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Abstract: We propose a demand response (DR) solution approach for a real-time pricing 
model with multi-class users to determine the electricity supply mix.  The model aims to 
address the problem of power consumption overloading in peak hours using the real-time 
information obtained from the interaction between suppliers and users in a smart grid. The 
proposed DR algorithm  allocates the overloaded demand assigned to a supplier to other 
electricity suppliers in order to satisfy all users’ demand while the supplier ensures to 
maximize the utility or reserved demand of users. Furthermore, a priority approach based on 
different user groups is developed for allocating the extra demand to other suppliers. 
Numerical experiments have been conducted to analyze the performance of the algorithm and 
compare the real-time electricity price with the fixed price. 
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1. Introduction  

In recent years, renewable energy sources (RES), which are believed to be cleaner and 

cheaper than traditional fossil power sources, are growing rapidly due to policy stimulations 

and technological advancements. This development is evidenced by the increasing share of 

RES in the energy market which was previously dominated by fossil-fueled power. The wider 

use of RES also changes the traditional supply-driven pricing control to demand-driven 

pricing control. However, since RES have higher fluctuation in supply quantity and a lower 

energy density than fossil fuels, it is most likely that users’ electricity consumption demands 

cannot be satisfied, particularly when the electricity supply only relies on a single RES 

supplier or a single type of RES. A combination of several RES can offer a more robust 

solution to the power supply. As a result, many countries or areas such as North America, 

European Union and China are developing balanced energy supply mix, which allows 

electricity users to select more than one electricity supplier to meet their demands of 

electricity rather than solely depending on a single supplier [1]. 

To select appropriate electricity suppliers, electricity users need an interactive equipment 

to know the price of each energy supply source and their consumption loads timely. Besides, 

electricity suppliers also need similar equipment to trace electricity users’ consumption, and 

then guide users to use electricity appropriately by adjusting the prices. Smart Grid (SG), the 

newest development of modern power system, can provide the interactive tool required by 

both electricity users and suppliers. SG is developed based on advanced technology in the 

power industry, high-speed and bi-directional wireless communication network, advanced 

sensing measurement technologies, control methods, and decision support system. The 

interactive equipment in SG is smart meters, which provide a real-time interactive link 

between electricity users and suppliers. Electricity consumption data obtained from the smart 

meter can help suppliers analyze, forecast and manage consumption load and further adjust 

the price of the electricity [2]. Smart meters can also help electricity users to monitor their 

consumption and their expense, and consequently, make the decision on which supplier they 

should choose, and when and how much electricity they would like to consume. 

Pricing mechanism is the key issue of the electricity market. Fair and reasonable 



electricity price can maximize social benefits through the optimal allocation of power 

resources. It should also allow users to choose different energy suppliers or reasonable power 

consumption time, which smooth out peak load to fit the intermittent characteristics of 

distributed generation [3-9].  

At present, electricity market pricing strategies mainly include fixed price, time-of-use 

price [10], ladder-type price, peak-valley price, adaptive price and real-time pricing (RTP). 

Compared with other pricing methods, RTP is more flexible due to exploiting real-time 

two-way interactive information between electricity users and suppliers. Real-time 

communication network and smart meters in SG are preconditions to implement RTP. 

Through the deployment of smart meters, electricity suppliers use the real-time 

communication network to obtain electricity consumption data from users and analyze their 

consumption characteristics and pattern. Based on electricity users’ consumption information, 

RTP mechanism is designed to guide users to comply with electricity market regulation and 

shift to more reasonable consumption patterns. In other words, RTP can facilitate the 

interaction between users and grid load, and eventually balance electricity supply and demand 

in particular at peak hours.  

It should be pointed out that users’ responses should not be neglected during the 

implementation of the RTP strategy. Users’ responses can represent whether the real-time 

price can really reflect the real-time change of electricity cost which leads to the optimal 

allocation of power resources [11-14]. Therefore, the modifications in users’ electricity 

demand in response to real-time price are considered in order to implement the RTP strategy.. 

In the literature, demand response (DR) is used for this purpose. DR is electricity consumers’ 

market participation behavior of changing their inherent consumption patterns in response to 

market prices or incentives based on utilities.  

Different types of users have different electricity consumption utilities which leads to 

different DR to the price of electricity. Setting different real-time prices according to different 

types of users can guide users' electricity behavior and realizing peak cutting and valley 

filling better. to the best of our knowledge, the study of real-time pricing (RTP) according to 

users’ classification is lack in the smart grid literature.  

In this paper, we classify the subscribers as the residential, commercial and industrial 



subscribers and build the utility functions based on the concept of microeconomics for the 

classified subscribers. Next, the distribution of electricity is considered when all electricity 

consumption requirements  cannot be supplied by a single supplier. We propose a DR 

algorithm, which can allocate the surplus electricity requirements to other suppliers. The DR 

method first classifies users to implement the different RTP strategies, then optimizes the 

theoretical electricity consumption and finally allocates the overloaded electricity of the 

supplier to other suppliers to balance supply and demand under the policy of balanced energy 

mix. We conduct simulation experiments to show that the proposed algorithm can reduce the 

load on the smart grid to meet the demands of all users while ensures that the supplier can 

maximize the utility or satisfy reserved demands of the users based on a priority approach. 

The remainder of the paper is structured as follows. Section 2 is a review of related 

works to our paper. In Section 3, we describe the RTP model which can give the theoretically 

optimal RTP and consumption load. In Section 4, we propose the DR method based on RTP 

and reserved electricity consumption requirement of multi-class users in detail. Section 5 

provides some numerical results and comparisons. Our concluding comments and final 

observations are presented in Section 6. 

2. Literature Review 

In [15-17], some optimization models were developed to determine the user’s optimal 

power consumption and real-time prices based on user’s utility. In [18-20], an RTP strategy 

was developed based on game theory. Ma et al. [21] studied the problem of residential load 

dispatching in the smart grid from the perspective of cost efficiency. The reliability of SG 

requires the balance of supply and demand. DR can match the available supply under RTP. 

Tsui et al. [22] proposed that the intelligent home appliances can manage the load 

automatically. They also expressed that an optimal DR framework using convex programming 

could solve the problem of energy-saving scheduling effectively. Tan et al. [23] developed a 

DR management model with renewable distributed generators and plug-in electric vehicles 

for re-selling back the generated or stored energy. Wang et al. [24] presented a 

consensus-based alternating direction method of multipliers (ADMM) method, which can 

solve a dynamic direct current (DC) optimal power flow (DC-OPF) problem of DR in a 

distributed manner and adopted three distributed DC-OPF algorithms to discuss different 



communication requirement and convergence performance. Darby [25] identified some 

practical and theoretical problems relating to the potential for residential DR with electric 

storage heating and applied many of them to heat pumps. Yang et al. [26] proposed an 

effective DR pricing approach to stimulate different consumers to actively participate in DR. 

Behboodi et al. [27] used an agent-based method to develop an effective DR control scheme 

with low complexity for thermostatically controlled loads participating in real-time retail 

electricity markets under a transactive control paradigm. Nan et al. [28] proposed 

a DR scheduling model for the residential community, which could reduce the cost of user's 

electricity consumption, the peak load and peak-valley difference of residential load profile. 

their model could also provide the decision support of electricity pricing strategies under 

power market development. Tang et al. [29] developed a direct load control technology for 

centralized air-conditioning systems to build fast DR for urgent requests of smart grids. Based 

on the multi-criteria nature of SG problems, Batista et al. [30] presented an exact 

multi-objective strategy for the optimal demand side management. For managing loads on the 

demand side, Evora et al. [31] adopted a direct load control (DLC) method based on 

multi-objective particle swarm optimization (MOPSO) algorithm to build the operation of the 

appliances with a power restriction. Biscarri et al. [32] proposed a clustering classification 

algorithm for the automatic classification of electricity customers’ loads, by which new 

customers can be assigned to a predefined set of clusters in the classification phase. Other DR 

contributions in SG can be found in [33-42].  

3. Real-Time Pricing Model 

In this section we propose a real-time pricing model for an SG system with different 

groups of power users and some power suppliers. In the SG system, smart meters are 

equipped with real-time data collection and communication functions. Hence the electricity 

users and suppliers can get access to the information of real-time electricity prices and 

consumption. Because there exists real-time information exchange between suppliers and 

users via smart meters, we assume that suppliers can publish real-time prices to different 

groups of users according to electricity loads and consumption requirements at each time 

slot k ,and users can accordingly adjust their electricity consumption in real time based on the 

published electricity prices. 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=6EhAaXFeeJrBpYG749G&field=AU&value=Darby,%20S


3.1. Multi-class users 

Now the planning horizon is divided into K  time slots, where K κ , andκ is the set of 

all time slots. the interaction between users and suppliers would be stronger as the value of K 

increases since it reflects the frequency of the communication between suppliers and users. In 

this paper, we consider three groups of users in the smart grid: residential, commercial and 

industrial. Let { }11, 2,3, , n=  , { }21, 2,3, , n=  and }{ 31, 2,3, , n=  represent the sets of residential, 

commercial and industrial users, respectively. k
ix , k

jy and k
lz  represent the actual electricity 

consumption of the i -th residential user, j -th commercial user and l -th industrial user in 

the k -th time slot respectively, where i∈ , j∈ and l∈ . To ensure the proper use of 

electricity, each user group should meet 

, ,
k k k

i i im x M≤ ≤  , , ,
k k k

j j jm y M≤ ≤  , , ,
k k k

l l lm z M≤ ≤  ,                         (1) 

where ,
k

iM  , ,
k

jM  , ,
k

lM  , ,
k

im , ,
k

jm and ,
k

lm  are, respectively, used to represent the total maximum and 

minimum electricity consumption of residential, commercial and industrial users in the k -th 

time slot.  

 

3.2. Utility functions of different types of users 

On the demand side of the SG system, we assume that the electricity usage of each user 

is independent, and different types of users have different electricity usage characteristics. 

Samadi et al. show that utility functions can model demand response behaviors of power 

consumers and refer to the user's satisfaction to consume a certain amount of electricity [16]. 

For example, as residential users increase their use of electricity, their utility will increase. 

When electricity consumption reaches a certain level, i.e., electricity demand for everyday life 

is satisfied, the utility will become saturated and no more utility can be generated. However, 

the utility of commercial and industrial users has  characteristics of continuous increase with 

power consumption. For describing different electricity usage characteristics, we define the 

utility functions of different types of users as below: 
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where, ( ),x ωϒ , ( , )y ωΛ and ( , )z ωΠ  denote the utilities of residential, commercial and industrial 

users at the level of x , y and z , respectively; andα , ω , β  and µ  are preset parameters 

which indicate the user's willingness to participate in DR and reflect the utility increment rate 

of different users. According to the above defined utility functions, if no electricity is 

consumed for any i∈ , j∈ and l∈ , the corresponding utility will be 0. 

 

3.3. Electricity supply 

Different energy providers may have different cost of generating electricity. In this paper, 

we consider the average electricity cost of the given energy providers. Following the early 

studies [15-17], we define electricity suppliers’ cost function ( )kL  as follows. 

 ( ) ( ) ( ) ( )k k k
kL L L L= + +                                     

(5) 

with  

2( ) ( )k k kL a L bL c= + +   , 2( ) ( )k k kL a L bL c= + +   , 2( ) ( )k k kL a L bL c= + +   ,         

(6)                               

where 0, 0 and a b c> ≥ are the default parameters, ( , , )k k k
kL L L L=     and kL , kL  and kL  represent the 

suppliers' electricity supply to residential, commercial and industrial users in the k -th time 

slot, respectively. Obviously, the cost function ( )kL  is increasing and strictly convex 

because its first-order derivative is non-negative, and the second-order derivative is positive.  

For satisfying the electricity consumption requirement of users at each time slot k , the 

given supplier should supply the equal electricity to keep the balance, that is, 

   =g k k k
k i j li j l

L x y z
∈ ∈ ∈

+ +∑ ∑ ∑  
,                              (7) 

where g
kL  is the power supply provided by the given supplier. However, the energy provider 

has a maximum and minimum capacity of generating electricity defined as max,g
kL and min,g

kL , 

respectively, at each time slot k , i.e.,  

                                  min, max,g g g
k k kL L L≤ ≤ .                                  



(8) 

 

If the electricity consumption requirement of users exceeds the supplier’s maximum 

generating capacity, the exceeding part should be satisfied by other suppliers. Meanwhile, if 

the requirement is less than the supplier’s minimum generating capacity, supplying the 

electricity by the supplier is not cost effective due to line loss and starting cost. Hence, the 

required electricity will be transferred to other suppliers who are capable of satisfying this 

demand. In other words, the electricity consumption requirement of all users at each time slot 

k  will not be transferred to other suppliers, only if the power supply g
kL of the power supplier 

at time slot k satisfies the condition Eq. (8). 

The increasing use of smart electrical appliances gives rise to making electricity 

reservation in advance by a great number of users.  This enables the power suppliers to 

generate electricity with a plan at every time slot. If the given supplier cannot satisfy the 

reserved electricity consumption requirement at some time slots, a part of the requirement 

will be transferred to other suppliers. In this paper, we suppose that the suppliers can learn  

the electricity consumption requirement of all users by smart meters at next time slots and 

generate electricity according to the requirement. Moreover,  each user will consume the 

electricity not less than the reserved requirement at every time slot, i.e, the actual electricity 

consumption requirement will satisfy the following condition: 

, ,
k k k
i i ix v m≥ ≥  , , ,yk k k

j j jv m≥ ≥  , , ,
k k k
l l lz v m≥ ≥  ,                      

(9)  

where ,
k

iv , ,
k

jv  and ,
k

lv are, respectively, the reserved electricity requirements of the i -th 

residential, j -th commercial and l -th industrial users at time slot k . 

 

 3.4. RTP model of multi-class power users  

In this subsection we describe the proposed model. The objective of the RTP model of 

multi-class power users is to maximize social benefit, which is defined as the difference 

between the total utility of all users and the cost of suppliers. The RTP model of multi-class 

power users in the SG system can be formulated as follows. 

 



Model 1 (RTP model of multi-class power users in the smart grid)  
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(10) 

where min
kL and max

kL are respectively the suppliers’ minimum and maximum supply in the time 

slot k . these values are calculated as the total minimum and maximum power consumption 

requirement of all users, respectively, for keeping the balance of supply and demand. That is, 

               min
, , ,= k k k

k i j li j l
L m m m
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(11) 

This model can directly be solved using some optimization methods such as the interior 

point method. However, the exact price information cannot be obtained directly. According to 

[15-17], when problem (10) is converted to the Lagrange dual problem, the optimal Lagrange 

multiplier is exactly the electricity price in that time slot. Hence, the Lagrange dual problem 

of the primal problem (10) should be created. First, for each fixed time slot k , the Lagrange 

function of the primal problem (10) is: 
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(12) 
where ( , , )k k k

k i j lX x y z= , and ( , , )k k k kλ λ λ λ=    is the Lagrange multiplier of the residential, 

commercial and industrial users in the time slot k . Considering the separability of the terms in 

the Lagrange function, the objective function of the dual optimization problem is: 
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Hence, the dual problem would be as follows: 
   

0
min    ( )

k

kD
λ

λ
>

,                                   (20) 

Note that the first term in ( )kD λ  in (13) can be decomposed into some separable 

subproblems (14), (15) and (16) solved by the users and some subproblems (17), (18) and (19) 

solved by the energy provider, respectively. Thus, for each time slot k , as a medium of 

exchange for users and suppliers, the electricity price, which is the optimal Lagrange 

multiplier, is obtained by solving the problem (20). To solve the problem (20) iteratively, the 

gradient projection iteration method is used as follows: 
        * *

, 1 , 1 , ,[ ( ( ) ( )]k k k k k k
t t i t ti

x Lλ λ γ λ λ +
+ ∈
= + −∑    

,                         (21) 

* *
, 1 , 2 , ,[ ( ( ) ( )]k k k k k k
t t j t tj

y Lλ λ γ λ λ +
+ ∈
= + −∑    

,                         (22) 

* *
, 1 , 3 , ,[ ( ( ) ( )]k k k k k k
t t l t tl

z Lλ λ γ λ λ +
+ ∈
= + −∑    

,                         (23) 

where t T∈ , and T  is the time-series set that the electric power supplier updates =( , , )k k k kλ λ λ λ   at 

time slot k . *
,( )k k

i tx λ , *
,( )k k

j ty λ and *
,( )k k

l tz λ  are respectively the local optimal values of the 

problem (14), (15) and (16) via , , ,=( , , )k k k k
t t t tλ λ λ λ    in (21), (22) and (23). Similarly, 

*
,( )k k

R tL λ , *
,( )k k
tL λ  and *

,( )k k
tL λ   are respectively the local optimal values of the problem (17), (18) 

and (19) via , , ,=( , , )k k k k
t t t tλ λ λ λ    in (21), (22) and (23). , , ,=( , , )k k k k

t t t tλ λ λ λ    is the value of ( , , )k k k kλ λ λ λ=     

in t T∈ , 1 2 3( , , )γ γ γ γ= is the step size and [ ]+ = max{0, }δ δ . 

 

4. DR Algorithm of Multi-class Users based on RTP 

Based on RTP model discussed above, we propose a DR mechanism for multi-class 

users to allocate electricity consumption requirement to other suppliers when a single 

supplier’s supply is insufficient, which is  

max,g
k kL L< . 

We assume that a given supplier will first supply the electricity of all users. If the supplier 

cannot satisfy all the requirements, the surplus requirements will be transferred to other 



suppliers. The DR algorithm firstly calculates the theoretical optimal power consumption 
*

,( )k k
i ix λ , *

,( )k k
j jy λ and *

,( )k k
l lz λ  of each group of users by solving Eq. (20) at time slot k . On the 

one hand, we consider the electricity consumption of the users. If the condition Eq. (9) is 

satisfied, which shows that the actual consumptions of all users are more than their reserved 

electricity consumption requirement, the optimal power consumption obtained from Eq.(20) 

will be the final power supply kL  to maximize the total utility of all users in the system, i.e. 

     * * *
, , ,= ( )+ ( )+ ( )k k k k k k

k i i j j l li j l
L x y zλ λ λ

∈ ∈ ∈∑ ∑ ∑    
. 

If the condition Eq. (9) is not satisfied, the total reserved power consumption requirement of 

the users will be the final power supply kL to meet the actual demand of the users, i.e., 

kL = *
,max{ ( ), }k k k

i t i
i

x vλ
∈
∑ 


+ *
,max{ ( ), }k k k

j t j
j

y vλ
∈
∑ 


+ *
,max{ ( ), }k k k

l t l
l

z vλ
∈
∑ 


.               

On the other hand, we consider the supply capacity of the given supplier. If kL satisfies the 

condition Eq. (8), which means that the supply will not be overloaded, the given supplier can 

meet the electricity demand of all users at time slot k by supplying the power kL , i.e., g
k kL L= . 

Otherwise, if kL is lower than the lower bound of the condition Eq. (8), which means that 

starting the electricity generator to supply the power is not affordable for the supplier, the 

users' power request will be directly transferred to other suppliers to supply. If kL exceeds the 

upper limit of the condition Eq. (8), that is, the supplier will be overloaded and will not be 

able to meet the electricity consumption requirement of all users. Hence, a part of 

consumption request must transfer to other suppliers to keep the stability of the system. The 

following is how to transfer the users’ consumption demand to other suppliers.  

in order to allocate the users’ electricity consumption demand to other suppliers 

practically, we will adopt the following allocation priority rule among the different class of 

users:  

       Residential users Commercial users  Industrial users p p                  (24) 

which means that the supplier first gives priority to meeting industrial users' electricity 

consumption request, next commercial users’ and lastly residential users’ to keep the stability 

of industrial production and commercial service.  

However, in the same class of users, we will use the following method to transfer the 

power consumption request of users to other suppliers to minimize the difference between the 



optimal and reserved electricity consumption requirements. First, the consumption request of 

the users with the largest difference between the optimal and reserved electricity consumption 

request will be transferred to other power suppliers, and then the request with the second 

largest difference, and so on till the condition Eq. (8) is satisfied for the remaining users' 

power request. 

 

The DR algorithm can be summarized as follows: 

 

Algorithm 1 (DR algorithm of multi-class users based on RTP in the smart grid): 

Step 0 Initialize 1n , 2n , 3n , K , ω , a , b , c  α , β , µ , 1γ , 2γ 3γ and λ . 

Step 1 For each k κ∈ , identify ,
k

iv , ,
k

jv , ,
k

lv , and give ,
k

iM  , ,
k

jM  , ,
k

lM  , ,
k

im , ,
k

jm , ,
k

lm , min
kL  and max

kL .  

Step 2 Calculate the real-time prices ,
k

iλ , ,
k

jλ  and ,
k

lλ and the optimal power consumptions 

*
,( )k k

i ix λ , *
,( )k k

j jy λ and *
,( )k k

l lz λ of each group of the users by solving Eq. (20).  

Step 3 If the condition Eq. (9) is satisfied, the final power supply is 
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Otherwise,  

kL = *
,max{ ( ), }k k k
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x vλ
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,max{ ( ), }k k k

j t j
j
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∈
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+ *
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where 
1 , 

1  and 
1
, which are subsets of  ,   and   respectively, represent the part of 

the residential, commercial and industrial users whose electricity consumption demands are 

transferred, respectively. 

Note that the users’ optimal electricity consumptions obtained in Step 2 may be less than 

the reserved electricity consumptions of users. In the actual supply process of electricity, if 

suppliers cannot meet the users’ reserved electricity demand, other suppliers will be selected 

to supply the power shortfall. Steps 3-6 give the detailed solution. The whole process of the 

algorithm for each time slot k is shown in Figure 1. 
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Fig. 1. DR algorithm of multi-class users based on RTP 

 

5. Numerical analysis 

In this section we apply our algorithm for a random sample in order to investigate its 

efficiency. Matlab 2016 is used to perform numerical simulation of Algorithm 1. We select the 

following parameters in the simulation. 

Suppose that there are 1 100n = residential users, 2 10n = commercial users and 3 2n = industrial 

users, 24K =  represents 24 hours a day. The default parameter ω  is a random number in the 

interval [ ]1, 4 and remains fixed throughout the algorithm. The constant parameters [16] are set 

as 0.01a = , 0b c= = , 0.5α = , 5β = , 20µ = and 1 2 3 0.01γ γ γ= = = , the initial value is 0.4λ = [16].  

First, we run Algorithm 1 and find the real-time prices of three types of users at each slot 



as shown in Figure 2. The result shows that commercial and industrial users have insignificant 

fluctuation in real-time electricity price because they have steady electricity consumption. 

However, residential users have significant changes in electricity consumption, which 

indicates that they have a large real-time electricity price fluctuation. As the electricity 

consumption increases over the day, the electricity price rises, which helps to guide the users 

to save the electricity. 

       

Fig.2. Real-time electricity prices of different classes of the users Fig.3. Optimal electricity of real-time and fixed 

electricity prices 

Next, we look at the optimal power consumption *
,( )k k

i R tx λ , *
,( )k k

j B ty λ , *
,( )k k

l I tz λ  and give their 

total optimal consumption, which is shown in Figure 3. At the same time, in order to make a 

comparison, the fixed power price and its corresponding electricity consumption are added. 

The average value of the fixed price of all users in all time slots is 0.725p = . Obviously, the 

optimal power consumption of the real-time electricity price is between the maximum and 

minimum supply of the supplier, which can satisfy the condition Eq. (8). Compared with the 

fixed electricity price, the real-time electricity price can effectively reduce the electricity 

consumption during the peak hours due to the high efficiency of information transmission. 

Thus, the load of the electricity grid is reduced. 

Then, we conduct a further analysis on the selection of the final suppliers when the condition 

Eq. (8) is satisfied. Take the residential users as an example. 10 users’ data are selected as 

shown in Fig. 4. From Fig. 4, the optimal electricity consumption of the users 1, 2, 4, 5, 7 and 

9 is less than the reserved power, so the final power supply should be equal to the user’s 

reserved power consumption requirement. The optimal power consumption of the users 3, 6, 8 

and 10 is greater than their reserved power consumption requirement, so their final power 

supply should be equal to the user's optimal power consumption. 



 
Fig.4. Selection of the final power consumption of the residential users in one time slot 

 
Fig.5. Power supply and demand situation 

Finally, we analyze the allocation of the electricity when the condition Eq. (8) is not 

satisfied. Figure 5 shows the supply and demand of the power grid. As shown in Figure 5, the 

theoretical optimal power consumption is between the minimum and maximum power supply. 

Although the total grid load computed by the theoretical optimal power consumption meets 

the condition Eq. (8), it does not meet the reserved requirement of all users. The simulation 

results show that at time slots 4, 7, 10, 20, 22 and 24, the users’ total electricity consumption 

requirement exceeds the maximum supply capacity of the supplier, which indicates that the 

condition Eq. (8) is not satisfied. However, at the other time slots, Eq. (8) will be satisfied if 

the total consumption requirement is regarded as the final supply of the supplier. Hence, the 

supplier can meet the reserved electricity requirement of all users except in time slots 4, 7, 10, 

20, 22 and 24, although it is not the theoretical optimal power supply. 

In time slots 4, 7, 10, 20, 22 and 24, we use the priority rules to meet the reserved 

electricity requirement of all users. From Step 6 in Algorithm 1, we know that the maximum 

supply will be the final supply of the supplier. The other power suppliers will make up the 

shortfall of electricity requirement. The computation result indicates that the final supply of 

the supplier can meet all industrial and commercial users and a part of the residential users. 

Hence, we can analyze the priority rule only by the residential users. Fig. 6 gives the 

electricity requirements of the residential users at the time slots 4, 7, 10, 20, 22 and 24.  



 

Fig.6 Electricity consumption of residential users in abnormal time slots 

In Fig. 6, 0 denotes that the user’s electricity requirement has been transferred, whose 
electricity will be supplied by other suppliers. For example, at time slot 4, the electricity 
requirements of the users 47 and 59 will be transferred to other suppliers to supply electricity. 

From the above analysis, we can know that compared to fixed price, the DR method 
based on RTP can meet users’ reserved electricity needs, reduce and stabilize power load and 
guide users to consume electricity reasonably. Meanwhile, it can also transfer positively the 
overload electricity requirement to other qualified suppliers according to the priority rule at 
those time slots, which ensures that the supply network can run properly.  

 
6. Conclusion 

The large number of power users in the smart grid causes the complexity of the power 
supply and demand relationship. Based on the existing literature, a real-time electricity price 
can be obtained based on the user’s utility. Since different types of users have different power 
characteristics, the power suppliers usually cannot meet the users’ optimal electricity demand 
at peak time slots and users’ demand is beyond the supply capacity of a single supplier. To 
address this issue, we proposed the DR algorithm based on classified users' RTP with the 
users’ utility in the smart grid. This algorithm can solve the problems of the electricity 
consumption of the residential, commercial, industrial users with multiple suppliers under the 
power supply, real-time electricity prices, optimal electricity consumption and the balance 
between supply and demand. The simulation results show that the DR algorithm based on 
RTP of multi-class users can reduce the power grid load and meet the reserved electricity 
consumption of users. The algorithm can also transfer the overloaded electricity demand 
exceeds the supply capacity of a supplier to other suppliers in peak time slots. This not only 
ensures the normal supply of the power network and meets all users’ requirement, but also the 
supplier can maximize the electricity utility or requirement of the key user-groups efficiently. 
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