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including some examples and open problems regarding both 
the existence and non-existence of quantum symmetries in 
this setting.
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1. Introduction

The quantum permutation group S+
n , introduced by Wang [45], is the universal com-

pact quantum group acting on n points. This quantum group has been studied extensively 
from various perspectives, with motivation coming from operator algebras, subfactors, 
and free probability, see for instance [8], [1], [14], [26]. Building on the construction of 
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quantum permutation groups, Banica and Bichon introduced quantum automorphism 
groups of finite graphs [12], [4], [5]. This, in turn, has led to the discovery of interesting 
links between quantum groups, graph theory, and the theory of non-local games [30], 
[32].

In view of these developments, it is natural to ask for infinite versions of quantum 
permutation groups, that is, quantum generalisations of the symmetric group of an infi-
nite set. Goswami and Skalski [22] addressed this question by introducing two quantum 
semigroups of infinite quantum permutations. The first one is a quantum analogue of the 
group of permutations moving only finitely many points, and can be viewed as a certain 
inductive limit of the quantum permutation groups S+

n for n ∈ N. Since S+
n is not dis-

crete one has to be careful to give meaning to such a limit, and Goswami and Skalski do 
this by working on the level of von Neumann algebras. Their second construction yields 
the universal von Neumann algebra generated by the entries of an infinite magic unitary 
matrix, which can be viewed as a quantum analogue of the group of all permutations 
of an infinite set. It is unclear, however, if either of these objects fit into the theory of 
locally compact quantum groups in the sense of Kustermans and Vaes [28].

In this paper we propose a slightly different approach to infinite quantum permuta-
tions which allows one to obtain genuine quantum groups. As in [22], the key ingredient 
is the ∗-algebra generated by the entries of an infinite magic unitary matrix, but in con-
trast we single out different classes of its representations. This is inspired by the theory 
of non-local games and their associated game algebras [24]. Winning strategies for a syn-
chronous game can be encoded by different types of representations of the game algebra, 
thus emphasizing the role of representation theory for this algebra. In particular, finite 
dimensional ∗-representations correspond to winning quantum strategies, and in the case 
of the graph isomorphism game these are closely related with certain finite dimensional 
∗-representations of the function algebras of the quantum permutation groups S+

n . Let 
us point out that studying the structure of such representations amounts essentially to 
understanding matrix models for S+

n , see [1].
Building on these observations we define a quantum version Sym+(X) of the full 

symmetric group Sym(X) of an arbitrary set X, and also a quantum version Σ+(X) of 
the subgroup Σ(X) ⊂ Sym(X) consisting of permutations which move only finitely many 
points. Both Sym+(X) and Σ+(X) are discrete quantum groups, and if X = {1, . . . , n} is 
finite they can be viewed as the discretisation of the compact quantum group S+

n . Here 
by discretisation we mean the notion dual to quantum Bohr compactification defined 
and studied by Sołtan [42], [41].

In a similar way we define quantum automorphisms associated to arbitrary sim-
ple graphs. For a finite graph X, the resulting quantum group Qutδ(X) can again 
be viewed as the discretisation of the corresponding compact quantum automorphism 
groups Qut(X), and this allows one to transfer a number of results and techniques to 
the infinite case. We shall illustrate this by looking at some examples, largely building 
on the work of Schmidt [40], [39]. At the same time, we list a few open problems whose 
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resolution we expect to be helpful for gaining a better understanding of the genuinely 

infinite aspects of the theory.
After the first version of this paper appeared, Rollier and Vaes published a very 

interesting construction of locally compact quantum automorphism groups for connected 

locally finite graphs [37]. To such a graph one can naturally associate a multiplier Hopf 
∗-algebra in the sense of van Daele [44], since in the connected locally finite case the 

relations for an infinite magic unitary compatible with the adjacency relations can be 

interpreted purely algebraically. The key result of [37] is that this multiplier Hopf ∗-
algebra admits Haar weights. In order to construct these weights, Rollier-Vaes study a 

certain unitary tensor category associated to the graph, extending work by Mančinska-
Roberson [32]. As already noted in [37], the discretisation of the locally compact quantum 

group Qut(X) defined by Rollier-Vaes identifies with the quantum group Qutδ(X) which 

we consider here.
Let us explain how the paper is organised. In section 2 we collect some preliminaries 

regarding quantum groups and fix our notation. Section 3 contains the definition of 
infinite quantum permutations and a description of the associated C∗-tensor categories. 
In section 4 we focus our attention on finite dimensional quantum permutations and 

the corresponding discrete quantum groups. We show that these quantum groups can 

be interpreted as universal quantum symmetry groups, in analogy to the considerations 
in [45]. In section 5 we specialise to quantum permutations moving only finitely many 

points. We show that the resulting quantum groups are non-amenable as soon as the 

underlying set contains at least four elements. Section 6 contains an infinite version of 
the free wreath product construction first studied by Bichon [13]. More precisely we 

define unrestricted and restricted free wreath products of discrete quantum groups with 

respect to our infinite quantum permutation groups. Finally, in section 7 we extend the 

discussion to the case of graphs and consider some examples. In particular, we show 

that the infinite Johnson graph J(∞, 2) has no quantum symmetry. In constrast, graphs 
with disjoint automorphisms, the unit distance graph of R, and all infinite Hamming 

graphs have quantum symmetry. It is also shown that the Rado graph does not admit 
any non-classical quantum automorphisms of finite dimension.

We conclude with some remarks on our notation. If H is a Hilbert space we write 

B(H) for the algebra of bounded operators on H, and denote by [X] the closed linear 
span of a subset X of a Banach space. If A is a C∗-algebra we write Rep(A) for the C∗-
category of all nondegenerate finite dimensional ∗-representations of A. The multiplier 
algebra of A is denote by M(A).

I would like to thank Matthew Daws and Stefaan Vaes for helpful discussions about 
infinite quantum permutations.
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2. Preliminaries

In this section we collect some definitions and results from the theory of quantum 
groups, mainly in order to fix terminology and notation. We refer to [28], [45], [2], [3], 
[34] for more background.

Recall from [28] that a locally compact quantum group G is given by a Hopf C∗-algebra 
Cr

0(G) together with faithful left and right Haar weights. We write L2(G) for the GNS-
construction of the left Haar weight, so that we have Cr

0(G) ⊂ B(L2(G)) in a natural way. 
By definition, the right leg of the fundamental multiplicative unitary W ∈ B(L2(G) ⊗
L2(G)) is the reduced group C∗-algebra C∗

r (G) of G, and we have W ∈ M(Cr
0(G) ⊗

C∗
r (G)). Both Cr

0(G) and C∗
r (G) admit full versions C f

0(G) and C∗
f (G), in analogy to the 

full and reduced group C∗-algebras of classical locally compact groups. The Pontrjagin 
dual Ĝ of G is the locally compact quantum group determined by Cr

0(Ĝ) = C∗
r (G) as 

Hopf C∗-algebras.
A locally compact quantum group G is called compact if C f

0(G) is unital, in which 
case we write C f(G) and Cr(G) for the associated full and reduced algebras of func-
tions. A compact quantum group G can be equivalently described by the Hopf ∗-algebra 
O(G) ⊂ C f(G) of representative functions. A locally compact quantum group G is dis-
crete if its dual Ĝ is compact. The full Hopf C∗-algebra of functions on a discrete quantum 
group agrees with its reduced version, and is given by a C∗-direct sum of finite dimen-
sional matrix algebras. The matrix blocks appearing in this decomposition correspond 
to the irreducible corepresentations of the discrete quantum group, or equivalently, to 
the irreducible representations of its compact dual.

If G is a discrete quantum group we write Corep(G) = Rep(Ĝ) for the C∗-tensor 
category of finite dimensional representations of Ĝ, and denote by dim(t) the dimension 
of the Hilbert space underlying t ∈ Corep(G). The category Corep(G) is rigid in the 
sense that every object is dualisable, that is, every X ∈ Corep(G) admits a dual object 
X ∈ Corep(G) together with morphisms evX : X ⊗ X → 1, dbX : 1 → X ⊗ X and 
evX : X ⊗ X → 1, dbX : 1 → X ⊗ X satisfying the so-called zig zag equations. Here 
1 ∈ Corep(G) is the tensor unit. We denote by Irr(Ĝ) the set of equivalence classes 
of irreducible objects in Corep(G) = Rep(Ĝ), and say that G is countable if Irr(Ĝ)
is a countable set. The category Corep(G) admits a tautological fiber functor into the 
category of Hilbert spaces, and conversely, every rigid C∗-tensor category T together 
with a fiber functor determines a discrete quantum group G such that T � Corep(G). 
This is known as the Tannaka-Krein reconstruction theorem [46].

A morphism ι : G → H of locally compact quantum groups is a nondegenerate ∗-
homomorphism ι∗ : C f

0(H) → M(C f
0(G)) which is compatible with the comultiplications. 

Every morphism can equivalently be described by a nondegenerate ∗-homomorphism 
ι∗ : C∗

f (G) → M(C∗
f (H)), again compatible with the comultiplications. A quantum 

subgroup of a discrete quantum group G is given by a full C∗-tensor subcategory of 
the category Corep(G) of corepresentations of G. The direct union

⋃
i∈I Gi of a family 

of discrete quantum groups over a directed set I, together with inclusion morphisms 
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Gi → Gj for i ≤ j, is defined as the discrete quantum group corresponding to the direct 
limit of the corresponding C∗-tensor categories.

We shall say that a locally compact quantum group G is strongly amenable if the 
canonical quotient map λ : C∗

f (G) → C∗
r (G) is an isomorphism. It is called coamenable if 

λ̂ : C f
0(G) → Cr

0(G) is an isomorphism [11]. In either case we simply write C∗(G) instead 
of C∗

f (G) ∼= C∗
r (G) or C0(G) instead of C f

0(G) ∼= Cr
0(G), respectively. Every classical 

locally compact group is coamenable, and strongly amenable iff it is amenable. The same 
is true for discrete quantum groups [43]. A discrete quantum group G is amenable iff the 
counit of O(Ĝ) extends to a bounded ∗-homomorphism ε : C∗

r (G) → C. It follows that if 
G =

⋃
i∈I Gi is the direct union of a directed family of quantum subgroups Gi ⊂ G then 

the discrete quantum group G is amenable iff all Gi are amenable. In particular, a discrete 
quantum group is amenable iff all its countable quantum subgroups are amenable.

Let G be a locally compact quantum group and B a C∗-algebra. An action of G on B
is an injective ∗-homomorphism β : B → M(Cr

0(G) ⊗B) such that (Δ ⊗ id)β = (id⊗β)β
and [β(B)(Cr

0(G) ⊗ 1)] = Cr
0(G) ⊗ B. If G is a classical locally compact group this is 

equivalent to a strongly continuous action of G on B by ∗-automorphisms.
Next we review the definition of quantum permutation groups in the sense of Wang 

[45]. By construction, the quantum permutation group S+
n is the quantum automorphism 

group of A = Cn, and we have the following explicit description.

Definition 2.1. Let n ∈ N. The quantum permutation group S+
n is the compact quantum 

group given by the universal C∗-algebra generated by the entries of a magic unitary n ×n-
matrix u = (uij), that is, C f(S+

n ) the universal C∗-algebra generated by projections uij

for 1 ≤ i, j ≤ n such that

n∑
i=1

uik = 1,
n∑

j=1
ukj = 1

for all 1 ≤ k ≤ n. The comultiplication Δ : C f(S+
n ) → C f(S+

n ) ⊗ C f(S+
n ) is defined by 

Δ(uij) =
∑n

k=1 uik ⊗ ukj on the generators.

One obtains a canonical morphism of quantum groups Sn → S+
n , that is, a unital 

∗-homomorphism C f(S+
n ) → C(Sn) compatible with comultiplications, where Sn is the 

symmetric group on n elements. In fact, C(Sn) is the abelianisation of C f(S+
n ).

The structure of the quantum permutation group S+
n is well-understood for small 

values of n, compare [5]. In particular, for n = 1, 2, 3 the canonical morphism Sn → S+
n

is an isomorphism. For n = 4 the morphism Sn → S+
n is no longer an isomorphism, 

and the C∗-algebra C f(S+
4 ) is infinite dimensional. While the quantum group S+

4 is still 
coamenable, this is not the case for S+

n if n ≥ 5.
Let us also review the definition of quantum automorphism groups of finite graphs, 

see [5], [4]. Here by a finite graph X = (VX , EX) we mean an undirected simple graph 
without loops, given by a finite set VX of vertices and a set EX ⊂ VX ×VX of edges such 
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that (v, w) ∈ EX iff (w, v) ∈ EX , and (v, v) /∈ EX for all v ∈ VX . The adjacency matrix 
of X = (VX , EX) is the matrix AX ∈ MVX

({0, 1}) determined by

(AX)x,y = 1 ⇔ (x, y) ∈ EX ,

and it determines the graph uniquely. Note that AX can be viewed as a linear operator 
l2(VX) → l2(VX).

Definition 2.2. Let X = (VX , EX) be a finite graph with adjacency matrix AX . The quan-
tum automorphism group Qut(X) of X is given by the universal C∗-algebra C f(Qut(X))
generated by elements uxy for x, y ∈ VX such that u = (uxy) is a magic unitary matrix 
satisfying

uAX = AXu.

The comultiplication is given by Δ(uxy) =
∑

z∈VX
uxz ⊗ uzy on the generators.

By construction, the quantum automorphism group Qut(X) is a quantum subgroup 
of S+

n for n = |VX |. The defining relation uAX = AXu can be equivalently expressed as 
saying

uvwuxy = 0 if rel(v, x) = rel(w, y),

where the function rel encodes the adjacency relation between vertices, which takes one 
of the values equal, or adjacent, or distinct and non-adjacent.

3. Infinite quantum permutations

Throughout this section we fix a set X, and we write Sym(X) for the group of all 
permutations of X. In the sequel we will mostly be interested in the case that X is 
countable, but the constructions work in general.

The starting point of our discussion is the following definition, which is more or less 
implicit in the literature on quantum automorphisms in the case that X is finite.

Definition 3.1. Let X be a set. A quantum permutation of X is a pair σ = (Hσ, uσ)
consisting of a Hilbert space Hσ and a family uσ = (uσ

xy)x,y∈X of projections uσ
xy ∈

B(Hσ) such that

• For every x ∈ X the projections uσ
xz for z ∈ X are pairwise orthogonal.

• For every y ∈ X the projections uσ
zy for z ∈ X are pairwise orthogonal.

• We have
∑

uσ
xz = 1 =

∑
uσ
zy
z∈X z∈X
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for all x, y ∈ X, with convergence understood in the strong operator topology.

If σ = (Hσ, uσ) and τ = (Hτ , uτ ) are quantum permutations of X then an intertwiner 
from σ to τ is a bounded linear operator T : Hσ → Hτ such that Tuσ

xy = uτ
xyT for all 

x, y ∈ X.

Note that the convergence of the infinite sums in Definition 3.1 can be interpreted 
equivalently in any of the weak, strong, strong*, σ-weak, σ-strong or σ-strong* topologies. 
In the sequel all infinite sums of families (pi)i∈I of pairwise orthogonal projections will 
be understood this way, and if 

∑
i∈I pi = 1 then we also say that (pi)i∈I is a partition 

of unity. We can thus rephrase Definition 3.1 as saying that a quantum permutation of 
a set X is a matrix of projections indexed by X such that all rows and columns form 
partitions of unity. Sometimes we shall also refer to such a quantum permutation as a 
magic unitary indexed by X. It is not hard to see that the first two conditions for a 
quantum permutation in Definition 3.1 are in fact a consequence of the third.

By the dimension of a quantum permutation σ = (Hσ, uσ) we mean the dimension of 
its underlying Hilbert space. We note that a finite dimensional quantum permutation is 
row- and column-finite in the sense that for all x, y ∈ X we have uσ

xz = 0 and uσ
zy = 0

for all but finitely many z.
We say that two quantum permutations σ = (Hσ, uσ) and τ = (Hτ , uτ ) are unitarily 

equivalent if there exists a unitary intertwiner between them. A quantum permutation σ
is called irreducible if the only intertwiners from σ to itself are multiples of the identity.

Lemma 3.2. Unitary equivalence classes of one-dimensional quantum permutations of a 
set X correspond bijectively to permutations of X.

Proof. This is almost immediate from the definitions. If σ ∈ Sym(X) is a permutation 
then we obtain a quantum permutation Qσ = (C, uσ) by setting uσ

xy = δxσ(y). Conversely, 
let σ = (Hσ, uσ) be a quantum permutation of X of dimension one. Since the only 
projections in B(Hσ) = C are 0 and 1, there exists for each y ∈ X a uniquely determined 
element Cσ(y) ∈ X such that uσ

Cσ(y)y = 1, and this defines a permutation Cσ ∈ Sym(X). 
These assignments yield mutually inverse bijections as claimed. �

By slight abuse of terminology, it is sometimes convenient not to distinguish between 
quantum permutations and their unitary equivalence classes and refer to the latter as 
quantum permutations as well. With this understood, the trivial quantum permutation of 
X is the quantum permutation corresponding to the identity permutation in Lemma 3.2.

Let us now discuss some standard procedures for constructing new quantum permu-
tations out of given ones.

Definition 3.3. Let X be a set.
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• The direct sum of quantum permutations σ = (Hσ, uσ) and τ = (Hτ , uτ ) of X is 
defined by σ⊕τ = (Hσ⊕Hτ , uσ⊕uτ ), where (uσ⊕uτ )xy = uσ

xy⊕uτ
xy for all x, y ∈ X.

• The tensor product of quantum permutations σ = (Hσ, uσ) and τ = (Hτ , uτ ) is 
defined by σ ⊗ τ = (Hσ ⊗Hτ , uσ T� uτ ) where (uσ T� uτ )xy =

∑
z∈X uσ

xz ⊗ uτ
zy for all 

x, y ∈ X.
• The contragredient σ = (Hσ, uσ) of a quantum permutation σ = (Hσ, uσ) is defined 

by taking Hσ to be the conjugate Hilbert space of Hσ and the family of projections 
uσ = (uσ

xy) determined by uσ
xy(ξ) = uσ

yx(ξ) for ξ ∈ Hσ.

It is straightforward to check that all operations listed in Definition 3.3 are compatible 
with intertwiners in a natural way and yield indeed quantum permutations. This leads 
us immediately to the following observation.

Lemma 3.4. Let X be a set. The collection of all quantum permutations of X and their 
intertwiners forms naturally a C∗-tensor category.

As we will discuss in more detail further below, one obtains a basic supply of quantum 
permutations of an infinite set by combining representations of C(S+

n ) for some n ∈ N

with classical permutations.
Let us describe a different source of infinite quantum permutations. By definition, a 

partial quantum permutation σ = (H, A, B, u) of a set X consists of a Hilbert space H, 
subsets A, B ⊂ X and projections uxy ∈ B(H) for (x, y) ∈ A ×X ∪X ×B such that

• For every x ∈ X the projections uxz are pairwise orthogonal whenever they are 
defined,

• For every y ∈ X the projections uzy are pairwise orthogonal whenever they are 
defined,

• For all x ∈ A and y ∈ B we have 
∑

z∈X uxz = 1 =
∑

z∈X uzy.

We call A the domain and B the range of the partial quantum permutation. The collec-
tion of all partial quantum permutations on a fixed Hilbert space is partially ordered by 
saying that σ ≤ τ if the domain and range of σ are contained in the domain and range 
of τ , respectively, and the operators uσ

xy and uτ
xy agree whenever the former are defined. 

Of course, a partial quantum permutation with A = X = B is nothing but a quantum 
permutation in the sense of Definition 3.1.

Let X be a countable set and write ex for the canonical basis vector of 
2(X) associated 
with x ∈ X. We define the support of a projection p ∈ B(
2(X)) as the set of all elements 
x ∈ X such that pex is nonzero. Moreover we say that a partial quantum permutation 
σ = (
2(X), A, B, u) of X has locally finite rank if

• for every x ∈ A and v ∈ X there are only finitely many elements y ∈ X such that v
is contained in the support of uxy,
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• for every y ∈ B and v ∈ X there are only finitely many elements x ∈ X such that v
is contained in the support of uxy,

• the support of the projection uxy is finite for all (x, y) ∈ A ×X ∪X ×B.

In order to construct quantum permutations of X we can now use a variant of the back 
and forth method, compare for instance section 2.4 in [33].

Fix an enumeration X = {x1, x2, x3, . . . }. In a first step we set A1 = {x1} and 
B0 = ∅. Moreover we let (ux1y)y∈X be a partition of unity in B(l2(X)) consisting of 
finitely supported projections, such that each element of X is contained in the support 
of only finitely many ux1y. For instance, we can take ux1y to be the orthogonal projection 
corresponding to the canonical basis vector ey ∈ 
2(X). We obtain a partial quantum 
permutation σ1,0 = (
2(X), A1, B0, u) this way.

Now assume that we have constructed a partial quantum permutation σm,n =
(
2(X), Am, Bn, u) of X of locally finite rank with domain Am = {x1, . . . , xm} and range 
Bn = {x1, . . . , xn}. We can then extend the domain of σ by adding xm+1 to Am. More 
precisely, let p =

∑n
j=1 uxm+1xj

, and consider an arbitrary family (pk)k∈N of finitely 
supported projections in l2(X) such that each element of X is contained in the support 
of only finitely many pk and 

∑
k∈N pk = 1 − p. By construction of σm,n, the support 

of pk intersects nontrivially with the support of only finitely many of the existing pro-
jections uxy. Hence we find y ∈ X such that pk is orthogonal to all projections uxiy

for 1 ≤ i ≤ m, and we set uxm+1y = pk. This can be done for all k ∈ N, and we let 
the remaining operators uxm+1y be zero. By construction this yields a partial quantum 
permutation σm+1,n of X of locally finite rank with domain Am+1 = Am ∪ {xm+1} and 
range Bn.

In a similar way we can extend the range of a partial quantum permutation σm,n of 
locally finite rank as above. Taking unions we see that there exists a quantum permu-
tation σ = (
2(X), u) of X of locally finite rank which restricts to the partial quantum 
permutations σm,n obtained along the way for all m, n ∈ N. In particular, every point 
of X is contained in the domain and range of σ as required.

We note that, with suitable choices, we can in fact arrange the resulting quantum 
permutation to be irreducible.

4. Infinite quantum permutation groups

In this section we shall restrict our attention to the class of finite dimensional quantum 
permutations of a set and the associated quantum groups.

If σ = (Hσ, uσ) is a finite dimensional quantum permutation of a set X then it is a 
dualisable object in the C∗-tensor category of all quantum permutations of X, and its 
dual is given by the contragredient quantum permutation σ. That is, the full subcategory 
of all finite dimensional quantum permutations of X forms naturally a rigid C∗-tensor 
category, compare [34]. This category admits a tautological fiber functor to the category 
of finite dimensional Hilbert spaces.
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Definition 4.1. Let X be a set. The quantum permutation group Sym+(X) is the dis-
crete quantum group obtained from the rigid C∗-tensor category Sym+(X) of finite 
dimensional quantum permutations of X together with its tautological fiber functor via 
Tannaka-Krein reconstruction.

By construction, the underlying C∗-algebra of functions on Sym+(X) can be written 
as the C∗-direct sum of matrix algebras

C0(Sym+(X)) =
⊕
σ

B(Hσ),

where the direct sum is taken over the set of isomorphism classes of irreducible objects in 
Sym+(X). According to Lemma 3.2 one obtains a canonical surjective ∗-homomorphism 
C0(Sym+(X)) → C0(Sym(X)) by projecting onto the direct sum of all one-dimensional 
matrix blocks. This shows already that the C∗-algebra C0(Sym+(X)) is not separable if 
X is infinite.

To describe the quantum group structure of C0(Sym+(X)) it is convenient to 
work with the universal quantum permutation over X, by which we mean the family 
u = (uxy)x,y∈X of elements uxy ∈ M(C0(Sym+(X))) with components uσ

xy. The co-
product of C0(Sym+(X)) is the uniquely determined nondegenerate ∗-homomorphism 
Δ : C0(Sym+(X)) → M(C0(Sym+(X)) ⊗ C0(Sym+(X))) satisfying

Δ(uxy) =
∑
z∈X

uxz ⊗ uzy

for all x, y ∈ X, with the sum on the right hand side converging in the strict topology. The 
counit ε : C0(Sym+(X)) → C is the unique ∗-homomorphism satisfying ε(uxy) = δxy. 
Moreover the formula S(uxy) = uyx determines a ∗-antihomomorphism C0(Sym+(X)) →
C0(Sym+(X)) encoding the antipode. In particular, the quantum permutation group 
Sym+(X) is unimodular.

As already indicated above, the quantum group Sym+(X) is “large” if X is infinite. 
In fact, it is easy to check that there are uncountably many mutually non-isomorphic 
irreducible quantum permutations in every positive dimension in this case.

Let us also note that this quantum group does not have any of the standard ap-
proximation properties. More precisely, if X is infinite then Sym+(X) does not have 
the Haagerup property and is not weakly amenable. This follows simply from the corre-
sponding facts for the classical group Sym(X) together with the observation that these 
properties pass to quantum subgroups. Indeed, the passage of the Haagerup property 
to quantum subgroups of discrete quantum groups is a special case of Proposition 6.8 
in [17], noting that the argument given there does not rely on second countability as-
sumptions. Inheritance of weak amenability by quantum subgroups of discrete quantum 
groups is shown in Proposition 3.1 of [20]. At the same time we remark that Sym+(X)
does not have property (T) since it is not finitely generated, compare [19].
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We shall now explain how infinite quantum permutations can be viewed as universal 
quantum symmetries, in analogy to the situation for quantum automorphism groups of 
finite dimensional C∗-algebras. However, in contrast to the compact quantum groups 
considered in [45], we obtain universal objects among discrete quantum groups in our 
setting.

Let us fix some notation and terminology. Assume that B is a C∗-algebra with positive 
part B+, and let θ : B+ → [0, ∞] be a faithful proper weight [27]. We write M+

θ = {b ∈
B+ | θ(b) < ∞} for the set of θ-integrable elements of B. If β : B → M(Cr

0(G) ⊗ B)
is an action of a locally compact quantum group G on B then θ is called invariant 
with respect to β if θ((ω ⊗ id)β(b)) = θ(b)ω(1) for all b ∈ M+

θ and all positive linear 
functionals ω ∈ Cr

0(G)∗+.
We shall say that a discrete quantum group G is the discrete quantum symmetry group

of (B, θ) if there exists an action β : B → M(C0(G) ⊗ B) such that θ is invariant with 
respect to β and the following universal property is satisfied. If H is an arbitrary discrete 
quantum group together with an action γ : B → M(C0(H) ⊗B) such that θ is invariant 
with respect to γ, then there exists a unique morphism of quantum groups ι : H → G

such that the diagram

B
β

γ

M(C0(G) ⊗B)

ι∗⊗id

M(C0(H) ⊗B)

is commutative. Here ι∗ : C0(G) → M(C0(H)) denotes the nondegenerate ∗-
homomorphism corresponding to the morphism ι.

It is straightforward to check that the discrete quantum symmetry group of a C∗-
algebra B is uniquely determined up to isomorphism. If X is a set and B = C0(X) is 
equipped with the weight induced by counting measure we shall call the corresponding 
discrete quantum symmetry group the universal discrete quantum group acting on X. 
The following result shows in particular that this quantum group indeed exists.

Proposition 4.2. Let X be a set. The quantum permutation group Sym+(X) is the uni-
versal discrete quantum group acting on X.

Proof. If we write ex ∈ C0(X) for the characteristic function based at x ∈ X then 
the formula β(ex) =

∑
y∈X uxy ⊗ ey determines a nondegenerate ∗-homomorphism β :

C0(X) → M(C0(Sym+(X)) ⊗C0(X)), and it is straightforward to check that this yields 
an action of Sym+(X) on B = C0(X).

Now assume that γ : B → M(C0(H) ⊗ B) is an action of a discrete quantum group 
H on B. Then we can write γ(ex) =

∑
y∈X vxy ⊗ ey for uniquely determined elements 

vxy ∈ M(C0(H)). We claim that the elements vxy, or rather their components in each 
matrix block inside C0(H), satisfy the defining properties for a quantum permutation. 
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First note that from e2
x = ex = e∗x we get v2

xy = vxy = v∗xy for all x, y ∈ X. Since γ is 
nondegenerate we have 

∑
x∈X vxy = 1 for all y ∈ X. Moreover, we obtain the relation ∑

y∈X vxy = 1 for all x ∈ X from the fact that the canonical weight on B is required to 
be invariant with respect to γ.

Since C0(H) is a direct sum of matrix algebras this allows us to define a nondegenerate 
∗-homomorphism ι∗ : C0(Sym+(X)) → M(C0(H)) such that ι∗(uxy) = vxy for all x, y ∈
X. It is straightforward to check that ι∗ is compatible with the comultiplications and 
satisfies (ι∗ ⊗ id)β = γ. Moreover ι∗ is uniquely determined by these properties. �
5. Finitary quantum permutations

In this section we study the quantum subgroup of the quantum permutation group 
Sym+(X) given by all finitary quantum permutations of the set X.

Classically, one obtains a subgroup Σ(X) ⊂ Sym(X) by considering all finitary permu-
tations, that is, permutations which move only finitely many points of X. Equivalently, 
one can view Σ(X) = lim−−→F⊂X

Σ(F ) as the direct limit of the permutation groups 
Sym(F ) = Σ(F ) taken over the finite subsets F ⊂ X.

This translates easily to Sym+(X). More precisely, consider the full subcategory of 
the C∗-tensor category Sym+(X) formed by all quantum permutations σ = (Hσ, uσ) for 
which there exists a finite set F ⊂ X such that uσ

xy = δxy only for x, y ∈ F . In this case 
we say that σ moves only finitely many points, or is finitary. It is straightforward to check 
that the collection of all finitary quantum permutations forms a C∗-tensor subcategory 
of Sym+(X).

Definition 5.1. Let X be a set. The finitary quantum permutation group of X is the 
discrete quantum group Σ+(X) obtained from the rigid C∗-tensor category of all finite 
dimensional finitary quantum permutations of X together with its tautological fiber 
functor via Tannaka-Krein reconstruction.

We clearly have Sym+(X) = Σ+(X) iff X is finite. In the same way as in the classical 
case one can write Σ+(X) = lim−−→F⊂X

Σ+(F ) as direct limit of the quantum permutation 
groups of the finite subsets F ⊂ X in general. For many purposes, this reduces the study 
of finitary quantum permutations to the case of finite sets.

Let us therefore study the quantum permutation group Sym+(X) = Σ+(X) of a finite 
set X in more detail. We consider n = {1, . . . , n} for n ∈ N and write Σ+

n instead of 
Σ+(n) for the associated quantum group. Note that we obtain a canonical isomorphism 
S+
n
∼= Σ+

n for n = 1, 2, 3 since there are no non-classical quantum permutations for these 
values of n.

For n > 3 the quantum groups S+
n and Σ+

n are no longer isomorphic. By construction, 
the C∗-tensor category of unitary corepresentations of Σ+

n identifies with the C∗-tensor 
category Rep(C f(S+

n )) of finite dimensional unital ∗-representations of C f(S+
n ). We may 

interpret this as saying that Σ+
n is the discretisation of S+

n in the following sense.
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Definition 5.2. Let G be a compact quantum group. The discretisation of G is the discrete 
quantum group Gδ associated to the rigid C∗-tensor category Rep(C f(G)) of finite 
dimensional unital ∗-representations of C f(G) via Tannaka-Krein reconstruction.

Here the tensor structure on Rep(C f(G)) is given by π T� η = (π ⊗ η)Δ, where Δ :
C f(G) → C f(G) ⊗C f(G) is the comultiplication. The contragredient π of a representation 
π : C f(G) → B(H) in Rep(C f(G)) is the representation on the conjugate Hilbert space 
H given by π(f)(ξ) = π(R(f∗))(ξ) where R is the unitary antipode of C f(G). We note 
that finite dimensional ∗-representations of C f(G) factor through the Kac quotient, see 
[41].

The dual of the discretisation Gδ of a compact quantum group G in the sense of 
Definition 5.2 identifies with the Bohr compactification [41] of the dual discrete quantum 
group Ĝ. That is, discretisation in the sense of Definition 5.2 is in fact nothing new, and 
the only difference to [42], [41] is that we focus our attention on the dual side. We note 
that the discretisation procedure is functorial, that is, if ι : H → G is a morphism of 
compact quantum groups then there is an induced morphism ιδ : Hδ → Gδ between the 
discretisations.

There is a canonical morphism of locally compact quantum groups Gδ → G, imple-
mented by the unital ∗-homomorphism C f(G) → M(C0(Gδ)) obtained by considering 
the direct sum of all irreducible finite dimensional ∗-representations of C f(G) up to 
equivalence. If G is a classical compact group then the discretisation of G in the sense 
of Definition 5.2 is given by the group G with the discrete topology, compare [41].

Let X = n for some n ∈ N as above, and assume that γ : C(X) → C(X) ⊗Cr(G) is an 
action of a compact quantum group G on X. Note that the image of γ is automatically 
contained in C(X) ⊗O(G), so that it does not really matter whether we consider full or 
reduced function algebras here. We obtain an induced action γδ : C(X) → M(C(X) ⊗
C0(Gδ)) via the canonical morphism Gδ → G. It is easy to check that the corresponding 
morphism Gδ → Sym+(X) in Proposition 4.2 is nothing but the discretisation of the 
morphism G → S+

n obtained from the universal property of S+
n .

In general, passage to the discretisation leads to a significant loss of information. 
However, this is not quite the case for quantum permutation groups. In fact, according 
to work of Brannan-Chirvasitu-Freslon [15] the algebra O(S+

n ) of polynomial functions 
on S+

n is residually finite dimensional. One can rephrase this as saying that the canonical 
∗-homomorphism O(S+

n ) → M(C0(Σ+
n )) is injective.

Let us exhibit some basic properties of the discrete quantum groups Σ+
n , starting 

with the simplest nontrivial case n = 4. Recall from [9], [7] that S+
4

∼= SO−1(3), where 
C(SO−1(3)) is the universal C∗-algebra generated by elements vij for 1 ≤ i, j ≤ 3 such 
that (vij) is an orthogonal matrix satisfying the relations

vijvik = −vikvij and vjivki = −vkivji if j = k

vijvkl = vklvij if i = k and j = l
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∑
σ∈S3

v1σ(1)v2σ(2)v3σ(3) = 1.

The comultiplication of C(SO−1(3)) is given by Δ(vij) =
∑

k vik ⊗ vkj .
There is an injective ∗-homomorphism θ : C(SO−1(3)) → M4(C(SO(3)) given by

θ(vij) = ti ⊗ tj ⊗ xij

on the generators, where xij ∈ C(SO(3)) are the coordinate functions and

t1 =
(
i 0
0 −i

)
, t2 =

(
0 1
−1 0

)
, t3 =

(
0 −i
−i 0

)

in M2(C) are the Pauli matrices.
We shall show that Σ+

4 is non-amenable, essentially by using the above relationship 
between SO−1(3) and SO(3), and the fact that the latter contains free subgroups. How-
ever, in order to make this precise we need some preparations.

For g ∈ SO(3) let us write πg : C(S+
4 ) → M4(C) for the ∗-representation obtained by 

composing the isomorphism C(S+
4 ) ∼= C(SO−1(3)) from [7] with the map θ, followed by 

evaluation at g. By slight abuse of notation we will also view πg as a representation of 
C(SO−1(3)) in the sequel. For every irreducible ∗-representation ρ of C(S+

4 ) there exists 
an element g ∈ SO(3) such that ρ is the restriction of the evaluation representation πg

to an invariant subspace of C4. We shall say that ρ is a representation over g in this 
case.

For instance, the evaluation representation πe at the identity element e decomposes 
as a direct sum πe

∼= χ0 ⊕ χ1 ⊕ χ2 ⊕ χ3 of four distinct characters, such that χ0 = ε

is the counit and χk for 1 ≤ k ≤ 3 is determined by sending v = (vij) to the element 
dk ∈ SO(3) given by reflection about the k-th coordinate axis. We may thus identify 
these characters with the elements of the Klein subgroup D ⊂ SO(3) of diagonal matrices 
in a natural way, such that the counit corresponds to the identity matrix d0 ∈ D.

Consider the action of D×D on SO(3) given by left and right multiplication, so that 
(c, d) · g = cgd−1 for c, d ∈ D and g ∈ SO(3), and let us write [g] ⊂ SO(3) for the orbit 
of g ∈ SO(3) under this action.

Lemma 5.3. Let g, h ∈ SO(3). If [g] = [h] then the representations πg and πh are equiv-
alent.

Proof. Let us first assume that we can write g = dh for some d ∈ D. If d = e there 
is nothing to prove, so it suffices to consider the case that d = di for some 1 ≤ i ≤ 3, 
where we recall that di is reflection about the i-th coordinate axis. It is straightforward 
to check that the operator ti ⊗ 1 defines an intertwiner between πg and πh in this case. 
In a similar way one can treat the case g = hd for d ∈ D, and combining these two cases 
yields the claim. �
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Let us say that the packet associated to g ∈ SO(3) is the set Π[g] ⊂ Rep(C(S+
4 )) of 

all irreducible representations which can be realised as representations over elements of 
[g].

Lemma 5.4. Every irreducible representation of C(S+
4 ) is contained in a unique packet. 

Each packet Π[g] contains at most 4 irreducible representations, and these can all be 
realised over any point of [g] ⊂ SO(3).

Proof. Assume that ρ ∈ Rep(C(S+
4 )) can be written as a subrepresentation of πg and 

πh for g, h ∈ SO(3). Since the matrices ti ⊗ tj square to the identity we obtain

h2
ij = ‖πh(v2

ij)‖ = ‖ρ(v2
ij)‖ = ‖πg(v2

ij)‖ = g2
ij

for all 1 ≤ i, j ≤ 3, or equivalently, |gij | = |hij |. A direct inspection shows that one can 
then write g = chd for suitable diagonal matrices c, d with entries in ±1, and one can in 
fact take both c, d from D. Hence we obtain [g] = [h].

The second part of the claim follows from Lemma 5.3 and the fact that each πg

contains at most 4 distinct irreducible representations. �
Next we discuss the behaviour of the map θ : C(SO−1(3)) → M4(C(SO(3)) with 

respect to the comultiplications of C(SO−1(3)) and C(SO(3)).

Lemma 5.5. We have

πg T� πh
∼=

⊕
d∈D

πgdh

for all g, h ∈ SO(3).

Proof. By definition, the representation πg T� πh = (πg ⊗ πh)Δ maps the generator vij
of C(SO−1(3)) to

∑
k

πg(vik) ⊗ πh(vkj) =
∑
k

gikhkj ti ⊗ tk ⊗ tk ⊗ tj .

The middle two tensor factors in this expression can be decomposed in the same way 
as for the representation πe. More precisely, let us write pi ∈ M4(C) for 0 ≤ i ≤ 3 for 
the projections onto the irreducible components of the representation πe, so that the 
restriction of πe to pi(C4) ⊂ C4 is given by the character χi associated with di ∈ D. 
Then the operators 1 ⊗ pi ⊗ 1 are intertwiners of πg T� πh, and they implement a direct 
sum decomposition of πg T� πh into the representations πgdih as claimed. �

Finally, we recall the Følner type characterisation of amenability for discrete quan-
tum groups from [29]. A countable discrete quantum group G is amenable iff for every 
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nonempty finite subset S ⊂ Irr(Ĝ) and ε > 0 there exists a finite set F ⊂ Irr(Ĝ) such 
that

∑
t∈∂S(F )

dim(t)2 < ε
∑
t∈F

dim(t)2,

where the boundary ∂S(F ) of F relative to S is defined by

∂S(F ) = {t ∈ F | ∃r ∈ S such that supp(tr) ⊂ F}
∪ {t ∈ Irr(Ĝ) \ F | ∃r ∈ S such that supp(tr) ⊂ Irr(Ĝ) \ F}.

Here the support supp(f) of an element f =
∑

r∈Irr(Ĝ) λrr ∈ Z[Irr(Ĝ)] is the set of all 
r ∈ Irr(Ĝ) such that λr = 0.

We are now ready to prove the following statement.

Theorem 5.6. The discrete quantum group Σ+
4 is non-amenable.

Proof. Let us choose a copy H of the free group on two generators inside the discretisa-
tion SO(3)δ of SO(3). Moreover let K ⊂ SO(3)δ be the subgroup generated by D and 
H.

Let U ⊂ Σ+
4 be the quantum subgroup generated by all irreducible representations of 

C(S+
4 ) over elements of K. By construction, U is a countable discrete quantum group, 

and using Lemma 5.5 we see that Irr(Û) consists precisely of the corepresentations of Σ+
4

corresponding to the irreducible representations of C(S+
4 ) which are contained in πk for 

some k ∈ K.
For S ⊂ K we let

S+ =
⋃
s∈S

Π[s] ⊂ Irr(Û),

and for T ⊂ Irr(Û) we write

T− = {k ∈ K | ∃η ∈ T such that η ∈ Π[k]} ⊂ K.

Note that if S is finite then the same is true for S+ by Lemma 5.4, and similarly T− is 
finite provided T is.

Consider a nonempty finite set S ⊂ K, a finite set F ⊂ Irr(Û), and let x ∈ F−. Then 
we find an irreducible corepresentation π over x which is contained in F . Assume that 
xs /∈ F− for some s ∈ S, and let σ ∈ Irr(Û) be over s. Then σ ∈ S+ by the definition of 
S+. If the support of π T� σ is entirely contained in F for all such σ then we get xs ∈ F−. 
This is impossible, and hence π ∈ ∂S+(F ). Similarly, if x ∈ K \F− then every irreducible 
corepresentation π over x is contained in Irr(Û) \ F . Assume that xs /∈ K \ F− for some 
s ∈ S, or equivalently xs ∈ F−. If the support of π T� σ is entirely contained in Irr(Û) \F
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for all such π and all σ ∈ S+ over s then we get xs ∈ K \ F−. This is impossible, and 
therefore π ∈ ∂S+(F ) for some π. Combining these considerations we obtain

|∂S(F−)| ≤ 16|∂S+(F )|,

using that every class [x] ⊂ K contains at most 16 elements.
Now assume that U is amenable. Then for every nonempty finite set S ⊂ K and every 

ε > 0 we find a finite set F ⊂ Irr(Û) such that

|∂S+(F )| ≤
∑

t∈∂S+ (F )

dim(t)2 < ε
∑
t∈F

dim(t)2 ≤ 16ε|F |,

noting that 1 ≤ dim(t) ≤ 4 for every t ∈ Irr(Û). Since each packet contains at most 4
irreducibles we also have |F | ≤ 4|F−|, and hence

|∂S(F−)| ≤ 16|∂S+(F )| < 256ε|F | ≤ 1024ε|F−|.

This contradicts the fact that K is not amenable, and finishes the proof. �
Since Σ+

4 fails to be amenable the same holds true for Σ+
n for any n ≥ 4, and also 

for the finitary quantum permutation group Σ+(X) = lim−−→F⊂X
Σ+(F ) associated with 

an infinite set X. Of course, this is in contrast to the situation for the corresponding 
classical groups.

Note that none of the quantum groups Σ+
n for n ≥ 4 and Σ+(X) for an infinite set 

X have property (T) because they are not finitely generated. In fact, our above analysis 
shows in particular that Σ+

4 is uncountable.

6. Free wreath products

Utilising infinite quantum permutation groups in the sense of Definition 4.1, we shall 
now explain a variant of the free wreath product construction introduced by Bichon, 
compare [13].

Throughout we fix a discrete quantum group G and a set X. By an X-free wreath 
corepresentation of G we mean a pair π = (πG, πX) consisting of a family πG = (πG

x )x∈X

of nondegenerate ∗-representations of C0(G) on the same Hilbert space Hπ together with 
a quantum permutation πX = (πX

xy) of X on Hπ, such that

πG
x (f)πX

xy = πX
xyπ

G
x (f)

for all f ∈ C0(G) and x, y ∈ X.
If π = (πG, πX), ρ = (ρG, ρX) are X-free wreath corepresentations of G then their 

tensor product is defined by the family of ∗-representations (π T� ρ)Gx on Hπ ⊗Hρ given 
by
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(π T� ρ)Gx (f) =
∑
y∈X

(πX
xy ⊗ 1)(πG

x ⊗ ρGy )Δ(f) =
∑
y∈X

(πG
x ⊗ ρGy )Δ(f)(πX

xy ⊗ 1)

and the quantum permutation πX T� ρX . Since

(π T� ρ)Gx (f)(π T� ρ)Xxy =
∑

v,w∈X

(πX
xv ⊗ 1)(πG

x ⊗ ρGv )Δ(f)(πX
xw ⊗ ρXwy)

=
∑

v,w∈X

(πX
xvπ

X
xw ⊗ 1)(πG

x ⊗ ρGv )Δ(f)(1 ⊗ ρXwy)

=
∑
w∈X

(πX
xw ⊗ ρXwy)(πG

x ⊗ ρGw)Δ(f)

=
∑

v,w∈X

(πX
xw ⊗ ρXwy)(πG

x ⊗ ρGv )Δ(f)(πX
xv ⊗ 1)

= (π T� ρ)Xxy(π T� ρ)Gx (f)

we see that π T� ρ is again an X-free wreath corepresentation of G. The trivial X-free 
wreath corepresentation ε of G on the Hilbert space C is given by the counit of C0(G)
for all x ∈ X together with the trivial quantum permutation.

An intertwiner of X-free wreath corepresentations π, ρ of G is a bounded linear op-
erator T : Hπ → Hρ such that TπG

x = ρGx T and TπX
xy = ρXxyT for all x, y ∈ X. It is 

straightforward to check that the collection of all X-free wreath corepresentations of G
forms a C∗-tensor category.

By definition, the contragredient of an X-free wreath corepresentation π = (πG, πX)
of G acts on the conjugate Hilbert space of Hπ and is determined by π = (πG, πX) where

πG
x (f)(ξ) =

∑
y∈X

πG
y (R(f∗))πX

yx(ξ)

and πX
xy(ξ) = πX

yx(ξ). Here R denotes the unitary antipode of C0(G). One checks that 
this is indeed a well-defined X-free wreath corepresentation of G.

We say that an X-free wreath corepresentation of G is finite dimensional if its under-
lying Hilbert space is, and we write Corep(G) Wr∗ Sym+(X) for the corresponding full 
C∗-tensor subcategory of the category of X-free wreath corepresentations of G.

Lemma 6.1. Let G be an unimodular discrete quantum group and let X be a set. Then 
every object π of the C∗-tensor category Corep(G) Wr∗ Sym+(X) is dualisable, and the 
dual of π is given by the contragredient π.

Proof. Fix a finite dimensional X-free wreath corepresentation π = (πG, πX) of G and 
choose an orthonormal basis e1, . . . , en of the underlying Hilbert space Hπ. If e1, . . . , en
denotes the dual basis of Hπ

∼= H∗
π we obtain bounded linear operators evπ : Hπ⊗Hπ →

C and dbπ : C → Hπ ⊗Hπ by
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evπ(ei ⊗ ej) = δij = 〈ei, ej〉, dbπ(1) =
n∑

i=1
ei ⊗ ei.

We shall work with the multiplier Hopf algebra Cc(G) of finitely supported elements in 
C0(G), and use Sweedler notation Δ(f) = f(1) ⊗ f(2) for the coproduct of f ∈ Cc(G). 
Keeping in mind that any η ∈ Hπ can be written in the form η = πG

v (gy)(ηy) for suitable 
elements ηy ∈ Hπ and gy ∈ Cc(G) for y ∈ X, we compute

evπ(π T� π)Gx (f)(ξ ⊗ η) =
∑
y∈X

evπ((πX
xy ⊗ 1)(πG

x ⊗ πG
y )Δ(f)(ξ ⊗ η))

=
∑

y,v∈X

evπ((πX
xyπ

X
xv ⊗ 1)(πG

v (S(f(1))∗)(ξ) ⊗ πG
y (f(2))(η))

=
∑
y∈X

evπ(πyxπG
y (S(f(1))∗)(ξ) ⊗ πG

y (f(2))(η))

=
∑
y∈X

evπ(πG
y (S(f(1))∗)(πyxξ) ⊗ πG

y (f(2))(η))

=
∑
y∈X

〈πG
y (S(f(1))∗)(πyxξ), πG

y (f(2))(η)〉

=
∑
y∈X

〈πyxξ, π
G
y (S(f(1))f(2))(η)〉

=
∑
y∈X

ε(f)〈πX
yxξ, η〉

= εGx (f)evπ(ξ ⊗ η)

for ξ, η ∈ Hπ. Here we also use that the unitary antipode R agrees with the ordinary 
antipode S since G is unimodular. Similarly, using the canonical identification Hπ⊗Hπ

∼=
B(Hπ) we obtain

(π T� π)Gx (f)dbπ(1)(ξ) =
n∑

i=1

∑
y∈X

(πX
xy ⊗ 1)(πG

x ⊗ πG
y )Δ(f)(ei ⊗ ei)(ξ)

=
n∑

i=1

∑
y,v∈X

(πX
xyπ

G
x (f(1))(ei) ⊗ πX

vyπ
G
v (S(f∗

(2)))(ei))(ξ)

=
n∑

i=1

∑
y,v∈X

πG
x (f(1))(πX

xyei)〈ei, πX
vyπ

G
v (S(f(2)))(ξ)〉

=
n∑

i=1

∑
y∈X

πG
x (f(1))(πX

xyei)〈ei, πG
x (S(f(2)))(ξ)〉

=
n∑

πG
x (f(1))(ei)〈ei, πG

x (S(f(2)))(ξ)〉

i=1
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=
n∑

i=1
ε(f)ei〈ei, ξ〉

= dbπε
G
x (f)(1)(ξ)

for all f ∈ Cc(G) and ξ ∈ Hπ. Since compatibility with the corresponding quantum 
permutations is obvious we conclude that both evπ and dbπ are intertwiners. Moreover 
these maps clearly satisfy the zig zag equations (id⊗evπ)(dbπ ⊗ id) = id and (evπ ⊗
id)(id⊗dbπ) = id.

Swapping the roles of π and π in the above argument we obtain the dual zig zag 
equations, and it follows that π is dualisable with dual π. �

We note that Lemma 6.1 fails if G is not unimodular, because the evaluation and dual 
basis morphisms for the representations πG

x may depend on x in this case. Still we may 
give the following general definition.

Definition 6.2. Let G be a discrete quantum group and let X be a set. The unrestricted 
free wreath product G Wr∗ Sym+(X) is the discrete quantum group associated to the 
rigid C∗-tensor category of all dualisable X-free wreath corepresentations of G together 
with its tautological fiber functor.

Note that if G is unimodular then Lemma 6.1 shows that every finite dimensional 
X-free wreath corepresentation of G is dualisable.

In the same way as in the classical situation we may also define restricted free wreath 
products. More precisely, by a restricted X-free wreath corepresentation of a discrete 
quantum group G we mean an X-free wreath corepresentation π = (πG, πX) of G such 
that πG

x = ε is the counit of C0(G) for all but finitely many points x ∈ X. One checks 
that tensor products and contragredients of restricted X-free wreath corepresentations 
of G are again restricted.

Definition 6.3. Let G be a discrete quantum group and let X be a set. The restricted free 
wreath product G wr∗ Sym+(X) is the quantum subgroup of G Wr∗ Sym+(X) associated 
to the rigid C∗-tensor category of dualisable restricted X-free wreath corepresentations 
of G together with its tautological fiber functor.

It follows essentially by construction that if G is a compact quantum group with 
discretisation Gδ and X = n = {1, . . . , n} is finite then there is a canonical isomorphism

(G �∗ S+
n )δ ∼= Gδ Wr∗ Σ+

n = Gδ wr∗ Σ+
n

of discrete quantum groups, where G �∗ S+
n is the free wreath product defined by Bichon 

[13]. Here we write Σ+
n = Sym+(n) as before.

Let us also consider an “abelianised” version of the free wreath product. More pre-
cisely, if G is a discrete quantum group and X a set, consider the full subcategory of 
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X-free wreath corepresentations π = (πG, πX) of G such that πG
x (f)πG

y (g) = πG
y (g)πG

x (f)
for all x = y and f, g ∈ C0(G), and with πX a classical permutation of X. We shall call 
such X-free wreath corepresentations of G half-liberated. It is straightforward to check 
that the class of all half-liberated X-free wreath corepresentations of G is closed under 
taking tensor products and contragredients.

Definition 6.4. Let G be a discrete quantum group and let X be a set. The unrestricted 
wreath product G WrSym(X) is the discrete quantum group associated to the rigid C∗-
tensor category of dualisable half-liberated X-free wreath corepresentations of G and its 
tautological fiber functor. The restricted wreath product G wrSym(X) is the quantum 
subgroup of G WrSym(X) corresponding to the dualisable restricted half-liberated X-
free wreath corepresentations of G.

We note that the “classical” wreath products in Definition 6.4 are typically non-
classical discrete quantum groups. In the case that X is finite, analogues of these objects 
in the world of compact quantum groups have recently been studied by Gromada [23].

7. Quantum automorphisms of infinite graphs

In this section we extend our study of infinite quantum permutations to the case of 
graphs, that is, we discuss quantum symmetries of infinite graphs.

We use the conventions and notation from section 2, with the difference that we no 
longer require graphs to be finite. That is, in the sequel, by a graph X = (VX , EX)
we mean a set VX of vertices together with a set EX ⊂ VX × VX of edges such that 
(v, v) /∈ EX for all v ∈ VX and (v, w) ∈ EX iff (w, v) ∈ EX . We say that v and w
are connected by an edge iff (v, w) ∈ EX , and define the degree of v ∈ VX as the 
cardinality of the set of vertices which are connected to v by an edge. The adjacency 
matrix AX ∈ MVX

({0, 1}) can be viewed as a linear map Cc(VX) → C(VX). We note 
that it induces a bounded linear operator l2(VX) → l2(VX) iff X has finite degree, that 
is, iff the degrees of the vertices of X are uniformly bounded. As in section 2 we shall 
write rel for the function on pairs of vertices which describes the adjacency relation, 
taking the values equal, adjacent, distinct and non-adjacent. We denote by Aut(X) the 
automorphism group of X, that is, the group of all permutations of VX preserving the 
adjacency relation.

Definition 7.1. Let X = (VX , EX) be a graph. A quantum automorphism of X is a 
quantum permutation σ = (Hσ, uσ) of VX such that

uσ
x1y1

uσ
x2y2

= 0

if rel(x1, x2) = rel(y1, y2).
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It is straightforward to check that the class of quantum automorphisms in the sense 
of Definition 7.1 is closed under taking tensor products and contragredients, and thus 
defines a full C∗-tensor subcategory of the category of quantum permutations of the 
underlying vertex set. In particular, the collection of all finite dimensional quantum au-
tomorphisms yields a rigid C∗-tensor category, which leads us to the following definition.

Definition 7.2. Let X = (VX , EX) be a graph. The quantum automorphism group 
Qutδ(X) is the quantum subgroup of Sym+(VX) corresponding to the rigid C∗-tensor 
category of finite dimensional quantum automorphisms of X.

Here Qutδ(X) is shorthand for discrete quantum automorphism group of X, empha-
sizing that this is not the same as the quantum automorphism group of X in the sense 
of Banica-Bichon if X is a finite graph.

It is easy to check that a quantum automorphism of a graph X is the same thing 
as a quantum permutation σ = (H, u) of VX such that AXu = uAX as matrices in 
MVX

(B(H)). Note here that the entries of both matrix products in this formula make 
sense in the strong operator topology.

The C∗-algebra C0(Qutδ(X)) and its comultiplication can be described in analogy to 
the discussion in section 4, and one verifies the following basic fact in the same way as 
Lemma 3.2.

Lemma 7.3. Unitary equivalence classes of one-dimensional quantum automorphisms of 
a graph X correspond bijectively to graph automorphisms of X.

We also note that if X is a finite graph then Qutδ(X) can be identified with the dis-
cretisation of the compact quantum automorphism group Qut(X) discussed in section 2. 
As already indicated above, this means in particular that C0(Qutδ(X)) is typically not 
isomorphic to C f(Qut(X)).

In the remainder of this section we shall discuss some examples regarding the exis-
tence and non-existence of quantum automorphisms of graphs. Following Banica and 
Bichon, we say that a graph X has no quantum symmetry if every irreducible quantum 
automorphism of X is one-dimensional. This is the case iff the entries uxy of every quan-
tum automorphism σ = (H, u) of X pairwise commute. Otherwise we say that X has 
quantum symmetry.

Let us first observe that this terminology is consistent with previous usage in the case 
of finite graphs.

Lemma 7.4. Let X be a finite graph. Then X has quantum symmetry in the sense above 
iff Qut(X) is a non-classical compact quantum group.

Proof. Note that Qut(X) is non-classical iff C f(Qut(X)) is nonabelian. By definition, 
existence of an irreducible quantum automorphism of X of dimension greater than one 
means that C f(Qut(X)) is nonabelian. Conversely, if C f(Qut(X)) is nonabelian then this 



C. Voigt / Advances in Mathematics 415 (2023) 108887 23
C∗-algebra admits an irreducible ∗-representation of dimension greater than one, which 
means that X has quantum symmmetry. �
7.1. Infinite Johnson graphs

In his work on quantum symmetries, Schmidt has exhibited a number of criteria which 
allow one to check for the existence and non-existence of quantum automorphisms [40], 
[39]. Many of these criteria carry over to the case of infinite graphs in a straightforward 
way.

Let us state one general result of this type in order to illustrate the situation. For 
vertices x, y in a graph X denote by d(x, y) the distance between x and y, that is, the 
length of a shortest path connecting them. Here d(x, y) = ∞ if there is no such path.

Lemma 7.5. Let X be a graph and let x1, x2, y1, y2 ∈ VX such that d(x1, x2) = d(y1, y2). 
If (H, u) is a quantum automorphism of X then ux1,y1ux2y2 = 0.

The proof of Lemma 7.5 is the same as for Lemma 3.2 in [39], simply note that 
all operators in the argument are uniformly bounded and that multiplication is jointly 
strongly continuous on bounded sets.

In order to give a concrete example of an infinite graph without quantum symmetry 
let us consider infinite Johnson graphs. The Johnson graph J(∞, k) is the graph with 
vertices given by all k-element subsets of N, such that two vertices are connected by 
an edge iff their intersection contains k − 1 elements, compare [35]. The Johnson graph 
J(∞, k) has diameter k and is distance transitive.

Proposition 7.6. The Johnson graph J(∞, 2) has no quantum symmetry.

Proof. The corresponding result for finite Johnson graphs is due to Schmidt, see Theorem 
4.13 in [39], and the argument given there carries over to the infinite case with minor 
modifications. This also involves appropriate versions of Lemma 3.4, Lemma 3.7 and 
Lemma 3.8 in [39], which we shall however not spell out here.

Let us fix a quantum automorphism (H, u) of J(∞, 2). Due to Lemma 7.5 it suffices 
to show uijukl = ukluij for d(i, k) = d(j, l) = d for d = 1, 2 since J(∞, 2) has diameter 
2. For d = 1 this means that both (i, k), (j, l) are edges, and since J(∞, 2) is distance 
transitive we may consider j = {1, 2}, l = {1, 3}. The first four steps of the proof in [39]
deal with the case d = 1, and the final step is devoted to the case d = 2.

Keeping in mind the above remarks regarding results from section 3 of [39], steps 1, 
4 and 5 of this proof remain unchanged. For step 2, let p = {1, a} for a ≥ 4. Then

uijuk,{1,3}uip = 0

follows directly from
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uij

(
uk{2,a} +

∞∑
c=3,c �=a

uk,{1,c}

)
uip = 0

and the relation uijuk{1,d}uip = uijuk{1,3}uip for d /∈ {1, 2, a}, by evaluating the terms 
on an arbitrary vector ξ ∈ H. In the same way, step 3 is verified by noting that uij(ukl +
uk{1,b})uip = 0 for p = {1, 3} and all b ≥ 4 implies immediately uijukluip = 0. �

The Kneser graph K(∞, 2) is the graph with vertex set given by all 2-element subsets 
of N and an edge between two vertices iff the intersection of the corresponding sets is 
empty. In other words, K(∞, 2) is the complement of J(∞, 2). Since a graph has quantum 
symmetry iff its complement does, it follows from Proposition 7.6 that K(∞, 2) has no 
quantum symmetry. We note that both J(∞, 2) and K(∞, 2) have infinite degree.

7.2. Disjoint automorphism

Two automorphisms σ, τ ∈ Aut(X) of a graph X are called disjoint if σ(x) = x =⇒
τ(x) = x and τ(x) = x =⇒ σ(x) = x for all x ∈ VX . The existence of a pair of 
disjoint automorphisms is sufficient for a finite graph X to have quantum symmetry, see 
Theorem 2.2 in [40]. This criterion extends easily to the infinite setting.

Proposition 7.7. Let X be a graph admitting a pair of disjoint automorphisms σ, τ ∈
Aut(X), and assume that k ∈ N does not exceed the order of neither of these auto-
morphisms. Then X admits an irreducible quantum automorphism of dimension k. In 
particular, if Aut(X) contains a pair of nontrivial disjoint automorphisms then X has 
quantum symmetry.

Proof. We shall give the details for the sake of definiteness. Let us fix k ∈ N such 
that k ≤ min(ord(σ), ord(τ)), and note that if ord(σ) = ∞ = ord(τ) this means that 
we can choose k arbitrarily. We shall construct an irreducible quantum automorphism 
ρ = (Ck, uρ) of dimension k as follows.

Let G = Z/kZ and consider the actions of C(G) and C∗(G) on Ck = l2(G), induced 
by pointwise multiplication of functions in C(G), and the regular representation of G, 
respectively. We shall write p1, . . . pk and q1 . . . , qk for the images in Mk(C) = B(l2(G))
of the minimal projections in C(G) and C∗(G) under these representations, respectively.

Define uρ = (uρ
xy)x,y∈VX

by uρ =
∑k

r=1 u
σr

pr+
∑k

s=1 u
τs

qs−uid1. That is, the matrix 
uρ
xy ∈ Mk(C) is given by

uρ
xy =

k∑
r=1

δxσr(y)pr +
k∑

s=1
δxτs(y)qs − δxy1

for x, y ∈ VX . Since σ and τ are graph automorphisms we clearly have uρAX = AXuρ. 
Let
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Mxy = {1 ≤ r ≤ k | σr(y) = x},
Nxy = {1 ≤ s ≤ k | τ s(y) = x},

and observe that

uρ
xy =

⎧⎪⎪⎨
⎪⎪⎩

∑
r∈Mxy

pr if σ(y) = y∑
s∈Nxy

qs if τ(y) = y

δxy1 if σ(y) = y = τ(y).

In particular, every uρ
xy for x, y ∈ VX is a projection. In addition we have

∑
x∈Vx

uρ
xy =

k∑
r=1

∑
x∈VX

δxσr(y)pr +
k∑

s=1

∑
x∈VX

δxτs(y)qs − 1 =
k∑

r=1
pr +

k∑
s=1

qs − 1 = 1,

and similarly

∑
y∈Vx

uρ
xy =

k∑
r=1

∑
y∈VX

δxσr(y)pr +
k∑

s=1

∑
y∈VX

δxτs(y)qs − 1 =
k∑

r=1
pr +

k∑
s=1

qs − 1 = 1

as required. It follows that ρ = (Ck, uρ) is a quantum automorphism of X.
Let us now check that ρ is irreducible. If ord(σ) = m < ∞ then upon decomposing 

X into the orbits of σ we see that there are elements v1, . . . , va ∈ VX , fixed under τ , 
such that (σt(v1), . . . , σt(va)) = (v1, . . . , va) for 0 ≤ t < k implies t = 0. If ord(σ) = ∞
we either find an infinite orbit, or orbits of arbitrarily large finite size. Again this allows 
us to choose v1, . . . , va ∈ VX such that (σt(v1), . . . , σt(va)) = (v1, . . . , va) for 0 ≤ t < k

implies t = 0. In fact, we may take v1 = · · · = va for a suitably chosen vertex in this 
case. In either case it follows that uρ

σr(v1)v1
· · ·uρ

σr(va)va = pr.
In the same way we find w1, . . . , wb ∈ VX such that uρ

τr(w1)w1
· · ·uρ

τr(wb)wb
= qr. Since 

the projections pi, qj for 1 ≤ i, j ≤ k generate Mk(C) this yields the claim. �
Proposition 7.7 allows one to exhibit quantum symmetries in various concrete situa-

tions.

7.3. Disjoint unions

In the case of finite graphs, the quantum automorphism group of a disjoint union has 
been determined by Bichon in terms of free wreath products. Using the constructions 
from section 6, we shall now show that the same result holds in the infinite setting, in 
analogy to Theorem 4.2 in [13].

If (Xi)i∈I is a collection of graphs labelled by some index set I we shall write X =⋃
i∈I Xi for their disjoint union, so that VX =

⋃
i∈I VXi

and EX =
⋃

i∈I EXi
. We will be 

interested in particular in the situation that all Xi are equal to a fixed graph.
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Theorem 7.8. Let X be a connected graph and let I be an index set. Then there is a 
canonical isomorphism

Qutδ
(⋃

i∈I

X

)
∼= Qutδ(X) Wr∗ Sym+(I)

of discrete quantum groups.

Proof. It suffices to construct a monoidal equivalence of the corresponding C∗-tensor 
categories which leaves the underlying Hilbert spaces fixed.

Assume first that π = (πG, πI) is a finite dimensional I-wreath corepresentation of 
G = Qutδ(X) with underlying Hilbert space Hπ. We construct a quantum permutation 
f(π) of the vertex set 

⋃
i∈I VX on Hπ by setting

f(π)xi,yj
= (πG

i )xyπI
ij = πI

ij(πG
i )xy,

where xi for x ∈ VX and i ∈ I denotes the element x in the i-th component of the disjoint 
union. Here we encode the representation πG

i of C0(Qutδ(X)) by the corresponding 
quantum permutation. One checks that this is a quantum automorphism of 

⋃
i∈I X. 

Indeed, assume that xi, vk are connected, which means i = k and (x, v) ∈ EX . If yj , wl

are vertices with j = l we get f(π)xi,yj
f(π)vk,wl

= 0 since πI
ijπ

I
il = 0, and if j = l and 

(y, w) /∈ EX this follows from (πG
i )xy(πG

i )vw = 0.
Clearly this construction defines a functor f : Corep(Qutδ(X) Wr∗ Sym+(I)) →

Corep(Qutδ(
⋃

i∈I X)) which acts as the identity on morphisms. The trivial I-wreath 
corepresentation of G is sent to the trivial quantum automorphism of 

⋃
i∈I X. Moreover, 

if π, η are I-free wreath corepresentations then

f(π T� η)xi,yj
= ((π T� η)Gi )xy(π T� η)Iij

=
∑
v,k,l

(πI
ik ⊗ 1)((πG

i )xv ⊗ (ηGk )vy)(πI
il ⊗ ηIlj)

=
∑
v,k

((πG
i )xv ⊗ (ηGk )vy)(πI

ik ⊗ ηIkj)

=
∑
v,k

(πG
i )xvπI

ik ⊗ (ηGk )vyηIkj

=
∑
v,k

f(π)xi,vk ⊗ f(η)vk,yj

= (f(π) T� f(η))xi,yj
,

and it follows that f is in fact a unitary tensor functor.
Conversely, assume that u = (uxi,yj

) is a finite dimensional quantum automorphism 
of 

⋃
i∈I X. Define
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g(u)Iij =
∑
v

uxi,vj

where x is some fixed vertex in VX . Let us show that this is in fact independent of the 
choice of x. Since X is connected it suffices to consider x, x′ ∈ VX with (x, x′) ∈ EX and 
compute

∑
v

uxi,vj =
∑
v,w,k

uxi,vjux′
i,wk

=
∑
v,w

uxi,vjux′
i,wj

=
∑
v,w,k

uxi,vkux′
i,wj

=
∑
w

ux′
i,wj

,

using the defining relations for a quantum automorphism. Next we check that g(u)I
is a quantum permutation of I. Since the projections uxi,yj

for fixed xi are pairwise 
orthogonal it is clear that g(u)Iij is a projection. Moreover we have 

∑
j g(u)Iij = 1 from 

the fact that u is a quantum permutation. Using our above considerations we obtain

uwi,yj
g(u)Iij =

∑
v

uwi,yj
uxi,vj =

∑
v

uwi,yj
uwi,vj = uwi,yj

for all w, y ∈ X. In particular we get 
∑

w uwi,yj
≤

∑
v uxi,vj , and by symmetry we 

conclude that in fact

g(u)Iij =
∑
v

uxi,vj =
∑
w

uwi,yj

for any x, y ∈ VX . Using this observation it is straightforward to verify the remaining 
relation 

∑
i g(u)Iij = 1.

In addition we define

(g(u)Gi )xy =
∑
j

uxi,yj
,

and we claim that g(u)Gi is a quantum automorphism of X. Clearly each (g(u)Gi )xy is a 
projection, and the relation 

∑
y(g(u)Gi )xy = 1 follows from the fact that u is a quantum 

permutation. From our above arguments we also obtain

∑
x

(g(u)Gi )xy =
∑
x

∑
j

uxi,yj
=

∑
j

∑
x

uxi,yj
=

∑
j

∑
w

uvi,wj
= 1,
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where v ∈ VX is arbitrary. Note here that uvi,yj
uwi,yk

= 0 for all v = w and j = k due 
to Lemma 7.5. For x, y, v, w ∈ VX with (x, v) ∈ EX and (y, w) /∈ EX we get

(g(u)Gi )xy(g(u)Gi )vw =
∑
j,k

uxi,yj
uvi,wk

= 0

by definition of the adjacency relations in 
⋃

i∈I X. Similarly, if (x, v) /∈ EX and (y, w) ∈
EX we obtain

(g(u)Gi )xy(g(u)Gi )vw =
∑
j,k

uxi,yj
uvi,wk

=
∑
j �=k

uxi,yj
uvi,wk

= 0

using Lemma 7.5, and we conclude that g(u)Gi is indeed a quantum automorphism of X.
Moreover one has

(g(u)Gi )xyg(u)Iij =
∑
v,k

uxi,yk
uxi,vj =

∑
v,k

uxi,vjuxi,yk
= g(u)Iij(g(u)Gi )xy

for all x, y ∈ VX and i, j ∈ I. Setting g(u) = (g(u)G, g(u)X) we thus obtain an X-wreath 
corepresentation of G = Qutδ(X) on the underlying Hilbert space of u. Clearly this con-
struction yields a functor g : Corep(Qutδ(

⋃
i∈I X)) → Corep(Qutδ(X) Wr∗ Sym+(I))

which acts as the identity on morphisms.
To see that f and g are mutually inverse equivalences of categories let π = (πG, πI) ∈

Corep(Qutδ(X) Wr∗ Sym+(I)) and compute

((gf)(π)Gi )xy =
∑
j

f(π)xi,yj
=

∑
j

(πG
i )xyπI

ij = (πG
i )xy

and

((gf)(π)I)ij =
∑
y

f(π)xi,yj
=

∑
y

(πG
i )xyπI

ij = πI
ij .

Conversely, let u ∈ Corep(Qutδ(
⋃

i∈I X)) and compute

(fg)(u)xiyj
= (g(u)Gi )xyg(u)Iij =

∑
k,v

uxi,yk
uxi,vj = uxiyj

as required. Since both f and g act as the identity on morphism spaces this finishes the 
proof. �
7.4. Unit distance graphs

A unit distance graph is a graph obtained by taking a subset of Rd as vertex set and 
connecting two vertices iff their Euclidean distance is equal to 1. Examples of finite unit 
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distance graphs in the plane include cycle graphs, hypercube graphs, and the Petersen 
graph. Note that unit distance graphs in R2 need not be planar. It is known [31] that 
every finite graph can be represented as a unit distance graph for a suitable dimension 
d. From our perspective, the class of unit distance graphs is interesting since it provides 
natural examples of graphs with uncountably many vertices.

Consider for instance the unit distance graph Ud associated to Euclidean space Rd

itself. Here the case d = 1 is somewhat special, since Ud for d > 2 is connected while 
U1 is highly disconnected. In fact, one can write U1 ∼=

⋃
x∈R/Z L as disjoint union of 

uncountably many copies of the “infinite line” graph L, that is, the unit distance graph 
of Z ⊂ R.

Proposition 7.9. The “infinite line” graph L admits no quantum automorphisms which 
are not classical.

Proof. The following proof is due to Matthew Daws. As pointed out by Stefaan Vaes, 
an alternative argument can also be given using the techniques in [37].

Assume that (H, u) is a quantum permutation of L. From the adjacency relations 
we see that ui,j+1 + ui,j−1 = ui+1,j + ui−1,j for all i, j ∈ Z. We need to show that all 
projections ui,j mutually commute.

Since the problem is invariant under translations it suffices to check that u0,0 com-
mutes with all other projections. From Lemma 7.5 we know that u0,0 commutes with 
ui,j provided |i| = |j|. Therefore it is enough to verify that u0,0 commutes with all ui,j

such that |i| = |j|.
We prove this by induction on |i| = |j| = n, the case n = 0 being trivial. By slight 

abuse of notation, we shall confuse projections in B(H) with their images in H in the 
sequel. We shall write ⊕ to stress when the sum of two projections is orthogonal.

Consider the case |i| = |j| = 1. Firstly, note that the Hilbert space H decomposes 
into an orthogonal direct sum

u1,1 ⊕ u1,−1 ⊕ (u1,1 + u1,−1)⊥. (7.1)

As u−1,−1 ⊥ u1,−1 this implies

u−1,−1 ≤ u1,1 ⊕ (u1,1 + u1,−1)⊥. (7.2)

Using u−1,1 + u−1,−1 = u0,0 + u−2,0 we get

u−1,−1 ≤ u0,0 + u−2,0. (7.3)

Moreover, by the magic unitary condition we know that u−2,0 is orthogonal to u0,0 +
u2,0 = u1,1 + u1,−1, so

u−2,0 ≤ (u1,1 + u1,−1)⊥. (7.4)
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Combining (7.3) and (7.4) gives

u−1,−1 ≤ u0,0 ⊕ (u1,1 + u1,−1)⊥. (7.5)

From (7.2) and (7.5) we now get

u−1,−1 ≤ (u0,0 ∧ u1,1) ⊕ (u1,1 + u1,−1)⊥, (7.6)

where u0,0 ∧ u1,1 is the orthogonal projection onto the intersection of the images of u0,0
and u1,1. By symmetry we also have

u−1,1 ≤ (u0,0 ∧ u1,−1) ⊕ (u1,1 + u1,−1)⊥. (7.7)

Combining (7.6) and (7.7) yields

u−1,1 ⊕ u−1,−1 ≤ (u0,0 ∧ u1,1) ⊕ (u0,0 ∧ u1,−1) ⊕ (u1,1 + u1,−1)⊥. (7.8)

Recall that u0,0 ≤ u−1,1 ⊕ u−1,−1 and u0,0 ≤ u1,1 + u1,−1. Hence (7.8) implies

u0,0 ≤ (u0,0 ∧ u1,1) ⊕ (u0,0 ∧ u1,−1). (7.9)

A symmetric argument gives

u2,0 ≤ (u2,0 ∧ u1,1) ⊕ (u2,0 ∧ u1,−1). (7.10)

Combining (7.9) and (7.10) we obtain

u1,1 ⊕ u1,−1 = u0,0 ⊕ u2,0

≤ (u0,0 ∧ u1,1) ⊕ (u0,0 ∧ u1,−1) ⊕ (u2,0 ∧ u1,1) ⊕ (u2,0 ∧ u1,−1)

≤ u1,1 ⊕ u1,−1.

It follows that we have equality throughout in this relation. In particular, u0,0 commutes 
with u1,1 and u1,−1. A symmetric argument shows that u0,0 commutes with u−1,1 and 
u−1,−1.

Now assume that u0,0 commutes with ui,j provided |i| = k = |j| for all 0 ≤ k ≤ n

for some n ≥ 1. Then u0,0 commutes with un+1,n−1, un−1,n+1 and un−1,n−1. Using 
un+1,n+1 + un+1,n−1 = un−1,n−1 + un−1,n+1 it follows that u0,0 also commutes with 
un+1,n+1. Again, by symmetry considerations we see that u0,0 commutes in fact with all 
ui,j such that |i| = |j| = n + 1. This finishes the proof. �

Proposition 7.9 shows in particular that the canonical morphism Aut(L) → Qutδ(L)
is an isomorphism. Combining Proposition 7.9 with Theorem 7.8 allows us to determine 
the quantum automorphism group of U1 as follows.
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Proposition 7.10. The quantum automorphism group Qutδ(U1) is isomorphic to the free 
wreath product Aut(L) Wr∗ Sym+(R/Z).

In particular U1 has quantum symmetry, and admits in fact uncountably many in-
equivalent quantum automorphisms in every dimension.

For d > 1 the situation seems much less clear. According to the Beckman-Quarles 
theorem [10], the classical symmetries of Ud for d > 1 are given precisely by the isometries 
of Rd. In particular, these graphs do not admit disjoint automorphisms. Let us pose the 
following question.

Question 7.11. Does Ud for d > 1 have quantum symmetry?

Of course, unit distance graphs can be defined in an analogous fashion for subsets 
of more general metric spaces. It would be interesting to relate quantum symmetries of 
such graphs with the study of quantum automorphism groups of metric spaces, see [21].

7.5. Graph products

An easy way to obtain graphs with quantum symmetry out of known examples is to 
consider suitable products, see [6].

Let us recall some definitions. If X, Y are graphs then the direct product X × Y , also 
known as tensor product or Kronecker product, is the graph with vertex set VX×Y =
VX × VY and adjacency matrix AX×Y = AX ⊗ AY , so that (AX×Y )(x1,y1),(x2,y2) =
(AX)x1,x2(AY )y1,y2 . The cartesian product X�Y is the graph with VX�Y = VX × VY

and AX�Y = AX ⊗ 1 + 1 ⊗AY , where 1 denotes the identity matrix. Finally, the strong 
product X � Y is given by VX�Y = VX × VY and AX�Y = (AX + 1) ⊗ (AY + 1) − 1 ⊗ 1.

Proposition 7.12. Let X, Y be graphs. Then there is a canonical morphism of discrete 
quantum groups ι : Qutδ(X) × Qutδ(Y ) → Qutδ(X × Y ) such that the corresponding 
∗-homomorphism ι∗ : C0(Qutδ(X × Y )) → M(C0(Qutδ(X)) ⊗ C0(Qutδ(Y ))) satisfies

ι∗(u(x1,y1),(x2,y2)) = ux1,x2 ⊗ uy1,y2

for all x1, x2 ∈ VX , y1, y2 ∈ VY . The same holds if X×Y is replaced by X�Y or X�Y .

Proof. We consider only the case X × Y since the arguments for X�Y and X � Y are 
analogous.

Assume that σX = (H, uX), σY = (H, uY ) are quantum automorphisms of X and Y on 
the same Hilbert space H such that uX

x1x2
uY
y1y2

= uY
y1y2

uX
x1x2

for all x1, x2 ∈ VX , y1, y2 ∈
VY . Then

uX×Y = uX
x x uY

y y
(x1,y1),(x2,y2) 1 2 1 2
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determines a quantum automorphism σX×Y = (H, uX×Y ) of the direct product X × Y . 
Indeed, the above formula defines a quantum permutation of VX × VY since the matrix 
elements uX

x1x2
and uY

y1y2
commute, and we have

(uX×Y (AX ⊗ 1))(x1,y1),(x2,y2) =
∑
v,w

uX×Y
(x1,y1),(v,w)(AX)v,x2δw,y2

=
∑
v

uX
x1v(AX)v,x2u

Y
y1y2

=
∑
v

(AX)x1,vu
X
vx2

uY
y1y2

=
∑
v,w

(AX)x1,vδy1wu
X×Y
(v,w),(x2,y2)

= ((AX ⊗ 1)uX×Y )(x1,y1),(x2,y2)

for all (x1, y1), (x2, y2) ∈ VX × VY . A similar computation shows that uX×Y commutes 
with 1 ⊗AY , and hence it also commutes with AX ⊗AY as required.

Applying this to H = Hσ ⊗Hτ for σ = (Hσ, uσ) ∈ Qutδ(X), τ = (Hτ , uτ ) ∈ Qutδ(Y )
and uX = uσ ⊗ 1, uY = 1 ⊗ uτ shows that we obtain a nondegenerate ∗-homomorphism 
ι∗ : C0(Qutδ(X×Y )) → M(C0(Qutδ(X)) ⊗C0(Qutδ(Y ))) such that ι∗(u(x1,y1),(x2,y2)) =
ux1,x2 ⊗ uy1,y2 . It follows in particular that ι∗ is compatible with the comultiplications, 
and hence ι∗ implements a morphism of quantum groups ι : Qutδ(X) × Qutδ(Y ) →
Qutδ(X × Y ) as claimed. �

If one of the graphs X, Y has quantum symmetry then Proposition 7.12 shows that 
the same is true for X ×Y, X�Y and X �Y . This allows one to produce basic examples 
of infinite graphs with quantum symmetry by taking products of finite graphs with 
quantum symmetry and arbitrary infinite graphs. Note that the graph products X�Y

and X � Y are connected whenever X and Y are.
If X, Y are finite graphs then the sufficient criteria given in [6] for having Qut(X) ×

Qut(X) ∼= Qut(X × Y ) are also sufficient to show that the morphism ι : Qutδ(X) ×
Qutδ(X) → Qutδ(X × Y ) from Proposition 7.12 is an isomorphism. It would be inter-
esting to find natural criteria in the infinite situation.

Let us also consider infinite products. If (Xi)i∈I is an arbitrary family of graphs then 
the cartesian product X = �i∈IXi is defined by VX =

∏
i∈I VXi

and ((xi), (yi)) in EX

iff there exists l ∈ I such that (xl, yl) ∈ EXl
and xi = yi for i = l. Note that X has 

uncountably many vertices as soon as I is infinite and all Xi are nontrivial. In particular, 
the graph X is highly disconnected in this situation even if all Xi are connected.

It is therefore customary to restrict attention to weak cartesian products, see [38]. 
More precisely, if (Xi)i∈I is a family of graphs and a = (ai)i∈I ∈

∏
i∈I VXi

, then the 
weak cartesian product �a

i∈IXi is the induced subgraph of �i∈IXi corresponding to 
all x = (xi)i∈I such that xi = ai for all but finitely many i ∈ I. If every Xi admits 
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a transitive group of automorphisms then all weak cartesian products of (Xi)i∈I are 
mutually isomorphic, and we can speak of the weak cartesian product of the family of 
graphs.

Let (Gi)i∈I be a family of discrete quantum groups. We shall write 
∐

i∈I Gi for the 
discrete quantum group

∐
i∈I

Gi = lim−−→
F⊂I

∏
i∈F

Gi,

where the limit is taken over all finite subsets F ⊂ I. This is a quantum analogue of the 
subgroup of an infinite product of groups consisting of those elements for which almost 
all entries are the identity.

Proposition 7.13. Let (Xi)i∈I be a family of graphs. Then there is a canonical embedding 
morphism of discrete quantum groups

∐
i∈I

Qutδ(Xi) → Qutδ(�a
i∈IXi)

for any a = (ai)i∈I ∈
∏

i∈I VXi
.

Proof. We define a fully faithful monoidal functor ιF : Corep(
∏

i∈F Qutδ(Xi)) →
Corep(Qutδ(�a

i∈IXi)) for a finite subset F ⊂ I as follows.
Let (Hj , uj)j∈F be a family of finite dimensional quantum automorphisms of the 

graphs Xj . Then we obtain a quantum automorphism ιF ((Hj , uj)j∈F ) of �a
i∈IXi on ⊗

i∈F Hi by setting

ιF ((Hj , u
j)j∈F )(xi),(yi) =

∏
k∈I\F

δxk,yk

⊗
k∈F

uk
xk,yk

for vertices (xi), (yi) in �a
i∈IXi. Note here that xi = ai = yi for all but finitely many 

i ∈ I. If all (Hj , uj) are irreducible then the same is true for ιF ((Hj , uj)j∈F ), and one 
checks that ιF is compatible with tensor products. Since every irreducible object in 
Corep(

∏
i∈F Qutδ(Xi)) is isomorphic to the tensor product of a family of irreducible fi-

nite dimensional quantum automorphisms (Hj, uj)j∈F as above it follows that ιF induces 
a fully faithful monoidal functor as required.

Since the functors ιF for varying subsets F ⊂ I are clearly compatible with inclusions 
this yields the claim. �

In general the morphism from Proposition 7.13 is not an isomorphism. It would be 
interesting to find suitable conditions under which one gets in fact an isomorphism this 
way.
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7.6. Infinite Hamming graphs

Fix n ∈ N and consider the complete graph Xk = Kn for all k ∈ N, which we 
assume to be modelled on the set Z/nZ. Fixing the connected component of the vertex 
a = 0 ∈

∏
Z/nZ we see that the associated weak cartesian product X = �a

k∈NKn has 
vertex set VX =

⊕
k∈N Z/nZ. By definition, two vertices x, y ∈ VX are connected iff 

there exists l ∈ N such that xk = yk for all k = l. The graph X = H(∞, n) is an infinite 
Hamming graph.

Recall from section 6 the construction of wreath products for discrete quantum groups.

Proposition 7.14. The quantum automorphism group Qutδ(H(∞, n)) contains the re-
stricted wreath product Σ+

n wr Sym(N) naturally as a quantum subgroup.

Proof. Due to Proposition 7.13 we obtain a canonical embedding of 
∐

k∈N Σ+
n into 

Qutδ(H(∞, n)). Together with the natural action of Sym(N) given by permutation of 
factors this yields an embedding Σ+

n wr Sym(N) → Qutδ(H(∞, n)) as required. Since 
the verifications are analogous to the arguments in the proof of Proposition 7.13 we shall 
not spell out the details. �

The quantum automorphism groups of finite Hamming graphs �m
k=1Kn have recently 

been computed by Gromada [23]. We note that the inclusion morphism in Proposi-
tion 7.14 is not an isomorphism, and we shall leave it as an open problem to determine 
Qutδ(H(∞, n)). It would also be interesting to understand the structure of the quantum 
automorphism groups of other weak cartesian products.

7.7. The Rado graph

Let us finally consider the Rado graph, also known as the Erdős-Rényi graph or 
random graph, see [18], [36], [16]. It can be defined as the countable graph R with vertex 
set VR given by the prime numbers congruent 1 mod 4, and with (p, q) ∈ ER iff p is 
a quadratic residue mod q. Note here that (p, q) ∈ ER iff (q, p) ∈ ER by the law of 
quadratic reciprocity.

The Rado graph admits numerous concrete models, and contains all countable graphs 
as induced subgraphs. A key property of this graph is that for any pair of disjoint finite 
sets A, B ⊂ VR there exists a vertex w ∈ VR such that (x, w) ∈ ER for all x ∈ A and 
(y, w) /∈ R for all y ∈ B. In fact, the Rado graph R is homogeneous [25], which means 
that any partial automorphism of R can be extended to a global automorphism.

As a consequence, this graph has a wealth of automorphisms, which can be constructed 
by the back-and-forth method. In contrast, we have the following result regarding quan-
tum automorphisms.

Proposition 7.15. The Rado graph R admits no finite dimensional quantum automor-
phisms which are not classical.
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Proof. Assume that σ = (H, u) is a non-classical finite dimensional quantum automor-
phism, by which we mean that the algebra generated by the projections uxy for x, y ∈ VR

is noncommutative.
By assumption, we then find vertices x(+), x(−) and y1(+), y1(−) such ux(+),y1(+)

and ux(−),y1(−) do not commute. We let ux(±),yj(±) for j = 2, . . . , r± be the remaining 
nonzero projections in the row for x(±). Set

pα(±) = ux(±)y1(±), pβ(±) =
∑
j>1

ux(±)yj(±).

Then the projections pα(+), pβ(+) are orthogonal with pα(+) + pβ(+) = 1, and in the 
same way pα(−), pβ(−) are orthogonal with pα(−) + pβ(−) = 1. By construction, pα(+)
and pα(−) do not commute, and hence pβ(+) and pβ(−) do not commute either.

Choose a vertex w such that (w, y1(+)) ∈ ER, (w, y1(−)) ∈ ER and (w, yi(±)) /∈ ER

for all i > 1, and let us consider the nonzero projections uviw in the column for w, 
where 1 ≤ i ≤ k for some k. If (vi, x(±)) ∈ ER then uviw is orthogonal to pβ(±), and if 
(vi, x(±)) /∈ ER then uviw is orthogonal to pα(±). We conclude uviw ≤ pα(±) in the first 
case and uviw ≤ pβ(±) in the second case. Since the projections uviw form a partition of 
unity it follows that we can write each of pα(±) and pβ(±) as sums of certain uviw.

However, this means in particular that all these projections commute, which yields a 
contradiction. �

According to Proposition 7.15, any non-classical quantum automorphism of R is nec-
essarily infinite dimensional. It follows from Proposition 7.15 and Proposition 7.7 that 
Aut(R) does not contain disjoint automorphisms, and we pose the following question.

Question 7.16. Does R have quantum symmetry?

We note that the argument in Proposition 7.15 works in the same way for the Henson 
graphs Gp for p ≥ 4, that is, the universal Kp-free graphs. In other words, none of these 
graphs admits finite dimensional quantum automorphisms. This follows from Lemma 2.1 
in [25].
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