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ABSTRACT
Objective  To assess the independent association of 
maternal lipid levels with birth weight and cord blood 
insulin (CBI) level.
Setting  The Born in Guangzhou Cohort Study, Guangzhou, 
China.
Participants  Women who delivered between January 
2015 and June 2016 and with umbilical cord blood retained 
were eligible for this study. Those with prepregnancy health 
conditions, without an available fasting blood sample in the 
second trimester, or without demographic and glycaemic 
information were excluded. After random selection, data from 
1522 mother–child pairs were used in this study.
Exposures and outcome measures  Additive Bayesian 
network analysis was used to investigate the interdependency 
of lipid profiles with other metabolic risk factors (prepregnancy 
body mass index (BMI), fasting glucose and early gestational 
weight gain) in association with birth weight and CBI, along 
with multivariable linear regression models.
Results  In multivariable linear regressions, maternal 
triglyceride was associated with increased birth weight 
(adjusted β=67.46, 95% CI 41.85 to 93.06 g per mmol/L) and 
CBI (adjusted β=0.89, 95% CI 0.06 to 1.72 μU/mL per mmol/L 
increase), while high-density lipoprotein cholesterol was 
associated with decreased birth weight (adjusted β=−45.29, 
95% CI −85.49 to −5.09 g per mmol/L). After considering 
the interdependency of maternal metabolic risk factors in 
the Network analysis, none of the maternal lipid profiles was 
independently associated with birth weight and CBI. Instead, 
prepregnancy BMI was the global strongest factor for birth 
weight and CBI directly and indirectly.
Conclusions  Gestational dyslipidaemia appears to be 
secondary to metabolic dysfunction with no clear association 
with metabolic adverse outcomes in neonates. Maternal 
prepregnancy overweight/obesity appears the most influential 
upstream metabolic risk factor for both maternal and neonatal 
metabolic health; these data imply weight management may 
need to be addressed from the preconception period and 
during early pregnancy.

INTRODUCTION
Unfavourable fetal growth is often consid-
ered to attribute to an adverse intrauterine 
nutritional exposure that is largely depen-
dent on maternal metabolic status.1 2 Other 
than those established maternal metabolic 

risk factors (prepregnancy body mass index 
(BMI), gestational weight gain (GWG) and 
gestational hyperglycaemia) for adverse 
birthweight outcomes,3–5 maternal lipid levels 
during pregnancy are increasingly recognised 
as ignored risk factors for adverse pregnancy 
outcomes in the last few years.6–8 With the 
evidence from 42 observational studies using 
classic statistical methods, our recent system-
atic review found that increased maternal 
triglycerides and decreased high-density lipo-
protein cholesterol (HDL-C) were positively 
associated with high birth weight.9

However, the majority of previous studies 
only focused on the association between 
maternal lipid levels and birth weight, 
but ignored the underlying interdepen-
dency between lipids and other metabolic 
factors.10 11 Using data from 400 The Hyper-
glycemia and Adverse Pregnancy Outcome 
Study Caucasian mother–child pairs, two 
network analyses investigated the associations 
of maternal metabolites with maternal BMI, 
glucose level, birth weight or cord blood 
c-peptide.2 12 These studies only considered 
the interdependency of maternal metabolites 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ To the best of our knowledge, this is the first study 
to date focusing on maternal lipids during pregnan-
cy that weighs key maternal metabolic risk factors 
systematically using an innovative additive Bayesian 
network analytical tool.

	⇒ Given the practical constraints, maternal insulin re-
sistance status during pregnancy, as a potential sig-
nificant explanatory factor, was not included in the 
current analysis, although maternal fasting glucose 
level was included.

	⇒ Due to the limited ability of detecting feedback 
loops, partial results of Bayesian network analysis 
should be interpreted with a degree of caution.

	⇒ Risk of bias due to self-reported prepregnancy 
weight can not be excluded.
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and their association with a single phenotype rather than 
putting a broad range of metabolic traits and phenotypes 
together to draw a panoramic picture. Understanding 
how maternal lipid profiles influence neonatal metabolic 
health taking into consideration the clinical metabolic 
network into account is crucial to understand any poten-
tial underlying mechanism and future interventional 
studies.

In a birth cohort from Chinese pregnant women and 
their newborn babies, this study aimed to investigate the 
association of maternal lipid levels with birth weight and 
cord blood insulin (CBI) (indicators of neonatal develop-
mental and metabolic conditions), with the consideration 
of the interdependency of maternal lipids with other 
maternal metabolic risk factors, including prepregnancy 
BMI, fasting glucose and GWG.

MATERIALS AND METHODS
Participants
This study is part of the Born in Guangzhou Cohort 
Study (BIGCS), a prospective cohort study conducted in 
the Guangzhou Women and Children’s Medical Centre 
(GWCMC). The design and methods of BIGCS have 
been described previously.13 In brief, eligible women 
with Chinese nationality, living in Guangzhou who are 
<20 weeks gestation and who intend to deliver at one of 
the two GWCMC campuses were recruited into BIGCS. 
This study was conducted in a planned subgroup of 
BIGCS in whom maternal and cord blood were analysed 
for metabolic parameters separately. Pregnant women 
attending BIGCS with a singleton pregnancy who deliv-
ered at GWCMC between January 2015 and June 2016 
and had umbilical cord blood retained are eligible for 
this study. Women were excluded if (1) maternal blood 
samples were unavailable at 14–27 gestation week; (2) 
no records of maternal fasting glucose at 20–28 gestation 
week; (3) lacking maternal demographic information 
and (4) diagnosed with one or more health conditions 
prior to pregnancy, including type 1 or type 2 diabetes, 
thyroid dysfunction, hypertension, virus hepatitis and 
renal diseases. Sample sizes were calculated according 
to the association between maternal triglycerides (the 
potential weakest risk factors among maternal metabolic 
traits) with birth weight according to literature (online 
supplemental file S1). The eligible mother–child pairs 
were then selected for this study by computer-generated 
randomisation.

Maternal data collection
Maternal information, including age, height, prepreg-
nancy weight, parity, date of last menstrual period, monthly 
income, education levels and ethnicity, was collected 
through semistructured questionnaire. Maternal BMI 
was calculated by dividing weight in kilograms by height 
in metres squared. Based on the recommendations of 
the China Obesity Task Force of the Chinese Ministry 
of Health, maternal prepregnancy BMI is classified into 

two groups: lean group (<24 kg/m2) and overweight 
group(≥24 kg/m2).14 At 22–28 weeks gestation, women 
attending their second prenatal visit underwent a stan-
dard 2 hours 75 g oral glucose tolerance test (OGTT). 
Women with OGTT results which met or exceeded at 
least one threshold of the International Association of 
Diabetes and Pregnancy Study Groups criteria (fasting 
plasma glucose ≥5.1 mmol/L, 1-hour glucose ≥10 mmol/L 
and 2 hours glucose ≥8.5 mmol/L) were diagnosed as 
having gestational diabetes mellitus (GDM).15 Maternal 
fasting glucose concentration was obtained from OGTT 
test zero-time value in hospital records. Maternal second-
trimester weight was measured to the nearest 0.1 kg using 
an electronic scale. Maternal early GWG was calculated by 
subtracting prepregnancy weight from maternal second-
trimester weight, with documentation of the gestational 
age at measurement.

Outcomes
The outcomes of this study are neonatal birth weight and 
CBI. We considered birth weight as it is an important indi-
cator of prenatal developmental conditions for newborns. 
Birth weight has been associated with both short-term and 
long-term health outcomes, including stillbirth, infant 
mortality, obesity, type 2 diabetes and cardiovascular 
diseases.16–18 Similarly, CBI, which is synthesised only 
by fetal pancreas,19 is also considered as an important 
biomarker that could reflect insulins resistance status in 
neonates, since insulin plays a central role in fetal growth 
and development.20

Biochemical test
Mothers were asked to keep overnight fasting status before 
taking blood samples in the second trimester. Maternal 
real fasting status was asked again and recorded before 
collecting samples. Maternal blood samples during the 
second trimester were used for testing the level of lipid 
profiles. Venous umbilical cord blood plasma samples 
were collected for insulin tests. Sample collection, delivery, 
pretreatment and measurements were blinded. All blood 
samples were stored and delivered to the pretreatment 
laboratory centre. Blood samples were then separated 
into serum and plasma by immediate centrifugation and 
were stored in EDTA tubes in the Biobank at −80°C until 
analysis. Maternal plasma lipids, including total choles-
terol (TC), HDL-C, low-density lipoprotein cholesterol 
(LDL-C), and triglycerides, and CBI levels were measured 
using commercial kits in fully automated clinical analyser 
(Roche Diagnostics, Mannheim, Germany). Intraday and 
interday coefficients of variation (CVs) were consistently 
less than 2% for all assays.

Neonatal anthropometry data collection
For participating children, birth information, including 
birth characteristics, delivery mode and perinatal 
outcomes, was obtained from routine medical records. 
Gestational age was estimated from ultrasound examina-
tion during the first or second trimester. Birth weight and 
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other information, including gestational age at delivery, 
mode of delivery, neonatal sex and pregnancy complica-
tions, were obtained from hospital records. Birth weight 
was measured to the nearest 50 g using an electronic 
scale by midwives immediately after delivery. Birth weight 
Z-Score and percentile adjusted for gestational age at 
delivery and neonatal sex were calculated using Inter-
growth 21st Newborn Size Standard and Tools.21 Large-
for-gestational age (LGA) was defined as a birth weight 
larger than the 90th percentile for gestational age by sex, 
while small-for-gestational age (SGA) was defined as a 
birth weight smaller than the 10th percentile based on 
the same birth weight reference.

Patient and public involvement
No patient involved.

Statistical analysis
Classic statistical methods
Continuous variables were summarised as mean±SD or 
median (IQR), and categorical variables were summarised 
as counts with percentages. Pearson’s correlation was 
used to assess the impact of the long-term −80°C storage 
on insulin concentrations in EDTA tube. Multiple impu-
tation was used to handle missing data. Adjustments were 
then made to account for any degradation by correcting 
the initial value using linear regression methods (online 
supplemental file S2). Similarly, maternal lipid levels 
were adjusted for gestational age using regression model 
to account for timing of blood sampling (online supple-
mental file S3).22

Initially, multivariable linear regression models were 
used to estimate the association of maternal lipid levels 
with neonatal birth weight and CBI level. Covariates in 
the regression model included maternal age, ethnic 
group, parity, gestational age, maternal fasting status, 
neonatal sex and early pregnancy cigarette exposures. 
Delivery mode and sample storage duration were added 
in the model for CBI level. Thereafter, same model was 
used to investigate the association of maternal lipid 
Z-Scores with birth weight Z-Score and CBI Z-Score. To 
investigate the independent associations of maternal lipid 
levels with neonatal birth weight and CBI, model was 
further adjusted for maternal prepregnancy BMI Z-Score, 
maternal fasting glucose Z-score, GWG Z-score and gesta-
tional age of maternal weight measurement during preg-
nancy. Sensitivity analyses were conducted to compare 
the estimate differences between GDM and non-GDM 
participants, primiparous women and non-primiparous 
women, lean and overweight group, as well as before and 
after multiple imputations. All statistical tests were two 
tailed and a p<0.05 was considered statistically significant. 
Statistical analyses were performed in Stata V.14.0.

Additive Bayesian networks analysis
To further assess the interdependency between maternal 
metabolic risk factors and their association with birth 
weight and CBI, additive Bayesian Network (ABN) 

model—an unsupervised machine learning method—
was conducted. Bayesian network analysis is a form of 
structure discovery statistical modelling that derives, from 
empirical data, a graphical network describing the depen-
dency structure between variables, shown as directed 
acyclic graphs (DAGs).23 ABNs comprise DAGs where 
each node in the graph comprises a generalised linear 
model or a generalised linear mixed model. ABN model 
is suitable for analysing highly complex epidemiological 
data comprising many interdependent variables.24

Ten variables were chosen for ABN based on prior 
knowledge gained from literature and findings of the 
classical statistical analyses. These 10 variables were 
maternal age, maternal prepregnancy BMI, maternal 
fasting glycaemia in OGTT, early GWG, maternal fasting 
plasma HDL-C and triglycerides in the second trimester, 
birthweight Z-Score, CBI, gestational age at delivery and 
neonatal sex. GWG was adjusted for gestational age at 
weight measurement in mid-pregnancy. CBI was adjusted 
for sample storage duration. All continuous variables 
were standardised to Z-Scores to eliminate the influence 
of different measurement units. Mother–child pairs with 
missing data were excluded (n=93/1522, 6%).

First, an optimal DAG with the best goodness of 
fit (highest log marginal likelihood) was identified. 
Next, parametric bootstrapping (12 800 samples) was 
performed to address the potential overfitting. Full tech-
nical details are provided in online supplemental file S4, 
supplemental figure S1–S5. ABN analysis was conducted 
in R V.3.4.4 (The R Foundation for Statistical Computing) 
using ‘abn’ package.24

RESULTS
Figure 1 shows the flow diagram of study. A total of 5497 
pregnant women attending BIGCS between January 2015 
and June 2016 are eligible for this study. Women whose 
blood samples were unavailable at 14–27 gestation week 
(n=902), who had no records of maternal fasting glucose 
at 20–28 gestation week (n=343), lacked maternal demo-
graphic information (n=39) and diagnosed with health 
condition prior to pregnancy (n=118) were excluded. The 
remaining 4039 women were subjected to randomisation, 
resulting in 1522 women were selected for maternal lipid 
profiles and CBI testing. The baseline characteristics of 

Figure 1  Flow chart.
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participants are shown in table 1. The majority (91.20%) 
of maternal blood samples were collected after over-
night fasting. Maternal mid-pregnancy weight, fasting 
glucose and lipids profile were measured at a mean of 
20.0 (SD=4.0), 24.6 (SD=1.4) and 20.5 (SD=3.5) gestation 
weeks, respectively. Cord blood samples were stored for a 
median of 488 (IQR 394–707) days before analysis.

Table 2 presents the associations between the associa-
tion of maternal mid-pregnancy lipid levels with neonatal 
birth weight and CBI level. The elevated maternal 
triglycerides level was associated with increased birth 
weight (adjusted β=67.46, 95% CI 41.85 to 93.06 g per 
mmol/L) and CBI level (adjusted β=0.89, 95% CI 0.06 
to 1.72 μU/mL per mmol/L). Conversely, the increased 
maternal HDL-C level was negatively associated with 
decreased birth weight (adjusted β=−45.29, 95% CI 
−85.49 to −5.09 g per mmol/L), but not associated with 

CBI level (adjusted β=−0.82, 95% CI −2.12 to 0.48 μU/
mL per mmol/L). No statistically significant association 
was observed between maternal TC and LDL-C levels and 
birth weight/CBI.

Following further adjustment of prepregnancy BMI, 
GWG and maternal glucose level, only the association 
between maternal triglyceride Z-Score and birth weight 
Z-Score remains statistically significant (standardised 
β=0.07, 95% CI 0.03 to 0.11) (online supplemental table 
S1 and S2). No statistically significant result was observed 
in the sensitivity analysis (online supplemental table 
S3). It is worth noticing that the association estimate 
of maternal glucose Z-Score with birth weight Z-Score 
differed between non-GDM and GDM participants 
(standardised β: 0.06 vs 0.16, p=0.06), while the associ-
ation estimate of maternal prepregnancy BMI Z-Score 
with birth weight Z-Score differed between primiparous 
and multiparous women (standardised β: 0.18 vs 0.28, 
p=0.06). Estimates for the association of maternal HLD-C 
Z-Score (standardised β: −0.03 vs −0.13, p=0.17), prepreg-
nancy BMI Z-Score (standardised β: 0.03 vs 0.14, p=0.38) 
and glucose Z-Score (standardised β: 0.10 vs 0.19, p=0.13) 
with CBI Z-Score differed between non-GDM and GDM 
women. Between lean and overweight women, a differ-
ence in the association between maternal HDL-C Z-Score 
and CBI Z-Score was observed (standardised β: −0.03 vs 
−0.12, p=0.24). All estimates remain the same before and 
after multiple imputations.

Figure  2 and online supplemental table S4 show the 
optimal summary DAGs inferred by ABN analysis. Neither 
triglycerides nor HDL-C were linked to birth weight or 
CBI in the ABN results after accounting for the inter-
dependency of maternal metabolic factors (including 
lipids). Maternal prepregnancy BMI was associated with 
all other maternal metabolic parameters in pregnancy 
(glycaemia: β=0.14, 95% CI 0.09 to 0.19; early GWG: 
β=−0.12, 95% CI −0.17 to −0.06; triglycerides: β=0.23, 
95% CI 0.18 to 0.28; HDL-C: β=−0.12, 95% CI −0.17 to 
−0.07) and birth weight (β=0.27, 95% CI 0.22 to 0.32). An 
indirect association between prepregnancy BMI and CBI 
was also observed. Early GWG was associated with birth 
weight Z-Score (β=0.17, 95% CI 0.12 to 0.22). Maternal 
glycaemia was associated with CBI (β=0.12, 95% CI 0.07 to 
0.17). Birth weight was also associated with CBI (β=0.24, 
95% CI 0.19 to 0.29).

DISCUSSION
To the best of our knowledge, this is the first large 
prospective birth cohort study that considered the inter-
dependency of maternal lipids profiles with other meta-
bolic risk factors (maternal prepregnancy weight, GWG 
and gestational glycaemia level) when assessing the asso-
ciation between maternal circulating lipids levels and 
birth outcomes. We found that maternal mid-pregnancy 
HDL-C and triglycerides levels may not independently 
associated with birth weight and CBI level using Bayesian 
network analysis, although statistically significant 

Table 1  Baseline characteristics table

Characteristics

Included 
participants
(n=1522)

Maternal baseline information

 � Maternal age at enrolment (years) 29.50±3.30

 � Ethnic Han 1486 (97.70)

 � Primiparous 1223 (80.35)

 � Spontaneous delivery 1239 (81.41)

 � Early pregnancy cigarette exposure 436 (28.68)

Maternal metabolic profile

 � GDM 181 (11.89)

 � Fasting glucose (mmol/L) 4.25±0.42

 � Gestational age of OGTT test (weeks) 25.60 (1.38)

 � Prepregnancy BMI (kg/m2) 20.47±3.85

 � Early gestational weight gain (kg) 4.21±8.42

 � Total cholesterol (mmol/L) 5.47±0.90

 � HDL-C (mmol/L) 2.07±0.43

 � LDL-C (mmol/L) 3.06±0.77

 � Triglycerides (mmol/L) * 1.71 (1.39–2.15)

 � Gestational age of blood sampling 
(weeks)*

19 (17–24)

Neonatal information

 � Gestational age (days)* 275 (270–281)

 � Preterm delivery 66 (4.34)

 � Male 820 (53.88)

 � Birth weight (g) 3,203±411

 � LGA 96 (6.31)

 � SGA 106 (6.96)

 � Cord blood insulin (μU/mL) * 7.43 (4.34–12.61)

Data are mean±SD or n (%).
*Median (IQR).
BMI, body mass index; GDM, gestational diabetes mellitus; HDL-C, 
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol; LGA, large-for-gestational age; OGTT, the oral glucose 
tolerance test; SGA, small-for-gestational age.
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associations—consistent with previous studies—were 
observed using conventional multivariable linear regres-
sion models.

Our results demonstrated that lipid pathways may 
not be meaningfully involved in the metabolic network 
pathway between mothers and neonates, and instead be a 
proxy measure for maternal metabolic health. Similarly, a 
previous study using Mendelian randomisation, another 
established causal inference method, analysing data from 
30 487 women in 18 studies concluded that genetically 
higher maternal fasting HDL-C/triglycerides was not 
potentially causally associated with higher birth weight.25 
Thus, both detailed pathways analyses in this paper and 
genetic finding suggest that lipid pathways are not caus-
ally related to birth weight.

Although the underlying mechanism of the absence 
of association between maternal lipid profiles and 
birth weight and CBI remains unclear, it is biologically 

plausible. Pregnant women with a higher prepregnancy 
BMI, increased GWG or/and glucose intolerance often 
have associated dyslipidaemia.1 26–29 The transportation 
efficiency of free fatty acids and glycerol broken down 
from triglycerides across placenta is significantly influ-
enced by maternal insulin level, although it cannot 
cross the placenta.19 30 Elevated insulin concentration 
in fetus triggered by the increased maternal hypergly-
caemia/hyperinsulinaemia could promote the circu-
lating free fatty acids, triacylglycerol and glucose uptake 
in adipose and muscle tissue, block glycogenolysis and 
gluconeogenesis in the liver, and stimulate glycogen 
synthesis, resulting in enlarged adipose tissue in fetus.31–35 
Conversely, the enlarged adipocytes could further induce 
insulin resistance, leading to an elevated insulin level in 
fetus.31 36 Therefore, although the glycerol and free fatty 
acids delivered from the maternal side are the essential 
nutrient substrate for neonatal de novo lipogenesis, it is 
plausible that the maternal circulating lipid levels, the 
placental transport of lipids and the uptake of lipids in 
the neonatal side are mainly determined by the maternal 
insulin resistance status driven by the body weight, insulin 
resistance status and glycaemic level in mothers.

Since 1950s, Pedersen hypothesis suggested that the 
increase in glucose transport from GDM mothers to 
fetus induces fetal hyperinsulinaemia, and results in 
subsequently adipose accumulation in neonates.37–39 
In turn, the enlarged adipocyte will gradually become 
resistant to insulin to avoid further expansion, there-
fore, contributing to the increased insulin secretion 
in neonates.40 Hence, there may be a bidirectional 
relationship between birth weight and CBI. Due to 
the nature of DAG and lacking dynamic data, the ABN 

Figure 2  Additive Bayesian network graph. β, standardised 
regression coefficient; BMI, body mass index; GWG, 
gestational weight gain; HDL-C, high-destiny-lipoprotein 
cholesterol; TG; triglycerides.

Table 2  Association of maternal lipid levels with birth weight and cord blood insulin level

TC
(mmol/L) HDL-C (mmol/L)

LDL-C
(mmol/L)

TG
(mmol/L)

Birth weight (g)

 � β (95% CI)* −0.42
(−20.32 to 18.76)

−45.29
(−85.49 to –5.09)¶

−0.24
(−22.82 to 22.34)

67.46
(41.85 to 93.06)

 � Standardised β (95% CI)† 0.00
(−0.04 to 0.04)

−0.01
(−0.05 to 0.03)

0.00
(−0.04 to 0.04)

0.07
(0.03 to 0.11)

Cord blood insulin (μU/mL)

 � β (95% CI)‡ −0.15
(−0.77 to 0.48)

−0.82
(−2.12 to 0.48)

−0.15
(−0.88 to 0.58)

0.89
(0.06 to 1.72)

 � Standardised β (95% CI) § −0.02
(−0.07 to 0.03)

−0.01
(−0.07 to 0.04)

−0.03
(−0.08 to 0.02)

0.04
(−0.01 to 0.09)

*Adjusted for maternal age, ethnic group, parity, gestational age, neonatal sex, early pregnancy cigarette exposures and maternal fasting status.
†Standardised β for maternal lipid Z-Scores and birth weight Z-Score. Adjusted for maternal age, ethnic group, parity, gestational age, neonatal sex, 
early pregnancy cigarette exposures, maternal prepregnancy BMI Z-Score, maternal glucose Z-Score, gestational weight gain Z-Score, gestational 
age of maternal weight measurement during pregnancy and maternal fasting status.
‡Adjusted for maternal age, ethnic group, parity, gestational age, neonatal sex, early pregnancy cigarette exposures, delivery mode, sample storage 
duration and maternal fasting status.
§Standardised β for maternal lipid Z-Scores and cord blood insulin Z-Score. Adjusted for maternal age, ethnic group, parity, gestational age, neonatal 
sex, early pregnancy cigarette exposures, delivery mode, sample storage duration, maternal prepregnancy BMI Z-Score, maternal glucose Z-Score, 
gestational weight gain Z-Score, gestational age of maternal weight measurement during pregnancy and maternal fasting status.
¶Boldface values refer to results with statistical significance.
BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, 
triglycerides.
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analysis might have a limited ability on exploring feed-
back loops. That means that the current DAG gener-
ated by the ABN analysis missed an arc from CBI level 
to birth weight, and that may be the reason why no arc 
from maternal glucose level to neonatal birth weight 
was observed.

Our ABN analysis suggested that the maternal 
prepregnancy BMI is the overweight/obesity is the 
most influential upstream metabolic risk factor for 
both maternal and neonatal metabolic health. Previous 
evidence shows maternal overweight/obesity has a 
persistent impact on the quality and content of oocytes 
as well as the epigenetic and translation profile of the 
developing embryo, thereby leading to altered pheno-
types in offspring.41–44 Compared with lean women, 
women with a higher prepregnancy BMI tend to have 
increased risks of excessive GWG as well as GDM and 
often present with more severe dyslipidaemia during 
pregnancy.45–47 The hyperinsulinaemia and systemic 
low-grade inflammation driven by maternal obesity, 
gestational hyperglycaemia and gestational dyslipi-
daemia could potentially induce functional changes 
in the placenta, leading to elevated nutrients uptake 
and transport.48 49 Stress induced by the overwhelming 
nutrient exposure in utero can systematically shape 
fetal development, leading to permanent changes of 
metabolic function in offspring.50

Implications
If replicated, the findings in this study may have implica-
tions for antenatal/prenatal counselling and managing 
to avoid adverse weight-related birth outcomes. Most 
current clinical guidelines on preconception and ante-
natal care only focus on weight management during 
pregnancy. Recommendations on prepregnancy 
weight management are limited and ambiguous.51–53 
Our results provide further important evidence on the 
clinical importance of maternal prepregnancy high 
BMI for both maternal and neonatal health outcomes. 
Dietary and/or physical activity interventions initi-
ated before or in early pregnancy to reduce prepreg-
nancy BMI, GWG and insulin resistance, rather than 
maternal lipid levels, would likely be most effective, 
although the effects need further investigation in 
future randomised trials.

Strengths and limitations
The major strengths of this study are the prospective 
design based on relatively large sample size, standard-
isation of strength of association for the comparison 
among maternal metabolic risk factors, and the use of 
powerful analytical tools for interpretation of multi-
dimensional data. The study also has some limita-
tion. First, given the practical constraints, maternal 
fasting glucose and triglycerides levels were measured 
only once during pregnancy. Therefore, we could 
not investigate the dynamic long-term influences of 
maternal metabolic risk factors in detail, although 

such levels generally track well over gestation. Second, 
the average prepregnancy BMI of included women 
and incidence of LGA/SGA babies in this study 
were significantly lower than for people living in the 
northern part of China. The relative healthiness of our 
cohort suggests that our results might underestimate 
the true impact of maternal metabolic disorders on 
neonatal health outcomes if extrapolated to this wider 
population. Third, the prepregnancy weight was self-
reported, which might potentially underestimate the 
true value. However, evidence suggests that utilisation 
of self-reported or measured prepregnancy weight 
for prepregnancy BMI classification results in iden-
tical categorisation for most women.52 Fourth, as we 
mentioned earlier, maternal insulin resistance might 
be a significant explanatory factor in the whole pathway 
but was not estimated in the current analysis due to 
practical constraints. Although we include maternal 
fasting glucose level in the second trimester as a proxy 
of maternal insulin resistance, it may not sufficiently 
reflect the reality. Further analyses including maternal 
insulin resistance status are warranted.

CONCLUSION
In this cohort study, we found that mid-pregnancy 
maternal HDL-C and triglycerides concentrations was 
not independently associated with birth weight or CBI 
level after taking the interdependency of maternal 
lipids profiles with other metabolic risk factors into 
account. Pregnancy BMI, fasting glucose and GWG are 
three metabolic risk factors independently associated 
with increased birth weight and/or insulin secretion in 
neonates, with the prepregnancy BMI being the most 
influential upstream risk factor. Interventions initi-
ated before or in early pregnancy to reduce prepreg-
nancy BMI, GWG and insulin resistance would likely be 
most effective and need further investigation in future 
randomised trials.
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Supplementary File 

S1 Sample size calculation 
We powered the study for the potentially least associated maternal metabolic risk factor 

(triglycerides) for birthweight. Knopp et al. reported a correlation between maternal 

triglycerides and birthweight of r=0.09 (p<0.05) in non-GDM women.(1) We conservatively 

assumed an effect size of 0.08. STATA 14.0 was used to calculate the sample size. After using 

‘Fisher’s z tests comparing one correlation to a reference value’ tool, a sample of 1225 will 
give 80% power to detect a correlation of 0.08 at 5% significance level (two sided). We 

conservatively assumed 20% attrition rate due to missing data and loss to follow up, thus giving 

a sample size of 1,531.   
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S2 Testing for degradation for cord blood insulin  
No prior literature reported the impact of long-term -80 °C storage on plasma insulin. We 

therefore fitted a regression model to detect potential degradation for cord blood insulin. The 

median storage duration of cord blood sample is 488 (IQR 394 to 707) days. Cord blood insulin 

was found to be slightly degraded over time (r=-0.07, p=0.01). In the multivariate regression 

model, we included sample storage time as a covariate. In the additive Bayesian Network 

analysis, adjustments were made to account for any degradation by correcting the initial value 

using linear regression methods (adjusted cord blood insulin = initial value of cord blood 

insulin + (mean value of sample storage time – sample storage time) * β, β=-0.0044446).  

 

  

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open

 doi: 10.1136/bmjopen-2022-064122:e064122. 12 2022;BMJ Open, et al. Wang J



 3 

S3 Adjusting gestational age at sampling for maternal lipid profile 
The average sampling time for maternal overnight fasting blood sample at the second trimester 

was 20.46 gestation weeks. The table below shows the estimates of associations between 

maternal plasma lipid levels and gestational age when blood sampling was carried out. 

lipids Regression coefficient (β) 

Total cholesterol 0.098 

HDL-C 0.015 

LDL-C 0.075 

Triglycerides 0.059 

Linear regression model 

Adjustment Equation: Adjusted lipids = initial value + (20.46 – sampling time) * β 
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S4 Additive Bayesian Network methodologies 

Introduction to Additive Bayesian Network analysis 

A Bayesian network is a probabilistic graphical model that represents a set of variables and 

their conditional dependencies via a directed acyclic graphs (DAGs).(2) It is a well-established 

unsupervised machine learning methodology that is typically referred to as structure discovery 

model for dealing with multidimensional data.(3) Unlike other widely used multivariate 

approaches, such as principal component analysis, propensity score matching analysis and 

multivariable regression model, graphical modelling does not involve any dimension reduction. 

Most graphical models, including path analysis and structural equation modelling, rely on a 

pre-specified structure, whereas Bayesian network is entirely data-driven. 

Unlike the contingency table parameterization in standard Bayesian network models, Additive 

Bayesian networks (ABN) allow us to obtain interpretable DAGs where each node in graph 

comprises a generalized linear model (GLM) or a generalized linear mixed model (GLMM, if 

binary variable involved).(4, 5) There are two mutually dependent parts in ABN model: a 

network structure (i.e. the DAG) and a set of parameters. Each node (corresponding to the 

variables in the dataset) in the DAG is the equivalent of a potential dependent variable in a 

Bayesian GLM or GLMM regression model. While other DAG nodes where relevant as 

identified by the unsupervised learning act as covariates, having a role of corresponding 

parameters. Therefore, an ABN model is ideally suited to analysing highly complex 

epidemiological data comprising many inter-dependent variables.  

The technical process of ABN 

After an initial data preparation phase we used a three-step procedure to determine an optimal 

DAGs for our data.  

Step 0 Data pre-processing 

Ten variables were chosen for ABN based on our knowledge gained from prior literature and 

findings of the classical statistical analyses. These included maternal age, maternal pre-

pregnancy BMI, maternal fasting glucose concentration in OGTT, early gestational weight gain 

(GWG, adjusted for gestational age at weight measurement), maternal fasting plasma high-

density lipoprotein cholesterol (HDL-C, adjusted for gestational age at blood sampling) in 2nd 

trimester, maternal fasting plasma triglycerides in 2nd trimester (adjusted for gestational age at 

blood sampling), birthweight Z-Score (adjusted for gestational age at delivery and neonatal 

gender), cord blood insulin (CBI, adjusted for sample storage duration) concentration, 

gestational age at delivery, and neonatal gender. All continuous variables were standardized to 

Z-Scores to eliminate the influence of different measurement units (maternal triglycerides and 

cord blood insulin were log-transformed before standardization). Participants with data missing 

for at least one of these ten variables (6% of participants) were excluded from the analysis. The 

number of mother-child pairs that was finally included in ABN analysis is 1,429. 

Step 1 Identification of the optimal model 

The identification of the single optimal model is referred to as structure discovery. The purpose 

of this step is to combine all individual GLMs into a single, probabilistically cohesive model 

describing all the inter-dependent relationships via a DAG. We blocked all directions of arcs 

between variables that are biologically impossible to occur. This was done using the adjacency 

matrix in figure S1. 
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Variables explanation: mage, maternal age; prebmi, maternal pre-pregnancy BMI; gwg, gestational weight gain; 

glu, maternal fasting glucose level; hdl, maternal plasma high-density lipoprotein cholesterol level; tg, maternal 

plasma triglyceride level; bwz, birthweight Z-Score; ins, cord blood insulin; sex, neonatal gender;  gaw, 

gestational age at delivery.  

Figure S3 The identified optimal DAG from the initial search 

 

Step 2 Adjustment for overfitting: parametric bootstrapping  

We have identified the optimal DAG, but there is a risk of overfitting because of the 

combinatoric nature of Bayesian hypotheses. To address this, 12,800 independent parametric 

bootstrapping analyses were performed. This involves simulating data sets of the same size as 

the original dataset, and see how often the different structural features are recovered. Arcs 

present in less than 50% frequencies of the globally optimal DAGs estimated from the 

bootstrap data were considered not to be robust and need to be trimmed (removed) from the 

DAG generated in the first step.  

The resulting optimal summary network was inferred from data with a total of 14 high-

confidence arcs across 10 variables (Figure S3). The DAGs presented using pruning at 50% 

was constructed from 12,800 searches with a parent limit of four parents per node. Collating 

results across these 12,800 searches, all 14 arcs were recovered for at least 12,742 times, as 

resulting from the frequencies matrix at Figure S4. 
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Variables explanation: mage, maternal age; prebmi, maternal pre-pregnancy BMI; gwg, gestational weight gain; 

glu, maternal fasting glucose level; hdl, maternal plasma high-density lipoprotein cholesterol level; tg, maternal 

plasma triglyceride level; bwz, birthweight Z-Score; ins, cord blood insulin; sex, neonatal gender;  gaw, 

gestational age at delivery. 

Figure S4 Optimal final DAG (Containing 14 arcs after removal of arcs supported at 

less than 50% in bootstrapping) 

 

 

 

Variables explanation: mage, maternal age; prebmi, maternal pre-pregnancy BMI; gwg, gestational weight gain; 

glu, maternal fasting glucose level; hdl, maternal plasma high-density lipoprotein cholesterol level; tg, maternal 

plasma triglyceride level; bwz, birthweight Z-Score; ins, cord blood insulin; sex, neonatal gender;  gaw, 

gestational age at delivery.  
Rows are children nodes, columns are parent nodes. The number in each cell represents the frequencies at which 

each arc (from parent node towards child node) was recovered during 12,800 times of bootstrapping. 

Figure S5 Frequencies at which each arc in the original DAG was recovered during 

bootstrapping 
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Step 3 Estimating marginal from the final DAG 

Once the optimal DAG has been identified, we need to examine the strength of the various arcs 

in our analysis. This process is very similar to when estimating the marginal for the 

bootstrapping.  
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Table S1 Association of other maternal metabolic risk factors with birth weight, cord 

blood insulin level, and the risk of LGA/SGA. 

  

Pre-

pregnancy 

BMI (Kg/m2) 

Early GWG 

(Kg) 

Glucose  

(mmol/L) 

TC 

(mmol/L) 

LDL-C 

(mmol/L) 

Regression Coefficients(95%CI)   

    Birthweight(g)# 
29.25  

(22.77, 35.73) 

18.75  

(13.06, 24.43) 

84.32  

(42.65, 125.98) 

-0.42 

(-19.97, 19.12) 

-0.24 

(-22.82, 22.34) 

    Cord blood 

insulin##(μU/mL) 

0.2  

(-0.02, 0.42) 

0.08  

(-0.11, 0.27) 

2.23  

(0.89, 3.57) 

-0.15 

(-0.77, 0.48) 

-0.15 

(-0.88, 0.58) 

Odds Ratio (95%CI)   

    LGA§ 
1.24  

(1.15, 1.32) 

1.12  

(1.04, 1.20) 

2.06  

(1.31, 3.24) 

1.00 

(0.79, 1.25) 

1.01 

(0.78, 1.31) 

    SGA§ 
0.86  

(0.78, 0.94) 

0.94  

(0.87, 1.00) 

0.72  

(0.44, 1.18) 

0.91 

(0.72, 1.15) 

0.98 

(0.75, 1.27) 

BMI, body mass index; GWG, gestational weight gain; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; LGA, large-

for-gestational age; SGA, small-for-gestational age. 
# Adjusted for maternal age, ethnic group, parity, gestational age, neonatal sex, and early pregnancy cigarette exposures. For gestational 

weight gain, model was further adjusted for pre-pregnancy BMI and gestational age of maternal weight measurements during 

pregnancy. Maternal fasting status was further adjusted for TC and LDL-C. 
## Adjusted for maternal age, ethnic group, parity, gestational age, neonatal sex, early pregnancy cigarette exposures, delivery mode, 

and sample storage duration. For gestational weight gain, model was further adjusted for pre-pregnancy BMI and gestational age of 

maternal weight measurements during pregnancy. Maternal fasting status was further adjusted for TC and LDL-C. 
§ Adjusted for maternal age, ethnic group, parity, and early pregnancy cigarette exposures. For gestational weight gain, model was 

further adjusted for pre-pregnancy BMI and gestational age of maternal weight measurements during pregnancy. Maternal fasting 

status was further adjusted for TC and LDL-C.  
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Table S2 Association of other maternal metabolic parameter Z-Scores with birth weight 

Z-Score and cord blood insulin Z-Score 

  
Pre-pregnancy BMI 

Z-Score 
GWG Z-Score Glucose Z-Score 

Birth weight Z-Score 

Model 1 0.20(0.15, 0.24) 0.17(0.12, 0.22) 0.08(0.04, 0.12) 

Model 2 0.20(0.15, 0.24) 0.16(0.11, 0.22) 0.04(0.00, 0.09) 

Cord blood insulin Z-Score 

Model 3 0.10(0.05, 0.15) 0.05(-0.01, 0.12) 0.13(0.08, 0.18) 

Model 4 0.08(0.03, 0.14) 0.05(-0.02, 0.11) 0.11(0.06, 0.16) 

BMI, body mass index; GWG, gestational weight gain; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides 

Model 1: Adjusted for maternal age, ethic group, parity, and early pregnancy cigarette exposures. For gestational 

weight gain, model was further adjusted for pre-pregnancy BMI and gestational age of maternal weight measurements 

during pregnancy. 

Model 2: Model 1 + pre-pregnancy BMI Z-Score + GWG Z-Score + Glucose Z-Score + HDL-C Z-Score + TG Z-

Score + gestational age of maternal weight measurements during pregnancy. 

Model 3: Adjusted for maternal age, ethic group, parity, early pregnancy cigarette exposures, gestational age, neonatal 

sex, delivery mode, and sample storage duration. For gestational weight gain, model was further adjusted for pre-

pregnancy BMI and gestational age of maternal weight measurements during pregnancy. 

Model 4: Model 3 + pre-pregnancy BMI Z-Score + GWG Z-Score + Glucose Z-Score + HDL-C Z-Score + TG Z-

Score + gestational age of maternal weight measurements during pregnancy. 
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Table S3 Sensitivity analysis of the association between maternal metabolic parameter Z-Score 

and birth weight Z-score and cord blood insulin Z-Score. 

β(95%CI) 
HDL-C  

Z-Score 

TG  

Z-Score 

Pre-pregnancy 

BMI Z-Score 

GWG  

Z-Score 

Glucose  

Z-Score 

Birth weight Z-Score # 

Non-GDM -0.04(-0.09, 0.01) 0.13(0.08, 0.17) 0.20(0.15, 0.25) 0.18(0.12, 0.24) 0.06(0.01, 0.11) 

GDM -0.07(-0.18, 0.04) 0.04(-0.09, 0.17) 0.19(0.09, 0.29) 0.11(-0.03, 0.25) 0.16(0.07, 0.24) 

P for interaction 0.57 0.20 0.84 0.62 0.06 

Lean -0.02(-0.07, 0.02) 0.11(0.06, 0.15) 0.23(0.16, 0.29) 0.15(0.09, 0.21) 0.08(0.03, 0.12) 

Overweight -0.09(-0.22, 0.05) 0.13(-0.01, 0.27) 0.20(0.03, 0.36) 0.13(0.01, 0.25) 0.05(-0.07, 0.17) 

P for interaction 0.36 0.75 0.73 0.79 0.67 

Fasting -0.05(-0.10, -0.01) 0.12(0.08, 0.16) - - - 

Non-fasting 0.01(-0.12, 0.14) 0.07(-0.07, 0.21) - - - 

P for interaction 0.39 0.50 - - - 

Primiparous -0.05(-0.09, 0.00) 0.11(0.07, 0.16) 0.18(0.13, 0.22) 0.15(0.09, 0.21) 0.08(0.03, 0.12) 

Multiparous -0.04(-0.13, 0.05) 0.14(0.06, 0.22) 0.28(0.18, 0.37) 0.12(-0.01, 0.25) 0.11(0.01, 0.21) 

P for interaction 0.87 0.57 0.06 0.74 0.52 

Before imputation -0.04(-0.09, -0.00) 0.12(0.08, 0.16) 0.20(0.15, 0.24) 0.18(0.12, 0.23) 0.08(0.04, 0.12) 

After imputation -0.05(-0.09, -0.00) 0.12(0.08, 0.16) 0.20(0.15, 0.24) 0.18(0.13, 0.23) 0.08(0.04, 0.12) 

Cord blood insulin Z-Score ## 

Non-GDM -0.03(-0.08, 0.03) 0.06(0.01, 0.12) 0.03(0.01, 0.05) 0.05(-0.01, 0.12) 0.10(0.04, 0.16) 

GDM -0.13(-0.26, 0.01) 0.03(-0.11, 0.17) 0.14(0.03, 0.25) 0.09(-0.07,0,26) 0.19(0.09, 0.29) 

P for interaction 0.17 0.66 0.38 0.65 0.13 

Lean -0.03(-0.08, 0.03) 0.07(0.02, 0.12) 0.15(0.07, 0.23) 0.05(-0.01, 0.12) 0.13(0.08, 0.19) 

Overweight -0.12(-0.26, 0.03) -0.03(-0.13, 0.13) 0.07(-0.09, 0.24) 0.10(-0.04, 0.25) 0.11(0.00, 0.22) 

P for interaction 0.24 0.34 0.41 0.54 0.72 

Fasting -0.04(-0.09, 0.01) 0.06(0.01, 0.11) - - - 

Non-fasting -0.01(-0.17, 0.14) 0.11(-0.04, 0.25) - - - 

P for interaction 0.73 0.56 - - - 

Primiparous -0.03(-0.08, 0.03) 0.07(0.01, 0.12) 0.10(0.04, 0.15) 0.06(-0.01, 0.13) 0.14(0.09, 0.19) 

Multiparous -0.09(-0.19, -0.00) 0.05(-0.05, 0.14) 0.10(0.00, 0.20) -0.00(-0.12, 0.13) 0.09(-0.01,0.19) 

P for interaction 0.26 0.68 0.89 0.39 0.42 

Before imputation -0.04(-0.09, 0.01) 0.07(0.02, 0.12) 0.11(0.06, 0.16) 0.07(0.00, 0.13) 0.14(0.09, 0.19) 

After imputation -0.04(-0.09, 0.01) 0.06(0.01, 0.11) 0.10(0.05, 0.15) 0.06(-0.01, 0.12) 0.13(0.08, 0.18) 

# Adjusted for maternal age, ethic group, parity, early pregnancy cigarette exposures, and delivery mode. For gestational weight gain, model 

was further adjusted for pre-pregnancy BMI and gestational age of maternal weight measurements during pregnancy. Maternal fasting status 

was further adjusted for HDL-C and TG (except the analysis between fasting and non-fasting). 
## Adjusted for maternal age, ethic group, parity, early pregnancy cigarette exposures, gestational age, neonatal gender, delivery mode, and 

sample storage duration. For gestational weight gain, model was further adjusted for pre-pregnancy BMI and gestational age of maternal 

weight measurements during pregnancy. Maternal fasting status was further adjusted for HDL-C and TG (except the analysis between fasting 

and non-fasting). 

BMI, body mass index; GWG, gestational weight gain; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; GDM, gestational 

diabetes mellitus.  
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Table S4 Effect estimate of additive Bayesian network analysis.    

Arcs 
Effect estimate  

(β, 95%CI) 95% CI 

Mage → prebmi 0.19 (0.14, 0.24) 

Prebmi → gwg -0.12 (-0.17, -0.06) 

mage → glu 0.11 (0.06, 0.16) 

Prebmi → glu 0.14 (0.09, 0.19) 

Prebmi → hdl -0.12 (-0.17, -0.07) 

Gwg → hdl 0.09 (0.05, 0.14) 

Tg → hdl -0.33 (-0.38, -0.28) 

Prebmi → tg 0.23 (0.18, 0.28) 

Prebmi → bwz 0.27 (0.22, 0.32) 

Gwg → bwz 0.17 (0.12, 0.22) 

Glu → ins 0.12 (0.07, 0.17) 

Bwz → ins 0.24 (0.19, 0.29) 

Sex → ins 0.19 (0.09, 0.29) 

Sex → gaw 0.20 (0.10, 0.31) 
Variables explanation: mage, maternal age; prebmi, maternal pre-pregnancy BMI; 

gwg, gestational weight gain; glu, maternal fasting glucose level; hdl, maternal 

plasma high-density lipoprotein cholesterol level; tg, maternal plasma triglyceride 

level; bwz, birthweight Z-Score; ins, cord blood insulin; sex, neonatal gender;  gaw, 

gestational age at delivery. 
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