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Abstract

Identifying ways to improve nitrogen use efficiency (NUE) in cereal production
is a major international research priority. It has been estimated that globally
only around 40% of N from fertilizer is recovered in the grain of cereal crops.
Rates of post-anthesis N uptake (PANU) by crops are often low and high
guantities of N can be found in the soil at harvest, apparently left unused by
the crop. The low rate of PANU needs to be overcome to minimise the negative
environmental impacts caused by the use of N fertilizers. A better
understanding of the physiological control of PANU as an interrelated
mechanism of soil N availability, plant N demand, N remobilisation and root
growth and activity is needed to further improve NUE. The aim of this project
was to investigate the dynamics of N uptake and remobilisation during the
post-flowering period in relation to the N status at flowering, the soil N supply

and plant N demand during grain filling.

Controlled environment experiments were conducted on spring barley cv
Westminster grown in sand-perlite using N labelling techniques to
discriminate between the fate of N taken up before anthesis and that taken up
during grain filling. The results showed that barley roots have the capacity to
uptake N from repeat low concentration (1 mM) applications with high
efficiency throughout grain filling (>90%). The efficiency of PANU was not
affected by the plant N status at flowering. Higher N status plants remobilized
a larger quantity of N from vegetative tissue for allocation to the grain, but the
remobilisation efficiency was little affected. The temporal dynamics of
remobilisation from each organ, however, showed some differences, with a
slower onset of remobilisation from leaf sheaths and stems in plants of higher

N status compared to plants of low status.

The role of N supply and grain N demand in the control of PANU was tested
by varying the concentration of N applied after flowering and by partial de-

graining. Regardless of the N supply, de-grained plants accumulated



significantly less N than the control plants between early and late grain filling.
However, there was no significant difference between de-grained and control
plants in their net N uptake measured by short term (24 hours) *N labelling.
De-graining and increased N supply increased the partitioning of °N to
vegetative tissues, mostly towards the tillers. These results indicate that there
is a large sink demand for N post-flowering even after grain numbers are
reduced. They also suggest that the observed reduction in the total N
accumulation is not the result of reduced PANU, but the consequence of a
different mechanism, potentially N losses from the plant to the atmosphere.
However, this hypothesis was not supported by measurements of NH3
volatilization from leaves and ears of de-grained and control plants. Further
experiments are needed to determine the cause of the reduced N

accumulation in de-grained plants.

A field experiment was conducted in 2019 to compare post-anthesis soil
nitrate depletion by spring barley with that of spring oats, a species regarded
as having a high N uptake efficiency. Spring oats depleted soil nitrate to a
greater extent than spring barley and this effect was consistent across four
varieties of each species tested at anthesis, but the soil N dynamics change
during the grain filling period. The poorer depletion by barley was associated
with its smaller average root length density in the topsoil, but variability in the
data prevented the establishment of critical root length densities for nitrate

uptake by each species.

These experiments have shown that spring barley has a large demand for N
during grain filling and maintains a high physiological capacity for its uptake.
The relatively poor depletion of soil nitrate by field grown barley crops during
this period may be associated with restricted access of roots to N rather than
physiological controls over its uptake. Improvements in root distribution may

be a suitable target to increase N uptake efficiency of spring barley.



Lay Summary

The main fertilizer elements in crop production are nitrogen (N), phosphorus
(P), and potassium (K) with N being the nutrient that most often limits growth
and subsequently productivity. The consumption of N fertilizers in agriculture
has been massively increased since the 1980’s in an attempt to improve yields.
Unfortunately, crops and in particular cereal crops, use nitrogen fertilizers
inefficiently. Nitrogen can be lost from the soil-plant system through several
pathways causing significant environmental problems. Therefore, an essential
goal in modern agriculture is to minimize N fertilizer inputs, which will help to
reduce production costs and environmental deterioration, while maintaining

high yields and grain quality.

It is essential to increase the nitrogen use efficiency (NUE) of crop species.
This can be improved through two complementary ways. Firstly, by
improvements in crop management and fertilizer techniques, and secondly
through plant breeding and the development of more efficient varieties. The
latter requires information on which phenotypic traits control NUE within a

breeding population.

The present research was conducted in spring barley due to its high demand
for the malting industry and the highly specific parameters on grain quality.
Firstly, the physiological capacity of barley roots to capture N was tested using
a simple root medium and the isotope °N. The results showed that barley has
the physiological capacity to absorb N right through the end of grain filling and
the N uptake is not influenced by the N status of the plant at flowering. | then
tested the relationship between N uptake, the supply of N post-flowering and
the grain demand for N. The grain N demand was altered by removing 50% of
the barley ears (de-graining treatment). The results showed that even though
there was a reduction on the net N accumulation between two growth stages
during the grain filling period, the uptake of N was not affected. The post-

anthesis N supply, however, largely influences the uptake of N. The higher the



N supply, the higher the uptake of nitrogen. Volatilization of ammonia (NH3)
was measured in an attempt to explain the reduced N accumulation previously
observed. Ammonia was measured in control and de-grained plants, but no
differences were observed between them. Lastly, the ability of barley to
deplete N compare to other cereal crops such as oats was assed under field
condition during 2019. Differences in the ability to deplete soil N appears to be
likely a specific characteristic of the different species at anthesis but the N

dynamics change during the grain filling period.

More information is needed to understand the relationship between soil N,
roots and soil microorganism. However, given the high capacity of barley roots
observed when grown under a simple medium, there seems to be
opportunities to improve the root architecture of barley, particularly the

proliferation of roots at deeper soil profiles.
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Chapter 1: Literature review

1.1 Barley: a crop of interest for research

Barley is ranked fourth among the most cultivated cereals in the world. It is

grown on approximately 47.7 million hectares in 106 countries worldwide

(FAOSTAT, 2022). Itis cultivated both in highly productive agricultural systems

and, also in dry and marginal areas (Miralles et al., 2020).

In the UK, barley is the second most important cereal after wheat, grown on

nearly 1.2 million ha and producing 8.4 million tonnes in 2020 (FAOSTAT,

2022). Figures 1.1 shows worldwide changes in the area harvested of barley
and its production from 2002 to 2020. Figure 1.2 shows the world and UK’s

yield trends over the same period.
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Figure 1.1 World changes in area harvest, expressed in million hectares, and

average barley production, expressed in million metric tonnes (MMT) from

2000 to 2020 (FAOSTAT, 2022).
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Figure 1.2 Barley yields (t ha'') worldwide and in the UK from 2002 to 2020
(FAOSTAT, 2022).

Besides its importance as a crop for animal feed and malting for alcohol
production, it is an established model plant for agronomic, genetic, and
physiological studies (Criado et al., 2015; Raun and Johnson, 1999). Due to
its diploid nature, it is a good genetic model for other crops in the Triticeae
family (Karunarathne et al., 2020). Though a better understanding of the
physiological basis of many agronomic traits is needed. Fortunately, barley
germplasm resources are considerable, with much potential for exploitation.
Consequently, substantial gains in crucial sustainability characteristics should
be achievable in the future, together with increased understanding of the
physiological basis of several agronomic traits, particularly water and nutrient

use efficiency (Newton et al., 2011).

Barley was domesticated about 10,000 years ago the crop was domesticated
there from its wild relative Hordeum spontaneum (Badr et al., 2000). Barley
was domesticated as a source of human food, but over time, its major usage
evolved to the extent that, in highly developed countries, its importance as a
food crop is very limited (Swanston et al., 2014). Worldwide, animal feeding is
the main use of barley (Baik and Ullrich, 2008). Even in countries like Morocco,

with relatively high levels of human food use, around 80% of the barley grown
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is used to feed animals (Baik and Ullrich, 2008). However, in some developing
countries such as Ethiopia, the total annual barley grain production is almost
entirely destined for human consumption, making of barley the major staple
food in the highlands (Grando and Gormez, 2005).

In the UK, there are two crops of barley grown, one sown mainly in September-
November known as winter barley and the other sown in February-May known
as spring barley. Winter barley varieties are generally higher yielding, they
require a period of exposure to cool temperatures called vernalization to initiate
flowering and must also be cold hardy. Spring barley varieties do not require
vernalization but are usually resistant to cold temperatures (Kling and Hayes,
2004).

The growing cycle of the different barley crops depend on which area in the
UK is the crop sown. For example, in England, spring barley tends to have a
growing cycle of 120-130 days whereas in Scotland it can be as long as 150-
160 days (Kling and Hayes, 2004). Figure 1.3 shows the development and
growth phases of a winter barley crop sown in October. The timing at which
different paraments such as spikes (or ear) number and grain number is also
shown (Bingham et al., 2006).

Winter barley is typically utilised in brewing for ales, lagers and roast products,
spring barley on the other hand, is widely used for brewing and distilling (Kok
etal., 2019).

Globally, around 15-20% of the barley production is used in the malting
industry for brewing or whisky making (Miralles et al., 2020; Newton et al.,
2011). The dominance of barley as a brewing cereal result from its capacity to
provide a suitable substrate and source of enzymes, to produce sugars that

are used by yeasts in the fermentation process (Swanston et al., 2014).
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Figure 1.3 Barley growth stages and timing for developmental stages
modified from (Bingham et al., 2006).

Malting is the process in which raw grain is made ready to become the main
ingredient in the brewing process. This is achieved by employing a controlled
germination of grain in moist air (MacLeod and Evans, 2016). The malting
process can be divided in three main stages: steeping, germination and kilning.
In the steeping stage, the acquiescent grains imbibe water and hydrates the
embryo and endosperm. In the germination stage, enzymes are synthesized,
activated and mobilized and the embryo begins to develop. In the kilning
phase, grain growth is halted using a heat treatment which dries the grains to

constant and low moisture for storage (MacLeod and Evans, 2016).

The commercial quality of malting barley is highly specific and parameters
such as grain size, germination potential and grain N concentration are

carefully considered (Newton et al., 2011). The required grain nitrogen
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percentage in barley varies depending on the final use of the malt. In the UK
the brewing industry requires N concentrations between 1.6% and 1.75%
(MAGB, 2022). For export and lager beers a concentration of 1.7% to 1.85%
is required (MAGB, 2022). Barley for distilling malt requires a lower N level,
typically about 1.5%. In difficult seasons higher levels, up to 1.65% can be
used (Newton et al., 2011). Due to the high demand for barley in the malting
industry, achieving high yields is as important as obtaining an optimal

commercial quality of the grain (Criado et al., 2018).

1.1.1 Barley diversity: Types and germplasm

Barley is currently classified according to ear structure. Barley ears can
produce either one or three grain per node, giving 2-row and 6-row varieties
(AHDB, 2018a). Of the 3 spikelets which are inserted at each node of the
rachis, only the central one is fertile in the 2-row type (Le Gouis, 1991). The
major gene responsible for the row-type differences in barley is the Six-rows
spoke 1 (Vrsl) which affects the pistil development of the lateral spikelets
(Zwirek et al., 2019). Two-row varieties usually have a higher number of tillers
per plant. On the other hand, six-row varieties usually have more seeds per
inflorescence. Thus, the compensatory effects of yield components lead to
similar levels of yield potential (Kling and Hayes, 2004). It is widely recognised
that two-row barley is favoured for malting throughout most of the world,
whereas sox-row is large used only for feed. However, in the USA and Mexico,

six-row barley is used extensively for this purpose (Kling and Hayes, 2004).

Wild barley is two-row. The six-row trait was selected shortly after
domestication (Zwirek et al., 2019). Genetic variation is essential for crop
improvement. However, during the domestication process and the transition
from wild genotypes to modern cultivars the genetic diversity of crop species,
including barley has been drastically reduced, potentially leaving behind useful
genes and alleles (Tanksley and McCouch, 1997). Fortunately, an enormous

amount of natural barley diversity can still be found, either within gene banks
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or in the wild (Ellis et al., 2000). In 2010, FAO estimated that there are over
400,000 barley accessions in the world. These accessins include cultivars
(15%), landraces (43%), breeding lines and genetic stocks (28%) and wild
Hordeum species (14%). Due to their high adaptability to a range of conditions
barley landraces are recognized as an important genetic resource with which
to search for tolerance to biotic and abiotic stresses (Monteagudo et al., 2019).
Wild barley and landraces which predate modern elite lines offer the breeder

the potential to find unexploited genetic diversity (Stevens et al., 2021).

There is ample evidence of intraspecific variation in NUE in barley and thus
potential for improving resource use efficiency through breeding (Anbessa et
al., 2009; Bingham et al., 2012). Improvements in both N uptake efficiency and
N utilization efficiency (main components of NUE) may be required to make
substantial gains in yield under conditions of low or moderate nitrogen
availability. However, progress requires the development of an understanding
of the phenotypic traits that govern NUE, their genetic control and their

expression in a range of environments (Newton et al., 2011).
1.2 Global N consumption in relation to cereal crops

Over the past century, crop yield and soil fertility have significantly increased
mainly from the greater inputs of fertilizer, pesticides and water alongside the
rapid adoption of modern high-yielding crop varieties and other technologies
of the ‘Green Revolution’ (Lu and Tian, 2017; Tilman et al., 2002). The rise in
fertilizer production and application contributed considerably to improving
agricultural productivity and decreasing hunger worldwide (Tilman et al.,
2002). Because the nutrient requirements of crop species vary, their
contribution to N, P and K consumption differs significantly. For example,
cereal crops have a much greater impact on N-fertilizer consumption than
legume crops. Modern short-stature varieties of wheat and rice have
contributed greatly to the increase in global N fertilizer application because of

their positive response to N, high yields, and high harvest index and improved
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lodging resistance (Ladha et al., 2005). Short-stature or semi-dwarf varieties
refer to plants that grows to a lesser height than usual for its kind (Dalsrmple,
1980).

Although most of the chemical fertilizers were consumed in developed
countries over the past 60 years, the use of fertilizer has now increased in
developing countries. In 1960, developed countries accounted for 88% of
world fertilizer consumption but by 2001, 63% of world fertilizer was consumed

by developing countries (Ladha et al., 2005).

World N-fertilizer consumption in agriculture (Fig 1.1) was 9 MMT (million
metric tonnes) in 1960. It increased dramatically after the Green Revolution,
reaching 82.5 MMT in 2002. By 2019, the total world N-fertilizer reached 107.7
MMT (FAOSTAT, 2022). Almost 50% of the world fertilizers is applied to
cereals to maintain yields (Heffer et al.,, 2017). The global demand for N-

fertilizer is dictated by cereal grain production (Tilman et al., 2002).
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Figure 1.4 Global consumption of agricultural N-fertilizer from 1960 to 2019
in million metric tonnes (MMT) (FAOSTAT, 2022).



In the UK, the consumption of fertilizer nutrients reached 1.48 MMT during the
2018/2019 period, of which 1.04 correspond to nitrogen-based fertilizers.
Among cereal crops, winter wheat showed the largest application rates of N-
fertilizer whereas spring barley received the lower rates of mineral N
(FAOSTAT, 2022).

It has been reported that, on average, globally, cereal crops use nitrogenous
fertilizer inefficiently. Only about 40% of the applied N-fertilizer is absorbed by
the crop (Sylvester-Bradley and Kindred, 2009). In the UK, this figure is about
60% if the best management guidelines are followed. The remainder nitrogen
can be lost through processes such as volatilization, denitrification and
leaching from soil-plant systems to water bodies and the atmosphere,
generating pollution issues (Ladha et al., 2005). These processes are

described in section 1.4.

A major goal of modern agriculture is to minimise fertilizer inputs while
maintaining high yields and grain quality (Criado et al., 2015). Reducing the
use of N fertilizers is important to minimize the negative environmental impact
and to reduce the cost associated with fertilizers production and their
utilization. Therefore, it is essential to reduce the amount of fertilizers used in
agriculture and breed for crops with better resource use efficiency to restore
and maintain ecosystem functioning while meeting the demand of a growing

population (Heffer et al., 2017).
1.3 Manufacture of synthetic N fertilizer

Large-scale production of mineral nitrogen fertilizers began in the 1950s. This
dramatically contributed to increase crop yields and its use is likely to continue
to increase in the future (Ahlgren et al., 2008). Unfortunately, the production of
nitrogen fertilizer is highly consuming of energy, representing 1.2% of the

global primary energy demand (Ahlgren et al., 2008). Fertilizer prices have



been driven by surging energy costs, supply restrictions, and trade policies
(Baffes and Chian, 2021).

The most important factor affecting fertilizer costs has been the sharp increase
in the price of natural gas (Hebebrand and Laborde, 2022). Natural gas is used
as feedstock and as energy source in the production of ammonia, which is the
base material for N fertilizers (Dawson and Hilton, 2011). Ammonia is formed
in the Haber-Bosch process which converts hydrogen and nitrogen to
ammonia (N2+3H2 a 2NHzs). The process uses very high temperatures (300°C—
500°C) and pressure to break apart the N2 (Nevins et al., 2020). The hydrogen

originates from natural gas and the nitrogen from air.

Fertilizer prices have increased enormously over the last year and a half with
soaring gas prices. Natural gas prices spiked, especially in Europe due to the
conflict in Ukraine. Yara, which is one of the world’s largest fertilizer makers,
announced in March 2022 that its European production capacity of ammonia

and urea was decreasing by 55% due to the surge in natural gas prices.

Moreover, the resent announcement of China to suspend fertilizer exports to

ensure local availability has increased the concerns for N-fertilizers supply.

It is therefore not just the cost of fertilizer production that is a problem, it is also
the security of supply. Supplies are being shortened because less is being

manufactured as a result of the high gas prices.

High fertilizer costs represent an extra pressure on food prices, compromising
food security, making access to food more difficult. Moreover, the economic
optimum amount of N fertilizer rate is highly dependent on grain prices and
more specifically, the ratio of N fertilizer to grain price. With the increasing cost
of fertilizer, many farmers, may need to reassess N application rates. While
the prices if grain and fertilizers are likely to remain high, not every region will

be affected in the same way; poorest countries will suffer the most.



1.4 Dynamics of soil - crop N

1.4.1 Key soil N transformations

Nitrogen and water one of the most limiting elements for plant growth and crop
productivity (Tatsumi et al., 2019). Although N is the primary gas (N2) in the
atmosphere (78%), it is inaccessible in this form to plants, but it can be
converted to ammonia NHs through biotic and abiotic processes. NHs is the
precursor of ammonium (NH4*) and nitrate (NOs") which comprise the main
forms of N that are available for plant uptake. This section outlines the key soil

N transformations.

N fixation: N can be added to directly to the soil from the atmosphere through
either biological or physical/chemical processes. Biological N2 fixation naturally
occurs in legume plants through a mutualistic relationship with a specific group
of bacteria, rhizobia (Nevins et al., 2020). Legumes can be grown as a cover
crop after harvest but before the next vegetable planting to help supply N to
the soil (Nevins et al., 2020). The association of cereals with diverse bacteria,
including nitrogen-fixing bacteria called diazotrophs, has now been widely
studied. Biological N fixation by diazotrophic bacteria reduced N2 to NHs using
nitrogenase enzyme systems (Rosenblueth et al., 2018). Nitrogen-fixation in
cereals is not high enough to support the plant’'s needs, but it has been the
aim of different studies to increase N fixation in cereals (Bloch et al., 2020;
Wen et al., 2021).

The industrial conversion of N2 to NHsis used worldwide to produce synthetic

fertilizers as described in the previous section (see section 1.3).

Mineralization: Nitrogen mineralization is the biological process by which
organic N is converted to NH4* (Benbi and Richter, 2002). N mineralization is
completed by a large variety of soil microbes that can mineralize decomposed
organic material, such as crop residues, soil organic matter, or compost. The

amount of N mineralized to NH4* depends on the N concentrations in the
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decomposing organic material and the decomposition rate (Nevins et al.,
2020). Mineralization rates are maximised in well-drained soils, with adequate
moisture and low C:N. When soil microbes have met their N requirements from

decomposition, excess N accumulates as NH4" in the soil. (Nevins et al., 2020).

Nitrification: Soil NHs* can be converted to nitrite (NO2) and then
NOs" through the process of nitrification by soil microbes. Nitrification is
regulated by abiotic conditions, such as soil Oz concentrations and pH, as well
as soil NH4" concentration. It is carried out by three microbial groups, (1)
autotrophic ammonia oxidizers, (2) autotrophic nitrite oxidizers, and (3)
heterotrophic nitrifiers. When conditions are ideal for nitrification, NO and N20O
are produced in low concentrations. However, when nitrification has started
but is not completed the concentrations of these gases increase. The main
reasons for an incomplete nitrification are low oxygen levels and acidic soils
(Nevins et al., 2020). The optimum temperature for nitrification is around 32°
C. Below 10° F the rate slows rapidly, but nitrification can continue until 0° C
(Prosser, 2005).

There are other transformations processes that, by contrast, limit the amount
of N available to the plants in the soil. These includes immobilization and de-
nitrification. De-nitrification, leaching and volatilization are the main ways by
which N can be lost from the soil. Losses of N via leaching or volatilization can

also be included as key components of the soil N cycling transformations.

Immobilization: When ammonia and nitrate are used by microbes to meet
their biological N requirements, N gets immobilized and therefore becomes
unavailable to the roots of plants. The rate of immobilization and the amount
of N immobilized depends on the starting concentrations of NH4™ and NOz3" in
the soil, the amount of C added to the soll, the size of the microbial pool, and
the specific microbes present in the soil. High C concentrations relative to N
causes microbes to acquire the available N from the soil so they can

metabolise the added C (Nevins et al., 2020).
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Denitrification: Is the conversion of NO3 to gaseous N forms such as Nz and
N20. The process occurs under low oxygen conditions, and it is facilitated by
microbes. Pseudomonas are commonly known denitrifying soil bacteria. The
presence of these microbes depends on several factors, such as soil organic

matter, pH, moisture content, and temperature (Nevins et al., 2020).

Leaching: Nitrate-N leaching is a prominent process of N loss in agricultural
ecosystems due to its negative charge being as that of most soil particles
(Huang et al., 2017). Nitrate is leached as water drains through the soil profile,
moving out of the range of plant rooting systems. Leached NOs leads to
groundwater contamination or surface water eutrophication as it promotes
algae growth (Ladha et al., 2005; Nevins et al., 2020). The rate of leaching in
soils is influenced by factors such as soil type, affecting drainage
characteristics and rainfall rates (Nevins et al., 2020). High residues of N have
been found in barley crops by harvest (Bingham et al., 2012). Leaching of N
can be reduced by matching the use of fertilizers with the crop N demand
and/or by improving the root system, especially root proliferation at lower soil

layers (Nevins et al., 2020).

Volatilization: As already described, N can be lost from soils to the
atmosphere through denitrification. It can also be lost as ammonia volatilization
which occurs when NHs gas is lost to the atmosphere. It has been reported
that losses of N through volatilization can occur from the soil as well as from
the above-ground tissue (Harper et al., 1987; Schjoerring et al., 1993). NH3
volatilization is mainly controlled by the amount of organic material added to
the soil (e.g urea, manure) which causes a rise in the soil pH. A pH greater
than 8.0 creates a soil environment that prevents conversion of NHs to NH4*
facilitating the volatilization of NHs to the atmosphere (Nevins et al., 2020).
Ammonia volatilization from plant tissue depends on the ammonia stomatal
compensation point which is defined as the NHs concentration in the air within

the substomatal cavities at which no net NHsz exchange with the atmosphere
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takes place (Farquhar et al., 1980). It is determined by the concentration of

NH4* and H* in the leaf apoplastic solution (Sgren Husted et al., 2000).

Investigating the biological and non-biological processes controlling N
transformations in the soil is of major importance to improve our understanding
of the soil N dynamics. The implementation of new molecular techniques to
determine beneficial microorganisms involved in the biological processes of N
transformation, plus the implementation of crop simulation models to predict
the effect of biotic and abiotic factors will potentially allow us to increase the
environmental quality, hopefully improving crop production, and agriculture
sustainability. A detailed section for strategies to improve root-soil microbe

interactions is given in section 1.6.
1.4.2 N sources and uptake

The major sources of N in agricultural soils are nitrate (NOs’) and ammonium
(NH4"), NOs™ being the predominant form of N available for crops. NOs is
carried towards the root by bulk flow and diffusion and it is absorbed into the
epidermal and cortical symplasm (Glass, 2003; Segonzac et al., 2007). NOs"
is actively transported across the plasma membrane by both low and high
affinity transporter systems. Members of the transporter’s systems family are
regulated by internal signals including nitrogen compounds and by the demand

for nitrogen from the shoot (Crawford and Glass, 1998).

Nitrate uptake is facilitated by specific transporters belonging to high affinity
and low affinity transport systems (HATS and LATS, respectively) (Fan et al.,
2017; Glass, 2003; Masclaux-Daubresse et al., 2010).

HATS are active when the concentration of NOs in the soil is low <250 pM.
LATS, by contrast, predominate at high soil NOs™ concentration (>250 uM)
(Glass, 2003).

13



Low affinity nitrate transporters (LATS) are coded by the Nitrate transporter 1
(NRT1) gene family, which has been re-named as the NPF family (Léran et al.,
2014). In Arabidopsis thaliana, 53 genes belong to this family (Masclaux-
Daubresse et al., 2010) and 93 members in the rice (Oryza sativa L.) genome
(Léran et al., 2014). High affinity nitrate transporters (HATS) belong to the
NRT2 family with 7 members in Arabidopsis thaliana (Miller et al., 2007) and 5
in the rice genome (Feng et al., 2011).

Although the NPF members are believed to function as the main components
of the LATS for nitrate when the concentration of N in the soil is high, some
NPF proteins have revealed dual affinity for nitrate. This is the case
of NPF6.3/NRT1.1 in Arabidopsis and NRT1.1B in rice (K. H. Liu et al., 1999;
R. Wang et al., 1998).

The specific location of these proteins within the root system is still unclear. 51
of the genes expressed in Arabidopsis are likely to exhibit different tissue
expression patterns suggesting a specialised and unique function for at least
some of them (Masclaux-Daubresse et al., 2010). Both NPF and NRT2 gene
families are expressed in the root epidermis and in root hairs (Lea and
Azevedo, 2006). However, some experiments have suggested that HATS
are expressed in the epidermal, cortical and endodermal cell layers of mature
roots and not in young roots (Lea and Azevedo, 2006), whereas LATS are
suggested to be expressed in the epidermal cells of young roots (Huang et al.,
1996). Therefore, it is likely that young roots may be responsible for most of
the absorbed nitrogen via low-affinity transports, as soil N surrounding older

regions of the root is more likely to be depleted (Glass, 2003).

Recent studies have shown the HATS respond to plant N demand and
contribute the majority of total uptake capacity at high NOs™ concentrations
(>2.5 mM) raising questions regarding the roles and activity of each uptake
system (Garnett et al., 2013). The authors showed major changes in the high-

affinity nitrate uptake capacity throughout the lifecycle in maize plants. These
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variations correlated to changes in the relative growth rates of shoots and
roots. In this experiment the reduction in NOs"supply led to a dramatic increase
in NOs™ uptake capacity. These led to changes in the transcript levels of the
putative high-affinity transporters, suggesting a model with short-term post-
translational regulation and longer-term transcriptional regulation of NOs3

uptake capacity.

Ammonium is the other major form of N taken up by plants. Because
ammonium is toxic to plant cells, plants tend not to accumulate high
concentrations of ammonium ions (Glass, 2003). Ammonium uptake and
assimilation are tightly regulated (Masclaux-Daubresse et al., 2010; Tegeder
and Masclaux-Daubresse, 2018). In plants, ammonium transport and
homeostasis are controlled by a) saturable high-affinity Ammonium
Transporters (AMTs) and b) non-saturable low-affinity uptake systems
(aquaporins or cation channels) (Masclaux-Daubresse et al., 2010; Tegeder
and Masclaux-Daubresse, 2018). Like the nitrate transporters, some AMT
genes are also expressed in root hairs (Loqué et al., 2005). In Arabidopsis,
four AMTSs function in ammonium acquisition by roots, with AMT1.1, AMT1.3
and AMTL.5 being involved in the direct uptake from soil via the epidermis
(Loqué et al., 2005). AMT1.2 is expressed in cortical and endodermal cells and
mediates absorption of ammonium from the apoplast. Collectively, AMTL1.1,
AMT1.2 and AMT1.3 import up to 95% of the NH4* (Masclaux-Daubresse et
al., 2010; Tegeder and Masclaux-Daubresse, 2018).

Organic forms of N can also be taken up by roots. Root amino acid uptake
systems belong to three families within the Amino-acid-Polyamine-Choline
(APC) transporter superfamily: 1) the Amino Acid Permeases (AAPS), 2)
Lysine/Histidine-likes Transporters (LHTs), and 3) Proline and Glycine Betaine
Transporters (ProTs) (Masclaux-Daubresse et al., 2010; Tegeder and

Masclaux-Daubresse, 2018).
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1.4.3 Nitrogen assimilation

Once the nitrate is transported into the roots cells, it has four possible fates:
(1) it is converted to NO2 by nitrate reductase and reduced to NH4* by nitrite
reductase and ultimately incorporated into amino acids through the
GS/GOGAT pathway (Fig 1.2), (2) efflux back across the plasma membrane,
(3) influx and store in the vacuole; or, (4) transport to the xylem for long-
distance translocation to the shoot (Crawford and Glass, 1998). The loading of
nitrogen from root cortical cells to xylem is driven by transpiration at the leaf
surface (Tyree, 2003) and it is thought to be regulated by the concentrations

of cycling amino acids (Crawford and Glass, 1998).

Glutamate _ Amino acid

NO.— NO,— NH,* GOGAT
N N « mmp [fGs
NR NiR lutami
utamine — Amino acid

Figure 1.5 Main N assimilation pathways reported in wheat (Le Gouis et al.,
2016).

NOs" reduction takes place in the cytoplasm of roots and shoots. After
reduction to NOz" it is translocated to the chloroplast where it is reduced to
NH4* (Masclaux-Daubresse et al., 2010). Ammonium is mainly assimilated in
the plastids/chloroplast by the glutamine synthetase/ glutamate synthase
(GS/IGOGAT) pathway. The glutamine synthetase fixes ammonium on a
glutamate molecule to form glutamine. This glutamine subsequently reacts
with 2- oxoglutarate to form two molecules of glutamate, this step being

catalysed by the glutamate synthase.
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It has been reported that three different enzymes probably participate in the
assimilation of NH4*. These are: cytosolic asparagine synthetase
(AS), carbamoylphosphate synthase (CPSase) and the mitochondrial NADH-
glutamate dehydrogenase (GDH) (Masclaux-Daubresse et al., 2006).

Absorbed NOs and NH4* are assimilated by the crop and used to build the
photosynthetic machinery which contains large quantities of photosynthetic
proteins (principally Rubisco) and the structural proteins to support plant
growth. A third pool of N called reserve N has been suggested to be part of the

overall N source in plants (Pask et al., 2012).

Once the N compounds are transported via the xylem to the source organs
(leaves, stems and leaf sheaths) they are used for leaf functions, stored in the
vacuoles, or transported into the phloem to the sinks. The majority of N is
exported into the phloem as amino acids (Masclaux-Daubresse et al., 2010).
N released from the phloem is assumed to be via symplasmic movement
through plasmodesmata to the neighbouring parenchyma cells (Masclaux-
Daubresse et al., 2010).

1.4.4 Nitrogen remobilisation (NR) and senescence dynamics

Nitrogen uptake and assimilation during the grain filling period is usually not
enough to meet the high demand of the developing grains (Masclaux-
Daubresse et al., 2010). Thus, the remobilisation of N to the grains is critical

for grain productivity and yield (Chardon et al., 2012).

There are two approaches to determine N remobilisation in plants; one is the
‘apparent remobilisation’ method and the second one involves the use of the
isotope °N. The former involves the determination of the amount of total N
content in the different parts of the plant at different times through the season.
The latter uses '°N for long-term labelling, which allows for the determination
of N fluxes (Gallais et al., 2006).
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Currently, controversy exists regarding how nitrogen remobilisation is
regulated during grain filling period (Kong et al., 2016). It has been suggested
that the extent of remobilisation is dependent on N availability, environmental
conditions and genotype and itis also influenced by the post anthesis N uptake
(Bancal, 2009; Borrell et al., 2001; Martre et al., 2003; Moll et al., 1982;
Slimane et al., 2013)

The relationship between NR and senescence has been widely studied in
cereal crops such as wheat, maize and barley (Chardon et al., 2012; Kong et
al.,, 2016; Masclaux-Daubresse et al.,, 2010). While various studies had
indicated that the initiation of NR in cereal crops occurs immediately after
anthesis (Dreccer, 2006; Wang et al., 2013), senescence, which involves the
degradation of macromolecules and cell constitutes, begins approximately 8-
16 days after anthesis (Kong et al.,, 2016). N remobilisation during leaf
senescence is strongly regulated by chloroplast and vacuole protease

activities as well as by the various long-distance transporters (Xu et al., 2012).

High rates of NR have been observed when accelerated senescence takes
place (Bogard et al., 2010) leading to a high protein content but may negatively
impact grain yield due to the reduced C assimilation. Moreover, (Van
Oosterom et al., 2010) demonstrated that a delay in vegetative senescence in
sorghum increased the duration of leaf photosynthesis during the grain filling
period and resulted in a delay nitrogen remobilisation, negatively impacting the

protein deposition in the grains.

GPC is not only influenced by the N remobilisation efficiency, but also by the
post-anthesis N uptake capacity of the roots. This has been demonstrated in
wheat, barley, sorghum and maize (Borrell et al., 2001, Distelfeld et al., 2014,
Gallais et al., 2006; Kichey et al., 2007; Taulemesse et al., 2016).
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Although N uptake and remobilisation have proven to be of major importance
for the grain protein filling, the genetic and physiological coordination between

the two remains poorly understood.
1.5 Nitrogen use efficiency (NUE): Definition and its components

Nitrogen use efficiency has been defined as the yield of grain (grain dry matter
yield) per unit of available nitrogen in the soil, which can be from soil, fertilizer
or both (Moll et al., 1982). The authors divided NUE into two components: (1)
N-uptake efficiency (NupE) and (2) N-utilization efficiency (NutE).

Grain yield (kg)

NUE = N supply (kg: applied N + SMN)

Nitrogen uptake efficiency is usually calculated as the total amount of N in the
above-ground parts of the plant at harvest divided by the available N in the
soil. It considers the capacity of the roots to acquire N. If root data is available,
it should be included in the equation. NupE can also be measured as the
amount of N taken up in relation to the unit of root dry mass, when root data is
available (Le Gouis et al., 2016; Xu et al., 2012).

N uptake

NupE = —
4P N supply

Nitrogen utilization efficiency is calculated as the ratio of grain dry matter yield
to above-ground crop N uptake. It considers the efficiency of assimilation or
remobilisation of plant-acquired N to be converted to total plant biomass or
grain yield. Some authors distinguish between utilization of N derived from
fertilizer and that from soil N mineralisation. This can be estimated by
calculating the difference in yield and N uptake between crops supplied with
fertilizer and those grown without fertilizer (Beatty et al., 2010; Delogu et al.,
1998).
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NUtE — Grain yield
ate = N uptake

1.6 Strategies to improve NUE

The nitrogen use efficiency of crop production must be improved so that cereal
yields can be increased to meet an expanding global demand for grain without
corresponding increases in N fertilizer inputs. Improvements in NUE can be
sought in two complementary ways, firstly through changes to crop
management and fertilizer practice, and secondly, through plant breeding and
the development of more efficient varieties. The latter approach requires
information on which phenotypic (morphological and physiological) traits
govern NUE, the genes responsible for their control and the scale of variation

in these traits in the breeding population.
1.6.1 Crop management and fertilizer practices

Nitrogen use efficiency can be improved by adopting fertilizer, soil, water, and
crop management practices that will maximize crop N uptake and minimize its
losses. Strategies to improve fertilizer N use by crops can focus on two
approaches: (i) increasing the use of applied N-fertilizer during the growing
season and (ii) decreasing N losses by increasing the recovery of residual

fertilizer N by subsequent crops (Ladha et al., 2005).

Strategies to improve NUE through crop management and fertilizer practices
include: (1) site-specific N management which aims to optimize the supply of
soil nutrients over time and space to match the requirements of crops through
four key principles: right product, right rate, right time and right place (Verma
et al.,, 2020). The implementation of site-specific N managements requires
knowledge of soil characteristics and the ability to monitor crop nutrient status
to adjust N fertilizer inputs accordingly. Estimating soil N enables agricultural

advisors and farmers to estimate the amount of N fertilizer that is required as

20



well as the number of applications and timing. Chlorophyll meters and leaf
colour charts are promising tools developed to monitor N status of crops
(Haripriya and Byju, 2008); a powerful tool used in precision farming is NDVI
(Normalized difference Vegetation Index) which is use for visible spectrum and
adopted to analyse remote sensing measurements, allowing to measure plant
status and health. Moreover, remote sensed imagery can be used for mapping
soil properties, classification of crop species, detection of crop water stress,
monitoring of weeds and crop diseases, and mapping of crop yield (Sishodia
et al., 2020), (2) integrated N management which refers to a safe way to
dispose of crop residues and produce high-quality compost by a balanced and
integrated use of organic (crop residues, organic manure) and inorganic
fertilizers. This is to maintain soil fertility and provide plants with an optimum
level of nutrients required during the entire growing season (Selim, 2020); (3)
slow and/or controlled release N fertilizers can improve the use efficiency of
applied nutrients by reducing N-losses and enhancing their beneficial use in
plants. These products can slow the release rate of nutrients and the rate of
nitrification inhibitors that can interfere with nitrogen transformation processes
(Wu et al., 2021). In the UK, the nutrient management guide (RB209) provided
by AHDB offers best practices guidance for the application of mineral

fertilizers, manure and slurries to crops and grassland (AHDB, 2018b).

An accurate measurement of the soil properties pre and post sowing and an
accurate monitoring of the weather conditions throughout the growing season

could potentially influence the decisions on N fertilizers.

The long-term benefits of these management practices on soil quality will also
have an important influence on the NUE of the entire agroecosystem (Foulkes
et al., 2009). Crop management practices that increase soil organic matter,
which is a key measure of soil quality, will result in a greater indigenous N

supply and a reduction in N fertilizer requirements (Cassman et al., 2002).
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1.6.2 Improvements through plant breeding

Improving NUE through plant breeding may be achieved through changes in
one or more of the plant's morpho-physiological traits, which directly or
indirectly contribute to its superior capacity to uptake and/or utilize the soil

available N.

To make progress through breeding, the presence of natural or artificially
induced genetic variability is an essential requirement. Genetic variability in
NUE of spring barley genotypes has been reported (Anbessa et al., 2009;
Bingham et al., 2012). In these experiments, differences between old and
modern barley cultivars in NUE and their grain yield responses to low and high
N environments were revealed. Bingham et al., (2012) in their analysis of the
effects of nearly 75 years of breeding on the NUE of spring barley showed that
there was significant variation between genotypes in NupE and NutE. The
variation in NupE was associated with differences in fertilizer recovery, rather
than acquisition of soil mineral N. High NupE seemed to be the result of a
larger uptake of N during the post-anthesis period only. These results suggest
that N uptake in these varieties may be driven by a large demand associated
with a large grain sink. Moreover, plant breeding for low N environments may

not be optimised as selection is mainly done at optimal N levels.

In a similar and recent study performed in wheat, the NUE of four ancient and
four modern wheat genotypes was evaluated (Lupini et al., 2021). The authors
concluded that the ancient varieties exhibited higher PANU values compared
to the modern ones. Increasing N uptake post-anthesis, while maintaining low
grain N for malting quality is a major challenge. These results indicate that
there is a significant margin to improve NUE in barley through breeding.
However, efforts are needed (1) to continue to identify new sources of NUE
genes from modern germplasm as well as landraces of barley and (2) for a

greater understanding of the physiological processes that determine NUE.
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Traits to improve N uptake efficiency (NupE)

The primary processes that contribute to the efficient capture of soil N are the
development of a root system that can efficiently explore the soil and the
expression of transporter systems in those roots, especially HATS (Goulding
et al., 2008; Malinas et al., 2022). Moreover, soil microorganisms also play an

essential role in determining the availability of N for plant roots.

It has been demonstrated that N uptake is the result of a balance between an
active influx and a passive efflux (Crawford and Glass, 1998). Physiological
methods, especially the use of isotopes of N (*°N and 3N) have been widely
used to characterize the regulation of these fluxes for nitrate and ammonium
in roots of crop species (Glass et al., 2001). These techniques have shown
that the influx and even the efflux of NOs~ and NH4* from plant roots vary
depending on the plant species and cultivar, time of the day, internal N
concentration of the root tissue and the external N concentration of NOs™ and

NH4*in the soil.

Recent studies have started to characterize and identify nitrate transporter
systems in barley, particularly HATS (Guo et al., 2020). The identification of
putative candidate genes and genetic variability within barley germplasm is

essential for improving NUE and crop production.

Improvements of root-soil microbe’s interactions

Plant roots, including those of cereal crops, release a variety of potentially
valuable compounds such as organic acids and sugars into the rhizosphere
(region of soil directly influenced by roots). These play an essential role in the
chemical, physical, and biological interactions between roots and the
rhizosphere (Yadav et al., 2015). These interactions may influence the plant
growth and development, change nutrient dynamics and also alter the plants

susceptibility towards diseases and abiotic stresses (Yadav et al., 2015).
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As discussed in section 1.4.1, soil microorganisms in the rhizosphere are key
players in the availability of nutrients, especially N, for plant roots (Yadav et
al., 2015). N availability for plant roots may be reduced by microbial
competition as various soil microbes use ammonium and nitrate as N sources
(Harte and Kinzig, 1993; Sun et al., 2021) and/or transform nitrate to gaseous
N by denitrification (Hayashi et al., 2015). On the contrary, N availability can
also be enhanced by microbial mineralization of organic N, yielding ammonium
in the rhizosphere (Benbi and Richter, 2002; Myrold, 2021; Schimel and
Bennett, 2004).

It would be of major interest to develop breeding strategies to promote root
colonization by plant-beneficial microbial communities, especially those with
the potential to enhance N availability in the rhizosphere, enhance the root
system and architecture as well as both plant metabolism and microbial phyto-

protection.

Improvements in root architecture

In most agricultural soil, the availability of water and N are greater in deeper
soil strata over the growing season (Lynch, 2013). Nitrate ions that are not
taken up by the crop are potentially leached down the soil profile to
underground water. Consequently, one of the most important characteristics
to improve is rooting depth. The construction of an ideotype to maximize
nutrients and water capture in cereal crops has been widely proposed (Le
Gouis et al., 2016; Lynch, 2013). In these ideotypes, the authors indicated that
to maximize N capture, a deeper relative distribution of roots could be

beneficial, and further improvements in root architecture are needed.

The primary root traits that may contribute to rooting depth in cereal crops
include (1) a large diameter primary root with few but long laterals and the
ability to grow in cold soil, (2) many seminal roots with shallow growth angles,
thin diameters, many lateral and long root hairs, (3) an intermediate number of

crown roots with steep growth angles and few but long lateral branches, the
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growth angle of axial roots is a primary determinant of root foraging depth,
(4) one whorl of brace roots of high occupancy, a growth angle that is slightly
shallower than the growth angle for crown roots, with few but long laterals, and
(5) low Km (the concentration at which 50% of Vmax is reached) and high Vmax

(maximum uptake capacity) (Lynch, 2013).

In relation to N capture, different experiments have stated that a deeper root
growth is more important in relation than an increased root density (Haberle et
al., 2006; Kristensen and Thorup-Kristensen, 2004; Thorup-Kristensen, 2006).
Theoretical calculations predict a critical root length density (cCRLD) of about 1
cm cm for water and nitrate (King et al., 2003). In wheat, root length density
is typically below the critical root density of ca. 1 cm cm2 at soil depths below
80 cm (Ford et al., 2006; Gregory and Brown, 1989; King et al., 2003). In 2003,
a modelling study concluded that distributing roots deeper in the soil profile
and decreasing specific root length (root DM per unit length) would give greater

N capture and yield under low N availability (King et al., 2003).

Root architecture and root function are likely to be multigenic and hence much
more difficult to select for. Methods for phenotyping cereal roots in the field
include the use of rhizotrons and the measurement of root parameters from
soil cores following root washing and image analysis (Jia et al., 2019; Smit and
Groenwold, 2005). However, due to practical difficulties, maximum rooting
depth in the field is rarely measured. Therefore, there is little evidence that root
depth has changed systematically by breeding. Breeding for root
characteristics has seldom been implemented to date, probably due to the

difficulties of scoring root phenotypes directly.

Clearly total nutrient uptake by plants is a function of root biomass, root
morphology, root age, root and plant growth rates, root physiological capacity
and the root proliferation and the interaction with micro-organisms in regions

of abundant nutrients (Glass, 2003). The understanding, identification, and
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incorporation of these traits in various crops through breeding approaches is a

helpful tool to improve NUE.

Traits to improve N utilization efficiency (NutE)

As explained, the NUtE addresses the yield produced per unit of N acquired
by the crop. The harvest index (HI) and the N harvest index (NHI) relate to the
biomass and the N allocated, respectively to yield relative to the whole plant
(Congreves et al., 2021). These indices are useful for identifying genotypes
with enhanced capability of allocation growth or N resources towards the
economic portion of plants, therefore, useful indices for plant breeding
(Congreves et al., 2021). Moreover, using NHI can indirectly determine the
amount of N left in the soil at harvest, which can be at risk of loss through

leaching.

Nute may be improved, principally by, (1) modifying specific leaf N and
therefore improving photosynthesis per unit of N, (2) delaying canopy
senescence and (3) increasing N remobilisation efficiency (Foulkes et al.,
2009; Gaju et al., 2011; Garnett et al., 2015; Sandhu et al., 2021).

Improving leaf photosynthesis per unit of N

Strategies to improve the photosynthetic N utilisation efficiency
involve increasing the leaf area index and decreasing the specific leaf N
(Gastal and Lemaire, 2002). Both conditions are needed for a better radiation
use efficiency, which is a measure of the efficiency conversion of intercepted

radiation to biomass (Sinclair and Muchow, 1999).

Rubisco, which is a major regulatory enzyme for carbon fixation, is also the
most abundant leaf protein (Evans, 1983). However, it is also involved in
photorespiratory losses leading to the release of previously fixed CO2 and NHs,
which can be as high as 20% of the total N fixation in C3 crops such as wheat
and barley (Bauwe et al., 2010; Sandhu et al., 2021).
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Several components can be targeted to increase photosynthetic activity by
decreasing photorespiration through Rubisco, increasing carboxylase activity
of Rubisco and by introducing mechanisms to increase carbon concentration
in the vicinity of Rubisco which will ultimately increase NutE (Murchie et al.,
2009; Reynolds et al., 2000; Zhu et al., 2010).

Delaying senescence

The kinetics of canopy maturation, a highly controlled and regulated process
(Hortensteiner and Feller, 2002), impacts on both final yield and remobilisation
efficiency (Hawkesford and Griffiths, 2019).

The senescence of a canopy limits further photosynthesis, reserve N
accumulation and ultimately yield. Therefore, delaying leaf
senescence enables continued photosynthesis with age which has the
potential to increases grain yield and carbon filling into seeds (Masclaux-
Daubresse et al., 2010). However, it has also been proved that delayed
senescence could lead to a decrease in N remobilisation efficiency (Van
Oosterom et al., 2010).

Within this context, delaying leaf senescence should be achieved through the
remobilisation of stored N in preference to photosynthetic N from vegetative
tissues so the photosynthetic capacity of the canopy is maintained for longer
(Barraclough et a