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Abstract. A particle filter (PF) is an ensemble data assimi-
lation method that does not assume Gaussian error distribu-
tions. Recent studies proposed local PFs (LPFs), which use
localization, as in the ensemble Kalman filter, to apply the
PF efficiently for high-dimensional dynamics. Among oth-
ers, Penny and Miyoshi (2016) developed an LPF in the form
of the ensemble transform matrix of the local ensemble trans-
form Kalman filter (LETKF). The LETKF has been widely
accepted for various geophysical systems, including numer-
ical weather prediction (NWP) models. Therefore, imple-
menting the LPF consistently with an existing LETKF code
is useful.

This study develops a software platform for the LPF and
its Gaussian mixture extension (LPFGM) by making slight
modifications to the LETKF code with a simplified global
climate model known as Simplified Parameterizations, Prim-
itive Equation Dynamics (SPEEDY). A series of idealized
twin experiments were accomplished under the ideal-model
assumption. With large inflation by the relaxation to prior
spread, the LPF showed stable filter performance with dense
observations but became unstable with sparse observations.
The LPFGM showed a more accurate and stable perfor-
mance than the LPF with both dense and sparse observa-
tions. In addition to the relaxation parameter, regulating the

resampling frequency and the amplitude of Gaussian ker-
nels was important for the LPFGM. With a spatially inho-
mogeneous observing network, the LPFGM was superior to
the LETKF in sparsely observed regions, where the back-
ground ensemble spread and non-Gaussianity were larger.
The SPEEDY-based LETKF, LPF, and LPFGM systems are
available as open-source software on GitHub (https://github.
com/skotsuki/speedy-lpf, last access: 16 November 2022)
and can be adapted to various models relatively easily, as in
the case of the LETKF.

1 Introduction

Ensemble-based data assimilation (DA) has been broadly ap-
plied in geoscience fields such as weather and ocean predic-
tion. The ensemble Kalman filter (EnKF) has been intensely
investigated for the past two decades, such as for the per-
turbed observation method (Evensen, 1994; Burgers et al.,
1998; Houtekamer and Mitchel, 1998; van Leeuwen, 2020)
and for ensemble square root filters (e.g., Anderson, 2001;
Bishop et al., 2001; Whitaker and Hamill, 2002; Hunt et al.,
2007). The advantages of the EnKF are in its flow-dependent
error estimates, represented by an ensemble, and in its rela-
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tive ease of implementation in nonlinear dynamical systems,
such as numerical weather prediction (NWP) models. The
degrees of freedom of dynamical models (e.g.,>O(108) for
NWP models) are much larger than the typically affordable
ensemble size (<O(103)). On the other hand, atmospheric
and oceanic models show local low dimensionality (Patil et
al., 2001; Oczkowski et al., 2005), and practical EnKF im-
plementations use a localization technique that limits the im-
pact of distant observations while also reducing the effective
degrees of freedom. Among various kinds of EnKFs, the lo-
cal ensemble transform Kalman filter (LETKF; Hunt et al.,
2007) is widely utilized in operational NWP centers in the
same manner, such as the Deutscher Wetterdienst (DWD)
and the Japan Meteorological Agency (JMA). Analysis up-
dates of the LETKF are performed by multiplying the ensem-
ble transform matrix to the prior ensemble perturbation ma-
trix, following the ensemble transform Kalman filter (ETKF,
Bishop et al., 2001; Wang et al., 2004).

The particle filter (PF) is another ensemble DA method
broadly applicable to nonlinear and non-Gaussian prob-
lems (see van Leeuwen, 2009, and van Leeuwen et al.,
2019, for reviews on geoscience applications). The PF po-
tentially solves some issues in the basic assumptions of
the EnKF by permitting nonlinear observation operators
and non-Gaussian likelihood functions (Penny and Miyoshi,
2016). For example, assimilating precipitation observations
with a standard EnKF is difficult, partly because of their
non-Gaussian errors (Lien et al., 2013, 2016; Kotsuki et al.,
2017a). The PF can treat such variables with non-Gaussian
errors properly. Several PF methods have been explored for
low-dimensional problems in early studies (Gordon et al.,
1993; van Leeuwen, 2009). However, applying the PF to
high-dimensional dynamical systems is generally difficult,
because the number of particles or the ensemble size must
be increased exponentially with the system size to avoid a
weight collapse in which very few particles occupy most of
the weights (Snyder et al., 2008, 2015). If a weight collapse
occurs, the PF loses the diversity of the particles after resam-
pling. Therefore, we need to assure that the weights are simi-
larly distributed among particles. Previous studies developed
the equivalent-weights particle filter (EWPF; van Leeuwen,
2010; Ades and van Leeuwen, 2013, 2015; Zhu et al., 2016)
to extend time until a weight collapse by using the proposal
density to drive the particles toward the high-probability re-
gion of the posterior. However, even PFs with proposal den-
sities are unable to prevent the weights from collapsing.

Alternatively, the local particle filter (LPF) uses localiza-
tion to avoid a weight collapse by limiting the impact of
observations within a local domain. Localization is a well-
adopted method for the EnKF to treat sampling errors due
to a limited ensemble size. Several LPFs have been pro-
posed to apply the PF efficiently to high-dimensional sys-
tems (e.g., Bengtsson et al., 2003; van Leeuwen, 2009; Poter-
joy, 2016; Penny and Miyoshi, 2016; Poterjoy and Anderson,
2016; Farchi and Bocquet, 2018; van Leeuwen et al., 2019).

Among them, Penny and Miyoshi (2016) developed an LPF
by means of the ensemble transform matrix of the LETKF.
The LETKF has been commonly used for diverse geophysi-
cal systems, and consistent implementation with an available
LETKF code would be useful. The DWD implemented the
LPF in an operational global model based on the operational
LETKF code and described stable performance in the op-
erational setting (Potthast et al., 2019). Walter and Potthast
(2022; hereafter WP22) extended the LPF to the Gaussian
mixture for further improvements.

The goal of this study is to develop and provide a soft-
ware platform to accelerate research on LPF and its Gaussian
mixture extension (hereafter, LPFGM). Although many stud-
ies on LPF have used simple idealized chaotic models, such
as the 40-variable Lorenz model (hereafter, “L96”; Lorenz,
1996; Lorenz and Emanuel, 1998), the present study uses
a simplified atmospheric general circulation model, defined
as the Simplified Parameterizations, Primitive Equation Dy-
namics (SPEEDY) model (Molteni, 2003). Miyoshi (2005)
coupled the LETKF with the SPEEDY model for the first
time. This study extends the SPEEDY-LETKF code and im-
plements the LPF and LPFGM. As demonstrated below, the
LPF and LPFGM can be implemented easily, with simple
modifications to the existing LETKF code.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the mathematical formulation of the LETKF,
LPF, and LPFGM, followed by a description of the specific
modifications made to the existing LETKF code. Section 3
presents the experimental settings. Section 4 outlines the re-
sults and discussions. Lastly, Sect. 5 provides a summary.

2 Methodology

2.1 Local ensemble transform Kalman filter

Hunt et al. (2007) introduced the LETKF as a computation-
ally efficient EnKF by combining the local ensemble Kalman
filter (Ott et al., 2004) and ETKF (Bishop et al., 2001). Let Xt
be a matrix composed of m ensemble state vectors. The en-
semble mean vector and perturbation matrix of Xt are given
by xt (∈ Rn) and Zt ≡

{
x
(1)
t − xt , . . .,x

(m)
t − xt

}
(∈ Rn×m)

respectively, where n is the system size. The subscript t in-
dicates the time, and the superscript (i) denotes the ith en-
semble member. The analysis equations of the LETKF are
specified by

Xa
t,LETKF = xb

t · 1+Zb
t Tt,LETKF, (1)

Tt,LETKF = P̃a
t

(
Yb
t

)T
R−1
t

(
yo
t −Ht

(
Xb
t

))
· 1

+

[
(m− 1) P̃a

t

]1/2
, (2)

where 1 is a row vector whose elements are all 1 (∈ Rm);
T is the ensemble transform matrix (∈ Rm×m); P̃ is the
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error covariance matrix in the ensemble space (∈ Rm×m);
Y≡HZ is the ensemble perturbation matrix in the observa-
tion space (∈ Rp×m); R is the observation error covariance
matrix (∈ Rp×p); y is the observation vector (∈ Rp); H is
the linear observation operator matrix (∈ Rp×n); and H is
the observation operator that may be nonlinear. Here, p is
the number of observations. The superscripts “o”, “b”, and
“a” denote the observation, background (prior), and analysis
(posterior), respectively. The matrix TLETKF denotes the en-
semble transform matrix of the LETKF. The first and second
terms on the right-hand side of Eq. (2) correspond to the up-
dates of ensemble mean and perturbation, respectively. The
ETKF computes the analysis error covariance matrix in the
ensemble space P̃a

t by

P̃a
t =

[
(m− 1)
β

I+
(

Yb
t

)T
R−1
t Yb

t

]−1

, (3)

where β is a multiplicative inflation factor. Equations (1) and
(2) are derived from the Kalman filter equations, given by

xa
t = xb

t +Kt

(
yo
t −Ht

(
Xb
t

))
, (4)

Kt = Pb
t H

T
t

(
HtPb

t H
T
t +Rt

)−1
= Pa

tH
T
t R−1

t , (5)

Pa
t = (I−KtHt )Pb

t

⇐⇒
(
Pa
t

)−1
=

(
Pb
t

)−1
+HT

t R−1
t Ht , (6)

where K is the Kalman gain (∈ Rn×p), and P is the error co-
variance matrix in the model space (∈ Rn×n). Derivations of
Eqs. (5) and (6) are detailed in Appendix A. The EnKF ap-
proximates the error covariance matrix by P≈ 1

m−1 Z(Z)T .
Hunt et al. (2007) provide more details on deriving Eqs. (1)
and (2) from the Kalman filter equations. For nonlinear ob-
servation operators, the following approximation is used:

Y≡HZ≈H (X)−H (X) · 1. (7)

The LETKF provides P̃a
t and

(
P̃a
t

)1/2
of Eq. (2) by solving

the eigenvalue decomposition of
(

P̃a
t

)−1
= U3UT , where U

is a square matrix (∈ Rm×m) composed of eigenvectors, and
3 is a diagonal matrix (∈ Rm×m) composed of the corre-
sponding eigenvalues. The eigenvalue decomposition leads

to P̃a
t = U3−1UT and

(
P̃a
t

)1/2
= U3−1/2UT .

The localization is practically important for mitigating
sampling errors in the ensemble-based error covariance with
a limited ensemble size (Houtekamer and Zhang, 2016).
With localization, the LETKF computes the transform matrix
TLETKF at every model grid point independently by assimi-
lating a subset of observations within the localization cut-off
radius. The LETKF employs localization by inflating the ob-
servation error variance so that observations distant from the
analysis model grid point have fewer impacts (Hunt et al.,
2007; Miyoshi and Yamane, 2007).

For local analysis schemes, a spatially smooth transi-
tion of the transform matrix TLETKF is essential to prevent
abrupt changes in the analyses of neighboring grid points.
The LETKF realizes a smooth transition of the transform
matrix by using the symmetric square root of P̃a

t (Hunt
et al., 2007). The symmetric square root matrix minimizes
the mean-square distance between identity matrix I and[
(m− 1) P̃a

t

]1/2
; therefore, the analysis ensemble perturba-

tions can be closer to the background ensemble perturbation.
The EnKF generally underestimates the error variance,

mainly because of model errors, nonlinear dynamics, and
limited ensemble size. Therefore, a covariance inflation tech-
nique is used to inflate the underestimated error variance
(Houtekamer and Mitchell, 1998). Among several kinds of
covariance inflations methods, the present study considers
multiplicative inflation (Anderson and Anderson, 1999) and
relaxation to the prior scheme (Zhang et al., 2004), as imple-
mented by Whitaker and Hamill (2012). In multiplicative in-
flation, the ensemble-based covariance is multiplied by a fac-
tor β (Pb

→ βPb). This multiplicative inflation is employed
in Eq. (3) in the LETKF. In this study, the LETKF experi-
ments use the approach of Miyoshi (2011), which adaptively
estimates a spatially varying inflation factor on the basis of
the innovation statistics of Desroziers et al. (2005). In realis-
tic problems, covariance relaxation methods are often used to
inflate the posterior perturbation (e.g., Terasaki et al., 2019;
Kotsuki et al., 2019b). This study utilizes the relaxation to
prior spread (RTPS; Whitaker and Hamill, 2012), given by

Za
t (k)←

(
(1−α)+α

σ b
t (k)

σ a
t (k)

)
Za
t (k), (8)

where α is the RTPS parameter, and σ is the ensemble
spread. The subscript (k) denotes the kth model variable or
the kth component of the state vector. Although this study
only uses multiplicative inflation for the LETKF experi-
ments, the posterior error perturbation is inflated by RTPS
for LPF and LPFGM.

2.2 Local particle filter with ensemble transform
matrix

Here, we describe the LPF in the form of the ensemble trans-
form matrix of the LETKF (Reich, 2013; Penny and Miyoshi,
2016; Potthast et al., 2019). The PF is a direct Monte Carlo
realization of Bayes’ theorem, given by

π
(
xt |y

o
1:t
)
=
π
(
yo
t |xt

)
π
(
xt |y

o
1:t−1

)
π
(
yo
t |y

o
1:t−1

) , (9)

where π
(
xt |y

o
1:t
)

is the probability of state x given all ob-
servations yo up to time t . The PF approximates the prior
probability density function (PDF), which appears in the nu-
merator of Eq. (9), using an ensemble forecast

πLPF
(
xt |y

o
1:t−1

)
≈

∑m

i=1
w

b(i)
t δ

(
xt − x

b(i)
t

)
, (10)
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where δ is the Dirac’s delta function, and wb(i) is the prior
weight of the ith particle (i.e., ensemble member) at the pre-
vious analysis time. If particles are resampled at the previ-
ous analysis time, all particles have the same weight wb(i)

=

1/m (i = 1, . . ., m). The sum of the weights
∑m
i=1w

a,b(i)
t is

always 1. The denominator on the right-hand side of Eq. (9)
can be estimated by

π
(
yo
t |y

o
1:t−1

)
=

∫
π
(
yo
t |xt

)
π
(
xt |y

o
1:t−1

)
dxt

≈

∑m

i=1
w

b(i)
t π(yo

t |x
b(i)
t ). . (11)

This study assumes a Gaussian likelihood function, given by

π
(
yo
t |xt

)
∝ exp

[
−

1
2

(
yo
t −Ht (xt )

)T R−1
t

(
yo
t −Ht (xt )

)]
. (12)

This assumption means the observation error distribution is
assumed to be Gaussian. Then, the posterior can be expressed
by

πLPF
(
xt |y

o
1:t
)
≈

∑m

i=1
w

a(i)
t δ

(
xt − x

b(i)
t

)
, (13)

w
a(i)
t = w

b(i)
t πLPF

(
yo

1:t |x
b(i)
t

)
/{∑m

k=1
w

b(k)
t πLPF

(
yo

1:t |x
b(k)
t

)}
= w

b(i)
t q

(i)
t /

{∑m

k=1
w

b(k)
t q

(k)
t

}
, (14)

q
(i)
t = exp

[
−

1
2

(
yo
t −Ht

(
x

b(i)
t

))T
R−1
t

(
yo
t −Ht

(
x

b(i)
t

))]
, (15)

where q is the likelihood. Equation (14) results in posterior
weights that satisfy

∑m
i=1w

a(i)
t = 1.

To mitigate weight collapse, the local PF (LPF) solves the
PF equations by assimilating local observations surrounding
the analysis grid point. This study uses Penny and Miyoshi’s
(2016) approach that computes the analysis at every model
grid point independently, with the observation error covari-
ance R being inflated by the inverse of a localization func-
tion, as in the LETKF (Penny and Miyoshi, 2016).

Sampling importance resampling (SIR) is a technique for
applying the PF for high-dimensional dynamics with a lim-
ited amount of particles. The resampling process rearranges
the particles to effectively represent the densest areas of
the posterior PDF. After resampling, each particle has equal
weights, and the posterior PDF is given by

πLPF
(
xt |y

o
1:t
)
≈

1
m

∑m

i=1
δ
(
xt − x

a(i)
t

)
. (16)

The resampling process can be expressed as equally valid to
the ensemble transform matrix of the ETKF (Reich, 2013;
Penny and Miyoshi, 2016), given by

Xa
t,LPF = Xb

t Tt,LPF =
(
xb
t · 1+Zb

t

)
Tt,LPF

= xb
t · 1+Zb

t Tt,LPF, (17)

where TLPF denotes the ensemble transform matrix of the
LPF. Here, we applied

(
xb
t · 1

)
Tt,LPF = xb

t · 1 based on the
following necessary condition of the ensemble transform ma-
trix for the LPF:∑m

i=1
T(i,j)t,LPF = 1 j = 1, . . .,m. (18)

In addition to Eq. (18), the ideal resampling matrix satisfies
the following two conditions:

– ∑m

j=1
T(i,j)t,LPF =m ·w

a(i)
t for i = 1, . . .m

⇔ xb
t =

∑m

i=1
x

b(i)
t ·w

a(i)
t , (19)

– spatially smooth transition of Tt,LPF,

wherem is the ensemble size, and T(i,j) indicates the ith-row
and j th-column element of the matrix T.

The resampling matrix significantly affects the filter per-
formance (Farchi and Bocquet, 2018). The present study con-
structs resampling matrices based on the Monte Carlo ap-
proach. This resampling method usesm random numbers r(i)

(i = 1, . . .,m) drawn from uniform distribution U ([0,1]) and
accumulated weights wt,acc:

w
(0)
t,acc = 0, w

(i)
t,acc = w

(i−1)
t,acc +w

a(i)
t i = 1, . . .,m. (20)

By definition, w
(m)
t,acc is 1. After sorting r to be the ascend-

ing order rsorted, we generate the resampling matrix using
Algorithm 1. This procedure is similar to the resampling of
Potthast et al. (2019), but it employs an additional treatment
so that the resampling matrix is close to the identity matrix
(line 10 of Algorithm 1; Fig. 1b and c).

Classical resampling can produce the same particles, re-
sulting in the loss of diversity of posterior particles. There-
fore, additional treatments are required to generate slightly
different posterior particles. Potthast et al. (2019) proposed
adding Gaussian random noise to Tt,LPF to prevent the gen-
eration of the same particles. As an alternative, the present
study uses the Monte Carlo approach that repeats Algo-
rithm 1 many times with different random numbers and takes
the average of the generated resampling matrices (Fig. 1).
Using different random numbers r , the resampling matri-
ces differ (Fig. 1b and c), even if the same weight is used
(Fig. 1a). By averaging the resampling matrices generated
by using different random numbers, we get matrices that
have higher weights in the diagonal components and lower
weights in the off-diagonal components (Fig. 1d and e). The
Monte Carlo approach makes the resampling matrix closer
to the identity matrix, which is beneficial for a smooth tran-
sition in space. In addition, this stochastic approach approx-
imates Eq. (19) using the Monte Carlo approach. The gener-
ated transform matrix with 200 samples (Fig. 1c) is close to
that with 10 000 samples (Fig. 1d) in the case of 40 particles.

Geosci. Model Dev., 15, 8325–8348, 2022 https://doi.org/10.5194/gmd-15-8325-2022
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Figure 1. Examples of the resampling matrix in the case of 40 particles with a given weight generated by uniform random numbers. (a) Weight
for 40 particles. (b, c) Examples of sampled resampling matrices by Algorithm 1 using different random numbers r . (d, e) Resampling
matrices using the Monte Carlo stochastic approach with 200 and 10 000 sampled matrices, respectively.

Therefore, the transform matrices are generated by averag-
ing 200 sampled matrices in subsequent LPF experiments.
Hereafter, we call this resampling method “MC resampling”,
which is used in the following experiments. The number of
required samples for MC resampling is briefly investigated
in Appendix B.

The effective particle (or ensemble) size Neff (Kong et al.,
1994) is useful to measure the diversity of particles in LPF:

Nt,eff = 1/
∑m

i=1

(
w

a(i)
t

)2
∈ [1,m] . (21)

If Neff is sufficiently large (Neff ≈m), no resampling is
needed. This study considers a tunable parameter N0 as a
criterion for resampling:

Tt,LPF←

{
I if Nt,eff >N0
Tt,LPF else (22)

Without resampling (Nt,eff >N0), the posterior weight is
succeeded for the subsequent forecast as follows:

wb
t+1← (1− τ) ·wa

t + τ/m, (23)

where τ is the tunable forgetting factor τ ∈ [0 : 1]. Here,
τ = 1 means the subsequent prior weight wb

t+1 has the same
weights 1/m, whereas the posterior weight wa

t is completely
succeeded to wb

t+1 when τ = 0. This weight succession

(Eq. 23) can be interpreted as a temporal localization that re-
duces the impact of observations temporally distant from the
assimilation time. The weight succession in local PF is not
trivial, because the weight (or likelihood) of particles would
move with the dynamical flow. Similar discussions can be
found for the advection of localization functions (e.g., Ota et
al., 2013; Kotsuki et al., 2019a). This study assumes no flow
motion of the weights and simply uses Eq. (23) at each grid
point independently.

Although the LETKF applies inflation to the prior error co-
variance (i.e., Pb

→ βPb), this inflation is suboptimal to the
LPF, partly because the weight collapse occurs more easily
if multiplicative inflation is applied to the prior perturbation
(see Eq. 15). Therefore, the LPF usually applies inflation to
the posterior particles (e.g., Penny and Miyoshi, 2016; Farchi
and Bocquet, 2018). The present study uses the RTPS to in-
flate posterior perturbations for the LPF. We do not use the
RTPS for the LETKF experiments, since the Miyoshi (2011)
adaptive multiplicative inflation is known to outperform the
manually tuned RTPS for idealized twin experiments with
SPEEDY, based on the authors’ preliminary experiments and
Yoichiro Ota (personal communication, 2021).

Preliminary experiments showed that the RTPS outper-
formed the relaxation to prior perturbation (RTPP; Zhang et
al., 2004) for the LPF. Having some noise in the transform
matrix is important for the LPF to maintain the diversity of

https://doi.org/10.5194/gmd-15-8325-2022 Geosci. Model Dev., 15, 8325–8348, 2022
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Algorithm 1 Generation of the resampling matrix T.

Require: rsorted and wt,acc
1: All components of T and z are initialized to be 0 # z: an indica-

tor of resampled particles
2: do j =1 to m # index of posterior particle
3: do i =1 to m # index of prior particle
4: if {w(i−1)

t,acc < r
(j)
sored ≤ w

(i)
t,acc} then

5: z(j) = i # resampled particle
6: end if
7: end do
8: end do
9: do j = 1 to m # (loop for posterior particle)

10: k = z(j)

11: if {T(k,k) = 0} then
12: T(k,k) = 1 # diagonal components
13: z(j) = 0
14: end if
15: end do
16: do j =1 to m # (loop for posterior particle)
17: k = z(j)

18: if {k 6= 0} then
19: do l = 1 to m # (loop for columns of T)
20: if { sum(T(:,l))= 0} then
21: T(k,l) = 1 # off-diagonal components
22: z(j) = 0
23: exit
24: end if
25: end do
26: end if
27: end do

posterior particles. The RTPP makes the transform matrix
closer to the identity matrix, resulting in less diverged poste-
rior particles. Therefore, the RTPS would be a more suitable
relaxation method than the RTPP for LPF.

2.3 LPF with Gaussian mixture extension

For the LPF to avoid weight collapse, assimilating too many
independent observations in the local area is not desirable
(van Leeuwen et al., 2019). To solve this problem, hybrid al-
gorithms of EnKF and PF have been explored to efficiently
assimilate massive observation data. The Gaussian mixture
extension of the LPF is one such hybrid algorithm (Hoteit et
al., 2008; Stordal et al., 2011; WP22). In the Gaussian mix-
ture extension, the prior PDF is approximated by a combi-
nation of Gaussian distributions centered at the values of the
particles, given by:

πLPFGM
(
xt |y

o
1:t−1

)
≈

∑m

i=1
w

b(i)
t N

(
x

b(i)
t , P̂b

t

)
, (24)

where N
(
x

b(i)
t , P̂b

t

)
is the Gaussian kernel, with mean x

b(i)
t

and covariance P̂b
t . Here, hat indicates matrices for the Gaus-

sian kernels (e.g., prior error covariance P̂b, observation er-
ror covariance R̂, and Kalman gain K̂). The covariance of the

Gaussian kernel uses the sampled covariance matrix Pb
t , such

that

P̂b
t = γPb

t ≈
γ

m− 1
Zb
t

(
Zb
t

)T
, (25)

where γ (> 0) is a tunable parameter that regulates the am-
plitude and width of the Gaussian kernel (i.e., uncertainty of
particles). For example, larger γ reduces amplitude and in-
creases the width of the Gaussian kernel. Because the kernel
is supposed to have a Gaussian distribution, increasing the
Gaussian kernel’s width results in a decrease in amplitude.
The LPFGM results in the same analysis of the LPF when γ
is 0 (γ → 0).

The Gaussian mixture performs a two-step update to ob-
tain the posterior particles. The first update moves the center
of the Gaussian kernel with observations. Since kernels are
Gaussian, we can use the Kalman filter for the first update:

x
a(i)
t = x

b(i)
t + K̂t

(
yo
t −H

(
x

b(i)
t

))
(i = 1, . . .,m)

⇔ Xa
t,GM = Xb

t + K̂t

(
yo
t · 1−Ht

(
Xb
t

))
, (26)

where K̂= P̂aHTR−1, as in Eq. (5). In the LETKF,
the Kalman gain K is computed by K= PaHTR−1

≈

ZbP̂a(Zb)THTR−1. Since the Gaussian kernel uses the
ensemble-based error covariance (Eq. 25), we can apply the
exact algorithms of the LETKF to compute P̂a by replacing

β of Eq. (3) with γ (i.e., P̂a
=

[
(m−1)
γ

I+
(
Yb
t

)TR−1
t Yb

t

]−1
).

Here, the same gain matrix K̂ is applied to update each par-
ticle independently, while the gain matrix K̂ is based on the
forecast error covariance estimated from the entire ensemble.
Consequently, Eq. (26) is equivalent to

Xa
t,GM = xb

t · 1+Zb
t Tt,GM, (27)

where

St = P̂a
t

(
Yb
t

)T
R−1
t

(
yo
t · 1−Ht

(
Xb
t

))
, (28)

and

Tt,GM = St + I. (29)

Here, Tt,GM denotes the ensemble transform matrix of the
Gaussian mixture.

The second update resamples the particles based on the
likelihood of the posterior kernel, given by

q
(i)
t = exp

[
−

1
2

(
yo
t −Ht

(
x

b(i)
t

))T
R̂−1
t

(
yo
t −Ht

(
x

b(i)
t

))]
, (30)

where

R̂t = Rt +Ht P̂b
t H

T
t . (31)

Hoteit et al. (2008) and Stordal et al. (2011) used Eq. (30) for
computing the likelihood of posterior kernels. Alternatively,
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WP22 suggested that using Eq. (15) instead of Eq. (30) is a
reasonable approximation in the case of a smaller variance
of P̂b

t compared to the observation departure yo
t −Ht

(
x

b(i)
t

)
.

This study follows the WP22’s approximation, because com-
puting the inverse of Eq. (31) is computationally much more
expensive than computing the inverse of diagonal R. Using
WP22’s approximation, the solution of the LPFGM is given
by

Xa
t,LPFGM = Xa

t,GMTt,LPF

=

(
xb
t · 1+Zb

t Tt,GM

)
Tt,LPF

= xb
t · 1+Zb

t Tt,GMTt,LPF. (32)

Here, we used
(
xb
t · 1

)
Tt,LPF = xb

t · 1 (cf. Eq. 18). Conse-
quently, the transform matrix of the LPFGM (TLPFGM) is
given by

Tt,LPFGM = Tt,GMTt,LPF. (33)

Namely, the LPFGM can be described as the ensemble trans-
form matrix form. Representing the LPFGM with only one
transform matrix TLPFGM is practically beneficial if one aims
to reduce computational costs by the weight interpolation
for the LETKF, in which the transform matrices at higher-
resolution model grid points are interpolated by transform
matrices at coarser model grid points (Yang et al., 2009; Kot-
suki et al., 2020). The weight interpolation is also useful for
ensuring a spatially smooth transition of the transform matrix
for LPFs (Potthast et al., 2019).

The two-step update of the LPFGM may appear to use
the same observations twice, but this is not true. To under-
stand the principles here, we consider a simple scalar ex-
ample with H = 1.0, with illustrations in Fig. 2. Let π

(
yo
t

)
be an observation PDF (Fig. 2, top row), and the prior
and posterior PDFs of the LPF are given by πLPF (xt )≈
1
m

∑m
i=1δ

(
xt − x

b(i)
t

)
and πLPF

(
xt |y

o
t

)
,respectively (Fig. 2a,

second and third rows). The LPF employs resampling by ap-
proximating the posterior PDF as a combination of prior
particles, such that πLPF

(
xt |y

o
t

)
≈
∑m
i=1w

a(i)
t δ

(
xt − x

b(i)
t

)
(Fig. 2a, bottom row). Next, we focus on the fifth par-
ticle of the LPFGM (Fig. 2b). Prior and posterior PDFs
of the fifth particle are given by π

(
x
(5)
t

)
=N

(
x

b(5)
t , P̂ b

t

)
and π

(
x
(5)
t |y

o
t

)
=N

(
x

b(5)
t , P̂ b

t

)
·N

(
yo
t ,Rt

)
, respectively

(Fig. 2b, second and third rows). Since the Gaussian kernels
are assumed for the prior particles, the center of the pos-
terior kernel moves such that π

(
x
(5)
t |y

o
t

)
∝N

(
x

a(5)
t , P̂ a

t

)
,

where xa(5)
t and P̂ a

t can be computed by the Kalman fil-
ter (from the blue circle to the red circle in Fig. 2b). Since
the LPFGM moves all particles, the posterior PDF of the
LPFGM is given by πLPFGM

(
xt |y

o
t

)
≈

1
m

∑m
i=1π

(
x
(i)
t |y

o
t

)
(Fig. 2c, third row). These movements correspond to the

first update of the LPFGM. In contrast to the LPF, the
posterior PDF of the LPFGM is approximated by a com-
bination of the posterior Gaussian kernels (red circles of
Fig. 2c, third row). The LPFGM employs the resampling
based on the moved particles such that πLPFGM

(
xt |y

o
t

)
≈∑m

i=1w
a(i)
t N

(
x

a(i)
t , P̂ a

t

)
(Fig. 2c, bottom row). This resam-

pling corresponds to the second update of the LPFGM. As
seen in this example, the two-step update of the LPFGM does
not use the same observations twice.

2.4 Implementation and computational complexity

We implemented the LPFGM based on the available LETKF
code from Miyoshi (2005) and from follow-on studies
(Miyoshi and Yamane, 2007; Kondo and Miyoshi, 2019; Kot-
suki et al., 2020; https://github.com/takemasa-miyoshi/letkf,
last access: 16 November 2022). Figure 3 compares the
workflows of the LETKF, LPF, and LPFGM. All DA meth-
ods execute the same first four steps (steps A–D). After
step D, the LETKF involves four additional steps (steps E–H)
to compute TLETKF. The LPF computes the weights of parti-
cles (step J), followed by the generation of the transform ma-
trix TLPF (step K). The LPFGM first executes steps E–G, as
in the LETKF, and then executes step I to compute TGM, fol-
lowed by the LPF algorithms to compute TLPF (steps J and
K). Finally, the LPFGM multiplies TGM and TLPF to com-
pute TLPFGM (step L). At the end of the process, the trans-
form matrix is applied to the prior perturbation matrix Zb

to produce the analysis ensemble (step M) followed by the
RTPS (step N).

If the LETKF code is available, the LPF in the transform
matrix form can be developed by coding two steps, J and
K. The LPFGM can also be developed easily by coding two
more steps, I and L, if the LETKF and LPF codes are avail-
able.

Here, we compare the computational complexities of the
LETKF, LPF, and LPFGM algorithms (Table 1). The total
cost (CT) of a DA cycle is identical to the overhead of the
assimilation system (CH) plus n times the average local anal-
ysis cost (CL) and m times the cost of a one-member model
forecast (CM):

CT (n,p,m)= CH (n,p,m)+n ·CL (pL,m)+m ·CM, (34)

where pL is the number of local observations within the lo-
calization cut-off radius. We assume that the overhead and
model costs are equivalent among the three methods. In ad-
dition, the total computational cost of DA usually depends on
the local analysis cost (CL):

CLETKF
L =O

(
m3
+m2pL

)
, (35)

CLPF
L =O

(
m2NMC

)
, (36)

CLPFGM
L =O

(
m3
+m2pL+m

2NMC

)
, (37)
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Figure 2. A simple scalar example of observation as well as prior and posterior PDFs for (a) LPF, (b) fifth particle of LPFGM, and
(c) LPFGM. Green, blue, red, purple, and dashed circles represent an observation and prior particles, moved particles, posterior particles,
and replaced particles, respectively.

where NMC is the number of times the resampling matrices
are generated by Algorithm 1. The number of local observa-
tions pL is usually much greater than the ensemble size m
and NMC. In this case, O(m2pL) is dominant for the LETKF
and the LPFGM.

Here, the computational cost of LPF is more expensive
than that with a simpler resampling algorithm, such as the
stochastic uniform resampling (O (m); Penny and Miyoshi
2016; Farchi and Bocquet, 2018), due to the relatively com-
plex Algorithm 1 (O

(
m2NMC

)
). We could not use such sim-

pler approaches in this study, since they do not yield ideal
resampling matrices that satisfy the two conditions (Eq. 19

and spatially smooth transition of Tt,LPF). The computa-
tional cost O

(
m2NMC

)
of LPF is still much smaller than the

LETKF if NMC� pL.

3 Experimental settings

3.1 SPEEDY model

This study used the intermediate global atmospheric general
circulation model SPEEDY (Molteni, 2003) to compare the
LETKF, LPF, and LPFGM. The SPEEDY model is a compu-
tationally inexpensive hydrostatic model with fundamental
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Figure 3. Workflows of LETKF, LPFGM, and LPF. Gray, purple, green, and red boxes represent the components of LETKF, a similar
component as in the LETKF, the components of the LPF, and a unique component of the LPFGM, respectively. Subroutines and source files
are also described in boxes.

physical parameterization schemes such as surface flux, ra-
diation, convection, cloud, and condensation. The SPEEDY
model has 96× 48 grid points in the horizontal plane (T30
∼ 3.75◦× 3.75◦) and seven sigma-coordinate seven verti-
cal layers. The SPEEDY model consists of five prognos-

tic variables: temperature (T ), specific humidity (Q), zonal
wind (U ), meridional wind (V ) at seven layers, and sur-
face pressure (Ps). The SPEEDY model coupled with the
LETKF (SPEEDY-LETKF) has been widely used in DA
studies (Miyoshi, 2005, and many follow-on studies, e.g.,
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Table 1. Computational complexities of LETKF, LPF, and LPFGM. Each step corresponds to the steps in Fig. 3. Cross marks represent the
steps used for LETKF, LPF, and LPFGM.

Step Computational complexity LETKF LPF LPFGM

CH

A m applications of H × × ×

B 2mp × × ×

C 2nm × × ×

CL

D 1 × × ×

E mpL ( 2) × ×

F ≤ 2m2pL × ×

G O(m3) × ×

H O(m(m+pL)) ×

I O(m(m+pL)) ×

J O(mpL) ( 2) × ×

K O(m2NMC) × ×

L ≤ 2m3
×

CH
M ≤ 2nm2

× × ×

N O(nm) × × ×

1: This computation depends on the localization scale
2: These computations assume the diagonal R (i.e., uncorrelated observation error)

n: system size
m: ensemble size
p: the number of observations
pL : the number of local observations
NMC: the number of times for generating resampling matrices by Algorithm 1

Miyoshi, 2011; Kondo et al., 2013; Kondo and Miyoshi,
2016, 2019; Kotsuki and Bishop, 2022). We implemented the
LPF and LPFGM based on the existing SPEEDY−LETKF
code, following the procedures described in Sect. 2.4.

3.2 Experimental design

The experimental settings follow the previous
SPEEDY−LETKF experiments (Miyoshi, 2005, and
follow-on studies, e.g., Kotsuki et al., 2020). A series of
idealized and identical experiments (also known as observ-
ing system simulation experiments) were conducted without
model errors. We first performed a spin-up run for one year,
initialized by the standard atmosphere during rest, followed
by the nature run started at 00:00 UTC on 1 January of
the second year. We assumed diagonal observation error
covariance R (i.e., uncorrelated observation error). Gaussian
noise was added to the nature run to produce observation
data at 6 h intervals. The standard deviations of the Gaussian
noise are 1.0 K for T , 1.0 m s−1 for U and V , 0.1 g kg−1 for
Q, and 1 hPa for surface pressure. This study considered
two observing networks (Fig. 4a and b): the regularly dis-
tributed network (hereafter REG2) and the radiosonde-like
inhomogeneous network (hereafter RAOB). We observe T ,
U , and V at all seven layers, whereas Q was observed at
the first–fourth layers. The ensemble size is 40, and their
initial conditions were taken from an independent single
deterministic SPEEDY forecast with sufficient spin-up
simulation.

Table 2 summarizes the settings of the LETKF, LPF, and
LPFGM experiments. The observation error variance was in-
flated for the localization by using the Gaussian-based func-
tion given by

l =


exp

[
−

1
2

{
(dh/ρh)

2
+ (dv/ρv)

2}]
if dh < 2

√
10/3ρh and dv < 2

√
10/3ρv

0 else

(38)

where l is the localization function, and its inverse l−1 is mul-
tiplied and used to inflate R. dh and dv are horizontal and ver-
tical distances (km and log(Pa)) between the observation and
analysis grid point. ρh and ρv are tunable horizontal and ver-
tical localization scales (km and log(Pa)). Subscripts “h” and
“v” represent horizontal and vertical respectively. This study
set the vertical localization scale ρv to be 0.1 log(Pa) fol-
lowing Greybush et al. (2011) and Kondo et al. (2013). The
horizontal localization scales of the LETKF were tuned man-
ually before the experiments to minimize the first-guess root
mean square error (RMSE) of the fourth layer (∼ 500 hPa)
temperature of the SPEEDY-LETKF, since this is among the
most important variables for medium-range NWP.

The LETKF experiments used the adaptive multiplicative
inflation method of Miyoshi (2011), in which the inflation
factor β was estimated adaptively. On the basis of sensitiv-
ity experiments for γ , we chose γ = 1.5. Sensitivity to γ is
discussed in Sect. 4.3.3.

We first performed a one-year (from January to December)
SPEEDY-LETKF experiment over the second year follow-

Geosci. Model Dev., 15, 8325–8348, 2022 https://doi.org/10.5194/gmd-15-8325-2022



S. Kotsuki et al.: A local particle filter and its Gaussian mixture extension 8335

Figure 4. Observing networks for (a) REG2 and (c) RAOB experiments. Small black dots and red crosses represent model grid points and
observing points, respectively.

Table 2. List of experiments.

Obs DA Purpose ρh (km) α γ N0 τ Figures

REG2

LETKF Control experiment 600 1 / / /
LPF Sensitivity to ρh and α 400/500/600/700 0.0–1.0 / / / Figs. 5, 6, 9
LPFGM Sensitivity to α, N0, and τ 600 0.0–1.0 1.5 2/4/10/40 0.0/0.1/0.2/0.3/0.5/1.0 Figs. 7–9
LPFGM Sensitivity to α and γ 600 0.0–1.0 0.5/1.5/2.5 2 1.0 Fig. 15a

RAOB

LETKF Control experiment 1100 1
LPF Sensitivity to ρh and α 1100 0.0–1.0 / / / not shown
LPFGM Sensitivity to α and N0 1100 0.0–1.0 1.5 2/4/10/40 1.0 Figs. 10–13
LPFGM Sensitivity to N0 1100 0.60 1.5 0/2 1.0 Fig. 14
LPFGM Sensitivity to α and γ 1100 0.0–1.0 0.5/1.5/2.5 2 1.0 Fig. 15b

ρh: horizontal localization scale (Eq. 38)
α: relaxation parameter of RTPS (Eq. 8)
γ : amplitude of Gaussian kernel of the LPFGM (Eq. 25)
N0: parameter controls resampling frequency (Eq. 22)
τ : forgetting factor of weight (Eq. 23)

1: Instead of RTPS, the LETKF uses Miyoshi (2011)’s adaptive multiplicative inflation.

ing the one-year spin up. We then performed LETKF, LPF,
and LPFGM experiments from January to April in the third
year, initialized by the first-guess ensemble of the LETKF
at 00:00 UTC on 1 January of the third year. The results
from the last three months, i.e., February to April, were used
for verification. We assessed the 6 h forecast or background
RMSE for T at the fourth model level (∼ 500 hPa). While
this study mainly discusses the RMSE and ensemble spread
for T , similar results are observed for other variables. Here,
this study will concentrate on the fourth-level T as an impor-
tant variable for NWPs, since the major goal of this study is
to investigate the stabilities of LPF and LPFGM compared
with the LETKF. Humidity verification or accounting for
nonlinear observation operators and non-Gaussian observa-
tion errors are still crucial studies to investigate the advan-
tages of the LPF and LPFGM with respect to the LETKF.

4 Results and discussion

4.1 Experiments with a regularly distributed observing
network

We first compare the LETKF, LPF, and LPFGM with REG2,
where the manually tuned horizontal localization scale for
the LETKF is 600 km. First, sensitivities to the horizontal
localization scale (ρh) and RTPS parameter (α) are investi-
gated for the LPF. Figure 5 indicates the time-mean back-
ground RMSEs and ensemble spreads for LETKF and LPF.
The LPF requires large inflation (α ≥ 1.0) to avoid filter di-
vergence. With large inflation (α ≥ 1.0), the LPF experiment
with ρh = 600 km resulted in the smallest RMSEs among
the three LPF experiments. The best-performing localization
scale of LPF was found to be similar to that of the LETKF.
The four LPF experiments exhibited larger RMSEs than the
LETKF, as demonstrated by the previous studies with a low-
dimensional L96 model (Poterjoy, 2016; Penny and Miyoshi,
2016; Farichi and Bouquet, 2018). The LPF experiment with
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Figure 5. Time-mean background RMSEs (solid lines) and en-
semble spreads (dashed lines) for T (K) at the fourth model level
(∼ 500 hPa) as a function of RTPS parameter α averaged over three
months of the third year (February–April), with REG2 observations.
Magenta, red, blue, and green lines are LPF experiments with hor-
izontal localization scales of 700, 600, 500, and 400 km, respec-
tively. Dashed lines represent RMSE of LETKF (0.1257 K), with
adaptive multiplicative inflation instead of RTPS.

ρh = 700 km shows filter divergence when α = 1.0. The en-
semble spreads of LPF are smaller than the RMSEs when
α = 1.0. This under-dispersive ensemble is a typical behav-
ior of LPF (e.g., Poterjoy and Anderson, 2016).

Second, we compare the time series of the background
RMSEs, ensemble spreads, and effective particle sizes Neff
(Fig. 6). The RMSE and ensemble spread are consistent in
the LETKF. However, the LPF generally shows smaller en-
semble spreads than the RMSEs. Since the beginning of the
experiments on 1 January, the three LPF experiments showed
rapid increases in the ensemble spread (Fig. 6a) and a rapid
decrease in the effective particle size (Fig. 6b) within two
weeks. After the rapid changes, the ensemble spreads and
effective particle sizes were stabilized. The three LPF ex-
periments increased RMSEs until the beginning of March.
The LPF with ρh = 500 km showed filter divergence in April.
The LPF with ρh = 400 km and ρh = 600 km also showed in-
creasing trends in RMSE until the end of April, while their
ensemble spreads and effective particle sizes were stable.

Next, sensitivities to the RTPS parameter (α), resampling
frequency (N0), and forgetting factor (τ ) are investigated
for the LPFGM. The best performing localization scale of
LPF was identical to that of the LETKF (Fig. 5). There-
fore, we choose the same 600 km localization scale for the
LPFGM. Figure 7 compares the time-mean background RM-
SEs and ensemble spreads for LETKF and LPFGM. In the
LPFGM experiments, we investigate six experimental set-
tings for τ = 0.0, 0.1, 0.2, 0.3, 0.5, and 1.0. With τ = 0.0
(Fig. 7a), the LPFGM shows RMSEs similar to those of
LETKF, with best-performing parameters for α andN0. Reg-

Figure 6. Time series of globally averaged background (a) RM-
SEs (solid lines) and ensemble spreads (dashed lines) for T (K) and
(b) effective particle sizeNeff at the fourth model level (∼ 500 hPa),
with REG2 observations. Black lines show the LETKF. Red, blue,
and green lines are the LPF experiments, with localization scales of
600, 500, and 400 km, respectively. RTPS parameter α is set to 1.00
in all three LPF experiments. The abscissa shows month and day.

ulating the resampling frequency (N0) would be needed for
LPFGM, because the LPFGM shows filter divergence when
resampling is employed at all assimilation steps, excluding
the case of α = 1.0 (magenta line in Fig. 7a). The LPFGM
employs two ensemble updates: the Gaussian mixture and re-
sampling. Owing to the first update by the Gaussian mixture,
the LPFGM would not require resampling at all assimilation
steps. With τ = 0.0, the best-performing relaxation parame-
ter α is approximately 0.6–0.9, excluding the case employing
resampling at all assimilation steps.

Increasing τ leads to the LPFGM being less sensitive
to the resampling parameter N0 and RTPS parameter α
(Fig. 7b–f), implying that the LPFGM is more stable when
the LPFGM forgets weights (τ ≥ 0.1). Additionally, the
LPFGM requires less inflation (i.e., smaller α) when the for-
getting factor τ becomes larger. Owing to the first update by
the Gaussian mixture, succeeding weights completely may
be unnecessary for the LPFGM. In addition, the method of
succeeding weights in the local PF is not trivial, because the
weights would move with the dynamical flow. Because the
results of the LPFGM experiments without weight succes-
sion (τ = 1.0) were superior to those with weight succession
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Figure 7. Similar to Fig. 5 but for the LPFGM with REG2 and 600 km localization scale. Magenta, red, blue, and green lines show the cases
with N0 = 40, 10, 5, and 2, respectively. Dashed lines represent RMSE of LETKF (0.1257 K). Panels show the LPFGM with forgetting
factors for (a) τ = 0.0, (b) τ = 0.1, (c) τ = 0.2, (d) τ = 0.3, (e) τ = 0.5, and (f) τ = 1.0, respectively.

(τ = 0.0), the remainder of this paper focuses on the LPFGM
experiments without weight succession (τ = 0.0).

The time series of background RMSEs and the effective
particle sizes for LPFGM experiments show that the LPFGM
with every-time resampling (N0 = 40) exhibits large RMSEs
and the smallest effective particle sizes (Fig. 8, magenta).
In contrast, the LPFGM experiments with infrequent resam-

pling (N0 = 10, 5, and 2) show small RMSEs similar to that
of the LETKF and maintain larger effective particle sizes
than the LPF (Fig. 8, red, blue, and green lines).

Finally, we compare the spatial patterns of the RMSEs at
a fourth model level for the LETKF, LPF, and LPFGM, with
best-performing parameter settings (Fig. 9). The LETKF and
LPFGM show larger RMSEs in the tropics and polar regions
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.

Figure 8. Similar to Fig. 6, but showing the LPFGM experiments
with REG2 and 600 km localization scale. Magenta, red, blue, and
green lines are LPFGM experiments with N0 = 40, 10, 5, and 2,
respectively. Forgetting factor τ is 1.0. The RTPS parameter is set
to 1.00 in the experiment with N0 = 40 (i.e., all-time resampling)
and to 0.50 for in other experiments.

(Fig. 9a and c), possibly because of uncertainties from con-
vective dynamics in the tropics and sparser observations in
the polar regions. The LPF shows a larger RMSE than the
LETKF globally (Fig. 9b and d). In contrast, slight improve-
ments were observed globally in the LPFGM relative to the
LETKF, as indicated by generally warm colors in Fig. 9e,
especially around the North Pole.

4.2 Experiments with a realistic observing network

Here, we compare the LETKF, LPF, and LPFGM with the
realistic observing network RAOB. With this spatially inho-
mogeneous observing network, all LPF experiments showed
filter divergence, even with a broad range of the localiza-
tion and RTPS parameters. Since there are fewer assimilated
observations in RAOB than in REG2, the weight collapse
would not be the primary cause of the LPF filter divergence.
Because the LPF creates posterior particles by linearly com-
bining prior particles, it is preferable for the LPF to have
observations within the range of the prior particles. Filter
divergence must be prevented by maintaining synchroniza-
tion between the LPF and the observations. The LPF would
require more observations for the synchronization than the
LETKF, which was also shown in the authors’ initial tests

with L96. In addition, the LPFGM was unstable with weight
succession (τ = 0.0). Therefore, this section focuses on the
comparison of the LETKF and LPFGM without weight suc-
cession (τ = 1.0) only.

First, sensitivities to the RTPS parameter (α) and resam-
pling frequency (N0) are investigated for the LPFGM. Fig-
ure 10 compares the time-mean background RMSEs and
ensemble spreads for the LETKF and LPFGM. The best-
performing horizontal localization scale for the LETKF is
1100 km, and the same localization scale is used for the
LPFGM. The LPFGM with every-time resampling (N0 =

40) shows the largest RMSEs (Fig. 10a, magenta). By con-
trast, some LPFGM experiments show smaller RMSEs than
the LETKF (Fig. 10b). In this experimental setting, the
resampling parameter of N0 = 2.0 shows the most stable
performance. With N0 = 2.0, the LPFGM outperforms the
LETKF slightly for α = 0.5–0.7 (green line of Fig. 10b).

The time series of the background RMSEs and effective
particle sizes show that the LPFGM with every-time re-
sampling (N0 = 40; Fig. 11a, magenta) and relatively fre-
quent resampling (N0 = 10; Fig. 11a, red) caused filter di-
vergences. The times when the filters diverged seem to corre-
spond to the times when the effective particle sizes decreased
(Fig. 11b, magenta and red). This reduction in effective par-
ticle size is a typical sign of filter divergence for PF (Sny-
der et al., 2008). One may speculate that the assumption of
R̂t ≈ Rt in the LPFGM (Sect. 2.3) would be a reason for the
filter divergence. However, adopting the appropriate norm
(R̂t = Rt +Ht P̂b

t HT
t ) for the LPFGM did not eliminate the

filter divergence (not shown). An effective solution for avoid-
ing the filter divergence with every-time resampling is still
unknown, but a possible reason is the method of creating a
transform matrix using the Monte Carlo method that approx-
imates two ideal conditions (Eq. 19 and a spatially smooth
transition). For deeper understanding, using other resampling
techniques such as the optimal transport (see Sect. 4.3.2)
would be useful. In contrast, the LPFGM experiments with
infrequent resampling (N0 = 5 and 2) show stable RMSEs
and maintain a larger effective particle size. These stable
LPFGM experiments maintain the amplitude of the ensem-
ble spreads similarly to that of the RMSEs.

We further explore regions where the LPFGM outperforms
the LETKF. Figure 12 compares the space-based patterns
of the background RMSEs for T (K) at the fourth model
level for LETKF and LPFGM. Errors in sparsely recognized
regions – such as the South Pacific Ocean, Indian Ocean,
and polar regions – tend to be larger (Fig. 12a and b). The
LPFGM outperforms the LETKF in such sparsely observed
regions (Fig. 12c). The regions showing improvements cor-
respond to the regions where the ensemble spreads and first-
guess non-Gaussianity are larger (Fig. 13). Here, we mea-
sure the non-Gaussianity by means of Kullback–Leibler di-
vergence (Kullback and Leibler, 1951).

The first update of the LPFGM (the Gaussian mixture) is
similar to the LETKF update, as discussed. Therefore, the
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Figure 9. Spatial patterns of background RMSE for T (K) at the fourth model level (∼ 500 hPa) for (a) LETKF, (b) LPF, and (c) LPFGM,
with best-performing localization scale and RTPS parameter, averaged over February–April with REG2 and 600 km localization scale.
Panels (d) and (e) show the differences between LETKF-LPF and LETKF-LPFGM, respectively. The warm (cold) color indicates that the
LPF or LPFGM is better (worse) than the LETKF.

improvements of the LPFGM with respect to the LETKF
would be owing to the resampling step. Previous studies
demonstrated that the LPF outperformed the LETKF for non-
Gaussian DA with non-Gaussian observation and prior PDFs
(Poterjoy and Anderson, 2016; Poterjoy, 2016; Penny and
Miyoshi, 2016). Therefore, the improvements of the LPFGM
would come from the consideration of non-Gaussian prior
PDF in sparsely observed regions.

Finally, we investigate the region where the difference
in RMSE between the LETKF and LPFGM is large (120–
60◦W and 70–30◦ S; indicated by black dashed rectan-
gles in Figs. 12 and 13). Figure 14 compares the time se-
ries of RMSE, ensemble spread, effective particle size, and
Kullback–Leibler divergence averaged over the region for
the LETKF and LPFGM. Here, we conducted an additional
LPFGM experiment that employs no resampling (i.e., N0 =

0) to investigate the importance of resampling. Vertical red
lines in Fig. 14 represent the cases when the LETKF has
large RMSEs greater than 0.8 K. Figure 14a indicates that
the LPFGM tends to mitigate large RMSEs, which is in con-
trast to the LETKF. Since no significant increase is seen in
the Kullback–Leibler divergence at the four cases (Fig. 14c),
the large RMSEs of LETKF would not be caused by analy-
ses with highly non-Gaussian first-guess ensembles. For the
last three cases, the LPFGM has significantly smaller RMSEs

than the LETKF. The improvement of the LPFGM would
be partially led by larger ensemble spread than the LETKF
(Fig. 14b). However, the LPFGM with resampling (N0 = 2)
outperforms the LPFGM without resampling (N0 = 0), indi-
cating that resampling improves the RMSE. The LETKF and
LPFGM exhibit reduced effective particle size at the three
later cases (Fig. 14d). Because of the smaller effective par-
ticle size, fewer ensembles predict states that are closer to
observations, and the LPFGM employed more resampling in
the region. In addition to the particle shift, the LPFGM would
reduce RMSE further by the resampling.

The LPFGM occasionally resulted in larger RMSE than
the LETKF (e.g., beginning of March in Fig. 14a). How-
ever, the LPFGM has the potential to outperform the LETKF
overall by reducing the RMSE in sparsely observed regions.
While operational NWP systems assimilate massive observa-
tions, the LPFGM would be useful when spatially and tem-
porally sparse observations are used – e.g., in the twentieth-
century reanalysis projects (e.g., Compo et al., 2011; Laloy-
aux et al., 2018) and paleoclimate reconstructions (Acevedo
et al., 2017; Okazaki and Yoshimura, 2017).

4.3 Factors requiring further investigation

Finally, we discuss other issues for potential further improve-
ment of the LPF and LPFGM in future studies.
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Figure 10. Similar to Fig. 5 but showing the LPFGM experiments
with the RAOB and 1100 km localization scale. Magenta, red, blue,
and green lines are the LPFGM experiments with N0 = 40, 10, 5,
and 2, respectively. Forgetting factor τ is fixed at 1.0. Dashed black
lines represent the RMSE of the LETKF (0.4762 K); (b) enlarges
(a) for the range of the RMSE of 0.25–0.45.

4.3.1 Inflation

This study used the RTPS to inflate the posterior perturbation
for the LPF and LPFGM. As shown in Figs. 5, 7, and 10, the
RMSEs of the LPF and LPFGM are sensitive to the RTPS
parameter. There is a need to investigate methods that esti-
mate the RTPS parameter adaptively, as in the EnKF (Ying
and Zhang, 2015; Kotsuki et al., 2017b). However, the adap-
tive relaxation methods used in the EnKF cannot be applied
directly to the LPF, because they use the innovation statis-
tics (Desroziers et al., 2005) that assume analysis updates by
the Kalman gain. Therefore, substantially different adaptive
relaxation methods should be investigated for the LPF and
LPFGM.

An alternative method of inflation is adding random noise
to the transform matrix (Potthast et al., 2019). Regulating the
amplitude of the random noise was not trivial in the authors’

Figure 11. Similar to Fig. 8 but showing the LPFGM experiments
with the RAOB and 1100 km localization scale. Magenta, red, blue,
and green lines are LPFGM experiments withN0 = 40, 10, 5, and 2,
respectively. Forgetting factor τ is 1.0. The RTPS parameter is set
to 1.00 in the experiment with N0 = 40 (i.e., all-time resampling)
and to 0.60 for in other experiments.

preliminary experiments with L96 (not shown). Random
noise that is too small results in a loss of diversity of posterior
particles, whereas excessively large random noise results in
an overly dispersive ensemble. Potthast et al. (2019) also sug-
gested estimating the amplitudes of the random noise based
on the innovation statistics. However, determining the mini-
mum and maximum values of the amplitudes was not trivial
from the authors’ experience with L96. Therefore, a method
to determine the optimum amplitude of random noise should
be investigated as well. Moreover, additive inflation methods,
as used in the EnKF, can be beneficial for producing diverse
prior particles (Mitchell and Houtekamer, 2000; Corazza et
al., 2003). For example, Penny and Miyoshi’s (2016) LPF
applied an additive inflation Gaussian noise whose variance
is scaled to a magnitude of local analysis error variance. In-
vestigating better and adaptive inflation methods is very im-
portant to stabilize LPFs.

4.3.2 Transform matrix for LPF

The transform matrix significantly affects the filter perfor-
mance. Farchi and Bocquet (2018) demonstrated that the op-
timal transport method of Reich (2013) resulted in lower
RMSE than the commonly used stochastic uniform resam-
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Figure 12. Spatial patterns of background RMSE for T (K) at the fourth model level (∼ 500 hPa) for (a) LETKF and (b) LPFGM, averaged
over February–April, with RAOB and 1100 km localization scale. Panel (c) shows the difference between LETKF and LPFGM. Warm (cold)
color indicates that the LPFGM is better (worse) than the LETKF. Black dashed rectangles show the region (120–60◦W and 70–30◦ S) where
the differences between LETKF and LPFGM are investigated in Fig. 14.

Figure 13. Spatial distributions of the background (a, b) Kullback–Leibler divergence and (c, d) ensemble spread for T (K) at the fourth
model level (∼ 500 hPa), averaged over February–April, with RAOB and 1100 km localization scale; (a, c) and (b, d) show the LETKF
and LPFGM, respectively. Black dashed rectangles show the region (120–60◦W and 70–30◦ S) where the differences between LETKF and
LPFGM are investigated in Fig. 14.
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Figure 14. Time series of 3 d-mean (a) RMSE (K), (b) ensemble spread (K), (c) Kullback–Leibler divergence, and (d) effective particle size
Neff at fourth model level temperature T , averaged over the region indicated by rectangles in Figs. 12 and 13 (120–60◦W and 70–30◦ S). The
black line represents the LETKF. Green and purple lines are the LPFGM whose resampling frequencies N0 are 2 and 0, respectively. Vertical
red lines represent the cases when the LETKF shows large RMSE greater than 0.8 K. In (d), the effective particle size is also computed for
the LETKF using the first-guess ensemble.

pling approach with the L96 model. However, it is not clear
if optimal transport is beneficial for high-dimensional sys-
tems such as the SPEEDY model.

In this study, all-time resampling was detrimental for the
LPFGM experiments (Figs. 7 and 10).This may be due to
the MC resampling that does not exactly but only approx-
imately satisfies Eq. (19) (xb

t =
∑m
i=1x

b(i)
t ·w

a(i)
t ). With a

small effective particle size, the MC resampling almost satis-
fies Eq. (19), since the resampling is not affected by the sam-
pling noise in the selection of particles. In contrast, satisfying
Eq. (19) is more difficult when the effective particle size is
larger due to the sampling noise. A possible solution to this
problem is to use the optimal transport method (Reich, 2013)
that satisfies Eq. (19) exactly. Another essential property for
local PFs is the spatially smooth transition of the transform
matrix. The optimal transport method would also be useful
for ensuring the spatially smooth transition of the transform
matrix, because the posterior weights in nearby grids are typ-
ically similar. It is necessary to investigate better methods for
generating resampling matrices.

4.3.3 Tunable parameters of LPF and LPFGM

The tunable parameters of the LPF and LPFGM should be
investigated further. For example, parameter N0, which con-

trols the resampling frequency, significantly affected the fil-
ter accuracy and stability. Adaptive determination of this pa-
rameter can prevent time-consuming parameter tuning.

The sensitivity to parameter γ should also be investigated
for the LPFGM. WP22 proposed using γ = 2.5. Since γ con-
trols the amplitude and width of Gaussian kernels, the fil-
ter accuracy and stability of the LPFGM would be sensi-
tive to this parameter. We briefly examined the sensitivity
to this parameter with REG2 and RAOB (Fig. 15; γ = 2.5,
1.5, and 0.5 for red, blue, and green lines). The results in-
dicate that the filter accuracy of the LPFGM is sensitive
to this parameter, especially for a spatially inhomogeneous
RAOB observing network. For our experimental settings, the
best-performing γ was 1.5 for both REG2 and RAOB. How-
ever, the optimal parameter would differ for different models,
observing networks, and observing frequency. Also, there
might be a relation between the optimal γ and ensemble size.
Therefore, adaptive determination of this parameter is help-
ful.

The LPFGM without weight succession (τ = 1.0) resulted
in lower RMSE than that with weight succession (τ = 0.0).
However, the optimal parameter τ would be somewhere be-
tween 0.0 and 1.0. In addition, the weight succession at each
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Figure 15. Time-mean background RMSEs for T (K) at the fourth
model level (∼ 500 hPa) as a function of RTPS parameter α,
averaged over three months of the third year (February–April);
(a) shows REG2 with 600 km localization scale, and (b) shows
RAOB with 1100 km localization scale. Red, blue, and green lines
are LPFGM experiments where γ = 2.5, 1.5, and 0.5, respectively.
Black dashed lines represent RMSE of LETKF (0.1257 K) with
adaptive multiplicative inflation instead of RTPS. Other parameters
are set to be the best-performing parameters: N0 = 2 and τ = 1.0.

model grid point would be suboptimal. Hence, the method
for weight succession should also be explored further.

5 Summary

This study aims to develop a software platform for the
LETKF, LPF, and LPFGM with the intermediate global at-
mospheric model SPEEDY. The main results of this investi-
gation are briefly listed as follows:

1. The LPF and LPFGM were developed with only minor
modifications to the existing LETKF system with the
SPEEDY model.

2. With dense observations (REG2), the LPF showed sta-
ble filter performance with large inflation by the RTPS.
The best-performing localization scale of the LPF was

identical to that of the LETKF. The LPF forecast was
less accurate than the LETKF forecast. With sparse ob-
servations (RAOB), the LPF did not work.

3. The LPFGM showed more stability and lower fore-
cast RMSEs than the LPF. In addition to the RTPS pa-
rameter, regulating the resampling frequency and the
amplitude of Gaussian kernels was important for the
LPFGM. The LPFGM without weight succession re-
sulted in more stability and lower RMSEs than that
with weight succession. With RAOB, the LPFGM fore-
cast was more accurate than the LETKF forecast in
sparsely observed regions, where the background en-
semble spread and non-Gaussianity are larger.

As discussed in Sect. 4.3, there is much room for improve-
ment in the LPF and LPFGM. While the LPFGM poten-
tially provides a more accurate forecast than the LETKF,
the LPFGM has more tunable parameters than the LETKF.
Manually tuning these parameters by trying numerous ex-
periments is computationally expensive. Therefore, adaptive
methods for determining such tuneable parameters need to
be explored. Also, it is important to investigate computation-
ally more efficient methods to generate resampling matrices
for the LPF and LPFGM.

The SPEEDY-based LETKF, LPF, and LPFGM used
in this study are available as open-source software on
GitHub (https://github.com/skotsuki/speedy-lpf, last access:
16 November 2022). This can act as a useful platform to in-
vestigate the LPF and LPFGM further in comparison with
the well-known LETKF.

Appendix A: Derivations of Kalman gain and analysis
error covariance

Here, we describe the derivations of Kalman gain and anal-
ysis error covariance (Eqs. 5 and 6). The Kalman gain Kt =

Pb
t HT

t

(
HtPb

t HT
t +Rt

)−1 can be changed as follows:

Kt =

[(
Pb
t

)−1
+HT

t R−1
t Ht

]−1

·

[(
Pb
t

)−1
+HT

t R−1
t Ht

]
Pb
t H

T
t

(
HtPb

t H
T
t +Rt

)−1
(A1)

=

[(
Pb
t

)−1
+HT

t R−1
t Ht

]−1

·

[
HT
t +HT

t R−1
t HtPb

t H
T
t

](
HtPb

t H
T
t +Rt

)−1
(A2)

=

[(
Pb
t

)−1
+HT

t R−1
t Ht

]−1

HT
t R−1

t

[
Rt +HtPb

t H
T
t

]
·

(
HtPb

t H
T
t +Rt

)−1

(A3)

https://doi.org/10.5194/gmd-15-8325-2022 Geosci. Model Dev., 15, 8325–8348, 2022

https://github.com/skotsuki/speedy-lpf


8344 S. Kotsuki et al.: A local particle filter and its Gaussian mixture extension

=

[(
Pb
t

)−1
+HT

t R−1
t Ht

]−1

HT
t R−1

t . (A4)

Using Kt =

[(
Pb
t

)−1
+HT

t R−1
t Ht

]−1
HT
t R−1

t , analysis error

covariance Pa
t = (I−KtHt )Pb

t can be changed as follows:

Pa
t = (I−KtHt )Pb

t = Pb
t −KtHtPb

t (A5)
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Consequently, we can derivate
(
Pa
t

)−1
=
(
Pb
t

)−1
+HT

t R−1
t Ht

from Eq. (A9) and Kt = Pa
tHT

t R−1
t from Eq. (A4).
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Appendix B: The number of required samples for the
MC resampling

This appendix investigates the number of required samples
for the MC resampling to obtain accurate transform matrices
stably. Here, we assume that 10 000 samples are sufficient to
obtain an accurate transform matrix (TNMC=10 000). An ab-
solute error (AE) of the transform matrix with G samples
(TNMC=G) is defined to measure the accuracy of the trans-
form matrix:

AE=
∑m

i=1

∑m

j=1
|T(i,j)NMC=G

−T(i,j)NMC=10 000|. (B1)

Figure B1 shows the AE as a function of the number of sam-
ples for ensemble members 10, 20, 40, and 80. For this inves-
tigation, we obtained 1000 independent weights generated by
uniform random numbers, and average, minimum, and maxi-
mum AEs of 1000 cases are shown. For four ensembles, AEs
decrease rapidly for the first 1000 samples, followed by a
gradual decrease until AE= 0. To reach 10 % of initial er-
ror at NMC = 1, MC resampling requires about 70, 300, 400,
and 600 samples for ensemble members 10, 20, 40, and 80. It
suggests that more ensemble requires more samples to obtain
an accurate transform matrix stably by means of MC resam-
pling.

Figure B1. Absolute errors of the transform matrix of MC resampling as a function of the number of samples (NMC) verified against the
transform matrix with 10 000 samples. Absolute errors are computed for 1000 independent cases that have different weights generated by
uniform random numbers. Black bold lines show the average of 1000 cases, and gray shades represent minimum and maximum errors of the
1000 cases. Panels (a)–(d) show experiments with 10, 20, 40, and 80 ensembles, respectively. Dashed line shows the 10 % of initial error at
NMC = 1.
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Code and data availability. The developed data assimilation sys-
tem is available at (https://github.com/skotsuki/speedy-lpf, last ac-
cess: 16 November 2022), which is based on the existing SPEEDY-
LETKF system (https://github.com/takemasa-miyoshi/letkf, last ac-
cess: 16 November 2022; Miyoshi, 2022). The data assimi-
lation system used in this manuscript is archived on Zenodo
(https://doi.org/10.5281/zenodo.6586309; Kotsuki, 2022). Due to
the large volume of data (> 6 TB) and limited disk space, processed
data and scripts for visualization are also shared on Zenodo at the
same link.
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