected by a signif-
icant degree of noise. In this section, we provide qualitative intuitions on these limitations.
Section 4 will further quantify them. Technological classes are based on technical principles
which are only partially related to the concept of technology we are looking for (functional
application). Citations between patents have clear limitations in this case as well. Patent-to-
patent citations are generated in order to define the scope of the technological monopoly
granted to the patentees and to assess the validity of a patent over prior art. Proximity
in the sense of functional application is then just one of the many reasons to generate a
citation. Besides, the network of citations is very parse and a large number of patents are
never cited (Hall, Jaffe, and Trajtenberg, 2005). Finally, keywords can help identify patents
dealing with a technology. However, language is highly variational: there are many ways
to mention the same idea and at the same time a given word can have many different
meanings. Hence, one can expect neither comprehensiveness nor accuracy from keywords
alone. In this context, following Trajtenberg (1990), manual patent curation might appear
to be the most accurate way to delineate a technology in the patent corpus.11

3.2 Automated patent landscaping

That is where the automated patent landscaping introduced by Abood and Feltenberger
(2018) makes an important contribution. The authors develop a semi-supervised machine
learning framework to emulate human-made technology classification. The algorithm only
requires a small set of patents as input – the seed – which must be representative of the
technology of interest. The algorithm then expands to “likely related” patents using both
technological classes and citations (forward and backward). Specifically, it first expands
to technological classes which are overrepresented in the seed and then expands twice on
citations. Importantly, at this stage, we know that the resulting expansion set includes
patents unrelated to the target technology or “false positives”. The false positives are then
pruned out using a classification model, based namely on the patent abstract, applied to the
expansion set.

More precisely, the classification model is trained to distinguish between patents that be-
longs to the seed and a set of patents randomly drawn from the universe of patents, out-
side the expansion set (so-called anti-seed) and therefore “likely unrelated” to the target
technology. This approach ultimately returns a group of patents in the target technology
at virtually no cost, except for the curation of the seed patents. Importantly, no human

11Trajtenberg (1990) manually curated “computed tomography scanners” patents granted in the US to mea-
sure the value of citations.
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intervention is needed to elaborate the set of rules determining whether a patent belongs
or not to the target technology. Semantic patterns are learned from the data.

This approach is already highly promising but still exhibits some important limitations.
First, the pruning model is trained on “polar” cases while we would prefer to be apply
it to “intermediary” cases. The seed patents (positive examples) are selected to be at the
“core” of the target technology. On the contrary, anti-seed patents (negative examples) are
chosen from the complementary of the expansion set, hence potentially very far away from
the target technology. For example, when trying to select patents related to the blockchain
technology, the anti-seed might contain patents on drugs. Hence, even if the algorithm
performs well on the validation set12, there is no guarantee that it will perform well when
applied to patents in the expansion set which is likely to include a large share of “interme-
diary” examples, which do not directly relate to the target technology, but are not very far
from it. Training the model using a large majority of polar examples may affect the overall
validity of the classification model and the results of the algorithm. Second, the algorithm
does not really account for data variation, that is, the impact of variations in the seed on the
algorithm outcome. Algorithm robustness is, however, a critical point to assess the degree
of confidence we can place in our results and the overall interpretation.

3.3 A new extended approach

Our extended approach seek to address these two limitations. First, we augment the anti-
seed with “harder” examples. These harder examples naturally arise from the human
labeling of the seed patents that we performed for each technology. We start by inspecting
existing attempts to landscape our technologies of interest using traditional methods. Using
this literature and their reported selection rules (usually based on technological classes
and/or keywords)13 we generate a set of representative patents, keywords and CPC classes
to be included in the seed for each technology. Sections B.3.1 to B.3.3 details these rules
for each technology. From these rules, we randomly draw a set of potential candidate
patents and manually and carefully label them as belonging to the technology or not from
reading their titles and abstracts (see Table B1). Importantly, we keep the rejected patents
as they provide “hard examples”. Although they matched one or more rules used by
previous attempts to landscape the technology, a human annotator have chosen to exclude
them based on their abstracts. These are typically the “intermediary” examples we want

12The validation set is typically a 20-50% random split of the learning set (here, the seed and anti-seed patents)
which is not used for training the model.

13See for example IP Australia (2018), Clarke, Jürgens, and Herrero-Solana (2020) and IIPRD (2017) for
Blockchain. A full list of the sources we used is given in Appendix B.2.
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our classification model to learn from and to be ultimately able to distinct from patents
actually belonging to the target technology we are trying to delineate. We call this set of
examples the augmented anti-seed. The model is ultimately trained using both the anti-seed
a la Abood and Feltenberger (2018) and the augmented anti-seed to constitute the negative
examples. See Appendix B for more details about how we construct the seed.

Second, we address the data variation question by implementing a series of robustness
tests based on random variations in the seed. Specifically, we investigate how variations in
the seed affect the expansion and the pruning outcomes. Formally, to test the robustness
of the expansion, we draw random subsets from the seed, run the expansion using each
of these subsets and compare the generated expansion sets. Next, we assess the pruning
robustness by iterating over various random train-test splits of the annotated data. Various
models are trained on varying sets of training data for each technology. Pruning robustness
is ultimately evaluated by looking at models’ agreement on a sample of out-of-training
patents. Detailed results are reported in Section 4.

4 Algorithm deployment and validation

In this section we go through the main steps of the actual deployment of the algorithm.
Next, we show that our results, in addition to being accurate and consistent, also exhibit
patterns in line with technology experts’ expectations.

4.1 Algorithm deployment

To begin with, it is important to note that contrary to Abood and Feltenberger (2018), we
deploy the algorithm at patent family level rather than at patent publication level. A patent
family is a collection of patent documents that are considered to cover a single invention
in the sense that they share the same priority claims. Their technical contents are identical.
Hence, considering only one document per family does not imply any loss of information
while significantly reducing the total number of items considered.14 This seemingly minor
twist has two important practical advantages. First, it enables us to consider all families
with at least one publication having a known English abstract. That way, we ultimately
cover more than 86% of all publications since 1970, while only 76% of patent publications
do have a non-null abstract in our database. Detailed coverage is reported in Figure C1 in
Appendix. Second, it minimizes the amount of texts to be classified at the pruning stage.

14There are around 120 million patent publications in the CLAIMS dataset versus 70 million patent families.
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Each family is processed only once, even if it includes more than one patent. This improves
the overall computational tractability of the algorithm. Each individual patent then inherits
from the characteristics of its family.

Next, we delve into the algorithm deployment itself. As already discussed in Section 2, our
work starts one step before the algorithm described by Abood and Feltenberger (2018). This
first step consists in the definition of rules to identify a set of candidates. These candidates
are picked out of patents which match at least one of the rules that we were able to find in
the specialized literature. These rules include technological classes, keywords and patent
similarity.15 A random set of candidates are then labeled by humans based on the abstract
and detailed annotation guidelines (see Table B1 in Appendix B). Annotation guidelines
guarantee both transparency and replicability. In practice, we labeled candidates until at
least 300 candidates are accepted which constitutes the technology seed. Importantly, rule-
based candidates systematically included a large proportion of false positives, which were
rejected. This set of rejects constituted the augmented anti-seed.16

Starting from the seed, the following step is the expansion. Regarding this step, we mainly
follow to the Abood and Feltenberger (2018)’s procedure. We first expand to technological
classes that were over-represented in the seed and then expand twice using citations (back-
ward and forward). Note however that we had to adapt at the margin to take into account
our choice to work at family level rather than publication level. In particular, we expressed
citations in terms of the patent family rather than the usual publication format. For each
family, we considered all citations received (forward) and sent (backward) by any patent in
that family.

Finally, our pruning stage also differs from Abood and Feltenberger (2018) along 3 di-
mensions. First comes the composition of the training data. As already discussed, we
add an augmented anti-seed to the seed and anti-seed described in their paper. Second,
while our predecessors used not only text but also citations and technological classes as
input to the classification model, we only restricted to text. In our view, both technological
classes and citations imply potential pitfalls at this stage. Using technological classes in
both the expansion and the classification model can generate pathological cases. Assum-
ing that all technological classes in the seed are found important, then the anti-seed and
the seed have no technological class in common which makes the classification task trivial.
Regarding citations, by construction, patents in the second level of the citation expansion

15The specialized literature sometimes specifically reports key patents for a technology. We used the most
similar patents as defined in the Google Patents database to include the most similar patents to these key
patents in our dataset.

16These false positive would have been wrongly included in the set of patents delineating the target technol-
ogy had a simple rule-based approach been used.
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(L2) have no citations in common with the seed. Hence, considering citations in the clas-
sification task implies a systematic and uncontrolled bias against patents in the part of
the expansion which we find undesirable. Third comes the model itself. We implement 3
different neural network architectures popular for text classification tasks: the multi-layer
perceptron (MLP), the convolutional neural network (CNN) and a transformer, specifically
a pre-trained Bert encoder. We provide an overview of these architectures in the following
sub-section. The actual pruning is performed using the Transformer model which exhibits
both the highest performance and consistency.

4.2 Performance and consistency

The most simple architecture we consider is the multi-layer perceptron (MLP). This archi-
tecture can be seen as a stack of logistic regressions and treats tokens or groups of tokens
independently. Although it can be successful at identifying key phrases, it is unable to
handle context and might eventually be seen as a sophisticated phrase matcher. We then
turn to a second model and implement a Convolutional Neural Network (CNN). This ar-
chitecture leverages the sequential nature of text through the use of feature maps (masks).
These feature maps are there to detect sequences of tokens with a common and discrimi-
nant “meaning”. CNN performances usually dominate those of MLP models thanks to this
enriched understanding of language. However, they lack “memory” and cannot handle
long context as feature maps typically focus on 3 to 5 token-long spans of text. Finally, we
consider the Transformer architecture which was recently introduced (Vaswani et al., 2017)
and has achieved spectacular results in many natural language processing (NLP) tasks, in-
cluding text classification. Transformers rely on a core mechanism called attention which
enables them to “understand” tokens in the context of neighboring tokens. Transform-
ers are very large models trained at masked language completion on very large texts and
eventually fine-tuned on specific tasks (e.g. text classification). This pre-training allows
downstream users to start from a model that already embodies a large “understanding”
of language. A limited number of examples is then enough to adjust weights and achieve
high performances on more specific tasks in specific contexts. This is especially well-suited
when annotating examples is costly. The main drawback of using Transformers is their
high computational costs.17

Performance We then train all these models. The task is a standard binary text classi-
fication. Specifically, we train and evaluate each model on ten distinct train-test sets for

17Transformers are almost intractable using traditional Central Processing Unit (CPU) and require Graphics
Processing Unit (GPU).
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each technology. We implement this approach as a cross-validation method to have an
estimate of the impact of random variations of the training set on both the performance of
the model and its out of (training) sample predictions - later called consistency. Let us first
focus on performance before moving to consistency later. We report the median precision,
recall and F1-score for each technology and model architecture in Table 1. These metrics
were all computed on the test set, that is, on examples not used to train the model. The
precision is the share of texts that the model assigns to the seed and which are indeed part
of it. The recall is the share of texts in the seed which were indeed predicted to be part of
it. The F1-score is the arithmetic mean of the precision and recall. We observe that MLP
and CNN architectures tend to exhibit similar F1-score. However, MLP models have higher
precision and lower recall than CNN. This relates to the fundamental nature of MLP. As
stated earlier, MLP can be seen as a sophisticated keyphrase matcher which usually has
high precision but low recall. In any case, the transformer outperforms both of the models
and achieves around 90% of median F1-score for all technologies except for self-driving
vehicles (79%).18 In the rest of the paper, we will use results from this latter model.

Table 1: Models performance

MLP CNN TRF

P R F1 P R F1 P R F1

Additive Manufacturing 0.89 0.79 0.84 0.79 0.85 0.81 0.86 0.92 0.89
Blockchain 0.90 0.81 0.86 0.83 0.88 0.86 0.97 0.98 0.97
Computer Vision 0.89 0.81 0.85 0.86 0.87 0.87 0.87 0.95 0.90
Genome Editing 0.89 0.87 0.88 0.87 0.91 0.88 0.86 0.94 0.89
Hydrogen Storage 0.86 0.73 0.80 0.76 0.83 0.78 0.92 0.98 0.93
Self-driving Vehicle 0.79 0.65 0.71 0.69 0.73 0.71 0.75 0.85 0.79

Notes: Reported performance metrics were computed on the test set - unseen during training. Performance metrics are reported as follows: P for
precision, R for recall and F1 for F1-score.

Comparison with rule-based approaches Using our candidate annotation exercise, we
can compare those results with the performance that would have been obtained based on
the rules used by existing attempts to landscape our six technologies of interest. Specif-
ically, it enables us to obtain performance metrics for rule-based approaches using tech-
nological class, keywords and patent similarity. Although our approach does not enable
us to compute all the performance metrics reported before, we can compute the precision
of simpler approaches (for example using only a set of relevant keywords). We find that
rule based candidate selection delivers both low and variable precision performances across

18This technology is indeed harder to classify even for humans. The very same technology can be used to
automate driving or to assist human driving. In the former case, we would accept a patent while in the
latter it would be rejected.
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technologies. Specifically, precision from CPC-class rule-based patent selection ranges from
0.01 (blockchain) to 0.34 (additive manufacturing). Precision from keyword rule-based se-
lection goes from 0.09 (blockchain) to 0.89 (genome editing) for an average of 0.32. Precision
from patent similarity ranges from 0.02 (additive manufacturing) to 0.57 (genome editing).
All these metrics are reported in Table D1 in Appendix. It clearly appears that our approach
to delineate technologies from the corpus of patents not only achieves good performance
but also outperforms traditional rule-based methods. Hence, the set of patents selected us-
ing this new approach is both more precise and more complete than those of most existing
attempts.

Consistency As already discussed, although performance per se matters, it is also crucial
to understand how variations in the seed data can affect the results of the algorithm. We
identify two channels. First, data variations can affect the expansion. The latter depends
on the seed and has a critical role. It determines the set of documents which will be
considered by the pruning model. Second, data variations can affect the pruning itself.
The pruning model depends on the seed, the anti-seed and the augmented anti-seed and
ultimately determines which documents in the expansion are to enter the technology or
not. Robustness to random variations in the data is then crucial to ensure that algorithm
results can be exploited rigorously. To investigate the consistency of the expansion, we
generate random subsets of the seed. Specifically, we consider 3 different sizes: 90%, 70%
and 50% of the initial seed and draw 10 subsets for each size. We then proceed to the
full expansion starting from these distinct seeds and compute the pairwise family overlap
of the generated expansion sets for each technology and seed size. Detailed results are
reported in Table 2. We find that the average pairwise family overlap exceeds 89% in all
cases. This remarkably high number indicates a high level of consistency for the expansion
step and reassure regarding the relevant of the delimited technology.

Table 2: Median pairwise expansions overlap

90% 70% 50%

Additive manufacturing 0.99 0.93 0.89
Blockchain 0.99 0.98 0.96
Computer vision 0.99 0.96 0.92
Genome editing 0.99 0.99 0.98
Hydrogen storage 0.99 0.97 0.95
Self-driving vehicle 0.99 0.97 0.95

Notes: For each size (90%, 70% and 50%), we drew 10 random subsets
of the seed and proceeded to an expansion. For each pair, we com-
puted the share of families in the two expansions. We report the me-
dian share of overlapping families across all expansion pairs.
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Next, we looked at how the pruning stage is affected by variations in the training data.
As discussed above, we trained the same architectures on 10 different train-test splits (of
respective size 80%-20%) for each technology as a way to emulate natural variations in
the data. We then apply these models to a set of 10,000 out-of-training-sample documents
randomly drawn from the expansion. For each technology, we then look at the standard
deviation of the ten scores (each score ranging between 0 and 1) for each document and
report its median in Table 3. We find that the standard deviation of the predicted scores
is usually very low, most of the time below 0.05 which supports the consistency of the
pruning step.

Table 3: Models robustness (Median dispersion in predicted scores)

MLP CNN TRF

Additive manufacturing 0.029 0.082 0.017
Blockchain 0.008 0.047 0.003
Computer vision 0.015 0.029 0.010
Genome editing 0.003 0.001 0.004
Hydrogen storage 0.015 0.037 0.005
Self-driving vehicle 0.039 0.091 0.011

Notes: For each model architecture, we trained 10 models using distinct
random subsets (80%) of the training set. Each model was then applied to
a set of 10,000 texts (out of training set). We report the median standard
deviation (at the sample level) of the predicted scores across models.

To summarize, our evaluation of the performance and consistency of the extended patent
landscaping is very encouraging. In the next section, we take a first look at the set of
patents that constitute each of the six technologies and consider the external validity of our
approach.

4.3 External validation

We now use the output of the algorithm to investigate whether our results make sense. To
do so, we first consider the top assignees and top inventors as reflected by the total number
of patents they hold.19 We do it for each studied technology. We then confront these results
with prior insights from technology-specialized literature as well as background checks.20

These lists of top assignees and inventors are reassuringly consistent with our priors and

19We used the harmonized name of assignees and inventors from the IFI CLAIMS dataset. This harmoniza-
tion does not always guarantee that two different names of the same entities are actually merged in the
same entity (e.g. Toyota Motor Co Ltd and Toyota Motor Corps).

20Note that, while the landscaping is done at the family level, analytical results are at the patent publication
level.

17



existing information. They also provide insights about the main actors of the different
technologies considered. Finally, we also use the PatCit dataset (Cristelli et al., 2020) and
look at the top 3 most cited academic articles by patents in each technology.

4.3.1 Top 10 assignees by technology

Top panel of Table 4 reports the top 10 assignees for each technology by the number of
patents they were granted worldwide.

A first observation is that most of the obvious players in each technology are present. For
the sake of brevity, we focus on some remarkable high-ranked agents for each technology
and explain why they were indeed expected. Starting with additive manufacturing, Xerox
and Hewlett-Packard are two large companies that traditionally developed printers and
which naturally moved to 3D printing technologies. In the field of blockchain, Alibaba, In-
tel, nChain and IBM are also in the top list of assignees in the expert-based landscaping of
blockchain innovation proposed by Clarke, Jürgens, and Herrero-Solana (2020). The most
prolific assignees in the field of Computer vision include firms that build and sell electronic
devices, including cameras (Canon, Sony etc...). Interestingly, the top assignees in the field
of genome editing are universities such as University of California Berkeley, Harvard Uni-
versity and University of Pennsylvania. As explained in Section 2.3, this technology as the
characteristics of being very tightly connected to the academic world and breakthrough
advances have been made in the laboratories of famous universities. Nevertheless, the list
also reports large companies that develop chemistry and pharmaceutical products like Re-
generon and Dupont. Overall, these findings are consistent with results from an overview
of patenting in the genome editing technology field proposed by Benahmed-Miniuk et
al. (2017). The field of hydrogen storage technologies is mostly dominated by car manu-
facturers. This naturally comes from the fact that the main usage of this technology is to
propel vehicles using hydrogen. Finally, the field of self-driving cars also includes many
traditional car manufacturers, including Toyota and Ford that communicate intensively on
their progress in the development of autonomous vehicles. The list of top assignees also
includes automotive equipment suppliers such as Bosch and Denso Corp.21

On top of very large firms that spread over a large number of different technologies such
as IBM and Samsung, we also note the presence of a number of firms that are much more
specialized in a specific field. This is notably the case of Air Liquide for hydrogen storage,
nChain for blockchain, ASML for additive manufacturing, Regeneron pharma for genome
editing and Denso Corp for self-driving cars.

21Toyota, Ford and Bosch are mentioned as the top assignees in the field by WIPO (2019) (Chapter 3).
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4.3.2 Top 10 inventors

Moving from firms to people, the bottom panel of Table 4 reports the top 10 inventors for
each technology by the number of patents they were granted worldwide.

As previously, for the sake of brevity we focus on the most emblematic and high-ranked
inventors. We can note the presence of M. Karczewicz in both Blockchain and Computer
Vision. M. Karczewicz is a prolific inventor working at Qualcomm Technologies, Inc.. She
is famous for having developed many technologies related to data compression which facil-
itates the transfer of important mass of information. The methods she developed are very
central for many computer-related technologies such as computer vision and blockchain.
As a recognition for her contributions, the EPO named her one of the three finalists for the
award of European inventor of the year 2019.22 Considering additive manufacturing, the
most prolific inventor in the field is Kia Silverbrook. He is also a famous inventor who
holds more than 9,000 patents worldwide.23 K. Silverbrook founded Silverbrook Research,
a company that developed digital printing and 3D printing technologies, among other in-
ventions. In the field of genome editing, our top inventor is Andrew Murphy. He is the
vice president in charge of research of Regeneron, a biotechnology company that devel-
ops different drugs and recently made important progress in new therapies using CRISPR
(Gillmore et al., 2021). We also note the presence of Feng Zhang, a Professor at MIT and
researcher at the Broad Institute. He is well known for his role in the development of op-
togenetics and CRISPR. He is also famous for his ongoing patent dispute with Chemistry
Nobel Prize recipients J. Doudna and E. Charpentier over CRISPR-cas9 human application
priority. Next, regarding hydrogen storage, Stanford R. Ovshinsky was a prolific inventor
and engineer who contributed enormously to various fields, including energy science, and
own hundreds of patents. In particular, he developed solid hydrogen storage technologies
and founded the company Ovshinsky Innovation LLC at the end of his life to continue to
explore alternative sources of power. Finally, in self-driving vehicle technology, Atsushi
Tabata is an engineer at Toyota who published several articles related to the automation of
driving controls.

4.3.3 Top academic publications

As a last exercise, we use the PatCit database (Cristelli et al., 2020) to look at the most
cited academic papers by technology. PatCit is a tool that lists all citations from patents
to research articles (also known as Non Patent Literature citations) that were used as a

22See EPO (2019).
23See Wikipedia (2021).
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source. We report these articles along with the corresponding journal title in Table 5. To
save space, we only report the top 3 for each technology but a longer list of doi is available
in Table D2. As expected, the most cited articles, i.e. those that were the most pivotal
in producing the ideas used in the development of the patents of each technology, are
published in journal that are related to the technology. These journal can have a direct
and clear link, for example, the International Journal of Hydrogen Energy is mentioned for
hydrogen storage and the Proceedings Eighth IEEE International Conference on Computer
Vision for computer vision.

However, the links may also seem less obvious, reflecting the complexity of externalities
from academic research to the development of innovations. For example, the second most
cited article for self-driving vehicle is a 1982 research that discusses CO2 concentration in
the atmosphere. Since one of the goals of autonomous cars is to reduce the carbon footprint
of transportation, this topic is often mentioned and discussed in the relevant patents.
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5 The rise of China

In this section we consider the contribution of the US, Europe, Japan and China regarding
patents in each of the six technologies selected using the procedure described previously.

5.1 The bi-polarization of frontier innovation by the US and China

To measure the respective contribution of each region, we first count the number of utility
patent filed by innovative actors in this region. An ideal way of doing so would require a
way to assign patents using the address of the patentee. However, this would lead to a dra-
matic underestimation of the number of patents filed by Chinese inventors and assignees
as these patents are less likely to be associated with an address in standard patent database
(IFI CLAIMS, Patstat etc...).24 To address this issue, we will focus on the earliest publica-
tions of a given patent family at the US (US), European (EP)25, Japanese (JP) and Chinese
(CN) patent offices. We thus make the underlying assumption that firms first file a patent
application domestically before potentially filing subsequent applications elsewhere.

For each technology , we start the analysis from the first year for which we could find at
least 500 published priority patents (1989 for additive manufacturing, 1998 for blockchain,
1974 for computer vision, 1983 for genome editing, 1992 for hydrogen storage and 1974 for
self-driving vehicle) and report the share of the four patent offices in the patent publication
count for each technology in Figure 1. Of course, simply counting the number of patent
applications ignore the well-known fact that all patents are not created equal and should
be qualified by some measure to weight their quality. Nevertheless, Figure 1 already strik-
ingly show the generalized growth of the share of Chinese patents across all technologies
considered from the early 2000s. While it used to be almost insignificant in the early 2000s,
at the end of the 2010s, the Chinese office represents at least a third of patent publications
for all the frontier technologies considered. This share even exceeds 70% in the case of
blockchain and 50% for computer vision.

It should also be noted that this relative growth in China’s technological power is taking
place against a backdrop of markedly heterogeneous trajectories within other regions. In
particular, the share of Japanese patents collapsed to a very low level at the end of the
period in favor of Chinese patents. That Japan lost its position as a central hub for both

24In IFI CLAIMS, in 2021, 99.99% of USPTO patents are associated with a an address for the inventors while
in the CNIPA inventors are not geolocated after 2009.

25We include individual national patent offices from all EU countries to which we add the British, Swiss and
Norwegian patent offices on top of patents filed at the EPO under the label “EP”. Since we only keep the
oldest publication in a given patent family, we do not risk double counting patents.
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Figure 1: Relative contribution to frontier technologies
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Notes: Patent counts in the four patent offices: USPTO (US), CNIPA (CN), EPO and European national patent offices (EP) and JPO (JP)
as a share of the total patent count for each technology. The year of publication is reported in x-axis. National European patent offices
include all EU countries, UK, Norway and Switzerland.

production and innovation in Asia since the 2000s is a well documented fact (Criscuolo and
Timmis, 2018; Ito et al., 2019), and it seems to be particularly striking for these six frontier
technologies. The US continues to maintain a relatively high position in all technologies
while Europe holds a significant share of patents in self-driving vehicle and hydrogen
storage but at the same time is almost nonexistent in blockchain and computer vision.

Looking in more details about the dynamics in Europe, we consider individual countries
in Figure D2. Overall, Germany holds most of the patents in all technologies with more
than 50% of European priority fillings. Two exceptions are worth noticing: Blockchain and
Genome editing where the UK is dominating at the end of the period. This finding is not
surprising as Germany is the most important manufacturing hub in Europe. On the other
hand, the UK is one of the world leader for blockchain technologies and home of leading
research universities that are important drivers of innovation in genome editing. France
accounts for about 10% of patents in hydrogen storage, computer vision and self-driving
vehicles and other European countries share amount to about 10% to 15% of patents in all
technologies.

Overall, the frontier technology landscape, once dominated by the US, Japan, and Europe,
now appears much more polarized between the U.S. and China.
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5.2 The Chinese catch up in quality

Next, we examine the quality of patents published in the four patent offices mentioned
above. As previously discussed, measuring contributions to frontier innovation using only
the raw number of patents published in frontier technologies can be misleading. Not all
patents are created equal. In particular, there is good reason to believe that the number of
patents, especially in the case of China, could be a noisy signal of technological develop-
ment, undermined by poor patent quality. As discussed by He (2021), patent applications in
China reflect diverse incentives which have sometimes little to do with invention. These in-
centives include government subsidy or job promotion, reputation building for individuals
or universities and institutions, or acquiring certification as national high-tech enterprises.
In this context, Hudson (2021), stressed that patent counts is an unreliable methodology to
determine technological leadership, using the case study of the 5G standards for broadcast
cellular network.

To account for this, we first filter patent families and keep only these that have at least
one patent publication, within a given technology, in two of the four main patent offices
considered (CNIPA, USPTO, JPO and EPO). This restriction will remove the contribution
of patents that have remained purely domestic and has two effects. Firstly, it allows to
restrict to patent families having a minimum level of quality.26 Second, it increases the
comparability of patent count as it requires the family to have at least one patent application
accepted in an other patent office. Results are presented in Figure 2.

With this restriction, the share of China is clearly less predominant at the end of the time
period. China now holds less than 30% of all patents and nearly none in hydrogen storage.
Conversely, the relative importance of the US is now much larger and approaches 50%
in all technologies. However, while the levels are different, the trends remain similar. In
particular, China is growing since the 2000s relatively faster than other countries, and this
is especially striking in the case of Blockchain and computer vision.

Do the previous results suggest that China is catching-up in terms of creating breakthrough
innovations in these different technologies? We investigate this by looking at a common
measure of patent quality, the number of citations received by patents.27 Comparing dif-
ferent countries using citation counts is not straightforward because the propensity to cite
or to be cited is highly dependent on the intellectual property offices’ specific rules and

26The literature has established a link between the geographical coverage of a patent family and its quality,
see e.g. Squicciarini, Dernis, and Criscuolo (2013). Restricting to family with a patent in each four patent
offices will result in a noisy picture, yet with similar trends, due to the small number of observations for
some technologies.

27Note however that the very notion of patent quality is multi-faceted. The various measures used to appre-
hend patent quality can be inconsistent as evidenced by Higham, De Rassenfosse, and Jaffe (2021).
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Figure 2: Relative contribution to frontier technologies - restricting on international appli-
cations

(a) Additive manufacturing
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Notes: Patent counts in the four patent offices: USPTO (US), CNIPA (CN), EPO and European national patent offices (EP) and JPO (JP)
as a share of the total patent count for each technology. Restriction on patent family with at least one publication in two of the main
patent offices (USPTO, CNIPA, EPO and JPO). The year of publication is reported in x-axis. National European patent offices include all
EU countries, UK, Norway and Switzerland.

customs. In addition, the home bias, i.e. the propensity to cite more naturally patents from
the same patent office, mechanically increases the number of citations as the number of
domestic patents increases. We however replicates the exercise of Figure 1 but weighting
the number of patents by the number of citations received from foreign patent offices. The
results are presented in Appendix D, Figure D3 and are consistent with that of Figure 2,
suggesting that China is indeed catching-up in terms of quality.

A natural way to abstract from the home bias is to use one common origin for patent
citations. We do this using citations received from Patent Cooperation Treaty (PCT) appli-
cations. PCT applications are international application that provides a common procedure
to file a patent applications in all member states (which include more than 150 countries).
In this procedure, an International Searching Authority will be in charge of searching for
prior art which limits the risk of home bias. In addition, we chose to focus on the upper
tail of the distribution of citations since the most cited patents are also those which are
expected to have the largest impact. More precisely, we consider the average number of
citations received by the top 10% most cited patents in each technology, year and country.
The results are presented in Figure 3. In order to account for the fact that the average
number of citations is not stationary, we report each number standardized by the US cor-
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responding value. We can see that China is clearly exhibiting an upward trend in terms of
the average citations received by its top patents and has clearly caught up with Europe and
Japan in all technologies, and in some cases is very close to the US.

Figure 3: Average citations received from PCT applications by top 10% most cited patents

(a) Additive manufacturing
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Notes: Average citations received by the top 10% most cited patents each year and in each technology and country from PCT applica-

tions. Level relative to the US. Top 10% patents are selected in the distribution of patents with at least once citation. Each series has been
smoothed using 3 year rolling window centered around current year.

Even if we have only considered citations from PCT applications, it is still possible that this
measure is affected by the large number of patents filed as the CNIPA, or that PCT applica-
tions have a differential propensity to cite patents in different patent offices. We therefore
turn to an alternative measure of the contribution of a single patent to its technology, which
we call radicalness. To do so, we follow the idea developed by Kelly et al. (2021) who ex-
ploit the semantic content of a patent and define an index of quality which is based on the
extent to which this patent is different from its predecessors, but close to its successors.
Kelly et al. (2021) apply this methodology to USPTO patents as their full text is available
and show that this index of quality indeed captures the technological value of a patent in
the sense that these patents are at the same time novel and impactful. We make several
adjustment to their methodologies to adapt it to our need. First, as the full text of patent
is not available for most documents outside the USPTO, we rely instead to the embedding
representation of patent publications provided by Google Patent (see Srebrovic, 2019 for
more details). Second, we calculate our measure of radicalness, within each of our six
technologies instead of comparing a patent with the universe of other publications. That
is, for each technology, we assign to each patent a measure between 0 and 1 qualifying its

27



contribution to the field. More details are provided in Appendix C.2.

Figure 4 presents the relative share of the yearly number of patents, weighted by our mea-
sure of radicalness, from 2000 to 2014.28 Overall, the results are consistent with the fact
that China is catching-up with the US – which remains the technological leader – in terms
of its contribution to these six technologies/ At the same time, Europe plays a marginal
role, especially regarding computer vision and blockchain. Japan continues to contribute
significantly to the fields of hydrogen storage and self-driving vehicle.

Figure 4: Relative contribution to frontier technologies - weighting by radicalness
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Notes: Patent counts in the four patent offices: USPTO (US), CNIPA (CN), EPO and European national patent offices (EP) and JPO
(JP) as a share of the total patent count for each technology. Each patent is weighted by a measure of its radicalness as defined in
Appendix C.2. The year of publication is reported in x-axis. National European patent offices include all EU countries, UK, Norway and
Switzerland.

5.3 China’s frontier innovation domestic capacities build up

In light of the previous results, one natural question is whether China can continue to
catch-up with the US and push the technological frontier further. To investigate this, we
want to look the extent to which the rise in patenting (adjusted for quality) at the Chinese
patent office reflects the actual development of domestic innovation capacities.

To investigate this, we look at the origin of the priority application in a given family of

28We start in 2000 and stop in 2014 due to the need to use 5 year window to calculate the index of radicalness
and to keep enough data to calculate a reference point (see Appendix C.2).
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patents. To the extent that the office of priority filing, that is the office where the first patent
of a family was filed, is a good proxy for the country of residence of the inventor or the
assignee, then the evolution of the number of Chinese patents that claim priority to a patent
also filed in China, as opposed to another country, informs on the build up of local frontier
innovation capacities which are key to escape the middle-income trap. Indeed, if most
Chinese patents are subsequent applications of an invention originally protected in the
United States, this would indicate that US firms are interested in protecting their products
or processes in China and would reflect the growing attractiveness of the Chinese market
to foreign technology owners. Therefore, any increase in the share of Chinese patents that
claim priority to the Chinese patent office would indicate that the development of these
products and processes is increasingly coming from domestic innovation activities.

In Figure 5, we plot the share of patents filed at CNIPA respectively with a priority filing
also at CNIPA and at the USPTO (left-hand side panels). We see that the share of domestic
priority filing is increasing since 2000 when priority filings were mainly coming from the
US (and also from Japan, see Figure D4 for a more complete picture). By 2019, the majority
of Chinese patents claim priority to domestic applications. For comparison, we do the same
exercise for the USPTO (right-hand side panels and Figure D5) and find that the USPTO
tends to exhibit a consistently high share of US priority filings, usually close to 80%.

These results indicate that China is building-up its innovative capacity, but at the same
time does not seem to account for a large share of USPTO priority claims. To investigate
further the influence that Chinese patents have worldwide, and in particular in the US, we
look at the origin of citations received by CNIPA patents in each of our six technologies.
Figure 6 plots the distribution for two subperiods (2000-2009 and 2010-2019) and show that
the influence of Chinese patents, as measured by the inflow of forward citations received,
is much more internationalized in the recent period than it was in the early 2000s. In
particular, more than one third of the citations received in the genome editing technology
comes from foreign patent offices, mostly from the USPTO.
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Figure 5: Origin of priority filings, US and China
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(b) Blockchain (CN and US)
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(c) Computer vision (CN and US)

0

.2

.4

.6

.8

1

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2018
2019

0

.2

.4

.6

.8

1

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2018
2019

(d) Genome editing (CN and US)
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(e) Hydrogen storage (CN and US)
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(f) Self-driving vehicle (CN and US)
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Figure 6: Origin of citations received by Chinese patents
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from PCT applications are excluded.
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6 Conclusion

In this paper, we have extended the automated patent landscaping approach from Abood
and Feltenberger (2018) to accurately and consistently delineate a group of frontier tech-
nologies from the worldwide corpus of patents. Our first contribution is to show that this
methodology, which can be easily applied to any technology, delivers consistent and precise
results. We then used these six representative technologies to investigate the contribution
of the United States, Europe, Japan, and China to the production of frontier innovation.
Based on the evidence presented, we clearly see that China’s technological strength has
been increasing since the late 2000s, accounting for a significant share of patents. As a re-
sult, the technology landscape that was dominated by the United States, Europe, and Japan
in the early 2000s is now much more polarized by U.S. and Chinese offices.

Digging deeper, we observed that the patents published by the Chinese patent office used
to be of lower quality than their European, Japanese and American counterparts. However,
the gap is closing and, at the same time, China is building up its domestic capabilities.

So can China continue to make a significant contribution to the technology frontier and
catch up with the United States? In light of this, the answer seems to be yes. However,
two important points should be made. First, the Japanese example shows that the innova-
tion capacities of a country can never be taken for granted. What will happen to China’s
innovative power in the next decades is out of the scope of this paper but China’s spectac-
ular take-off since the 2000s does not necessarily foreshadow the next decades. Second, we
have shown that China is increasingly contributing to frontier technologies which were pi-
oneered before China’s technological take-off. This leaves the question of China’s ability to
pioneer a new frontier technology untouched. Third, the question of China’s ability to fur-
ther adapt its institutions, especially in terms of research teaching and academic freedom,
to contribute even more along the whole knowledge chain remains open. Recent results
from Aghion et al. (2022) indeed suggest that academic research done in China continues
to be too dependent of the US.

Despite these obvious limitations, our approach delivers consistent insights to study in-
novation through the lens of patents. Most importantly, they open at least two important
avenues for further research. First, delving into the characteristics (assignees, inventors,
patentees locations, etc) of frontier technology patents filed in China and other developing
countries appears to be a promising way to better assess the role of the various technology
diffusion channels. Second, another promising avenue would be to delve into business
dynamics (entry and exit) which take place within technologies themselves and might well
have sound implications for the rest of the economy, including the fall of the labor share in
the US and the rise of superstar giant innovators, as discussed by Autor et al. (2020).
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Appendix

A Selection of technologies

A.1 Choice criteria

The term “technology” is ambiguous. It is used in many contexts to refer to distinct con-
cepts. To make sure that we adopt a consistent approach, it’s key to clearly distinguish
between these concepts.

• Technique: We call technique a set of processes sharing a common methodological
paradigm. Importantly, two distinct techniques differing by the methods involved
can still share the same goals. E.g. statistical learning, deep learning, fuzzy logic for
Natural Language Processing; TALENs, Crispr, Zinc fingers for genome editing; etc.

• Functional application: We call functional application a high level goal which are di-
rectly targeted by one or more techniques in the course of their development. They are
not necessarily related to immediate market outcomes and the range of their market
applications can vary. E.g. Computer vision, Natural Language Processing, Cultured
meat, 3D printing, Genome editing, Bio plastic, etc.

• Application field: We call application field an existing or newly created economic sec-
tor which can leverage functional application to develop new/improve existing goods
and services. E.g. Agriculture, Telecommunication, Transportation, etc. In some
cases, the application field can be confounded with a family of devices/goods/services
(e.g. smartphone)

We are interested in the so-called “breakthrough technologies”. Using the above frame-
work, breakthrough technologies correspond to functional applications which are expected
to have a large impact on one or more application fields. Many techniques might be compet-
ing to become dominant at this functional application.

To select candidate technologies, we refer to various sources listing the potential technolo-
gies of the 21th century, while keeping in mind that we need a technology to have the
following features:

• Advancing rapidly or experiencing breakthrough that drive accelerated rates of
change or discontinuous capability improvements

• Having a potential broad impact, i.e. touching various companies and industries and
affecting (or giving rise to) a wide range of machines, products, or services.

• Having a high economic impact

• Being potentially disruptive, i.e. able to transform how people live and work, create
new opportunities and businesses
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• Being sufficiently discussed in the expert literature so we can access existing attempt
at landscaping the technology

• Being sufficiently “new” to ensure that we do not consider technologies whose ad-
vanced is well planned and the results of an industry consensus (in particular the 4G,
5G, 6G communication protocol).

Our initial list of technologies is presented below along with the type of technology (A for
application field, F for functional application, T for technique).

• Computer Science: Quantum computing (F/T), Blockchain (F), Three dimensional
chip (T), Application-specific integrated circuit (T), Neuromorphic chips (T), Grid
computing (T), Cloud computing (T), Field Programmable Gated Array (T), Edge
computing (T)

• Biotechnoloy: Genome engineering (F), Personalized medicine (F), mRNA vaccines
(F/T)

• Information & Communication: Internet of Things (F), Mega constellation (F),
5G/6G (T)

• Energy: Smart grid (F), Wind energy (F), Solar energy (F), Marine & Tidal energy (F),
Internet of energy (F), Hydrogen storage (F), Fusion Power (T), Hydrogen battery (T),
Advanced energy storage (T), Organic solar cell (T)

• Transportation: Self driving vehicles (F), Drones (F), Electric vehicle (A/F)

• Agriculture: Cultured meat (F), Vertical farming (F)

• Materials: Bioplastic (F), Additive manufacturing (F), Graphene material (T), Carbon
nanotubes material (T)

• Human-machine interface: Exoskeleton (F), Brain computer interface (F)

• Artificial Intelligence: Computer vision (F), Natural Language processing (F), Speech
processing (F), Machine translation (F)

A first selection based on selecting only functional application and removing technologies
that are either at a too early or uncertain stage or without enough documentations in
terms of patent landscaping boils down to the following list: hydrogen energy storage,
blockchain, genome engineering, cultured meat, additive manufacturing, computer vision,
natural language processing. While all these technologies would fit our criteria, we further
reduce this list to 6 technologies. We remove natural language processing and cultured
meat. The former because we already included computer vision as a technology within
AI and the latter because the existing patent landscaping documents did not allow us to
define a clear frontier.
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A.2 Description of the selected technologies

A.2.1 Additive Manufacturing

A brief description Additive manufacturing, or 3D printing, is the construction of a
three-dimensional object from a Computer-aided Design (CAD) model or a digital 3D
model. Contrary to standard manufacturing techniques, additive manufacturing does not
start from an existing block that would be cut and shaped but builds from a raw material,
layer to layer. The very concept of 3D printing appeared in the 1950s (then called molecular
spray) and the first patents filed are usually dated in the 1970s (depending on the sources,
either by Charles W. Hull or by Johannes F Gootwald and in 1974 the term of 3D printing
was coined in the New Scientist.

The term 3D priting encompass a large variety of underlying printing methods, the most
commonly used being known as Fused deposition modeling (or FDM) uses a continuous
filament of a thermoplastic that is directed by a head to create the desired shape. Among its
advantages, 3D priting generates little waste and allows more customization and flexibility
in creating complex shapes.

3D printing is still predominantly used in prototyping (40%) and some small and large
scale finished goods production (30%) as well as research and education purposes (10%)
in various sectors in particular automotive, aerospace and machine industry (EPO, 2020).
While the technology is already well diffused in the industry, several challenges remain.
First the cost of material is 10 to 200 more expensive than their non-printing equivalent. In
addition, 3D printing is still too slow compared to other prototyping technologies. Second,
there is an important need to extend the ability of current 3D printers to support more
than 1 material at a time. Third, investment are needed to improve 3D printing of metallic
device.

See Zastrow (2020) for more details.

Market potential In 2019, estimates of the additive manufacturing market is estimated at
$10.9 worldwide (EPO, 2020). While it represents only 1% of valued added in manufactur-
ing at this date, it could go up to 5% as the tech further mature. Many different industry are
likely to adopt this process, from textile and in particular sportswear, aicraft and aerospace
manufacturers to the design of very specific medical-device. Not surprisingly, its growth
rate is expected to reach up to 20 percent per year during the next decade.

A.2.2 Blockchain

A brief description Blockchain is a distributed database (or ledger) shared across a public
or private network. Each computer of the network gets a copy of the full ledger as a way to
prevent system failure. The database itself is a growing list of records (called blocks) linked
together using cryptography. Each block contains: i) a cryptographic hash of the previous
block, ii) a timestamp and iii) transaction data. Consensus and or validation protocols are
used to validate a new block before it can be added to the chain. This prevents fraud
without the need of a central authority.
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The development of blockchain is tied to the Bitcoin, but does not limit to the support
of crypto-currencies. Indeed, the range of applications or potential application of this
technology is very large (financial transactions more generally, but also any type of record
and verification system such as patents, land titles etc...). Fundamentally, blockchain can be
viewed as a way to ensure transactions in a broad sense in a low-trust environment without
the need of a supervising actor.

The technology has been developed since the 1990s but experienced several breakthrough
since the 2010s. In 2012, King and Nadal (2012) introduced the proof of stake which
might be used as a replacement of the proof of work used, for example, as part of the
bitcoin blockchain. The proof of stake overcomes a major limitation of early versions of the
blockchain: energy consumption (due to many miners performing the same operation). It
is notably used by the crypto-currency Eutherium.

In 2014, the Ethereum’s white paper described Bitcoin as a weak version of smart contract
- a transaction protocol intended to automatically execute, control or document legally
relevant events and actions according to the terms of a contract or an agreement. Al-
though smart contracts were first proposed in the early 1990s by Nick Szabo, envisioning
blockchain as a support for smart contract in general considerably widens its potential
impact and fields of applications by ascertaining trust between unknown parties.

See Zheng et al. (2017) and Zheng et al. (2018) for more details.

Market potential It is still difficult to assess the size of the market for blockchain. Some
estimates suggest that the growth rate of total sales from blockchain could reach 50% per
year and reach more than $40 billion by 2027. In any case, according to Carson et al. (2017),
the potential developments of blockchain are very pervasive and broad and are likely to
represent several billion in investment.

A.2.3 Computer Vision

A brief description Computer vision aims to give computers the ability to “understand”
digital images and videos. “Understanding” corresponds to the transformation of visual
images into descriptions of the world that are meaningful to thought processes and can
prompt appropriate action. Computer vision is a field of Artificial Intelligence and has
a wide variety of applications (face recognition, live translation of a text, autonomous
vehicles...)

Computer vision started as early as the 1950s and distinguished from “rough” image pro-
cessing by the desire to extract 3D representation from image. Recent resurgence in the field
has been supported by considerable progress in machine learning and even more in deep
learning. Deep learning algorithms have achieved accuracy close and in many application
above, human performance on a set of benchmark tasks.

See Voulodimos et al. (2018) and Demush (2019) for more details.

Market potential Marr (2019) estimates the market size of computer vision to reach $48
billion in 2022. This size is expected to continue to grow given that computer vision has
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(and is expected to have even more in the future) a large range of industrial applications.
Automatic inspection of production (in manufacturing), event detection (e.g. wild fire),
object modeling (3D printing), navigation (autonomous vehicle), information organization
(automatic labeling/organization of databases), etc.

Even though modern computer vision has already found many industrial use cases, the
recent domination of deep learning methods (Karpathy et al., 2014) promises additional
extension to a number of industrial applications in the coming years.

A.2.4 Genome Editing

A brief description Genome editing (or genome engineering), is a type of genetic en-
gineering in which DNA is inserted, deleted, modified or replaced in the genome of a
living organism. Unlike early genetic engineering techniques that randomly inserts genetic
material into a host genome, genome editing targets the insertions to site specific locations.

Genome editing was pioneered in the 1990s, its use was limited by low efficiencies of
editing but has rapidly evolved in the 2000s. The three competing technologies in the field
are zinc fingers, TALENs and CRISPR-Cas9. As described by Ledford (2015), researchers
initially relied on zinc fingers, a class of enzymes, in order to accurately edit genomes.
However, such enzymes were rather expensive. In 2012, CRISPR-Cas9 (or simply CRISPR)
was introduced. It relies on an enzyme called Cas9 that uses a guide RNA molecule to
home in on its target DNA, then edits the DNA to disrupt genes or insert desired sequences.
In addition to being more efficient and easy to use, it is also much cheaper than previous
technologies, including TALENs, the third competing method. As an order of magnitude,
CRISPR costs about 150 times less than zinc fingers. It is now widely used and a very active
subject of research and invention.

See Ledford (2015), Travis (2015), and Cohen (2017) for more details.

Market potential Market specialist Market and Markets projects the market size of
genome editing at $11.7 billion by 2026. With countries moving to adjust the regulation
to favor the development of genome editing applications, the growth of this technology is
likely to be very high (Smyth and Wesseler, 2021).

Indeed, genome editing is expected to have a large impact in gene therapy in general,
either by replacing existing treatments or treating illness which could not be cured so far
(e.g. Down syndrome). Genome engineering is also said to have the potential to eradicate
diseases by disrupting the genes encoding the production of a virus receptor surface (e.g.
HIV, herpes and hepatitis B) or by removing disease predisposition genes (e.g. cancer).

A.2.5 Hydrogen Storage

A brief description Hydrogen energy storage denotes a set of technologies aiming at
storing dihydrogen (H2), in any form for later use. Traditionally, hydrogen generation is
done by electrolysis using surplus energy production from renewable energy. The resulting
hydrogen is then either used on-site or compressed and stored in tanks for transport and
later use. However, recent interest in using hydrogen for energy storage on board clean

OA-5

https://www.marketsandmarkets.com/Market-Reports/genome-editing-engineering-market-231037000.html


transportation vehicles has led to the development of new storage methods that are safer,
smaller and more easily integrated to mobile units.

Hydrogen is an interesting source of energy: it has the highest energy per mass of any
fuel and its combustion does not generate CO2. Another interesting feature is that, unlike
electricity, hydrogen can be stored for extended period of time. It is however rather ineffi-
cient in terms of energy per unit of volume, in particular due to its very low boiling points
(20.3K or -253°C). It is therefore very important to develop advanced storage methods that
have potential for higher energy density.

The most important existing hydrogen storage methods include physical storage methods
based on either compression or cooling or a combination of the two (hybrid storage). More
recently, the use of nanomaterials has been proposed as an alternative option. Carbona-
ceous materials are currently being considered for onboard storage systems due to their
versatility, multifunctionality, mechanical properties and low cost with respect to alterna-
tives. The introduction of nanomaterials in onboard hydrogen storage systems is viewed
as a major turning point for the future of hydrogen storage for the automotive industry.

For more details, see energy.gov

Market potential Various recent estimations of the market potential and future develop-
ment of hydrogen storage are available. While the numbers vary, most experts concur that
this technology should continue to grow in the next years.

Market analysis specialists such as Market Data Forecast or Allied Market Research forecast
aggregate sales ranging from 19 to 25 billion dollars in 2027. The Hydrogen Council, a
consortium of firms with stakes in the hydrogen market, project that “total investments
will reach more than $300 billion in spending through 2030” (Hydrogen Council, 2021).
Similarly, another group of market players, The Energy Transitions Commission, claimed
that to reach zero net emission by 2050, an investment of $80 billion per annum will be
required between 2020 and 2050 “for hydrogen production facilities and transportation &
storage” (Energy Transitions Commission, 2021).

A.2.6 Self-driving Vehicle

A brief description A self-driving vehicle (or autonomous vehicle) is a vehicle that is
capable of sensing its environment and moving safely with little or no human input.
The technology can be divided into 2 broad sectors. First automated vehicle platform:
items/hardware (e.g. sensors) and proceedings/software (e.g. algorithms) enabling the ve-
hicle to make autonomous decisions. Second, smart environment which enables vehicles to
interact with each other and their surrounding. Cars are classified into six different levels
of autonomy. From no autonomy at all (level 0) to total autonomy, which makes human
driving commands optional (level 5).

Since their diffusion in the early 20th century, cars have become progressively more and
more autonomous. However, as of 2020, only a marginal number of products have reached
level 3 (vehicle that can be driven with no need for human action, except in some specific
cases which requires some level of attention). Waymo, Aptiv and Dena have developed
such “robo-taxis” but they are only deployed in a well-known extended neighborhood and
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under standard weather conditions. In December 2020, Waymo opened its service to the
public, becoming the world’s first robo-taxi service. Similarly, the Tesla autopilot requires
constant attention from a human driver but in October 2020, full self driving beta mode
was introduced with the ability to navigate previously unseen streets (not only high-speed
lanes) in autonomous mode.

Large scale adoption of a fully autonomous vehicle would require important legal, insur-
ance and infrastructure adjustments as well as important guarantees in terms of security,
even if the technology is well advanced.

See EPO (2018) for more details.

Market potential For the reasons explained above, self driving vehicles are virtually un-
available on the market but might appear in the coming years with potentially already
existing cars “transiting” to self-driving vehicles as software and regulations get updated.

The diffusion of this technology could impact many aspect of society. In addition to con-
verting driving time into leisure, self driving vehicles could open up to a “car as a service”
model rather than “ownership” model generating potential savings. Car could also become
a non depreciating asset as updates of the car software and modularity could generate con-
tinuous improvement of existing cars.
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B Construction of the seed

B.1 Annotation guidelines

In order to manually assign one of the candidate patents to the seed or the anti-seed based
on its abstract, we defined a series of tasks corresponding to each technologies. These tasks
are presented in Table B1.

B.2 List of sources

In this section, we list the sources that we used to select relevant keywords, technological
classes and patents to build the seed.

• Additive Manufacturing: EPO (2020), van de Kuilen (2015), Anish Mathews et
al. (2020), and Zastrow (2020)

• Blockchain: IIPRD (2017), IP Australia (2018), Clarke, Jürgens, and Herrero-Solana
(2020), and Isaacson (2020)

• Computer Vision: WIPO (2019b), WIPO (2019a) and Bo et al. (2021)

• Genome Editing: Jefferson et al. (2021)

• Hydrogen Storage: Baumann et al. (2021) and Office (2021)

• Self-driving Vehicle: EPO (2018) and Cho, Liu, and Ho (2021)

B.3 Criteria

We now detail the criteria by type and technology. The selection of candidate patents
that we manually review to include in the seed must match at least one of the following
criteria: 1) the patent’s abstract contains at least one of the keywords (or keyphrases) listed
in Section B.3.1; 2) the patent’s CPC codes include at least one code listed in Section B.3.2;
3) the patent is highly similar to a patent listed Section B.3.3. The latter patents are patents
known to be at the core of the technology and the similarity is based on Google Patents
embedding and are directly provided by Google Patent.

B.3.1 Keywords

Additive Manufacturing 3d-printing, stereolithography, additive manufacturing, three-
dimensional objects, rapid prototyping, additive material manufacturing three dimensional
printing material, 3d-printing materials photolithography, fuse deposition mode

Blockchain blockchain, digital mining, bitcoin, cryptocoin, cryptocurrency, digital wallet,
ethereum, smart contracts, record keeping, distributed ledger, distributed node, private
ledger, public ledger, intelligent node, full node, digital signatures, public key, user identity,
hashing, consensus methodologies, proof of work, proof of stake, deposition based, ripple
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Computer Vision adaboost, xgboost, bayesian network, decision tree, genetic algorithm,
gradient tree boosting, logistic regression, random forest, rankboost, support vector ma-
chine, multilayer perceptron, hidden markov model, generalized adversarial network,
backpropagation, stochastic gradient descent, supervised training, reinforcement learning,
neural network, self learning, semi supervised learning, unsupervised training, transfer
learning, overfitting, active learning, clustering, data mining, deep learning, expert sys-
tem, embedding, machine learning, fuzzy logic, feature selection, objective function, target
function, regression model, signal processing, computer vision, machine vision, lidar, char-
acter recognition, optical character recognition, handwritten character recognition, image
to text, text recognition, face recognition, facial recognition, biometric data, biometrics,
mass surveillance, face unlock, traffic cameras, object detection, edge detection, obstacle
avoidance, motion tracking

Genome Editing dna editing, gene editing, genome engineering, recombinant targeting
vectors, homologous recombination, double-strand dna break, homology-directed repair,
targeted dna sequence, dna cleavage, fok1, sequence-specific nuclease system, zinc finger
nuclease, cys2-his2, transcriptional activator-like effector nuclease, talens, clustered regu-
larly interspaced short palindromic repeat, crispr/cas, cas9, pre-crrna, tracrrna, enzyme
rnase, single guide rna, crispr-cpf1, ngago, single-stranded dna-guided argonaute endonu-
clease, natronobacterium gregoryi argonaute

Hydrogen Storage hydrogen fuel cells, hydrogen storage, liquid hydrogen, solid-state
hydrogen storage, compressed hydrogen storage, dehydrogenation reaction, hydrogen gas,
hydrogen fuel, hydrogen storage materials, hydrogen-powered device

Self Driving Vehicle self-driving vehicle, autopilot, driverless vehicle, autonomous vehi-
cle, automated vehicles, vehicle connectivity, vehicle-to-vehicle communication, fleet man-
agement, vehicle lidar, vehicle sonar, vehicle radar, vehicle camera, object detection, obsta-
cle detection, object classification, cruise control, pedestrian detection, environment map-
ping, surround view, blind spot detection, park assistance, lane departure, traffic sign
recognition, drive assist system, trajectory generation, reactive control, path trajectory plan-
ning, manoeuvers planning

B.3.2 CPC classes

Additive Manufacturing B81C2201/0184, G05B2219/49002, G05B2219/49003,
G05B2219/49004, G05B2219/49005, G05B2219/49006, G05B2219/49007, G05B2219/49008,
G05B2219/49009, G05B2219/49011, G05B2219/49013, G05B2219/49014, G05B2219/49015,
G05B2219/49016, G05B2219/49017, G05B2219/49018, G05B2219/49019, G05B2219/49021,
G05B2219/49022, G05B2219/49023, G05B2219/49024, G05B2219/49025, G05B2219/49026,
G05B2219/49027, G05B2219/49028, G05B2219/49029, G05B2219/49031, G05B2219/49032,
G05B2219/49033, G05B2219/49034, G05B2219/49035, G05B2219/49036, G05B2219/49037,
G05B2219/49038, G05B2219/49039, A43D2200/60, A23P2020/253, B29C64/10,
C08L101/00, B29C67/00, B22F3/00, G05B2219/49013, G03F7/70416, B28B1/001,
B33Y10/00, B23K9/04, B23K10/027, B23K15/0086, B23K11/0013
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Blockchain H04L009/08, H04L67/00, H04L009/10, H04L009/12, H04L009/14,
H04L009/28, H04L29/06, G06Q20/00, G06F21/00, G06F12/14, G06Q20/06, G06Q20/10,
G06Q20/20, G06Q20/32, G06Q20/36, H04L2209/00, G09C001/00, G09C001/02,
G09C001/04, G09C001/06, H04L63/00, G06Q30/0619, G06F21/00, G06F021/24,
G06F021/00, G06F021/02, G06F012/28, G06F012/14, G06F17/00

Computer Vision B25J9/161, G06F17/16, G06N5/003, G06N7/005, G06N7/046,
B29C66/965, G08B29/186, F02D41/1405, G01N29/4481, G06F11/1476, G06F17/2282,
H02P21/0014, H02P23/0018, H03H2222/04, Y10S128/924, Y10S128/925, B64G2001/247,
F05B2270/707, F05B2270/709, F05D2270/709, G10H2250/151, H04L25/03165,
H04Q2213/054, H04Q2213/343, B60G2600/1876, B60G2600/1878, B60G2600/1879,
E21B2041/0028, F16H2061/0081, F16H2061/0084, G06F2207/4824, G10K2210/3024,
G10K2210/3038, H03H2017/0208, B29C2945/76979, G05B2219/33002, G06T2207/20081,
G06T2207/20084, G06T2207/20084, H04L2025/03464, H04L2025/03554, H04Q2213/13343,
B60W30/06, B60W30/10, B60W30/12, B60W30/14, B60W30/17, G06T9/002, G10L25/30,
G06K7/1482, G06T3/4046, B62D15/0285

Genome Editing A01H4/00, A01K67/00, C12N/1500, C12N1/00, C12N5/00,
C12N7/00C12Y, C12N5/10, C12Q1/68, C12Q1/70, G01N33/00, A61K48/00,
A61K31/7088, C07K14/00

Hydrogen Storage Y02E60/30, Y02E60/32, Y02E60/321, Y02E60/322, Y02E60/324,
Y02E60/325, Y02E60/327, Y02E60/328, Y02E60/34, Y02E60/36, Y02E60/362, Y02E60/364,
Y02E60/366, Y02E60/368, B01D53/02, C01B3/00-58, F17C2221/012, C22C19/03,
C22C22/00, C22C33/00, F25B17/12, H01M4/38, H01M8/06, F17C2221/012, F17C6/00,
F17C5/02

Self Driving Vehicle G08G1/02, G08G1/0967, G08G1/0968, G01S7/003, G07B15/063,
G07C5/00, G07C5/12, E01F, E01F9/00, E01F9/40, H04W36/00, H04W76/50, B61L3/00,
G05D1/0011, G05D1/0027, G05D1/0287, G05D1/0297, G08G1/00, G08G1/01,
G08G1/09, G08G1/0968, G08G1/127, G08G1/16, G08G1/164, G08G1/20, G01S13/93,
G10S13/931, G01S15/88, G01S15/93, G01S17/88, G01S17/93, G07C5/00, G07C5/01,
G07C5/02, G07C5/03, G07C5/04, G07C5/05, G07C5/06, G07C5/07, G07C5/08,
E01F9/00, B60L2240/70, B61L25/00, G01S7/00, G01S13/00, G01S15/00, G01S17/00,
G01S7/00, G01S7/02, G01S7/52, G01S13/00, G01S13/86, G01S13/87, G01S13/93,
G01S15/00, G01S15/025, G01S15/87, G01S15/931, G01S17/00, G06K9/00, G05D1/00,
G05D1/0257, B60W2420/52, B60Y2400/3017, B60R19/00, G01S17/023, G01S17/06,
G01S17/87, G01S17/88, G01S17/936, G01S7/48, G01S2013/9332, B60W2420/52,
G06T1/0007, G06T1/0014, G06T1/20, G06K9/00362, G06K9/00785, G06K9/00791,
H04N5/335, B60Y2400/3015, B60W2420/42, B60S1/56, G01C21/00, G01C21/26,
G01C21/34, G01S7/52, G01S15/00, G05D1/00, G05D1/0027, G05D1/0088, G05D1/021,
G05D1/0212, G05D1/0276, G05D1/0287, G05D1/02, G06T1/0007, G06T1/0014, G06T1/20,
G08G1/16, G08G1/161, G08G1/22, H04W4/44, H04W4/46, F16D2500/31, B60L2240/60,
B60L2240/62, B60W30/16, B60W2050/008, B60W2550/402, B60W2550/408, B60G17/015,

OA-10



B60G17/016, B60G17/0195, B60G2800/00, B60K28/04, B60W30/00, B60W40/00,
F16D2500/508, G05D1/0088, G05D2201/0212, B60W30/095, B60W50/0097, G05D1/0212

B.3.3 Representative patents

Additive Manufacturing US-4575330-A, US-5534104-A, US-6259962-A, US-5204055-A,
US-5182056-A, DE-102013205724-A1, FR-3070302-B1, US-10076875-B2, US-8349239-B2, CN-
108868141-A, CN-105569344-A, CN-105604327-A, WO-2018229418-A1, KR-101706473-B1,
WO-2016111879-A1, US-20180141274-A1, WO-2008061909-A2, US-20170251713-A1, EP-
1352619-B1, EP-3319545-B1, EP-3151782-B1, US-10441426-B2, US-9056017-B2

Blockchain EP-3125489-B1, US-9785369-B1, DE-102016104478-A1, US-9853819-B2, US-
9842216-B2, US-9855785-B1, US-20180137465-A1, US-9635000-B1, EP-329562-A1, EP-
3295350-B1, CN-105719172-A, CN-105701372-B, US-9836908-B2, US-9818092-B2, US-
9824031-B1, US-10643202-B2, CN-105844505-A, US-9298806-B1, CN-105790954-B, US-
9858781-B1, US-9853977-B1, US-9641338-B2, US-9641342-B2, EP-325719-B1

Computer Vision US-8953886-B2, WO-2003023696-A1, US-5881172-A, US-20170024607-
A1, US-20170169205-A1, US-20170169303-A1, US-20170235931-A1, US-20200175326-A1,
US-10872228-B1

Genome Editing WO-2000041566-A9, WO-2003087341-A3, WO-2010079430-A1, WO-
2011072246-A2, US-8440431-B2, US-8440432-B2, US-8450471-B2, US-8566363-B2, WO-
2014093661-A2, WO-2013176772-A1, US-20170367280-A1

Hydrogen Storage US-20080248355-A1, CN-1322266-C, US-7678362-B2, US-7118611-
B2, CN-203500844-U, US-7094493-B2, US-10622655-B2, WO-2019239141-A1, US-8871671-
B2, JP-6061354-B2, EP-2554694-B1, FR-2939784-A1, CA-2980664-C, CN-103797142-A, US-
7678479-B2, JP-6418680-B2, DE-102009016475-B4, US-7093626-B2, DE-102013203892-A, KR-
101107633-B1, JP-4849775-B2, JP-3706611-B2, US-6875536-B2, JP-5338903-B2

Self Driving Vehicle US-20050088318-A1, US-9293045-B2, US-9723457-B2, US-10405215-
B2, WO-2019052353-A1, US-10089537-B2, US-10564639-B1, DE-112019000049-T5, US-
20190384304-A1, DE-112019000122-T5, US-20170030728-A1, US-20190265703-A1, WO-
2019094843-A1
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Table B1: Annotation guidelines

Technology Options

Additive Manufacturing

- Create 3D printable model with computer aided design
- Examine stereolithography file for errors and inconsistency
- Convert model into a series of thin layers
- Manufacture materials for 3D printings
- Print 3D model

Blockchain

- Record transactions between two parties
- Serve as public transaction ledger of cryptocurrency
- Execute or enforce smart contract
- Hash tree verification / Verify the authenticity of documents /
Proof of work
- Analyse transactions in a distributed ledger
- Manage Identity System based on the concept of peer-to-peer
protocols (IDMS) / Mediate user authentication

Computer Vision
- Process digital images
- Analyse digital images
- Understand digital images

Genome Editing
- Target DNA sequence
- Break DNA sequence
- Edit DNA sequence

Hydrogen Storage

- Hydrogen production and compression
- Generate power from hydrogen gas
- Design vessel containment that is resistant to hydrogen
permeation and corrosion (+ thermal management)
- Manufacture fuel cell using hydrogen
- Provide hydrogen to a hydrogen-powered device (fill, tank)

Self-driving Vehicle

- Enable vehicles to make autonomous decisions
- Automate vehicle handling
- Vehicle-to-vehicle communication
- Communication between vehicle and rest-of-the-world

Notes: Human annotator accepts or rejects a candidate patent depending on whether the patent’s abstract clearly discusses one or more of
the options listed.
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C Data

C.1 Selection of patents

In this Appendix we detail how we selected the first priority publication associated with a
patent family and thus avoid double counting.

We use the IFI CLAIMS dataset which is available through Google’s BigQuery. This dataset
contains bibliographical information on a very large number of patents as well as the ab-
stract translated in English when available. The share of patents with an abstract that we
could use increases in time but is essentially stationary and above 90% since 2000 in all
patent offices considered (see Figure C1).

Figure C1: Share of patent families with an abstract in English
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Notes: Share of patents with at least one patent in the same family with an abstract in English in each of the four patent offices: USPTO

(US), CNIPA (CN), EPO and European national patent offices (EP) and JPO (JP). The year of publication is reported in x-axis. National
European patent offices include all EU countries, UK, Norway and Switzerland.

Each patent publication is association with a unique number and belongs to a family which
corresponds to a group of publications that share the same priority claims. As explained
in Section 4.1, the landscaping is deployed at the family level. Hence, all patents belonging
to a family that is assigned to one of the technologies we are interested in will also be
assigned to this technology. Since the analysis is done at the patent publication level,
we avoid multiple counting similar patents in a given family by restricting to the earliest
priority application in the family.

The final number of publications considered by technologies and patent office is given in
Table C1
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Table C1: Number of unique patent publications considered by patent office and technology

USPTO CNIPA EPO JPO

Additive Manufacturing 17,242 9,014 5,519 3,286
Blockchain 6,409 7,972 952 1,219
Computer Vision 208,720 144,831 50,038 222,177
Genome Editing 22,302 6,470 5,376 2,707
Hydrogen Storage 3,372 2,589 1,905 6,703
Self-driving Vehicle 62,127 33,142 40,960 68,257

Notes: Number of observations in each of the four patent offices: USPTO (US), CNIPA (CN),
EPO and European national patent offices (EP) and JPO (JP). National European patent offices
include all EU countries, UK, Norway and Switzerland.

C.2 Construction of the index of radicalness

Measuring the novelty, impact and radicalness of patents is a complicated task. Initially,
Hall, Jaffe, and Trajtenberg (2005) considered the difference between the set of technolog-
ical classes in citing patents and the set of technological classes in cited patents (see also
Squicciarini, Dernis, and Criscuolo, 2013). Intuitively, a radical innovation would be differ-
ent from existing (but related) knowledge and would influence subsequent developments
(and potentially makes the existing technological classifications unsuitable).

One limitation of this approach is that it ignores potential radical innovation within a
well defined technology. Recently, Kelly et al. (2021) have proposed a new measure that
relies on the text of patent publications. Formally, they use natural language processing
to compare the occurrence of words and group of words in a given patent with previous
publications made in the 5 year window before publication. This define a distance that
they then compare with the similar distance constructed with patents published in the 5
year window following its publication.

We use and adapt their approach. First, because we want to construct such a measure
of radicalness for all patents, and not only for USPTO’s, we cannot use the text. Instead,
we rely to the embedding vector representation provided by Google Patent Research (see
Srebrovic, 2019). The GP embedding is a 64-dimensional vector that was constructed using
machine learning with the goal of measuring distance between two patents (this is what
Google Patent use to provide its list of “similar patent” that we use in the construction of
the seed, see Appendix B. Each coordinate of the vector is a continuous variable between -1
and +1. It therefore provides a simple algebraic representation from which we can compute
simple distances by taking the scalar product between the two corresponding vectors.

Formally, for each patent p, we denote by E(p) the corresponding embedding vector. We
then define the distance between a patent p and a patent q as :

d(p, q) = E(p).E(q) ∈ [0, 1] .

The second adjustment that we do is that we calculate our measure of radicalness by com-
paring patents within each of our six technologies. Hence, we assign a quantity between 0
and 1 to each patent that measure to what extent it was pivotal in the development of the
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corresponding technology. By contrast, Kelly et al. (2021) compare a given patent with all
existing publications as their goal is to exhibit the birth of new technologies.

Formally, we proceed as follow. Let t(p) denotes the year of publication of patent p and
P(t, k, X) the set of patents published between year t and t + k in technology X (X equal
additive manufacturing, blockchain, computer vision, genome editing, hydrogen storage
or self-driving vehicles). Then we first define:

I(p) = ∑
q∈P(t(p)+1,5,X)

E(p).E(q)
|P(t(p) + 1, 5, X)| .

I(p) is a measure of the impact of patent p and is defined as the dot product between the
embedding vector of p and the average embedding vector of all patents published in the
same technology in the next 5 year.

Similarly, we define:

N(p) = ∑
q∈P(t(p)−6,5,X)

E(p).E(q)
|P(t(p)− 6, 5, X)| ,

a measure of the (inverse) novelty of the patent, obtained by comparing patent p with
patents published in the past 5 years.

From N and I we can define the measure of radicalness of a patent by taking their geometric
average:

R(p) =
√

I(p)(1 − N(p)).

Note that in order to accommodate the need to calculate the impact measure we cannot
compute radicalness for patents issued after 2014. We also start in 2000 so that we have
enough patents. Figure C2 plots the distribution of novelty by technology for all countries
and years from 2000 to 2014.
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Figure C2: Distribution of radicalness indicator by technology
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Notes: Kernel density estimations of the radicalness indicator by technology. All
years and countries are pooled together. See Appendix C.2 for more details.
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D Additional results

Figure D1: Number of patent publications by technology

0

.005

.01

.015

.02

Nu
mb

er
 of

 pu
bli

ca
tio

ns
 re

lat
ive

 to
 to

tal

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Additive Manufacturing
Blockchain
Computer Vision
Genome Editing
Hydrogen Storage
Self-driving Vehicles
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fices and JPO in each of the six technologies considered. This number has been standardized by the to-
tal number of patents published in these patents office in any technology. The year of publication is re-
ported in x-axis. National European patent offices include all EU countries, UK, Norway and Switzerland.

Table D1: Precision from simple rule-based classification

Additive Manufacturing Blockchain Computer Vision

CPC 0.34 (224) 0.01 (458) 0.26 (298)
Keywords 0.16 (218) 0.09 (456) 0.20 (254)
Patents 0.02 (42) 0.09 (53) 0.4 (5)

Genome Editing Hydrogen Storage Self driving Vehicle

CPC 0.05 (172) 0.14 (211) 0.12 (222)
Keywords 0.89 (158) 0.24 (221) 0.36 (239)
Patents 0.57 (7) 0.16 (32) 0.42 (24)

Notes: Precision computed on the test set - unseen during training using simple rule-based classification (either using only
CPC, only keywords or similar patents from the set of manually added patents). Number in parentheses corresponds to the
number of patents.
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Figure D2: Relative contribution to frontier technologies. European patents
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Figure D3: Relative contribution to frontier technologies - weighted by foreign citations
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Figure D4: Origin of priority filings for CNIPA patents
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Figure D5: Origin of priority filings for USPTO patents
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