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Abstract

Computing has become an essential resource in modern research and has found application
across a wide range of scientific disciplines. Developments in symbolic algebra tools have been
particularly valuable in physics where calculations in fields such as general relativity, quantum
field theory and physics beyond the standard model are becoming increasing complex and
unpractical to work with by hand. The computer algebra system Cadabra is a tensor-first
approach to symbolic algebra based on the programming language Python which has been used
extensively in research in these fields while also having a shallow learning curve making it an
excellent way to introduce students to methods in computer algebra.

The work in this thesis has been concentrated on developing Cadabra, which has involved
looking at two different elements which make up a computer algebra program. Firstly, the
implementation of algebraic routines is discussed. This has primarily been focused on the
introduction of an algorithm for detecting the equivalence of tensorial expressions related by
index permutation symmetries. The method employed differs considerably from traditional
canonicalisation routines which are commonly used for this purpose by using Young projection
operators to make such symmetries manifest.

The other element of writing a computer algebra program which is covered is the infrastruc-
ture and environment. The importance of this aspect of software design is often overlooked by
funding committees and academic software users resulting in an anti-pattern of code not being
shared and contributed to in the way in which research itself is published and promulgated.
The focus in this area has been on implementing a packaging system for Cadabra which allows
the writing of generic libraries which can be shared by the community, and interfacing with
other scientific computing packages to increase the capabilities of Cadabra.
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Conventions

A variety of different programming languages, libraries and software packages are used through-
out, and therefore in an attempt to make these as accessible as possible without requiring any
deep prerequisite knowledge of these a convention of code highlighting is used throughout to
make the analysis of code snippets simpler. These conventions will be demonstrated with
Cadabra code, but a consistent convention is used for all languages.

The language used in each snippet should be made clear from context, but the left frame is
also coloured according to the language:

# Python/Cadabra code

; Lisp code

// C/C++ code

(* Mathematica code *)

// Groovy/Redberry code

# Python/Sage code

A standard highlighting is also used across the languages to indicate how the syntax of the
language works

• The keywords and inbuilt functions of a language are displayed in red:

l = [2*i for i in range (3)]

• Comments are displayed in grey

# Commented out

• Functions which are provided by a pertinent library or package, but are not inbuilt, are
displayed in blue.

expand_delta(ex)

• String literals are displayed in green:

s = "Hello world"

• If a language supports a facility for specifying maths literals, these are displayed in yellow:

ex = $a + b$
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Definitions

A list of commonly used symbols is provided here for quick reference. Note that some symbols
may be used with a different meaning in some contexts, but this will be made clear as and when
they are used.

gµν An arbitrary metric tensor

Rabcd The Riemann tensor

Rab The Ricci tensor given by Rcbcd

R The Ricci scalar given by Raa

Wabcd The Weyl tensor given in dimension n by

Riklm+
1

n− 2
(Rimgkl−Rilgkm+Rklgim+Rkmgil)+

1

(n− 1)(n− 2)
R(gilgkm−gimgkl)

∇a Covariant derivative operator

∂a Partial derivative operator

Ti1i2... An arbitrary tensor quantity

Ti1i2...;j1j2... Equivalent to ∇j1j2...Ti1i2...

T[i1i2...in]j1j2... Antisymmetrisation in the indices in square brackets

Mab An arbitrary matrix quantity

Sn The n element symmetric group

Y An arbitrary Young tableau

P (Y ) A Young projection operator acting on the given tableau

H(Y ) A Hermitian projection operator acting on the given tableau

[A,B] Commutator of A and B
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1

— Butler Lampson

1“All problems in computer science can be solved by another level of indirection”
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Chapter 1

Introduction

Ever since the modern era of computing began in the mid 20th century, it has had an enormous
impact on the way we conduct scientific research. The advent of the commonplace use of
computers in the home and at work is often coined the digital revolution and its application in
the scientific community has been perhaps the most far-reaching and important revolution to
the way in which we conduct research since the invention of the scientific method [1]. Not only
has it given us the ability to perform calculations which were once beyond our reach, allowed
for the analysis of incredibly complex systems and led to an era where proof by exhaustion has
become possible [2], but the invention of the internet and the ability for knowledge to become
so accessible has led to a flurry of advances at an unprecedented speed. More recently, the
take-off of open-source software thanks to the pushes made by people such as Richard Stallman
and Linus Torvalds and the infrastructure which they have developed (at the core of which is
the GNU/Linux operating system [3] and the development of the Free Software Foundation [4])
allowed not only the results and knowledge gained from the use of computing to become widely
available, but also the underlying software and tooling which has afforded the community the
ability to contribute to this wealth of resources without requiring the backing of institutions to
provide the expensive facilities which were once essential.

As well as providing the ability to numerically simulate complex physical systems, the advent
of computing also allowed for the construction of tools for the algorithmic manipulation of
algebraic expressions. This new field of computer algebra systems (CAS) developed as a result
of the variety of different tools which were written for specific purposes as people explored
the use of computing in applications such as symbolic integration, linear algebra, differential
equation solving and the simplification of expressions.

It is taken for granted nowadays that almost all algebraic problems can be solved by the use
of computer software, removing the time spent in calculating difficult integrals or expanding
out long equations; by looking through the bibliography of papers from the last ten years one
does not need to search long to find references to various software tools which have been used,
indeed a Google Scholar search for papers mentioning Mathematica from the last year enumer-
ates over 3,000 results. Further, in some disciplines of modern physics many results would be
completely unfeasible to calculate without the assistance of modern computing, which can be
seen from the very first uses of CAS in the early 1960s, for example Martinus J. G. Veltman’s
calculation of the quadrupole moment of the W-boson using his very early CAS Schoonschip
to expand three-vertex Feynman diagrams which involved intermediate expressions involving
roughly 50,000 terms [5]. Since then, the number of different fields, as well as the numbers
involved, have increased enormously. Examples of different areas where computing has become
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important include solid state physics where total energy calculations of complicated systems
such as phonons and those involving many inequivalent atoms have become possible since the
1970s [6], as well as general relativity where some systems can be examined by the use of per-
turbative techniques where the number of terms increases exponentially with the perturbative
order (as demonstrated in the paper Cadabra and Python algorithms in General Relativity II:
Gravitational Waves [7] which is introduced in Section 6.5) and innovative techniques in nu-
merical relativity allow the study of extreme systems such as the coalescence of neutron stars
and black holes [8].

Further afield, calculations in physics beyond the standard model also make heavy use of
modern computational power in their calculations, most notably string theory where not only
are component calculations made more expensive by the larger number of dimensions, but also
the vast size of the possible ‘string landscapes’ has led to the need for the computation of huge
sets such as the classification of all 473,800,776 reflexive polyhedra by Kreuzer and Skarke [9]
as well as provoking the development of novel techniques in network science [10] and machine
learning [11].

Despite the necessity of these algebra systems in research and the speed with which comput-
ing power and software has developed, cooperation between researchers in adopting standard
tools and platforms on which they are able to develop and work as a community has not had
anywhere near as much impetus. In some aspects this falls along the natural boundaries of
different disciplines with tools for calculations in QFT clearly having different design objec-
tives to those of algebraic topology, and it is natural that where the design objectives differ
to such a great extent there is little motivation for the respective communities to consolidate
their approaches. However within disciplines there is a widespread lack of consensus on the
natural choice of software: calculations in general relativity can be performed on systems such
as Mathematica [12], Sage [13], Maple [14], Maxima [15], Cadabra [16, 17] and GraviPy [18] to
name but a few of the options, and the problem is only exacerbated by the multiple different
packages available for some of these platforms designed to provide the additional functionality
required for tensor calculations.

The wide array of options is in many ways positive as it displays a keen interest in devel-
opment in this field and allows users to choose between power, flexibility and ease of use when
selecting software. However beneath this is the much larger problem that many researchers
choose to develop personal projects for dealing with their own research goals and these tools
rarely enter into public view, and even in cases where they are made available they are often
accompanied by a steep learning curve due to a combination of the home-brew style of their
development, niche scope and an absence of documentation. This can lead to a situation where
people find it easier to write their own tools in preference to learning how to use these programs.

In this way, a non negligible amount of the time spent developing software either solves
a problem for which a tool already exists, or does not contribute to the overall wealth of
tools available to the scientific community. There are many underlying causes for this but the
separation of the concepts of software development and research output is a predominant factor
as this provides an incentive to publish research papers, but there is often no direct incentive
from grant bodies and institutions to promote researchers to openly publish software, spend
time developing it into a user-friendly form and maintain it.

This tendency to work on personal projects has a knock-on effect on the quality of the
software produced in two ways: for one, the task of developing even simple tools is non trivial
and requires a range of skills which a background in physics will not necessarily provide, for
another what our philosophy may dictate as being the logical way to tackle a problem may well
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alienate many of the people who would otherwise benefit from our work. As an example of a
way in which this might surface, I refer to a section of a talk given in 2015 by Brian Kernighan
1 on successful language design in which he presents a simple programming problem and asks
which language people might use to solve it. Among some normal suggestions such as awk or
the shell, there are also more esoteric proposals such as simula and BASIC. While these may
be the environments we personally find most comfortable and productive, insisting on always
using our favourite language — a choice which is often motivated more by philosophy than
practicality — not only results in a program which the majority of people will find it hard to
read and impossible to contribute to, but which leads to the complicated and bug-prone code
which using the wrong tool for the job often leads to.

I make these comments on the current position software development has in research in
order to provide the backdrop against which this thesis is written, as I have come across these
issues on numerous occasions during my time working in computer algebra. I therefore feel it
necessary to address these issues alongside the projects I have worked on; partly in order to
show the impact this has on research and partly in order to provide a motivation for some of the
projects I have decided to work on which certainly do not pretend to be entirely mathematical
in nature but which I have nonetheless found to be just as necessary and in some cases just as
non trivial.

Now that I have explained the philosophy behind my writing I will comment on how I have
decided to structure the various projects which make up this thesis. The content is divided
between two main parts: the first Algorithms in Symbolic Algebra on the technicalities of
some specific algorithms and core functionality I have been involved with implementing and
comparing this with the tools available in other CAS packages, and the second Software in
Academia on collaborative projects I have been involved with using Cadabra, as well as parts
of my research which have not been centred on functionality but instead of accessibility and
attempting to break down the barrier to entry into the field.

In the first part I will begin by offering a comparison of some of the most widely used com-
puter software and which fields they are of particular use to. In particular I will examine the
packages which most closely align with the design goals of Cadabra and the features which we
believe to have been lacking in them and which motivate the continuing support and develop-
ment of Cadabra. I will then present the theoretical background and implementation details of
the canonicalisation algorithm meld which uses projection operators to generalise the concept
of a canonicaliser into a more general tool which detects dependence of terms in an expression
on each other rather than attempting to rewrite each term in a standard form. There will also
be an opportunity to discuss various other routines which can be used alongside this in order
to expand the number of expressions which can be simplified.

Following this I will present the packaging functionality which I have introduced into
Cadabra and which contains a wide variety of smaller algorithms which provide convenience
tools as well as more powerful routines which are used for the everyday manipulation of expres-
sions. Part of the motivation for the development of this functionality was to make the sharing
of libraries between members of the community easier and more transparent, as well as making
it simpler for people to contribute algorithms for inclusion in Cadabra. Not all of the routines
which I have implemented into the ‘standard library’ of Cadabra will be looked at, but some
illustrative examples will be showcased.

This discussion of packages and the importance of the community to open source projects
leads naturally into the second half of this thesis where I will examine more closely the rela-

1Available at https://www.youtube.com/watch?v=Sg4U4r_AgJU
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Chapter 1

tionship between software and academia. A lot of the work here is due to my participation
with researchers writing papers on calculations in general relativity, in particular higher order
perturbative solutions to gravitational wave equations, and therefore there while the main focus
of this section is not to concentrate on the results from these papers I will use them to illustrate
the points which I make as the discussions which we had during the course of writing these
papers drove me towards focussing on particular parts of Cadabra’s functionality.

The first point which I will showcase is the potential for computer algebra to make its way
into the undergraduate classroom as both an aid in the teaching as well as an opportunity for
letting students consider more complicated models than they would be able to look at using
hand calculations. I will argue that the LATEX style of input in Cadabra, as well as the use of
Python which is widely taught at an undergraduate level in physics and maths departments,
makes it an ideal candidate to be applied in field theory classes.

Secondly, I will look at the ways in which software is currently shared amongst the scientific
community and ways in which we might encourage and facilitate contributing to the deposit
of software which is generated. There is of course a larger theoretical problem that this entails
of how to design an infrastructure whereby it is possible for people to find and obtain software
which can solve a particular problem, but this begins to go beyond the purview of my research
and I instead will be talking about many of the common problems which someone writing
research software will come across repeatedly and present the solutions which may make sense
in different scenarios. From this I hope to touch upon many questions which people starting
out writing software will face and attempt to independently solve when in reality there are
already a large number of suitable implementations and designs from which to build. This
includes not only the format in which the user interacts with the program but also cross-
platform compatibility, notebook-style interfaces compared to scripts, and the choice of other
core features which make software usable. This will mainly focus on the areas in which I have
provided additional functionality.

Finally, I bring all these points to bear by discussing how an open-source approach to
writing research software provides an excellent environment for research software by allowing
a transparent layer between developers and users, facilitating community contributions and
importantly ensuring that there is free access to the software for all people. While there are
objections from many researchers that putting their work into the public domain does not
reward them for the nontrivial amount of work writing software entails, I believe this to be
not a failing of the concept of an open-source environment but the current relationship which
universities, grant committees and research groups themselves have with software development
and that there is a fundamental disparity between the way we view research and the way we
view software which needs to be narrowed.

I intend to make clear throughout this thesis the urgency with which I feel it is imperative
our attitude to the availability and distribution of academic software must change, an opinion
I draw not only from my own personal perspective of having worked in the development of the
Cadabra program, but also from the interaction and feedback from its community and that of
the mathematical sciences department. This will naturally come across more strongly in the
second part where I discuss my work with other researchers in the community, but I hope that
there will also be numerous occasions during the more technical discussions where it becomes
clear that the different approaches software packages have taken can lead to a ‘tunnel vision’
where people are not open to using some software packages in the way they were designed to
be used, preferring to mould it into the style they are comfortable.

Before ending this introduction and entering into a more technical discussion, I think it
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worthwhile to illustrate the relationship between researchers and the people who write soft-
ware for research with a short anecdote from my day as a PhD student. After the end of the
introductory lecture we were asked to move to a different room based on our specialisation:
pure mathematics, applied mathematics, statistics and particle physics. After enquiring of the
coordinator with which group I should associate, having explained my field and supervisor, I
was met with a quizzical pause followed by “Ah yes, you are an edge case.”

I intend to demonstrate that the role of computing is integral enough to modern research
that we can no longer afford to consider it as just an edge case.
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Algorithms in Symbolic Algebra
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Chapter 2

Computer Algebra Systems

In almost all fields of study, an understanding of the history and major advancements which
have moulded the subject into the form it takes today is often informative and can help to
deepen our knowledge and competency: subjects tend to become more complex and solutions
dependent on more assumed knowledge the older they become, so looking back to the subject
when it was still in its nascency can help to isolate the core ideas and a study of why certain
conventions and ways of thinking were developed can help to clarify why things work the way
they do instead of just how they work. The study of symbolic algebra is no different and
therefore in order to introduce the subject I will start presenting the topic at the beginning
and follow the development of the field to the modern day. After this we will concentrate
more specifically on the use of computer algebra tools in the field of theoretical physics and
introduce the Cadabra software package which forms the basis of the overall thesis. In order
to contextualise better how Cadabra fits into the greater ecosystem of computer algebra tools
which exist nowadays we will then follow through a comparison of how a general relativity
calculation is performed in both Cadabra and another extremely popular open source program
SageMath.

2.1 History of CAS

CAS tools have been an important part of physics and mathematics since their inception in the
early 1960s with the introduction of programs such as Martinus J. G. Veltman’s aforementioned
Schoonschip [5], written primarily for applications in particle physics, and Carl Engleman’s
MATHLAB [19] which was a more general-purpose tool for scalar algebra, although it also
included facilities for some linear algebra calculations such as solving systems of linear equations.
Other early programs include Macsyma [20] which would later become Maxima and of which
Carl Engleman was also a primary developer, Scratchpad II which would become AXIOM, and
REDUCE which is still in active development today.

Apart from Schoonschip which was developed using an assembler, all of these programs were
developed using various dialects of Lisp which had become the de facto language for writing
such tools [21] just as FORTRAN was the primary language for engineering and numerical ap-
plications, although some CAS tools were also developed in FORTRAN such as the successful
early system FORMAC [22]. The reasons why Lisp was regarded as such a useful tool for devel-
oping symbolic algebra tools was a combination of both the design of the language itself which
lends itself readily to being extended into dialects which make the translation from mathemat-
ical problems to Lisp code simple [23], as well as the lack of other higher-level programming
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Chapter 2 2.1. History of CAS

languages to choose from.

To understand why Lisp is such a natural language for symbolic algebra and the impact
this had on future computer algebra systems, we will take a brief look at how mathematical
expressions can be visualised as trees. The concept can find its roots in its modern application
at least as far back as 1924 with the logician Jan Łukasiewicz. When writing mathematical
expressions, we often use an infix notation, where operators are placed inbetween their operands,
as in a + b. However, Łukasiewicz was wary of the several disadvantages to this notation,
predominantly the ambiguity raised by an expression such as a+ b× c where one must rely on
a convention of operator precedence in order to distinguish between (a+ b)× c and a+ (b× c).
He instead proposed a prefix style of notation with operators coming before their operands [24],
allowing the above expressions to be represented as ×+ a b c and + a× b c respectively, if we
assume that all operators are strictly binary. The prefix notation was dubbed Polish notation,
purportedly as his name was too difficult for the English speaking community to pronounce.

In the 1950s, computer scientists recognised the application of using non-infix notations
in computing [25, 26] due to the natural way in which it extended to the concept of a stack.
Of particular interest was postfix notation (which, despite the notation being used for a very
different purpose to Łukasiewicz’s original aim of writing logic, is known as reverse Polish
notation in his honour) which yielded a natural correspondence between an expression and the
instruction sequence an assembler performs:

a Push a onto the stack
b Push b onto the stack
+ Pop two values off the stack and push their sum
c Push c onto the stack
× Pop two values off the stack and push their product

Had the expression been written using an infix notation the one-to-one correspondence
between the expression and stack instructions would be lost, with a more expensive parsing
algorithm using a technique like recursive-descent to calculate the order of operations. Such
was the convenience of postfix notations that several languages were developed to use it, most
notably Adobe’s Postscript [27] which would become the precursor to the modern PDF format.

Expressions in this form also make manifest the correspondence to a tree structure, where
expressions are viewed as operators with parent nodes and their operands as children nodes.
Again using the same expression a b + c × with binary operators, the tree is built by reading
three tokens from the expression and forming a subtree out of these with the first two tokens
as children of the third. This subtree is then substituted in to replace the three tokens and the
process continued until all tokens have been parsed:

a b+ c × →

 +

a b

 c × →
×

+

a b

c

Writing expressions in this form allows many of the techniques in graph theory to be applied
to the manipulation of expressions, importantly including efficient techniques for traversing the
expression in a structured manner. If the operators are not strictly binary, then brackets are
required in order to disambiguate which operator a token is a child of, however importantly
this does not affect the correspondence to a tree structure.
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Prefix notation was also adopted by some languages, most pertinently to our discussion Lisp
is based on list structures (the name itself deriving from the phrase List Programming). In
Lisp, all lists are treated as functions where the first element is the operator and the rest of
the list its operands. Therefore all Lisp programs can be viewed as just such a tree, and the
expression (× (+ a b) c) is a valid Lisp program (assuming the variables a, b and c are defined).
It is essentially this which makes Lisp such a natural choice of language for developing symbolic
algebra algorithms. To illustrate, we will quickly demonstrate how a substitute function might
be implemented in GNU Common Lisp1:

(defun subs

(ex in out)

(if (atom ex)

(if (equal ex in) out ex)

(cons (subs (car ex) in out) (subs (cdr ex) in out))))

This defines a function subs which takes three parameters: ex, the expression to act on, in, the
search expression, and out which contains the replacement expression. The function recursively
travels through the tree trying to match subtrees, so in order to make the substitution c→ kl

in our expression from above we can call it as follows

>> (subs `(* (+ a b) c) `c `(* k l))

(* (+ a (* k l)) c)

Notice in particular how only the core functionality of the language is used, and while more
complicated routines will require using less natural constructs the basic data types list and
symbol encapsulate a lot of the low level structure.

Nowadays we find that most systems are developed using object-oriented languages which
allow for a very natural connection between mathematical objects and programming objects,
with classes representing expression trees and more complicated nodes carrying information in
a structured manner using object-oriented techniques such as inheritance and polymorphism,
but at this time object-oriented languages were very much in their infancy with Simula, which
is often regarded as the first such language, only defining the concepts of class and type in
1967 [29].

While it is possible to produce efficient code in Lisp, one of the major advantages comes from
the fact that it is an interpreted language, and for the large sorts of problems which computer
algebra systems become most essential for the inefficiencies which result from running in an
interpreter, coupled with the limited processing power available in the early days of computing,
limited the capabilities of these systems. One of the major developments which spurred the
next wave of CAS tools was the development of the C programming language in 1972 by Dennis
Ritchie, possibly the most influential programming language ever released and which would find
application in all areas of computing from systems programming and the early implementation
of Unix for which it was originally designed to gaming, embedded system applications and
building interpreters and compilers for other higher level programming languages. Although
not as easy or natural to write CAS tools in as Lisp, C was far more powerful and flexible than
using an assembler, allowing the creation of cross-platform native binaries and a much friendlier
programming environment. This also saw a move away from using Lisp as an interface language
and towards providing dedicated scripting languages with which to interact with tools.

One of the first computer algebra systems written in C was SMP which was developed in
1981 by Stephen Wolfram who would use the experience gained from developing this, along with
the knowledge he gained from using the Macsyma system [30], to develop along with Theodore

1Adapted from the subst function written by John McCarthy in his original paper on Lisp [28]
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Gray the program Mathematica in 1988 which has become one of the most popular CAS tools
since then.

This of course only covers a small fraction of the systems which were developed during
this period, and an emphasis has been placed on mentioning the more general-purpose tools as
opposed to more domain-specific tools such as PARI [31], primarily a number theory tool, and
CAYLEY [32] built for group theory applications. However, the programs discussed illustrate
some of the key features which went on to influence the direction future tools would take.
In particular, two aspects surfaced as being of primary value: an efficient back-end capable of
handling large expressions and complex mathematical structures, and an interactive interpreted
front-end which allows less technical users to interface with the programs. Initially these two
goals were difficult to unify, with development in assembler requiring the non trivial task of
developing an interactive interface, whilst using an existing interpreted language such as Lisp
sacrificed the back-end efficiency.

2.2 Modern CAS Programs

The projects at Wolfram were among the first to combine both goals by developing a purpose
built language, the Wolfram Language, which was used to interact with Mathematica and was
designed specifically for algebraic programming. The Wolfram Language, while being in and
of itself a fully-equipped programming language, was mainly intended not to be used to write
algorithms but instead to define expressions and apply algorithms written in efficient C code
to them. By introducing this language, Mathematica also paved the way for an environment
on top of which many other packages and tools can, and have, been built2.

Many of the CAS tools which are used nowadays had their roots in earlier projects, such as
Maxima and AXIOM which were mentioned earlier, with some old systems still in use today
such as FORM which was released in 1989 and is still in active development3 and Maple [14]
which is a proprietary tool released in 1982 and is still one of the most popular products.
Other common tools which have been released more recently include SageMath [13], a general
purpose open-source CAS system, and GiNaC [33] which is a C++ library used by several open-
source tools including SageMath although it can also be used as a stand-alone tool for doing
calculations directly in C++. A comprehensive review of the range of tools now available has
been written by Malcolm MacCallum in his paper Computer algebra in gravity research [34].
This not only discusses the suitability of various programs and packages specifically aimed
at problems in general relativity but also gives useful overviews of ten CAS tools and their
application in computer algebra more generally.

The number of programming languages has grown enormously in the last few decades with
the introduction of many general-purpose languages as well as domain-specific languages. Many
allow for interfacing with lower- level languages such as C and C++ and therefore it is less com-
mon for modern CAS tools to provide their own language for interacting with them, preferring to
provide an interface to another language. Much as Lisp was one of the most common languages
for the designs of early CAS tools, Python has become a very popular language nowadays in
not only symbolic computing but also other for numerical analysis and simulation in scientific
disciplines. As well as tools which are specifically written for Python such as SymPy [35] and
GraviPy [18], bindings for CAS libraries written in other languages (e.g. PyGiNaC [36] and

2Some relevant packages will be mentioned, but a sense of the popularity can be gained by looking at
repositories such as http://packagedata.net which list over 200 packages at the time of writing.

3By looking at the status of the github repository https://github.com/vermaseren/form at the time of writing
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cypari2 [37]) and Python interfaces of other CAS programs (e.g. Pythonica [38] and Sage [13])
are very common.

There are three main features of Python which drive its wide appeal in the scientific com-
munity: the ease and flexibility of the language, the object-oriented approach which is central
to the language, and the wide variety of scientific libraries which is in part due to the relatively
simple API for exporting C/C++ libraries to Python (especially with use of templated C++
libraries such as Boost.Python [39] and pybind11 [40]).

The focus of my research has been on the CAS program Cadabra, originally written by
my supervisor Kasper Peeters in 2001 as a tool for doing calculations in tensor field theory.
Originally written in C++ with its own interface language, it was rewritten in 2007 as a C++
library with Python bindings as well as an extension to the Python language to make some
operations clearer.

2.3 Design of Cadabra

Cadabra is designed as first and foremost a tool for manipulation tensor objects with scalar
manipulations and linear algebra algorithms not supported directly but by interfacing with a
supported ‘backend’ CAS program, currently Mathematica and SymPy are supported. Impor-
tantly, tensors are treated as objects in their own right and are not necessarily tied to any
particular representation as components; the dimension of a particular index set, coordinate
values, metric connections, and other properties of a tensor which other systems require as
prerequisite knowledge for defining a tensor is not required in Cadabra and can be dynamically
associated with a tensor.

The main interface to Cadabra is a notebook-based GUI which allows writing scripts as a
series of cells which can be edited, run and the output displayed. A single Python instance is
maintained between all the cells, and so the cells not only split a script into logical sections
but allow rerunning small individual sections of the code without needing to rerun the entire
script. An interactive console based on the Python interpreter is also provided as well as the
ability to use the Jupyter notebook interface. The input language is Python with a Cadabra
preprocessor which extends the language with some extra syntax to make mathematical input
clearer. These features will be presented below as their motivation is introduced.

The overall architecture revolves around three central elements: the Ex class which rep-
resents the expression tree structure, the Algorithm class which represents a transformation
which can be applied to a Ex object and the Property class which is used to associate mathe-
matical properties with tensors and other objects which make up the Ex tree. The connection
between these types is the Kernel class, whose purpose is to parse input strings into Ex objects,
store property information and allow algorithms to query this property information against
expressions and sub-expressions.

2.3.1 The Ex class

The Ex class is based on a generic tree library tree.hh 4 with nodes of type str_node which is
structured as follows

struct str_node {

nset_t name;

rset_t multiplier;

4https://github.com/kpeeters/tree.hh
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name:‘\equals’
multiplier:1
bracket:b_none
parent_rel:p_none

name:‘\prod’
multiplier:1
bracket:b_none
parent_rel:p_none

name:‘k’
multiplier:1
bracket:b_none
parent_rel:p_none

name:‘A’
multiplier:1
bracket:b_none
parent_rel:p_none

name:‘\mu’
multiplier:1
bracket:b_none
parent_rel:p_sub

name:‘1’
multiplier:0
bracket:b_none
parent_rel:p_none

Figure 2.1: Visualisation of Cadabra’s tree representation of the expression kAµ = 0

struct flag_t {

bool keep_after_eval;

bracket_t bracket;

parent_rel_t parent_rel;

bool line_per_node;

} fl;

}

Here nset_t and rset_t are iterators into std::sets of strings and rationals respectively,
which serve as pools for interning the names and multipliers of the nodes. The bracket_t and
parent_rel_t types are enumerations, bracket_t determining the type of bracket the children
of the node should be wrapped in and parent_rel_t information about how a node relates to its
parent, e.g. as a covariant or contravariant index, as a specific component of the parent object
or as an operand to an operator. The final two fields, keep_after_eval and line_per_node are
bookkeeping nodes which are not used in the current implementation.

Fig. 2.1 shows the structure of the tree for the expression kAµ = 0. Here, the index µ on
Aµ is a child node of A with the parent_rel value p_sub representing a covariant index. Also
of note is that the value 0 is represented by a node with name 1, representing any rational
number, with the multiplier set to 0.

Traversing the expression tree is performed through the use of the four iterator types which
tree.hh provides. The order in which these iterators visit the nodes of Fig. 2.1 are shown in
table 2.1. Two more iterator types are provided, fixed_depth_iterator which iterates over
all nodes at a given depth in the tree and sibling_iterator which iterates over all the direct
children of a node.

Ex objects can be created from a LATEX-style maths string which is parsed into an expression
tree, although there are several differences in Cadabra’s ‘input form’ which disambiguate the
semantic meaning of some expressions:

• The ** symbol is used to denote exponentiation in line with the Python syntax, as ^ and
_ are reserved for writing indices.

• Multiplication using * is required to disambiguate when an object may be a function, for
example a(b + c) results in a node a with a child node (b + c), but a * (b + c) yields
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Iterator class Iteration technique Example order of traversal

pre_order_iterator Element before child =, ×, k, A, µ, 0

post_order_iterator Child before element k, µ, A, ×, 0, =

breadth_first_iterator Layer by layer =, ×, 0, k, A, µ

leaf_iterator Only lowest level k, µ, 0

Table 2.1: The four main tree-traversal iteration types of the Ex class

the product of a and (b + c).

• Multiple symbols in a product must be separated by whitespace or a * symbol; the input
abc will produce a single node with name abc.

• Fractions can be entered in ‘simple form’: so 1/2 is valid as well as \frac{1}{2}

Expressions can also contain wildcard nodes, such expressions are called patterns. For
example the expression \partial{#} is a pattern matching a \partial node with any num-
ber of children and can be used to match against expressions such as ∂ixi, ∂R and ∂µνTρ.
Named wildcards can also be used, such as \exp{Q??} which allows defining rules such as
$f(Q??, R??) -> c_0 + a_1 Q?? + b_1 R??$.

Cadabra offers two extensions to Python’s syntax in order to make defining expressions
easier: the first is dollar-sign quotes as in LATEX:

x = $k A_{\mu} = 1$

The second is the := operator which allows for multi-line expressions which are terminated by
any of the characters :, . and ;

ch := \Gamma ^{\mu}_{\nu\tau} =

\frac {1}{2} g^{\mu\sigma} (\ partial_ {\tau}{g_{\nu\sigma}} +

\partial_ {\nu}{g_{\tau\sigma}} -

\partial_ {\sigma}{g_{\nu\tau}}).

The semicolon as a final character carries a special meaning in Cadabra, it takes the result
of evaluating the line and then dispatches an appropriate routine to display the result; in the
terminal this resolves to a call to print but in the notebook interface this will run LATEX to
generate the output.

2.3.2 The Algorithm class

Algorithms are implemented as classes both as a means of encapsulation and so that they can
retain state if construction is non trivial or there are multiple nodes in the Ex tree where the
algorithm can be applied.

Defining new algorithms requires inheriting from the base Algorithm class, and must min-
imally override the virtual methods can_apply and apply. When the class is interfaced to
Python, it is exposed as a function which iterates over the expression tree using either a
pre_order_iterator or post_order_iterator calling can_apply at each node until reaching
the first node which returns true at which apply is called. The behaviour can be modified by
passing flags to the algorithm when calling it, deep specifying whether the algorithm should
descend through the tree to find nodes to act at, and repeat which causes the algorithm to
repeatedly call apply at each node until the expression doesn’t change.
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property

IndexInherit

Accent

DiracBar

Derivative

ExteriorDerivative PartialDerivative

DifferentialForm Trace

Figure 2.2: Section of the property inheritance tree centering around IndexInherit. Multiple
inheritance has not been shown for clarity, but properties such as Trace also inherit from other
properties (Distributable, TableauInherit, NumericalFlat).

2.3.3 The Property class

The Property class defines properties in a hierarchical structure, making use of multiple inher-
itance build up more complicated properties, for example the AntiSymmetric property inherits
from both TableauBase and Traceless; more examples of how some properties relate to each
other is given in Fig. 2.2.

Property objects can be stateful, for example the Indices property which stores information
about the relationship between covariant and contravariant indices (free for Aµ = Aµ, fixed
for AµBµ = AµBµ and independent for no relation), coordinate values the indices can take
and the name of the index set. A property object is then associated with an expression or
pattern in the Kernel which stores a map between properties and patterns. Properties can be
read from the kernel by giving it an expression which it will then attempt to match against
the patterns it has stored, returning the property associated with that pattern if it of the same
type as property requested.

The Python API exposes properties through a wrapper class which binds a property and
pattern to a single object. Properties are inserted into the kernel by constructing a property
with an expression

Indices($\mu, \nu, \rho$, $vector , position=free , values ={t,x,y,z}$)

The first expression in the constructor is the pattern to assign the property to, and the optional
second parameter is a list of arguments to construct the property with. Cadabra offers an
alternative syntax for defining properties

{\mu, \nu, \rho}:: Indices(vector , position=free , values ={t,x,y,z}).

2.4 Comparison of Cadabra to other CAS

We must also look at Cadabra in the context of the other CAS programs which provide compa-
rable functionality to see the motivation behind some of the design choices. Cadabra is written
with tensors at the fore while many other computer algebra systems focus on scalar manipula-
tions and linear algebra operations providing varying levels of support for tensors, from treating
them as multi-dimensional arrays to having dedicated routines for manipulating them. Along-
side Cadabra, other notable CAS programs which support tensor manipulations are Maple with
the Physics package, Mathematica by making use of packages like MathTensor, Cartan, Ricci
and xAct packages, Maxima, and Redberry which like Cadabra is also designed with tensor
objects as a primary focus. Comparisons between the functionality of these tools has been
examined in several papers; an overview of Maple, Mathematica, Maxima and Cadabra with a
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detailed comparison of the latter two is given in [41] and a comparison of Maple and Cadabra
in [42]. Sections 6 and 7 of the previously referenced paper by MacCallum [34] are also an
excellent reference.

We will first have a look at Cadabra compared to some other CAS tools; in order to keep
the scope fairly narrow we will focus on three other systems which represent a fairly diverse
selection of designs: Mathematica with the xAct package [43], Maple Physics, and RedBerry.
In the next section to see how these differences surface when performing a calculation we will
look specifically at how to approach some general relativity computations in both Cadabra and
SageMath (which will also be referred to as simply Sage).

2.4.1 Accessibility

A primary factor to consider in choosing any program is its accessibility, which not only includes
the platform support and requirements but also the price and availability of the software.
Cadabra along with RedBerry are open source tools and thus freely available to download and
use. Mathematica and Maple on the other hand are commercial tools and therefore a licence
for them must be purchased which can be relatively expensive. This is however often offset by
the fact that universities, companies and other institutions will often hold licences which afford
their employees access the software without having to purchase it themselves. Additionally,
Mathematica also offers a cloud-based interface5 with a free option, although this does not
provide as much power as the full program.

Both Mathematica and Maple are available on Windows, Linux and MacOS. RedBerry is
implemented in Java and is therefore also supported on all three systems as well as other systems
supported by Java. Cadabra was originally only available for Linux and MacOS, but recently
support for Windows has been increasing although currently binaries are not available and it
must be built from source.

2.4.2 Interface

Both Cadabra and Mathematica support a notebook interface which allows calculations to be
split up into logical sections using cells which can be rerun and edited interactively. Maple makes
use of a worksheet interface which also allows organisation of more complicated calculations
into logical parts as well as the ability to include objects from other parts of Maple. Redberry
is a Java library and is run through the Groovy language, and so calculations are written inside
a .groovy script and then run.

All the systems allow the output to be converted to LATEX, with RedBerry and Cadabra
printing expressions in LATEX by default, and Maple and Mathematica giving an export option
and allowing the output format to be changed by the use of e.g. Maple’s
Setup(mathematicalnotation=true) command. Additionally Mathematica, Maple and Cadabra
allow the whole notebook, or worksheet, to be exported to a .tex document allowing the easy
presentation of a notebook as a stand-alone document.

2.4.3 Defining expressions

At the core of a CAS program is the ability to construct and manipulate expression. As noted
earlier, Cadabra parses a LATEX-style language into expressions and also produces output which
is fed straight into a LATEXcompiler. Of the tools under comparison only RedBerry also provides

5https://www.wolframcloud.com
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a LATEX-style input language, although the compromises made to avoid ambiguity are different
to Cadabra’s; compare the example from the RedBerry paper [44]

def t = 'F_mn*(A^ab + M_c*N^cab)'.t

which in Cadabra would be

t := F_{m n}*(A^{a b} + M_{c} * N^{c a b}).

One of the advantages of accepting LATEX as input is that it allows expressions to be copied
from other sources without much conversion needing to be done [42]. In both cases, the input is
parsed from a string into an expression object. This is different from the other systems where
expressions are built up by defining the constituent objects as variables and combining them
using the operators of the language. For example in the xAct package the definition would first
require defining the tensors on a manifold

DefManifold[Man , 3, {a,b,c,m,n}]

DefTensor[F[a,b], Man]

DefTensor[A[-a,-b], Man]

DefTensor[M[a], Man]

DefTensor[N[-a,-b,-c], Man]

where the dash is used to convey a contravariant index, and it can then be entered as

F[m,n] (A[-a,-b] + M[c] N[-c, -a, -b])

2.4.4 Manipulating expressions

Once constructed all systems allow algorithms to be applied to the resulting expression objects,
either through function calls or using methods of the object. Cadabra is also unique in having
mutable expressions, and thus a single copy of an expression can be used throughout a notebook
with algorithms modifying it. The other packages all implement immutable expressions and the
result of all algorithms is a new object. There are advantages to both systems; immutability
allows some more efficient use of resources through interning expressions and also ensures that
in notebooks cells can be run without modifying the expressions in other cells, on the other hand
mutable expressions mean that lots of potentially expensive copies of expressions are avoided
and the expression can be modified while iterating over it (although of course the power to do
so does not always mean it is the right thing to do). Of course, a Cadabra expression can be
copied if it needs to be used in several different calculations.

Another motivation behind having mutable expressions in Cadabra is to discourage copy-
and-pasting parts of expressions in order to work on particular terms. The alternative method
that Cadabra provides is to be able to zoom in on a expression by specifying a pattern for
the terms that the user wishes to work on; for instance to select all terms in the expression
a+ b+ ∂tc+ ∂td which are derivatives the zoom algorithm can be used

\partial {#}:: PartialDerivative.

t:: Coordinate.

ex := a + b + \partial_{t}{c} + \partial_{t}{d}.

zoom(ex, $\partial_{t}{Q??}$);

which outputs · · · + ∂tc + ∂td. The benefit of this mechanism is that it is more flexible if the
original expression is later modified and the notebook rerun.
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2.4.5 Treatment of tensors

All the programs have different ways of implementing tensors, but whereas in Cadabra and
RedBerry tenso Ricci differentiates between tensor expressions where indices are not explicitly
defined and component expressions where the indices are inserted, although most of the algo-
rithms are designed to work on both classes of expressions. Tensor expressions can be converted
into component form by specifying some indices:

M [L[i], U[j]]

In Cadabra expressions are always treated as being in component form, although in some
situations such as spinor mechanics where indices are conventionally suppressed it is possible
to use the ImplicitIndex property to define indices for an object without having to have to
explicitly in expressions.

Both RedBerry and Maple also use component notation, however they permit less freedom
with index positions. By default Cadabra assumes that the position of an index does not contain
any information, as differentiating between covariant and contravariant indices is a constraint
which the user can enforce. RedBerry will however throw an index error if dummy indices are
not balanced and Maple will automatically rearrange the indices to balance the dummy indices.

2.4.6 Conventions and properties

Cadabra attempts to enforce as few conventions as possible, allow the user to define notations
which are natural for their problem and to tie them to as few conventions as possible, for
instance by using symbols of their choice for common tensors and operations such as partial
differentiation. Some examples of common property definitions in Cadabra would be

\partial {#}:: PartialDerivative.

R_{a b c d}:: RiemannTensor.

\delta_{a}^{b}:: KroneckerDelta.

g_{\mu \nu}:: Metric.

however in theory any symbols (as long as they have the correct index structure, number of
arguments etc...) could be used in place of these. The other tools all contain some degree of
inflexibility with regards to conventions; for instance RedBerry uses gij for the metric tensor
and dij for the Kronecker delta. Maple also comes with some predefined tensors such as the
gamma matrices γµ, the derivative operator ∂µ and the metric tensor gµν .

The other tools also generally require some information about the space to be defined before
a tensor is used, as we have seen xAct requires the Manifold to be defined. The ability to define
things as and when needed makes Cadabra more flexible when working in fields where it is
undesirable or even impossible to explicitly define quantities such as the number of dimensions
before a calculation.
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2.5 Calculations in GR using Cadabra and SageMath

To show how Cadabra differs from other CAS tools we will compare how a calculation in
general relativity is performed in both Cadabra and SageMath with the SageManifolds package.
SageMath has been chosen as a comparison for a few reasons: it also uses a Python notebook
interface which allows us to examine the differences in its approach and functionality rather
than differences imposed by the language itself, it is also an open-source tool, and it has
functionality whose approach is representative of the style of many of the alternative programs
we migh consider. Similar calculations performed in Maple, Mathematica and other packages
for comparison can be found in e.g. [45, 46, 47].

The calculation we perform is from the comparison paper [48] which begins with a com-
parison of the open-source tools SageMath, GraviPy and Maxima and then concentrates on
the features of SageMath with a demonstrative calculation of calculating wave equations and
geodesic orbits in a Schwarzschild spacetime which allows us to explore the abstract tensor ca-
pabilities, handling of scalar expressions as well as ability to perform numeric computations. We
will follow through the calculation and comment on notable differences between the approach
in Cadabra and SageMath. The output of the two notebooks is taken directly from the output
cells. The mathematics and physics in this section can be found in most introductions and
reference texts on General Relativity and Steven Weinberg’s Gravitation and Cosmology [49] is
recommended as an accessible book on the topic. A more detailed reference on the Schwarzschild
spacetime specifically can be found in chapter 16 of [50].

The Schwarzschild metric describes the spacetime around a spherically symmetric body with
no electric charge or angular momentum and where the cosmological constant is set to 0. It was
first described independently by Karl Schwarzschild and Johannes Droste within a few months
of the publication of Einstein’s paper introducing General Relativity. Other than the case of a
completely flat spacetime, it was the first analytic solution discovered for the Einstein equation.
As many objects in the universe including stars, planets and black holes can be approximated
to a high degree of accuracy as spherical objects it continues to prove to be one of the most
useful and widely used metrics. Other than its use as an exact solution to the equations it is
also frequently used as a starting point for perturbative solutions.

The form of the metric in terms of an invariant spacetime interval ds at a distance r from
the center of a body of mass M , in natural units where the speed of light and gravitational
constant are set to 1, is given in spherical coordinates (t, r, θ, φ) by

ds2 =

(
1− 2M

r

)
dt2 −

(
1

1− 2M
r

)
dr2 − r2dθ2 − (r sin θ)2dφ2 (2.1)

where the metric signature is timelike. At r = 0 there is a singularity at the time and radial
components and so this point must be excluded. There is a second singularity in the radial
component when r = 2M which is referred to as the event horizon. However, unlike the
singularity at r = 0, by choosing a suitable coordinate system it is possible to remove this
singularity. For example, in the reference frame of a free-falling observer the metric appears
like flat space flowing radially inwards [51]:

g = dt′2 −

(
dr −

√
2M

r
dt′

)2

− r2dθ2 − (r sin θ)2dφ (2.2)

where t′ is the proper time of such an observer. Here there is no problem with letting r = 2M
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showing that this is a consequence of the specific coordinate system which is used. We can
however assign some physical meaning to the fact that this singularity occurs in spherical
coordinates as this is nonetheless a valid reference frame an observer might view from, and as
the radial component diverges at the event horizon we can ascertain that it is impossible for a
far off observer to see or gain any information beyond the region where 2M ≤ r.

2.5.1 Defining the spacetime

We begin by setting up basic variables of the spacetime, which in both systems requires defining
the set of coordinates and metric tensor. In Sage these stem from a Manifold object for which
there is no equivalent in Cadabra, with the connection between the coordinates and metric
instead being given by the indices we define.

Cadabra SageMath

coordinates := {t,r,\theta ,\phi}.
Coordinate(coordinates)

indices := {\mu ,\nu ,\rho ,\sigma ,\lambda
,\kappa ,\chi ,\gamma}.

Indices(indices , $values=@(coordinates),
position=fixed$)

g_{\mu\nu}:: Metric.
g^{\mu\nu}:: InverseMetric.
g:: Determinant(g_{\mu\nu}).

\partial {#}:: PartialDerivative.
i:: ImaginaryI.

reset()

Man = Manifold(4, 'Man', r'\mathcal{M}')
BL.<t,r,th,ph> = Man.chart(r't r:(0,+oo)

th:(0,pi):\theta ph:(0,2*pi):\phi')
g = Man.lorentzian_metric('g')

Here we get to see syntaxes specific to both systems: the := and $...$ tokens in Cadabra for
defining expressions and the angular brackets <...> in Sage for defining a list of names. One
of the most important differences between the two is that defining a symbol in Sage returns
an object which can then be used in constructing expressions in an index-free style using the
Python operators and functions to combine objects; in Cadabra however as expressions are
generated from LATEXstyle strings with different objects identified by property definitions which
are assigned to patterns, all the forms of the metric we will use in the calculations (gµν , gµν ,
g) must be declared. The next step is to define the components of the Schwarzschild metric
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Cadabra SageMath

metric := {
g_{t t} = (1-2 M/r),
g_{r r} = -1/(1-2 M/r),
g_{\theta\theta} = -r**2,
g_{\phi\phi}=-r**2 \sin(\theta)**2}.

complete(metric , $g^{\mu\nu}$)
complete(metric , $g$);

sqrtdetg = substitute($sqrt(-g)$, metric
)

map_sympy(sqrtdetg , "powdenest", "force=
True")

substitute(sqrtdetg , $Abs(Q??) -> Q??$);

M = var('M')
g[0,0] = (1-(2*M)/r)
g[1,1] = -1/(1-(2*M)/r)
g[2,2] = -r^2
g[3,3] = -(r*sin(th))^2

ginv = g.inverse ()
sqrtabsdetg = g.sqrt_abs_det ().expr()

show(g.display ())
show(ginv.display ())
show(sqrtabsdetg)

[
gtt = 1− 2Mr−1, grr =

−
(
1− 2Mr−1

)−1
, gθθ = −r2, gφφ =

−r2(sin θ)2, gtt =
(
−2Mr−1 + 1

)−1
,

grr = 2Mr−1 − 1, gθθ = −r−2,

gφφ = −
(
r2(sin θ)2

)−1
, g = −r4(sin θ)2

]

r2 sin θ

g =
(
− 2M

r + 1
)

dt⊗ dt+
(

1
2M
r −1

)
dr⊗ dr−

r2dθ ⊗ dθ − r2 sin (θ)
2

dφ⊗ dφ

g−1 =
(
− r

2M−r

)
∂
∂t⊗

∂
∂t +

(
2M−r
r

)
∂
∂r ⊗

∂
∂r −

1
r2

∂
∂θ ⊗

∂
∂θ −

1
r2 sin(θ)2

∂
∂φ ⊗

∂
∂φ

r2 sin (θ)

In Sage the metric tensor is defined and accessed as a matrix with the values inserted using
integer indices. In Cadabra’s approach components of the metric can be stored in an expres-
sion consisting of comma-separated definitions which act as substitution rules. Generating the
inverse and determinant is done using complete which uses the components already defined
to ‘complete’ the list of substitution rules. This relies on the InverseMetric and Determinant

properties for Cadabra to recognise the relationship between the components which have al-
ready been defined and the object it is asked to calculate. Calculating the value of

√
(− g) in

Cadabra requires some more steps than in Sage, as Cadabra does not gain enough information
about the coordinates to simplify square roots in general, so SymPy’s powdenest is required.
We strip the absolute functions with a substitution using the named wildcard Q?? which allows
the substitution rule to work with arbitrary arguments.

In order to calculate a covariant derivative on the metric we need to determine the met-
ric connection in our spacetime which allows us to connect different points on the spacetime
manifold. This connection is given by the Christoffel symbols

Γρµν =
1

2
gρλ(∂νgλµ + ∂µgλν − ∂λgµν) (2.3)

which are calculated in both programs as follows.
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Cadabra SageMath

ch := \Gamma ^{\rho}_{\mu \nu} = 1/2 g^{\
rho \lambda} (
\partial_ {\nu}{g_{\ lambda \mu}}
+ \partial_ {\mu}{g_{\ lambda \nu}}
- \partial_ {\ lambda }{g_{\mu \nu}}).

evaluate(ch, metric , rhsonly=True);

import cdb.core.component as comp
comp.get_component(ch, $\phi , \theta , \

phi$);

ch = g.connection ()
show(ch.display ())
show("Component [3,2,3] = ", ch[3,2,3])

Γρ µν = �µνρ



�φr
φ = r−1

�φθ
φ = (tan θ)−1

�θr
θ = r−1

�rrr = M(r (2M − r))−1

�trt = M(r (−2M + r))−1

�rφ
φ = r−1

�θφ
φ = (tan θ)−1

�rθ
θ = r−1

�rtt = M(r (−2M + r))−1

�φφ
r = (2M − r) (sin θ)2

�φφ
θ = −

1

2
sin (2θ)

�θθ
r = 2M − r

�ttr = M (−2M + r) r−3

Γφ θφ = (tan θ)−1

Γ t
t r = − M

2Mr−r2

Γ t
r t = − M

2Mr−r2

Γ r
t t = − 2M2−Mr

r3

Γ r
r r = M

2Mr−r2

Γ r
θ θ = 2M − r

Γ r
φ φ = (2M − r) sin (θ)

2

Γ θ
r θ = 1

r

Γ θ
θ r = 1

r

Γ θ
φφ = − cos (θ) sin (θ)

Γφ
r φ = 1

r

Γφ
θ φ = cos(θ)

sin(θ)

Γφ
φ r = 1

r

Γφ
φ θ = cos(θ)

sin(θ)

Component [3,2,3] = cos(θ)
sin(θ)

As the metric is implemented as a Python object in Sage, generating the components is done by
calling the connection method, which by default uses the symbol Γ. In Cadabra the definition
of the connection in terms of the metric tensor must first be entered and then evaluate can be
called which calculates the explicit components of each free index using the substitution rules
calculated for the metric. This also returns an Ex object but with a components node which
allows a specific component to be selected using the get_component function from the standard
library which resolves the components node and all remaining free indices. In Sage, components
are accessed like the metric using array indices.

The central equation in General Relativity is the Einstein equation which determines the
relationship between the curvature of a spacetime with metric tensor gµν and the density of
energy it contains in terms of the stress-energy tensor Tµν :

Gµν + Λgµν = κTµν (2.4)

where is Gµν the Einstein tensor, Λ is the cosmological constant and κ is the Einstein gravi-
tational constant with a value of approximately 2.08× 10−43N−1. The Einstein tensor can be
expressed in terms of the Ricci tensor Rµν and Ricci scalar R

Gµν = Rµν −
1

2
Rgµν (2.5)

and so if the Rµν = 0 and Λ = 0 then it can be seen that the stress-energy tensor is also zero.
Such a solution is known as a vacuum solution. To show that the Schwarzschild spacetime is a
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vacuum solution we calculate the Ricci tensor here:

Cadabra SageMath

riemann := R^{\rho}_{\sigma \mu \nu} =
\partial_ {\mu}(\ Gamma ^{\rho}_{\nu \

sigma}) -
\partial_ {\nu}(\ Gamma ^{\rho}_{\mu \

sigma}) +
\Gamma ^{\rho}_{\mu \lambda} \Gamma

^{\ lambda}_{\nu \sigma} -
\Gamma ^{\rho}_{\nu \lambda} \Gamma

^{\ lambda}_{\mu \sigma}.
ricci := R_{\mu \nu} = R^{\rho}_{\mu \

rho \nu}.
substitute(ricci , riemann)
substitute(ricci , ch)
evaluate(ricci , metric , rhsonly=True);
comp.get_component(ricci , $r, r$);

ricci = g.ricci()
show(ricci.display ())
show("Component [1,1] = ", ricci[1 ,1])

Rµν = 0

Rrr = 0

Ric (g) = 0

Component [1,1] =0

Calculating the Ricci tensor in Cadabra is performed in two steps, first constructing the defini-
tion of the Ricci tensor from the definition of the Riemann tensor and then substituting in the
computed values of the connection and metric tensors. Both systems show the zero without
having to expand the object out into components, Cadabra by leaving the free indices on the
tensor and Sage by showing the object in an index-free notation.

2.5.2 Computing the Klein-Gordon equation

In order to study the dynamics of a particle bound in a Schwarzschild spacetime we need to
use a relativistic wave equation, i.e. a covariant analogue of the Schrödinger equation. For the
analysis here, we use the Klein-Gordon equation [52]

1√
−g

∂µ(
√
−ggµν∂νΦ) =

∂V (Φ)

∂Φ
(2.6)

To study the spherically-symmetric Schwarzschild spacetime we assume the Ansatz solution
given in [53]

Φ = e−iωteikφR(r)S(θ) (2.7)

We start by computing the expression ∂µ(
√
−ggµν∂νΦ)
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Cadabra SageMath

R:: Depends(r).
\Theta :: Depends(\theta).

ansatz := \Phi = \exp(-i \omega t) * \
exp(i k \phi) * R * \Theta.

kg := \partial_ {\mu}{g^{\mu \nu} @(
sqrtdetg) \partial_ {\nu}{\Phi}}.

substitute(kg, ansatz)
evaluate(kg, metric)
substitute(kg, $i**2 -> -1$);

var('omega , k, KG')
Phi = function('Phi')(*BL)
R = function('R')(r)
Theta = function('Theta ')(th)
Phi = exp(-I*omega*t) * exp(I*k*ph) * R

* Theta

kg = 0
for mu in range(len(BL[:])):

for nu in range(len(BL[:])):
kg += diff(

(ginv[mu,nu].expr() *
sqrtabsdetg * diff(Phi ,
BL[nu])),

BL[mu])

show(kg)

(
k2 (2M−r)RΘ+ω2r3RΘ(sin θ)2+(2M

−r) (r (2M−r) Θ sin θ∂rrR−rΘ sin θ∂rR

+ (2M − r) Θ sin θ∂rR−R sin θ∂θθΘ

−R cos θ∂θΘ) sin θ
)

exp (i (kφ

− ωt)) ((2M − r) sin θ)−1

ω2r3R(r)Θ(θ)e(i kφ−i ωt) sin(θ)
2M−r +

(2M − r)rΘ (θ) e(i kφ−i ωt) sin (θ) ∂2

(∂r)2R (r)+

(2M − r)Θ (θ) e(i kφ−i ωt) sin (θ) ∂
∂rR (r) −

rΘ (θ) e(i kφ−i ωt) sin (θ) ∂
∂rR (r) +

k2R(r)Θ(θ)e(i kφ−i ωt)

sin(θ) −
R (r) cos (θ) e(i kφ−i ωt) ∂

∂θΘ (θ) −
R (r) e(i kφ−i ωt) sin (θ) ∂2

(∂θ)2 Θ (θ)

In Sage we loop through the coordinates calculating each term and adding it to the resulting
expression. In Cadabra we can write the equation using free indices, and then after substituting
in the Ansatz solution we use evaluate which automatically expands the dummy indices and
substitutes in the previously calculated metric components. The value of

√
−g is ‘pulled in’ to

the expression using the @(...) syntax. It is of course also possible in Cadabra to build up the
expression by looping through the coordinates expression defined earlier and pulling in each:

for mu in coordinates.top().children ():

for nu in coordinates.top().children ():

term := \partial_{@(mu)}{

g^{@(mu) @(nu)} @(sqrtdetg) \partial_{@(nu)}{\Phi}.

kg += term

This also shows that Cadabra does support the Python operators + and * between Ex objects
We now want to split the equation into terms relying on the radial coordinate r and the

angular coordinate θ. First we divide through by the common factor Φ sin θ, and then loop over
the terms and calculate their derivative with respect to r
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Cadabra SageMath

kg *= $1/(\ Phi sin(\theta))$
substitute(kg, ansatz)
substitute(kg, $2M - r -> Mp$)
distribute(kg)
substitute(kg, $Mp -> 2M - r$)

laux:: LaTeXForm("\ lambda_ {\mbox{\
scriptsize{aux }}}").

kg_rad := laux.
kg_ang := -laux.
for term in kg.top().children ():

der = simplify($\partial_{r}{@(term)
}$)

if der == 0:
kg_ang += term

else:
kg_rad += term

kg = expand(kg / (Phi * sin(th)))

var('lambda_aux ')
kg_rad = lambda_aux
kg_ang = -lambda_aux
for term in kg.operands ():

if diff(term , r) == 0:
kg_ang += term

else:
kg_rad += term

In order for the kg.top().children() iterator to loop over the terms in a sum, we first
distribute the Cadabra expression, sandwiching the call between substitutes to ensure that
the bracket (2M − r) isn’t expanded as a side effect. As we built the equation in Sage up term
by term we do not need to distribute it first.

We have also introduced the auxiliary variable λaux. Sage automatically creates a LATEX name
for the variable although a different name can be assigned using the latex_name option to var.
In Cadabra the name is used directly in a LATEX expression and by default all subscripts of an
object are treated as covariant indices; in order to avoid this we have chosen to create a proxy
name laux and assigned it a LaTeXForm property so that it displays properly, but it would also
be possible to use the Symbol property

aux:: Symbol.

to override the default behaviour of treating this name as an index. Before printing the two
expressions we apply some of the tidying routines to isolate the functions R(R), S(θ) and their
derivatives

33



2.5. Calculations in GR using Cadabra and SageMath Chapter 2

Cadabra SageMath

display("Radial component:")
kg_rad *= $R$
simplify(kg_rad)
substitute(kg_rad , $2M - r -> Mp$)
distribute(kg_rad)
factor_out(kg_rad , $\partial_{r}{R}$)
factor_out(kg_rad , $\partial_{r r}{R}$)
factor_out(kg_rad , $R$)
sort_product(kg_rad)
collect_factors(kg_rad)
substitute(kg_rad , $Mp -> 2M - r$);

display("Angular component:")
kg_ang *= $\Theta$
simplify(kg_ang)
factor_out(kg_ang , $\partial_ {\theta }{\

Theta}$)
factor_out(kg_ang , $\partial_ {\theta \

theta }{\ Theta}$)
factor_out(kg_ang , $\Theta$);

kg_rad = expand(kg_rad * R) \
.simplify_full () \
.collect(R) \
.collect(diff (R,r)) \
.collect(diff(R,r,r))

kg_ang = expand(kg_ang * Theta) \
.simplify_full () \
.collect(Theta) \
.collect(diff(Theta , th)) \
.collect(diff(Theta ,th,th))

show("Radial component")
show(kg_rad)
show("Angular component")
show(kg_ang)

Radial component:

∂rR (−2r + 2M) + (2M − r) ∂rrRr

+R
(
λaux + (2M − r)−1ω2r3

)
Angular component:

− ∂θΘ(tan θ)−1 − ∂θθΘ + Θ
(
k2(sin θ)−2 − λaux

)

Radial component(
ω2r3

2M−r + 2Mλaux

2M−r −
λauxr

2M−r

)
R (r) +

2
(

2M2

2M−r −
3Mr

2M−r + r2

2M−r

)
∂
∂rR (r) +(

4M2r
2M−r −

4Mr2

2M−r + r3

2M−r

)
∂2

(∂r)2R (r)

Angular component

−
(
λaux − k2

sin(θ)2

)
Θ (θ) − cos(θ) ∂∂θΘ(θ)

sin(θ) −
∂2

(∂θ)2 Θ (θ)

2.5.3 Visualising the radial component

We now concentrate on the radial component. The solution to this equation can be given in
terms of the confluent Heun functions which are not implemented by either program, and so we
use the numeric tools available to examine the solution. As it is second order in derivatives of
r, we introduce the auxiliary function Raux(r) = ∂r(R(r)) to create a system of two first order
equations and then use a linear solver to isolate the derivatives on one side.
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Cadabra SageMath

from cdb.sympy.solvers import linsolve
Raux:: Depends(r).
Raux:: LaTeXForm("R_{\mbox{\ scriptsize{

aux }}}").

rad1 := \partial_{r}{R} - Raux.
rad2 = substitute(kg_rad.top().ex(), $\

partial_{r}{R} -> Raux , \partial_{r
r}{R} -> \partial_{r}{Raux}$)

dR = linsolve(rad1 , $\partial_{r}{R}$)
[0][0];

dRaux = linsolve(rad2 , $\partial_{r}{
Raux}$)[0][0];

R_aux = function('R_aux ')(r)

rad1 = diff(R, r) - R_aux
rad2 = kg_rad \

.subs(diff(R, r) == R_aux) \

.subs(diff(R, r, r) == diff(R_aux , r
))

dR = (solve(rad1 == 0, diff(R, r)))[0].
right()

dRaux = (solve(rad2 == 0, diff(R_aux , r)
))[0]. right()

show("dR/dr = ", dR)
show("dRaux/dr = ", dRaux)

∂rR→ Raux

∂rRaux →
(
−4M2Raux − 2MλauxR+ 6MrRaux

+ λauxrR− ω2r3R

− 2r2Raux
) (
r
(
4M2 − 4Mr + r2

))−1

dR/dr =Raux (r)

dRaux/dr = −
(ω2r3+2Mλaux−λauxr)R(r)+2 (2M2−3Mr+r2)Raux(r)

4M2r−4Mr2+r3

Sage can make use of Maxima’s rk differential equation solver which uses a fourth-order Runge-
Kutta method; in Cadabra we make use of the integrate_ode function which is a wrapper for
the SciPy function scipy.integrate.odeint.

In both cases we must pass both R and Raux as variables instead of functions of r which we
do by making the substitution R -> Rc and R_aux -> Rc_aux.

Cadabra SageMath

from matplotlib import pyplot as plt
from cdb.numeric.integrate import

integrate_ode

ex1 = substitute(dR[1], $R -> Rc, Raux
-> Rcaux$)

ex2 = substitute(dRaux[1], $R -> Rc,
Raux -> Rcaux$)

rs, Rs, Rauxs = integrate_ode(
(ex1 , ex2),
$r, Rc, Rcaux$,
(0.3, 1, 0.5),
100, 0.01,
$M->0.1, \omega ->0.2, k->2, laux ->2$

)

from sage.calculus.desolvers import
desolve_system_rk4

Rc, Rc_aux , r = var('Rc, Rc_aux , r')
ex1 = dR.subs(R == Rc, R_aux == Rc_aux)
ex2 = dRaux.subs(R == Rc, R_aux ==

Rc_aux)

ex2 = ex2.subs(M=0.1, omega =0.2, k=2.0,
lambda_aux =2.0)

radsol = desolve_system_rk4(
[ex1 , ex2],
[Rc, Rc_aux],
ics =[0.3 ,1 ,0.5] ,
ivar=r, end_points =100, step =0.01)

To check the solution we also implement an asymptotic approximation of the solution which is
provided in [54]:

Rl =
Cl
r

sin

[
ωr + 2Mω ln(r)− lπ

2
+ arg(Γ(l + 1− 2iMω))

]
(2.8)

with the parameter Cl set to match the amplitude of the numeric solution
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Cadabra SageMath

from scipy.special import gamma
import numpy as np

def Rasym(r, Cl, M, omega , L):
return (Cl/r) * np.sin(omega * r + 2

* M * omega * np.log(r) - \
0.5 * L * np.pi + np.angle(

gamma(L+1-2j*M*omega)))

rs_asymp = np.linspace (20, 100, 200)
Rs_asymp = [Rasym(r, 250, 0.1, 0.2, 1.0)

for r in rs_asymp]

var('Cl ,L')
Rasym = Cl*(1/r)*sin(

omega*r + 2*M*omega*log(r) - (L*pi
/2)

+ arg(gamma(L + 1 - 2*I*M*omega)))
Rasymnum = Rasym.subs(Cl=250, M=0.1,

omega =0.2, L=1.0)

In Cadabra we have made use of NumPy to implement this as a pure Python function, al-
though we could also have written it as a Ex object and used the cdb.numeric.evaluate library
to evaluate it numerically. We now plot the solution to the differential equations against this
asymptotic formula. Both systems use matplotlib for plotting, but while SageMath provides
some convenience functions allowing us to write Rasym as a Sage expression and pass it di-
rectly to the plot function when plotting in Cadabra we use the pyplot interface. Notice
that the Cadabra semicolon works analogously to the Sage show command, displaying not only
expressions but also the plot inside the notebook.

Cadabra SageMath

fig , ax = plt.subplots ()
ax.plot(rs, Rs, color='b', label='

Numerical solution ')
ax.scatter(rs_asymp , Rs_asymp , color='r'

, marker='x', label='Asymptotic
solution ')

ax.set_xlabel("r")
ax.set_ylabel("R(r)")
ax.legend ()
ax.grid(True , which='both')
ax.axhline(y=0, color='black ')
ax.axvline(x=0, color='black ')
fig;

points = [[i,j] for i,j,k in radsol]
radial_solution = list_plot(

points , axes_labels =['$r$', '$R$'],
legend_label='Numerical solution ')

asympplot = plot(
Rasymnum , (r, 20, 100), linestyle=''

,
marker='x', color='red',
legend_label='Asymptotic solution ')

show(asympplot + radial_solution)
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2.5.4 Visualising geodesics

A geodesic is a generalisation of the concept of a straight line to a curved surface by describing
the path of the shortest line connecting two points. Free particles follow geodesics, and so to
examine their dynamics we need to calculate geodesics in the Schwarzschild spacetime. One
way to do this is by solving the Hamilton-Jacobi equation

∂S

∂η
− 1

2
gµν

∂S

∂xµ
∂S

∂xν
= 0 (2.9)

for some affine parameter η. In order to solve this we will use the decomposition [50]

S =
m2

2
η − Et+ Lφ+ F (r) +G(θ) (2.10)

In Cadabra we proceed as for the Klein-Gordon equation, entering the equation with dummy
indices after declaring the coordinate η and then evaluating it over the metric. Similarly in
Sage the expression is built up term by term by looping over the coordinates:

Cadabra SageMath

{\eta}:: Coordinate.
F:: Depends(r).
G:: Depends(\theta).

ansatz := S = (\eta m**2) / 2 - w * t +
L \phi + F + G.

hj := \partial_ {\eta}{S} - 1/2g^{\mu \nu
} \partial_ {\mu}{S} \partial_ {\nu}{S
};

substitute(hj, ansatz)
evaluate(hj, metric);

var('eta , m, w, L, S, HJfull ')
F = function('F')(r)
G = function('G')(th)

# Define the principal function Ansatz
S = ((eta * m ^2) / 2) -w*t + L*ph + F +

G

# Calculate the Hamilton - Jacobi
equation

hj = 0
for i in range(len(BL[:])):

for j in range(len(BL[:])):
hj += ginv[i, j].expr() * diff(

S, BL[i]) * diff (S, BL[j])
hj = diff(S, eta) - (1/2)*hj
show (hj)

∂ηS −
1

2
gµν∂µS∂νS

1

2
L2
(
r2(sin θ)2

)−1
+

1

2
m2

+ w2
(
4Mr−1 − 2

)−1

−
(
Mr−1 −

1

2

)
(∂rF )2 +

1

2
(∂θG)2r−2

1
2 m

2 + rw2

2 (2M−r)−
(2M−r) ∂∂rF (r)2

2 r +
∂
∂θG(θ)2

2 r2 +
L2

2 r2 sin(θ)2

We also calculate the right hand side of the orbital equations

dxµ

dη
= −gµν ∂S

∂xν
(2.11)

in a similar fashion. In Sage the components are inserted as elements of a vector, while in
Cadabra a set of component rules for the free index µ is generated.
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Cadabra SageMath

orbital := g^{\mu \nu} \partial_ {\nu}{S}
.

substitute(orbital , ansatz)
evaluate(orbital , metric);

orbital = zero_vector(SR, len(BL[:]))

for mu in range(len(BL[:])):
for nu in range(len(BL[:])):

orbital[mu] = orbital[mu] - (
ginv[mu, nu].expr()) * diff(
S, BL[nu])

show(orbital)

�µ



�t = rw(2M − r)−1

�r = (2M − r) ∂rFr−1

�θ = −∂θGr−2

�φ = −L
(
r2(sin θ)2

)−1

(
− rw

2M−r , −
(2M−r) ∂∂rF (r)

r ,
∂
∂θG(θ)

r2 , L
r2 sin(θ)2

)

To look at solutions on the equator we make the substitution θ → π
2 , and thus also ∂θG → 0,

to both the Hamilton-Jacobi expression as well as the orbital equations which is done similarly
in both programs

Cadabra SageMath

equatorial := \partial_ {\theta}{G} -> 0,
\theta -> \pi/2.

substitute(hj, equatorial)
simplify(hj);

substitute(orbital , equatorial);

hj = hj.subs(diff(G)==0).subs(th=pi/2)
show(hj)

orbital = orbital.subs(diff(G)==0).subs(
th=pi/2)

show(orbital)

1

2

(
L2 (2M − r) +m2r2 (2M − r) + r3w2

− r(2M − r)2(∂rF )2
) (
r2 (2M − r)

)−1

�µ



�t = rw(2M − r)−1

�r = (2M − r) ∂rFr−1

�
1
2
π = 0

�φ = −L
(
r2sin

(
1

2
π

)2
)−1

1
2 m

2 + rw2

2 (2M−r) −
(2M−r) ∂∂rF (r)2

2 r + L2

2 r2(
− rw

2M−r , −
(2M−r) ∂∂rF (r)

r , 0, L
r2

)

We wish to visualise ∂tr and ∂tφ which we calculate from ∂ηx
µ using the chain rule and by

solving the Hamilton-Jacobi for ∂rF which is then also substituted in.
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Cadabra SageMath

dFsquared = linsolve(hj, $\partial_{r}{F
}**2$)[0][0][1]

dF = $\partial_{r}{F} = \sqrt(@(
dFsquared))$

gt = comp.get_component(orbital , $t$)

# dr/dt = dr/deta / dt/deta
gr = comp.get_component(orbital , $r$)
dr = substitute($@(gr) / @(gt)$, dF)
simplify(dr)

# dphi/dt = dphi/deta / dt/deta
gphi = comp.get_component(orbital , $\phi

$)
dphi = $@(gphi) / @(gt)$
simplify(dphi)

dF = solve(hj, diff(F, r))[1]

dr = (orbital [1] / orbital [0]) \
.subs(diff(F, r) == dF.rhs())

dphi = (orbital [3] / orbital [0])

We define a set of fairly arbitrary parameters in both systems and call the numeric inte-
gration routine. In Cadabra we again use integrate_ode, and in Sage we import and use
desolve_odeint which is also implemented using the SciPy odeint function. We set the pa-
rameters to fairly arbitrary values to give an aesthetically pleasing illustration of a possible
result, in particular by setting maux and Maux to distinct values greater than 0 we generate the
non-stable orbit of a timelike particle.

Cadabra SageMath

m_aux = 1
M_aux = 1.0005
L_aux = 4.0
w_aux = 1.0
step_size = 0.01
eta_end = 500
r_initial = 2.1* M_aux
phi_initial = 0.3
params = {"w": w_aux , "L": L_aux , "m":

m_aux , "M": M_aux}

ts, rs, phis = integrate_ode(
(dr, dphi),
$t, r, \phi$,
[0, r_initial , phi_initial],
eta_end , step_size , params)

from sage.calculus.desolvers import
desolve_odeint

var('m_aux , L_aux , w_aux , M_aux ,
r_initial , \
ph_initial , eta_end , step_size ')

m_aux = 1
M_aux = 1.0005
L_aux = 4
w_aux = 1.0
step_size = 0.1
eta_end = 500
r_initial = 2.1* M_aux
phi_initial = 0.3

params = {"w": w_aux , "L": L_aux , "m":
m_aux , "M": M_aux}

sol = desolve_odeint(
[dr.subs (** params), dphi.subs (**

params)], [r_initial ,
phi_initial],

srange(0, eta_end , step_size), [r,
ph])

Finally, we plot r cos(φ) against r sin(φ), making use of NumPy’s array operators in both
systems and also taking advantage of some of the convenience functions line and circle in
Sage.
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Cadabra SageMath

fig , ax = plt.subplots ()
plt.plot(rs * np.cos(phis), rs * np.sin(

phis))
ax.set_xlabel("r")
ax.set_ylabel("phi")
ax.axhline(y=0, color='k')
ax.axvline(x=0, color='k')
ax.add_patch(plt.Circle ((0,0), 2*M_aux ,

color='black '))
ax.set_aspect('equal ')
fig.set_size_inches (10,3)
fig;

from sage.plot.circle import Circle

p = line(zip(sol[:,0] * cos(sol[:,1]),
sol[:,0] * sin(sol[:,1])))

C = circle ((0,0), 2*M_aux , fill=True ,
rgbcolor='black ')

show(C + p)

2.5.5 Conclusion

Here we have shown how SageMath and Cadabra can both be used in General Relativity
problems. Both systems provide ample inbuilt functionality for performing the calculation, but
the approach which they take is markedly different. In particular, SageMath uses an object
oriented approach where manipulating objects is performed primarily by calling methods on
the objects it uses to represent mathematical quantities, whereas in Cadabra expressions are
treated in a similar fashion to pen and paper calculations where algorithms and substitutions
must be applied to them in order to perform the stages of a calculation.

This may require more work in order to manipulate an expression in Cadabra, and there is
less “magic” provided in the software in the sense that the user is still required to possess the
knowledge of how to manipulate the expressions by hand and is simply letting the software take
care of calculating the intermediate steps. Much of this is hidden in SageMath, for example
when calculating the Ricci tensor no prior calculation of the Riemann tensor is required. Of
course, by creating a custom algorithm in Cadabra this process can be automated and even
shipped as a third-party library. This is also true of auxiliary tools such as numerical solving
and plotting tools which in SageMath are provided to work directly with its objects whereas
Cadabra relies heavily on external libraries which it interfaces with. This can make it easier
to get something up and running in SageMath, but allows Cadabra by design to be more
customizable by allowing the user to plug the resulting expressions into any tool they want
more easily.

As with almost all tools, there is no one solution which is appropriate in all cases, and whilst
in this example both tools are suitable for performing the calculation if the requirements become
more specialised it will become clear that one tool or the other provides more advantages. It
is therefore important to be aware of the overall ecosystem of CAS tools available and their
respective strengths and weaknesses.
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Chapter 3

Canonicalisation

In the previous chapter we looked at the various capabilities of computer algebra systems
and the types of problems which they can be used to solve. In this thesis we will focus on a
specific function called canonicalisation which will culminate in a description of a novel approach
to implementing this functionality. The concept of canonicalisation will be presented in this
chapter with motivation for why it is an important and difficult topic in the field in order to
prepare the way for the technical discussion on the mathematics and algorithmic implementation
which will follow.

During the course of a calculation, it is often necessary, or at least desirable, to perform
rearrangements of the expression to recast it into a canonical form. The exact meaning of
canonical is imprecise and can vary depending on the exact field and context in which it is
used1 but can generally be described as a unique representation of an object which satisfies some
(usually arbitrary) criteria such as being the simplest representation, the least representation
if an ordering on the object can be defined, or a form which is generally accepted as being
standard either by convention or to prepare the object for future calculations.

There are many different why a canonicalisation step may be needed in a calculation. Some
common motives for transforming expressions into particular canonical forms include:

1. Revealing recognisable forms for which solutions are known

Sometimes by collecting terms in a particular way solutions a solution can be made man-
ifest. A good example of this is an expression which can be written as a total derivative:

2xey
dx

dt
+ x2ey

dy

dt
≡ d

dt
(x2ey) (3.1)

By collecting the terms like this the solution to the differential equations becomes obvious.

2. Simplifying the calculation by removing redundant terms

Although this can be viewed an obvious or trivial step to apply, one of the most basic
simplifications which can be made is to collect equivalent terms in a expression:

x+ x ≡ 2x (3.2)

In this example the simplification is very trivial, but in very large calculations (for instance
perturbative expansions) where terms might be separated by thousands of other terms

1c.f. definitions given in https://en.wiktionary.org/wiki/canonical_form and https://mathvault.ca/
math-glossary/#canonical
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or factorized inside other expressions. By regularly checking an expression for equivalent
terms and collecting these the overall complexity of a calculation is reduced.

3. Finding expressions which are identical, or identically zero

There are numerous ways which expressions can be shown to equal zero through simpli-
fication: either through a special case of the removal of redundant terms which leaves no
remaining terms in the expression

(x+ y − 2z) + (y + z − 2x) + (z + x− 2y) ≡ 0 (3.3)

or by using some property of an object in the expression, like in this example where A is
a antisymmetric matrix and Tr is the trace operator

Tr(A) ≡ 0 (3.4)

4. Highlighting particular parts or dependencies in the expression

Sometimes we would like a particular aspect of an expression to stand out. This is
commonly achieved by factorising it out of the expression: here if we want to show that
the expression has a linear dependence on w we can use the identity

wl + 2bw +m ≡ w(l + 2b) +m (3.5)

5. Creating a more aesthetically pleasing final form of an expression

A common final step in a calculation is to perform some simplification to make the result as
intuitive to read as possible, a process which is very often subject to opinion or convention.
One common example of this is the rationalisation of fractions:

√
x+ 1√
x− 1

≡ (
√
x+ 1)2

x− 1
(3.6)

This is by no means a comprehensive list of all the possible motives for wanting to find a
canonical form or all the possible techniques which can be employed for doing so. In the study
of tensors, canonicalisation most commonly refers to the rearrangement of the object’s indices
to bring them in to a standard form; the simplest example of this would be a symmetric rank
2 tensor Sab ≡ Sba. The discussion of the symmetries of these objects and how these can be
used to produce canonical forms of tensorial expressions is the subject of this chapter.

3.1 Tensor symmetries

The symmetry of a tensor refers to the permutations of its indices which leave the object un-
changed. Examples of ways in which these symmetries can manifest themselves in mathematical
expressions include

1. A redundancy in the construction of the tensor, as is the case for the metric tensor gij
whose entries are formed by the coefficients in the form of an infinitesimal line element

ds2 = g00dx
0dx0 + g01dx

0dx1 + · · ·+ gmmdx
mdxm (3.7)

where commutativity of the elements dxi guarantees gij = gji

42



Chapter 3 3.2. Existing algorithms for tensor canonicalisation

2. A consequence of the definition, as is the case of the electromagnetic tensor

Fµν = ∂µAν − ∂νAµ (3.8)

where clearly by letting µ↔ ν the definition requires Fµν = Fνµ

3. In physical contexts, these symmetries can derive from the nature of the object or the
space in which it lives such as the stress tensor σij = σji where the entries correspond to
the stress of an object in each plane; if the off diagonal elements were not balanced then
the object would have an innate torque which is not physically realised.

In all these cases the symmetries are all fundamental properties of the objects, but the purpose
is to illustrate how one can observe these symmetries as being mathematically expressed and
how they are applied to a particular tensor.

The symmetries described thus far have all involved an object being symmetric or antisym-
metric under the exchange of some indices and can all be described by the general equation

Ti1i2···in ≡ εPTP (i1i2...in) (3.9)

for some permutation of the indices P . This type of symmetry is referred to as a mono-term
symmetry as it only relates single forms of the object, and these symmetries lead to a fairly
natural definition of a canonical form for a tensor, as we can assign a lexicographic order to the
indices and formulate the problem as finding the lexicographically least order of these indices
which is equivalent to the object.

There are also a more general form of symmetries known as multi-term symmetries described
by the general equation ∑

j

(εPjTPj(i1i2...in)) ≡ 0 (3.10)

By far the most famous class of these symmetries are the Bianchi identities, with the classic
example being the first Bianchi identity of the Riemann tensor

Rijkl +Riljk +Riklj ≡ 0 (3.11)

These symmetries make the definition of a canonical form more problematic, as these identities
mean that forms which have a least ordering of the indices may contain a far greater number of
terms than other forms with fewer terms but less well ordered indices. Definitions of a canonical
form for these have been proposed but the utility of them in practical applications is not always
clear; they will still satisfy the requirement of distinct equivalent forms always mapping onto
the same canonical form, but as will be discussed this may not be an optimal solution if this is
the ultimate motive, and the form produced may not be desirable if it is a intermediate step in
a calculation or an aesthetically pleasing final form is sought for.

3.2 Existing algorithms for tensor canonicalisation

Before moving on to describing the canonicalisation algorithm which we have developed, a
look at existing attempts at building such an algorithm will be discussed. This will not only
introduce some common ideas which will be useful throughout chapter 4 where we propose our
own algorithm, but also give us an opportunity to look more specifically at the benefits and
drawbacks of various approaches.
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3.2.1 Canonicalisation in Early CAS

The introduction of indexed tensors into computer algebra systems came in the 1970s with sys-
tems such as CLAM [55] which emphasised its utility in the field of general relativity. However,
general algorithms for canonicalisation of tensor expressions had not yet been developed and
canonicalisation routines remained rooted in the other simplifications outlined above. Methods
for calculating the equivalence of two expressions often required users to manually spot identi-
ties, or to expand out expressions into basic elements and use the (hopefully) simple symmetries
of these objects, for instance by expanding out the Riemann tensor in terms of the metric tensor
and its derivatives:

Rρσµν =
1

4

(
2∂µσ(gρν) + 2∂µν(gρσ)− 2∂µρ(gνσ)− 2∂νσ(gρµ)− 2∂νµ(gρσ)

+ 2∂νρ(gµσ) + ∂λ(gρµ)∂σ(gλν) + ∂λ(gρµ)∂ν(gλσ)− ∂λ(gρµ)∂λ(gνσ)

+ ∂µ(gρλ)∂σ(gλν) + ∂µ(gρλ)∂ν(gλσ)− ∂µ(gρλ)∂λ(gνσ)− ∂ρ(gµλ)∂σ(gλν)

− ∂ρ(gµλ)∂ν(gλσ) + ∂ρ(gµλ)∂λ(gνσ)− ∂λ(gρν)∂σ(gλµ)− ∂λ(gρν)∂µ(gλσ)

+ ∂λ(gρν)∂λ(gµσ)− ∂ν(gρλ)∂σ(gλµ)− ∂ν(gρλ)∂µ(gλσ) + ∂ν(gρλ)∂λ(gµσ)

+ ∂ρ(gνλ)∂σ(gλµ) + ∂ρ(gνλ)∂µ(gλσ)− ∂ρ(gνλ)∂λ(gµσ)
)

(3.12)

where, as both partial derivatives and metric tensor are simple-symmetric in both their indices,
the transformation into a canonical form is trivial and can be compared term-wise against any
other index permutation of Rρσµν to check for equality.

Intelligent canonicalisation routines started to appear in the 1990s with the introduction
of packages which integrated into existing CAS, such as the ATENSOR package for the RE-
DUCE program in 1996 [56] and the Arrange and SymmApply functions from the 1998 Tools
of Tensor Calculus package for Mathematica [57] and the improved version of their algorithm
SimplifyAllIndex described in the follow-up paper [58]. Both these tools rely on directly apply-
ing side relations in order to find a canonical form, which for objects with many side-relations,
such as the Riemann tensor, becomes very cumbersome.

It is also at around this time that the literature begins to separate the problem of canoni-
calisation into the two separate problems of dummy symmetries and slot symmetries, although
the use of both types was of course already well understood.

Slot symmetries arise as a result of the reasons outlined above and directly relate one
form of a tensor to another by permuting two or more of its index slots, for example Tabcd ≡
Tadcb. Dummy symmetries however arise from the extra degrees of freedom in labelling indices
introduced by contracted indices, e.g. T aabb ≡ T bbab. Furthermore, depending on the symmetry
of the metric associated with these indices we could generate further identities by raising and
lowering the indices. Two general approaches for handling dummy indices were in circulation
at this time; the first, used by the ATENSOR package, was to treat these as another set of side
relations e.g.

SjkT
kji − SkjT jki = 0 (3.13)

however the number of extra relations this produces grows with the number of permutations
of dummy index names resulting in an O(n! ) algorithm. Mathematica packages could make
use of the included pattern-matching functions to find expressions which are equivalent up to
renamings, much as how nowadays we might use the regular expression /T\^(\w)_\1\^(\w)_\2/

to match both T aabb and T bbaa. This does not of course find a canonical form of an expression
and does not integrate well with the canonicalisation of slot symmetries.
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At around the same time the representation of tensors using group theory, which had been
discussed at least as early as 1946 in Weyl’s The Classical Groups [59] which examined the
relationship between the symmetric group and tensor symmetries, started to garner interest in
the computing community with the publishing of papers such as [60] where a more advanced
technique for dealing with multi-term side relations using the construction of a Gröbner basis
and a way of dealing with dummy indices generally was introduced.

3.2.2 Permutations: A Brief Digression

As the language of permutations will be central not only to the following discussion but through-
out the rest of the chapter, before continuing some of the concepts and conventions will be
covered here.

Permutations are described by elements of the symmetric group Sn whose elements σi consist
of all the n! possible ways of arranging the elements 1, 2, . . . , n. These elements are commonly
written in a cyclic notation, so that the element (1, 4, 5), or if unambiguous (145), indicates the
rearrangement 1 → 4, 4 → 5 and 5 → 1. Elements can be combined by following where each
cycle goes to, for example (1, 2, 3) ? (2, 4) ≡ (2, 4, 1, 3). Combinations which do not all contain
the same set of elements may be disjoint and cannot be combined into a single cycle, such as
(1, 2)(3, 4). Each element of the group can be classified as either even or odd depending on the
number of swaps it requires to construct, for instance (2, 3) which only requires one swap 2↔ 3

is an odd permutation whilst (1, 2, 3, 4, 5) which uses 4 swaps is even.
Another way of describing a permutation is as a permutation list, where the ith item of the

list describes where the element i maps to, for instance the element (1, 4, 5) as a permutation
list could be described as [4, 2, 3, 5, 1, 6, 7, . . . ] where the length of the list is given by the size
of the group Sn. It is often convenient to describe the objects we wish to calculate in terms of
permutation lists and the elements of the group in cyclic notation as this makes calculations
more intuitive: for instance starting from a permutation object [1, 3, 5, 4, 2], applying the group
element (2, 3) simply involves permuting the elements at these positions: (2, 3) ? [1, 3, 5, 4, 2] =

[1, 5, 3, 4, 2] which is equivalent to (2, 3) ? (2, 3, 5) = (2, 5)

3.2.3 The Butler-Portugal Algorithm

From here on the application of group theory to the problem stimulated great advances, partic-
ularly into the area of mono-term canonicalisation with the publishing of the paper [61] which
presented a new algorithm, now known as the Butler-Portugal algorithm, for efficiently deal-
ing with expressions containing arbitrary slot-symmetries and in the second half of the paper
extending this to also handle dummy indices. It is worth going through the idea behind the
algorithm to show why it is difficult to extend this approach for handling multi-term symmetries.

The algorithm can quickly become tedious to calculate by hand, however to elucidate its
behaviour we will follow through a simple example of finding the canonical form of the Riemann
monomial

−Rdcab (3.14)

where we define the expected lexicographic ordering

L = [a, b, c, d] (3.15)

This particular choice is made in order to illustrate as many different aspects of the algorithm
as possible while still only requiring a small amount of manual calculation.
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The mono-term symmetries of the Riemann tensor can be described in numerous different
ways; commonly we use a set of identities

Rabcd ≡ Rcdab
Rabcd ≡ −Rbacd

(3.16)

From these two identities, a total of 7 representations of the Riemann tensor can be reached by
suitable combinations, for example −Rabdc ≡ −Rdcab ≡ Rcdab ≡ Rabcd. A complete list of the
the permutations required to reach all 7 identical representations is another way of representing
the group:

G = {I,−(0, 1),−(2, 3), (0, 2)(1, 3),−(0, 3, 1, 2),−(0, 2, 1, 3), (0, 3)(1, 2)} (3.17)

A representation such as this is far more explicit, however for larger groups with more symmetry
it can become unwieldy to hold the complete set of allowable permutations, especially as the full
symmetric group Sn has n! elements. In order to mitigate this a third representation consisting
of two sets, a base generating set and a strong generating set which are often collectively referred
to as a BSGS (base and strong generating set), is often preferred for actual computations.

The base generating set B is an ordered set of elements Q such that the pointwise stabiliser
of B in G is trivial. The stabiliser subgroup of a point bi is a set of elements of G which leave
bi fixed: StabG(bi) = {g ∈ G | bi ? g = bi}. For example, in the group of Riemann symmetries

StabG(0) = {I,−(2, 3)} (3.18)

as all other elements permute 0. The pointwise stabiliser generalises this to a set of points:

PointwiseStabG(B) = {g ∈ G | ∀bi ∈ B, bi ? g = bi} (3.19)

For a given group G there are multiple different base generating sets we could choose, to make
computations as efficient as possible a reduced base set, i.e. the smallest set we can form, is
preferred. For the Riemann tensor symmetries, there are a variety of reduced base generating
sets including [0, 2], [2, 0] and [1, 3].

For each base generating set B we can define a stabilizing chain which is a set of subgroups
G(i) of G each of which stabilises another point in B. The subgroups are recursively defined as

G(i) =

{
G if i = 1

StabG(i)(bi) if i > 1
(3.20)

such that for a base generating set of n elements, G(n+1) = {I}. Given the base generating set
[0, 2], the stabilising chain for the symmetries (3.17) is

G(1) = {I,−(0, 1),−(2, 3), (0, 2)(1, 3),−(0, 3, 1, 2),−(0, 2, 1, 3), (0, 3)(1, 2)}

G(2) = StabG(1)(0) = {I,−(2, 3)}

G(3) = StabG(2)(2) = {I}

(3.21)

For a given base generating set, the corresponding strong generating set is a set of generators
S for G such that 〈S ∩G(i)〉 = G(i) for all i in the stabilising chain, where 〈K〉 represents the
group generated by the elements of K. The calculation of the strong generating set is non trivial
to do by hand and is often performed alongside the calculation of a base generating set using the
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Schreier-Sims algorithm [62], of which there are several variations but which in essence starts
from a partial BSGS and extends it by considering new elements to find if they are redundant
or not until the full BSGS is developed. A strong generating set for (3.17) relative to the base
[0, 2] is given by

S = {−(0, 1),−(2, 3), (0, 2)(1, 3)} (3.22)

We can show that this follows the definition above:

〈S ∩G(0)〉 = 〈I,−(0, 1),−(2, 3), (0, 2)(1, 3)〉 = G(0)

〈S ∩G(1)〉 = 〈I,−(2, 3)〉 = G(1)

〈S ∩G(2)〉 = 〈I〉 = G(2)

(3.23)

The first line is true because S can generate (3.17), and the second line as

−(2, 3) ?−(2, 3) = I (3.24)

so 〈G(1)〉 = G(1).
The Butler-Portugal algorithm takes as input the BSGS, in order to encode the symmetries it

must use to canonicalise an expression, as well as a representation of the tensor as a permutation
from the base canonical form which is the form the tensor would take it all its indices were
perfectly ordered. In our example tensor given in (3.14), this would be [3, 2, 0, 1] where the
ith entry is the position of the index at slot i of the tensor in L (which for consistency with
most programming languages we zero-index contrary to the discussion above, so slot 0 contains
L[3] = d, slot 1 contains L[2] = c etc.).

In order to encode the sign of the tensor, two extra elements are appended to the represen-
tation which encode the ordering of the indices of a tensor εij = −εji = 1 with the two extra
elements i and j appended to L. Thus, the permutation which needs to be supplied as input
to the Butler-Portugal algorithm for (3.14) is [3, 2, 0, 1, 5, 4].

The Butler-Portugal algorithm is able to efficiently canonicalise an expression by using the
properties of the stabiliser chain to progressively canonicalise the expression. Intuitively, it
reduces the problem of finding the canonical form for the entire set of indices into smaller
problems based around fixing each element in the base generating set. At each iteration, the
slots which are connected by some symmetry with the ith element of the base set are considered
and a partial canonicalisation in these slots with respect to the element is performed. Any
symmetry element which doesn’t fix this point can now be removed from consideration, and
the process is repeated for the remaining elements of the base generating set.

Explicitly, the steps performed at each iteration are

1. Calculate ∆bi , the orbit of bi (i.e. all slots which can be reached from bi by applications
of elements of K).

2. Calculate k, the position of the minimum element of λ in ∆bi

3. Calculate p, the kth point of ∆bi

4. Find the symmetry element ω such that bi ? ω = p

5. Set λ→ λ ? ω

6. Remove elements of K which do not fix bi
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In our example we need to perform two iterations:
Iteration 1 (b0 = 0):

1. ∆0 = {0, 1, 2, 3}, as

0 ? I = 0

0 ? (0, 1)(4, 5) = 1

0 ? (0, 2)(1, 3) = 2

0 ? (0, 2)(1, 3) ? (2, 3)(4, 5) = 3

2. k = 2, as min(∆0) = 0 and λ[2] = 0

3. p = 2, as ∆0[2] = 2

4. ω = (0, 2)(1, 3), as 0 ? (0, 2)(1, 3) = 2

5. λ = [3, 2, 0, 1, 4, 5] ? (0, 2)(1, 3) = [0, 1, 3, 2, 4, 5]

6. K → {I, (2, 3)(4, 5)}, as the elements (0, 1)(4, 5) and (0, 2)(1, 3) do not fix 0

Iteration 2 (b1 = 2):

1. ∆2 = {2, 3}

2. k = 3

3. p = 0

4. ω = (2, 3)(4, 5)

5. λ = [0, 1, 3, 2, 4, 5] ? (2, 3)(4, 5) = [0, 1, 2, 3, 5, 4]

6. K → {I}

We now have a canonical representation of the tensor in permutation form. The last two
elements [5, 4] tell us that we have a factor εji = −1, and the ith index of the tensor is given by
the contents of L[i], so the final result is −Rabcd; as this is the base canonical form it is trivial
to confirm that this is the canonical representation of the input.

Note that the method presented here differs slightly from the example in the first paper
of [61], as we have defined a different lexical ordering, and have adopted the trick of multiplying
through by εij demonstrated in the follow-up paper in order to more clearly present how the
algorithm might be implemented. Some of the steps are also presented differently, in particular
(4) which in the paper is described as finding the trace of a Schreier vector which is an important
implementation detail but is a less intuitive way of thinking about the logic of the algorithm at
this stage.

Of course, this algorithm can only handle the slot symmetries of a tensor. The follow-up
presents an algorithm which can also handle the dummy symmetries in a similar manner by
constructing the group D of all dummy symmetries, which act on the tensor with d ? λ (as
opposed to S which acts from the right), and so the complete set of representations is formed
by the double coset D ? λ ? S. There are multiple extra steps which must be taken in order to
find the minimum element of this set which are not interesting to the current discussion and so
will not be discussed here, however for anyone interested in the mechanics of this I recommend
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studying the implementation of the function double_coset_can_rep in SymPy2 which follows
the algorithm described in the paper very closely, is very readable and contains a long and
detailed explanatory docstring.

The main point which I aim to highlight in this discussion is that the use of a generating
set in order to detect equivalence works well for mono-term symmetries, but is unsuited to
multi-term symmetries. It is possible to imagine an extension where elements of the generating
set can map onto multiple terms, for instance in order to include the cyclic symmetry we might
construct the generating set

K = {I, (0, 1), (2, 3), (0, 2)(1, 3), (1, 2, 3) + (3, 1, 2), other combinations...} (3.25)

however the structure of this is not compatible with many of the techniques used in the algorithm
and the result is that we are once again reduced to treating the generating set as a way of
producing side relations which can be applied to the expression.

3.2.4 Time Complexity of Canonicalisation

Before moving on to proposing a different general solution to this problem, it is worth quickly
commenting on the time complexity of the various approaches described here as the efficiency
of an algorithm is one of the main driving factors. It has already been discussed how the
ATENSOR implementation gives rise to O(n! ) complexity due to the total size of the group of
all dummy renamings. Other methods which use side relations are dependent on the number
of relations required to fully describe the symmetry, which can grow very large if polynomial
expressions are considered.

The Butler-Portugal algorithm as described above runs in an estimated O(p5) time for
Riemann polynomials of degree p, and although for many classes of symmetry runs in polynomial
time although the algorithm can run in exponential time for many highly symmetric cases.
This was the point raised in the paper [63] whose proposed improvement mitigates runtime in
the catastrophic cases of fully symmetric sets of indices such as TabcdefSebfdac which runs in
factorial time. However, the solution is essentially a special-case detection algorithm when fully
symmetric subsets of indices occur, and objects described by many pairwise symmetries (e.g.
(i, i+ 2)(i+ 1, i+ 3)) still suffer the same bottleneck.

The main point to be drawn from this is that while many algorithms may run quickly for
most common cases, and the performance overheads of modern implementations solve all but
the most pernicious of inputs in a reasonable time, in the general case canonicalisation is still
in the worst case a O(n! ) problem.

3.3 Tensor symmetries as Young diagrams

The algorithm which will be presented in the next chapter is also based on the idea of repre-
senting tensors and their symmetries by permutations, but a specific representation of these
symmetries known as Young symmetrisers become the natural language for describing this
algorithm.

2Which can be viewed on github at
https://github.com/sympy/sympy/blob/00d6469eafdd4aac346a0b598184c15f2560dbe5/sympy/combinatorics/
tensor_can.py#L164-L535
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3.3.1 Representations of Sn

A representation of the symmetric group Sn is an operator ψ : Sn → V for some vector space
V . By choosing V to be the space spanned by the index slots of a tensor, the symmetry of a
tensor can be described by choosing a suitable representation of the group. For example, the
simplest representation we can construct, which is known as the trivial representation, maps
every element of Sn to the identity element:

ψtriv(σi) = I (3.26)

where ψtriv is the representation and σi is an element of Sn. A tensor can be represented by the
element of Sn corresponding to the permutation of its indices from base canonical form, and so
the symmetry encoded by this representation is that any permutation of indices is equivalent
to the base canonical form, i.e. the tensor is completely symmetric. To illustrate with an
example, consider a standard metric tensor gµν which is symmetric in its two indices. We
can represent the possible forms of this tensor as elements of the group S2 which contains the
two elements {I, (1, 2)} corresponding to {gµν , gνµ} respectively. We can find the action of a
symmetry operation by seeing where the representation maps each element to. As the metric
tensor is symmetric, it is described by the trivial representation

ψtriv(gµν) = gµν

ψtriv(gνµ) = gµν
(3.27)

Another common representation of Sn is given by

ψalt(σi) =

{
I if σi is an even permutation
−I if σi is an odd permutation

(3.28)

This is known as the alternating representation as the sign alternates between positive and
negative depending on the parity of the permutation. Objects whose symmetry is described by
the alternating representation are totally antisymmetric, for instance ε[ijk]

3 is an element of S3

which obeys
ψalt(εijk) = ψalt(εjki) = ψalt(εkij) = εijk

ψalt(εikj) = ψalt(εkij) = ψalt(εjik) = −εijk
(3.29)

The natural question to ask is how many representations are needed in order to fully describe a
rank-n tensor, or in other words to cover Sn? Clearly for n = 1 any representation is equivalent
to the trivial representation up to an overall constant and this suffices to cover S1. For n = 2,
we can show that {ψtriv, ψalt} is able to cover the whole group. The most intuitive way to see
this is by decomposing a a general second rank object using the well known formula:

Mab ≡
1

2
(Mab +Mba) +

1

2
(Mab −Mba) (3.30)

Here we have added and subtracted Mba so this always holds, but importantly the first bracket
transforms under ψtriv and the second under ψalt. As we have imposed no other symmetry on
Mab this shows that these two representations are sufficient to cover S2. Furthermore, as they
are both one-dimensional representations they are also irreducible.

3Where [. . . ] as usual denotes antisymmetry in these indices
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3.3.2 Irreps of Sn as Young Tableaux

Finding decompositions of rank-n tensors can therefore be used to find the set of representations
which cover Sn, but this is a laborious process in higher dimensions which is easy to get wrong.
Instead, a far simpler approach based on constructions of diagrammatic objects introduced by
Alfred Young in 1900 [64], and now known as Young tableaux is commonly used. By using this
method, all irreps of Sn can be constructed by following a set of rules:

1. Calculate all unique partitions of n. A partition, commonly denoted λ ` n, is a set of
numbers λ = {l1, l2, . . . , lk} such that

∑k
i=1(li) = n and li 6= 0.

2. For each partition, construct the corresponding Young diagram, which consists of k rows
of cells, each row with li cells, and ordered so that each row is no longer than the previous
row.

3. For each diagram, fill the cells with the labels 1, 2, . . . , n so that in each row and column
the numbers are strictly increasing ‘south’ and ‘east’. The filled diagrams are the tableaux.

4. The corresponding irrep is found by symmetrising the elements of Sn in each row and
antisymmetrising the elements in each column.

To illustrate let us explicitly calculate the irreps of S3:

1. The three partitions of 3 are λ1 = {3}, λ2 = {2, 1} and λ3 = {1, 1, 1}

2. The corresponding diagrams are

λ1 = λ2 = λ3 = (3.31)

3. There is only one way of filling λ1 and λ3:

ψtriv = 1 2 3

ψalt =
1
2
3

(3.32)

These diagrams have been suggestively equated with the trivial and alternating represen-
tation: in general any tableau consisting of a single row is a trivial representation and a
single column is an alternating representation.
There are two ways of filling λ2:

ψstd1
= 1 2

3
(3.33)

ψstd2
= 1 3

2
(3.34)

These are known as standard representations, with various uses described in e.g. [65] and
the symmetry they encode is neither fully symmetric nor anti-symmetric.

Although we will be using these tableaux to study the symmetry of tensors, for completeness
it should be mentioned that any object or system displaying a similar symmetry under per-
mutation of its elements can be described using representations of the symmetric group. For
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instance, the wavefunction describing two fermions Ψ(x1, x2) is antisymmetric under particle
interchange, which is equivalent to a permutation of its two arguments and is therefore described
by the irrep of S2

x1

x2

(3.35)

In Cadabra, a representation can be associated to a tensor by the use of the TableauSymmetry

property. For example, associating the tableau (3.34) to Tabc can be done as follows:

T_{a b c}:: TableauSymmetry(shape ={2,1}, indices ={0,2,1}).

where the shape parameter is an ordered list of the rows of the tableau, and indices are the
zero-indexed slots of the tensor which are associated with the cells of the tableau left-to-right
and top-to-bottom.

The relation between these diagrams and the symmetry of a tensor is fully encoded in an
operation known as a Young projection which gives us a way to construct a generic decompo-
sition such as in (3.30). This begins by associating each label in the diagram to an index slot
in the tensor. For 1 2 3 therefore, where we symmetrise across the labels 1, 2 and 3 the
associated tensor is T(abc) (symmetric in all three indices) and similarly, the tableau4 1 2 3 T

the tensor T[abc]. Note however, that the standard representations describe truly mixed symme-
tries, not two independent symmetries, which we might notate as something along the lines of
T(a[b)c] which is symmetric in slots 1, 2 and antisymmetric in slots 2, 3. Indeed, any such object
which has an index slot which belongs simultaneously to a set of symmetrised indices and a
set of antisymmetrised indices must be identically zero as we can perform an odd number of
antisymmetrisations to return to the original permutation of indices:

Tabc ≡ −Tacb ≡ −Tcab ≡ Tcba ≡ Tbca ≡ −Tbac ≡ −Tabc (3.36)

The only way that this can be true is for Tabc ≡ 0. With more than three indices, we can
perform the exact same sequence of permutations selecting a from a set of symmetrised indices
and c from a set of antisymmetrised indices of which b belongs to both sets.

3.3.3 Combinations of Young Diagrams and Tableaux

A useful property of Young diagrams is that it is possible to rewrite any product of two tableaux
taken from Sn and Sm as a direct sum of tableaux in Sn+m, by a specific application of a process
known as the Littlewood-Richardson rule which describes how to decompose a product of two
Schur functions into a sum of other Schur functions. The process can be recast in terms of a
simple algorithm [66] taking as inputs two diagrams λ1 and λ2. We start by labelling each cell
in row ri of λ2 with i. Then, for each row ri in λ2, place each cell in the row to the end of a
row in λ1 subject to the constraints:

1. λ1 is a valid Young diagram at each stage.

2. There is not more than one cell with the label i in each column of λ1.

3. Reading right-to-left and top-to-bottom, the number of cells encountered with label i
must be no greater than the number of cells with label i− 1.

4Where the transposition operator T is occasionally used for convenience and describes 1 2 3 T ≡
1
2
3
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After erasing the labels attached to λ1, each possible combination is a term in the decomposition.
For example, to calculate

⊗ (3.37)

we first label the cells in as follows:
1 1
2 2

(3.38)

We attach the two cells labelled 1 in the first row. The first 1 can be appended to any row:

(a) 1 (b)
1

(c)
1

(3.39)

The second 1 can be added to rows 1 and 2 of (a), 1 and 3 of (b), and only row 1 of (c) which
yields an identical diagram, so this generates a total of four diagrams:

1 1
1

1

1
1

1
1

(3.40)

Note that e.g.

1 1
(3.41)

is invalid by rule 1 and

1
1

(3.42)

is invalid by rule 2 as 1 appears in the same column twice. We now move on to the second
row consisting of the cells 2 . There are 8 legal positions for the first cell:

1 1
2

1 1

2

1
1 2

1
1

2

1
1 2

1
1
2

1
2

1

1

1
2

(3.43)

where a diagram such as
1 1 2 (3.44)

is invalid by rule 3. Finally, attaching the last 2 and removing the labels we get the six unique
terms which make up the final sum:

⊗ = ⊕ ⊕ ⊕

⊕ ⊕

(3.45)
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Note that the product commutes:

λ1 ⊗ λ2 ≡ λ2 ⊗ λ1 (3.46)

and that it is always more efficient to put the simpler tableau on the right hand side. Many
CAS packages include a routine for calculating this decomposition, including the lr_tensor

function in Cadabra as well as sage.libs.lrcalc.lrcalc from Sage which is a binding of the
lrcalc C program by Anders Buch5.

This procedure can also be carried out with tableaux where the cells are already labelled.
This allows the symmetry of an expression given by the tensor product of two objects to be
calculated, for instance if we have a wavefunction of two particles Φ(x1, x2) which is symmetric
under interchange, then by adding a third particle x3 to the system the total symmetry of the
system is described by

x1

x2

⊗ x3 = x1 x3

x2

⊕
x1

x2

x3

(3.47)

If it was then required that the system not be antisymmetric under exchange with x3, the second
term would be dropped leaving only the mixed symmetry term. Similarly, the symmetry of the
product of tensor expressions, e.g. AabCcd can be calculated.

3.3.4 The Young Projection Operator

As alluded to above, the use of these tableaux allow us to fully encode the symmetry of a tensor
by performing a projection operation, which creates an decomposition of an object which makes
the symmetry manifest; that is, any two tensors which are identical under some symmetry
transformation will yield identical projections. A simple and intuitive example of a projection
operation is given by the two brackets in (3.30): the first is the result of the projection

P
(

1 2
)
Mab =

1

2
(Mab +Mba) (3.48)

and the second
P

(
1
2

)
Mab =

1

2
(Mab −Mba) (3.49)

It should be easily verifiable by eye that the symmetryM(ab) is made manifest by this projection,
but to explicitly calculate this is similarly simple:

P
(

1 2
)
Mba =

1

2
(Mba +Mab) = P

(
1 2

)
Mab (3.50)

where no recalculation of the projector is necessary, as it can be deduced from (3.48) by rewriting
the indices a↔ b.

The general formula for calculating a projection operator is given by

P+(Y ) =
1

N

∏
r∈Y
Sr
∏
c∈Y
Ac (3.51)

Here r and c are the rows and columns of the tableau, S and A the symmetrisation and
antisymmetrisation operators and N is a normalisation constant given by the product of the
hook-lengths of each cell, the hook-length of a cell being the number of cells to the right and

5https://sites.math.rutgers.edu/~asbuch/lrcalc/
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below a cell including the cell itself: in the diagram below each cell contains its hook length

7 5 4 3 1
5 3 2 1
1

(3.52)

and the normalisation would be N = 7× 52 × 4× 32 × 2× 13 = 12600.

There are actually two distinct ways of constructing the projection operator depending on
the order in which the symmetrisation and antisymmetrisation operators are applied. The
operator P+ defined above applies antisymmetrisations first, the other operator being

P−(Y ) =
1

N

∏
c∈Y
Ac
∏
r∈Y
Sr (3.53)

Which operator is used is a matter of taste and convention; as long as the two are not mixed
the mathematics is the same and symmetries become manifest under both. We will use the
form of the projector given in (3.51) throughout and will drop the + label.

The simplest projection operator which mixes a symmetriser with an antisymmetriser is
from one of the standard representations given in (3.33) and (3.34). Here we will explicitly
calculate the projection for Tabc with the tableau

Y = 1 2
3

(3.54)

First we calculate the projector P (Y ). As there is only one column and one row, the formula
reduces to

P (Y ) =
1

N
S12A13 (3.55)

and the hook length is given by N = 3 × 12. We now apply this to Tabc, first applying the
antisymmetriser:

P (Y )Tabc =
1

3
S12(Tabc − Tcba) (3.56)

and then the symmetriser to each generated term

P (Y )Tabc =
1

3
(Tabc + Tbac − Tcba − Tbca) (3.57)

There are two identities associated with the symmetry represented by (3.54): one mono-term
symmetry

Tabc ≡ −Tcba (3.58)

and one cyclic identity
Tabc + Tbca + Tcab ≡ 0 (3.59)

We can now see the power of the projection by verifying that both these identities are made
manifest by the projection. For (3.58) we project both sides of the identity and match the
terms on each side:

P (Y )Tabc =
1

3
(Tabc + Tbac − Tcba − Tbca)

P (Y )(−Tcba) =
1

3
(−Tcba − Tbca + Tabc + Tbac)

(3.60)

and for (3.59) project each term on the left hand side to show that each term in the expansion
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is balanced by one with an opposite sign:

P (Y )Tabc = + Tabc + Tbac − Tbca − Tcba

P (Y )Tbca = − Tacb + Tbca − Tcab + Tcba

P (Y )Tcab = − Tabc + Tacb − Tbac + Tcab

(3.61)

In Cadabra, the projection of a tensor can be calculated using the young_project_tensor

algorithm on an expression where at least one term carries the TableauSymmetry property. For
example, the identity above can be proved as follows:

T_{a b c}:: TableauSymmetry(shape ={2,1}, indices ={0,1,2}).

ex := T_{a b c} + T_{b c a} + T_{c a b};

young_project_tensor(_);

where the last line prints 0 as expected.

3.3.5 Hermitian Projection Operators

The projection operator obeys some interesting and slightly counter-intuitive properties:

1. Completeness
As expected, the complete set of Young projectors sum up to the identity:∑

Y ∈Sn

P (Y ) = I (3.62)

2. Linearity
The property of completeness does not however imply the linearity of the projection
operator: ∑

i

P (Yi) 6= P (
⊕
i

Yi) (3.63)

which does not in general hold [67]; in particular

P (Y1 ⊗ Y2) 6=
∑
i

P (Y ′i ) (3.64)

where Y ′i are the terms in the Littlewood-Richardson expansion of Y1 ⊗ Y2. For example
the tensor product with a single-cell tableau does not change the projection as the new
cell does not contribute any symmetry

P ( 1 2 ⊗ 3 )Tabc = Tabc + Tbac (3.65)

but summing the decompositions would lead us to(
P
(

1 2 3
)

+ P

(
1 2
3

))
Tabc =

1

6
(3Tabc+Tacb + 3Tbac

− Tbca + Tcab − Tcba)

(3.66)

where it is clear the terms introduced by the symmetry and antisymmetry in slot 3 have
not cancelled out. A special case is

P ( 1 ⊗ 2 )Tab = P
(

1 2
)

+ P

(
1
2

)
= Tab (3.67)
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which is true because of (3.62).

3. Idempotency
Young operators are idempotent, that is

P (Yi)
n = P (Yi) (3.68)

e.g.

P

(
1
2

)3

Tab =
1

23
A3

12Tab

=
1

8
A2

12(Tab − Tba)

=
1

8
A12(Tab − Tba − Tba + Tab)

=
1

8
(Tab − Tba − Tba + Tab − Tba + Tab + Tab − Tba)

=
4

8
(Tab − Tba)

=
1

2
A12Tab

= P

(
1
2

)
Tab

(3.69)

4. Orthogonality
Young projectors are not in general orthogonal, that is

P (Yi)P (Yj) 6= δij (3.70)

although this is true for i = j by idempotency, and is also generally true if Y is an irrep

of Sn for n ≤ 4. To illustrate what this means, consider the product P
(

1 2
)
P

(
1
2

)
which belong to S2. The explicit form of this is 1

4S12A12 which symmetrises and anti-
symmetrises in the same two indices, so the projection applied to any tensor is identically
zero by similar reasoning to (3.36):

Tab = Tba = −Tab (3.71)

However, in the case of

P

(
1 3 5
2 4

)
P

(
1 2 3
4 5

)
(3.72)

the label 5 belongs to different symmetrisation and antisymmetrisation groups in each
tableaux, and so we cannot use the same reasoning to prove that this combination is zero;
and indeed explicit calculation will show that there are some terms left over after applying
both these projections. We can show this using the young_project_tensor function of
Cadabra:

ex := T_{a b c d e}.

T_{a b c d e}:: TableauSymmetry(shape ={2,3}, indices ={0,1,2,3,4}).

young_project_tensor(ex)

T_{a b c d e}:: TableauSymmetry(shape ={2,3}, indices ={0,2,4,1,3}).

young_project_tensor(ex);
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which produces the output

− 1/54Tacbde − 1/54Tbcade − 1/54Tadbce − 1/54Taebdc − 1/54Tadbec − 1/54Taebcd

− 1/54Tacbed − 1/54Tbdace − 1/54Tbeadc − 1/54Tbdaec − 1/54Tbeacd − 1/54Tbcaed

+ 1/54Tbacde + 1/54Tcabde + 1/54Tbdcae + 1/54Tbecda + 1/54Tbdcea + 1/54Tbecad

+ 1/54Tbaced + 1/54Tcdbae + 1/54Tcebda + 1/54Tcdbea + 1/54Tcebad + 1/54Tcabed

− 1/54Tdbcea − 1/54Tcbdea − 1/54Tdecba − 1/54Tdaceb − 1/54Tdecab − 1/54Tdacbe

− 1/54Tdbcae − 1/54Tcedba − 1/54Tcadeb − 1/54Tcedab − 1/54Tcadbe − 1/54Tcbdae

+ 1/54Tabdce + 1/54Tdbace + 1/54Tacdbe + 1/54Taedcb + 1/54Tacdeb + 1/54Taedbc

+ 1/54Tabdec + 1/54Tdcabe + 1/54Tdeacb + 1/54Tdcaeb + 1/54Tdeabc + 1/54Tdbaec

5. Commutivity
Tableaux which share common labels do not in general commute, however tableaux which
are independent in this sense produce commuting projectors. This is a result of the
constituent symmetrisation operators which the projector is made of; as tableaux which
do not share any labels permute independent groups of indices and so do not affect each
other. This is not true of symmetrisation operators which share labels and which rarely
commute:

(S12A23)Tabc = −Tcab
(A23S12)Tabc = −Tbca

(3.73)

This can have a huge impact on the result of the calculation, for example by swapping
the order of the two non-orthogonal projectors they become orthogonal to each other:

P

(
1 2 3
4 5

)
P

(
1 3 5
2 4

)
Tabcde = 0 (3.74)

The fact that linearity and orthogonality do not hold in general can be, as we will observe later
on when considering sums of tableaux in section 4.5.2, a hindrance to calculations and ideally
we would be able to find a different way of constructing the projection operator which preserves
these properties whilst also making all symmetries manifest. It turns out that it is possible
to find such a construction, and it is not unique. One solution is to construct a Hermitian
projection operator which, obeying the properties associated with Hermiticity, automatically
satisfies both these properties.

An example of how to construct a Hermitian projection operator is given in the series of
three papers [68, 67, 69]. The process takes a Hermitian projection operator H(Y ), whose form
is unknown, and recursively converts it into a product of Young projection operators:

1. If the projection operator acts on an element of S1 or S2, rewrite it as a regular projection
operator

2. Otherwise, replace it with the product H(Y ′)P (Y )H(Y ′), where Y ′ is the ancestor tableau
which is a sub-representation of Y ∈ Sn which is created by removing the cell n from Y

and is a representation of Sn−1.

The process is repeated until only Young projection operators remain. This construction is
known as the KS construction after its authors Keppeler and Sjödahl [70]. Let us calculate the
full Hermitian operator for Y = 1 2 3

4 5
. We begin by writing out the unknown form of the
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Hermitian operator:

H

(
1 2 3
4 5

)
= H(Y ) (3.75)

As Y is a representation of S5, we need the ancestor Y ′ = 1 2 3
4

:

H

(
1 2 3
4 5

)
= H(Y ′)P (Y )H(Y ′) (3.76)

Again, as Y ′ is a representation is a representation of S4 we need to continue to process with
Y ′′ = 1 2 3 :

H

(
1 2 3
4 5

)
= H(Y ′′)P (Y ′)H(Y ′′)P (Y )H(Y ′′)P (Y ′)H(Y ′′) (3.77)

Y ′′ is a representation of S3 so we now continue with Y ′′′ = 1 2 :

H

(
1 2 3
4 5

)
= H(Y ′′′)P (Y ′′)H(Y ′′′)P (Y ′)H(Y ′′′)P (Y ′′)H(Y ′′′)P (Y )

H(Y ′′′)P (Y ′′)H(Y ′′′)P (Y ′)H(Y ′′′)P (Y ′′)H(Y ′′′)

(3.78)

The only Hermitian projection operators we have left on the right hand side are projecting
elements of S2, so the recursion is complete by equating these with normal projection operators:

H

(
1 2 3
4 5

)
=

1

509, 607, 936

(
S12S123S12S123A14S12S123S12S123S45

A14A25S12S123S12S123A14S12S123S12

)
(3.79)

Hopefully one of the major drawbacks to such a construction is clear: the resulting expression
is far lengthier and more complicated than the simple Young projector construction

P

(
1 2 3
4 5

)
=

1

24
(S123S45A14A25) (3.80)

For this reason, unless the properties are necessary, it is preferable to not use an alternate
construction. There are many simplifications which are possible, for example terms such as
S123S12 which symmetrise in the same indices multiple times can be reduced to e.g. S123,
however even after simplification the operators are not generally as simple.

As an extension to the current suite of tools in Cadabra for handling tableaux, we have
create a new package cdb.utils.tableau which contains among other tools the algorithm
create_hermitian_tableau which can calculate the decomposition of a Hermitian projector
into Young projectors. This makes it easy to calculate the Hermitian projection operator with
a function such as the following:

from cdb.utils.tableau import create_hermitian_tableau , tableau_to_ex

def young_project_hermitian(ex, tab):

herm = create_hermitian_tableau(tab)

ident := @(ex).

for t in reversed(herm):

TableauSymmetry(ident , tableaux_to_ex(t))

young_project_tensor(ex)

return ex
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The meld Algorithm

The implementation of a canonicalisation routine using the Young projection technique was
a primary focus of extending the capabilities of Cadabra and we have developed a concrete
implementation of this routine under the name meld, which is intended to describe in this
context the action of finding combinations of objects in an expression which minimise the
overall number of terms, in analogy to how in card games such as rummy the objective is to
collect cards into sequences known as melds with the objective of minimising the number of
cards not inside a meld.

This is in contrast to conventional canonicalisation algorithms which seek to rewrite each
object with indices in a maximally sorted order and then allow combining of terms by collect-
ing identical objects. In this sense, calling meld a canonicalisation routine is misleading, the
distinction being that the e.g. Butler-Portugal algorithm attempts to canonicalise with respect
to an index ordering, whilst meld attempts to canonicalise with respect to a set of independent
representations of an object. At various points during the discussion where comparison between
the two techniques is required, an implementation of the Butler-Portugal algorithm which was
already available in Cadabra using the xPerm [71] library under the name canonicalise will
be used.

The algorithm is also described in our paper Hiding canonicalisation in tensor computer
algebra [72] which was written with the dual aims of proposing the advantages of this alternative
approach to canonicalisation as well as describing the concrete implementation of the algorithm
in meld. The following discussion will provide a much more detailed examination of the internals
of the algorithm and justify many of the design choices which were taken when considering data
structures and specific sub-algorithms.

4.1 Description of the algorithm

At a high level view, the algorithm loops through each term in a sum and for each term
calculates the Young projection, then attempts to write this projection as a linear combination
of the terms which it has previously seen and projected; if such a combination is found then
the term is eliminated from the expression and the coefficients of the other terms altered by
the weight each contributed to the projection of the eliminated term. For instance, consider
the equation

Tabc + Tacb + Tcab (4.1)

where the symmetry of Tabc is described by 0 1
2

.
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The meld algorithm begins by considering the first term Tabc and calculating the Young
projection, which it stores in a table with the weight of each term:

Component
Term Tabc

Tabc
1
3

Tacb 0

Tbac
1
3

Tbca - 1
3

Tcab 0

Tcba - 1
3

The projection is non-zero, and there are no previous terms, so for this term alone there is no
possible simplification and it considers the second term:

Component
Term Tabc Tacb

Tabc
1
3 0

Tacb 0 1
3

Tbac
1
3 0

Tbca − 1
3 − 1

3

Tcab 0 1
3

Tcba − 1
3 − 1

3

The projection is non-zero, and there is one previous term so it attempts to solve the set of
linear equations given by matching the coefficients of each term in c0P (Tabc) = P (Tacb):

c0(
1

3
) = 0

c0(0) =
1

3

c0(
1

3
) = 0

c0(−1

3
) = −1

3

c0(0) =
1

3

c0(−1

3
) = −1

3

(4.2)

The system is very over-constrained and there is no solution for c0 so the algorithm continues
on to the next term:

Component
Term Tabc Tacb Tcab

Tabc
1
3 0 − 1

3

Tacb 0 1
3

1
3

Tbac
1
3 0 − 1

3

Tbca − 1
3 − 1

3 0

Tcab 0 1
3

1
3

Tcba − 1
3 − 1

3 0
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As this projection is also non-zero, it attempts to find the coefficients in the equation c0P (Tabc)+

c1P (Tacb) = P (Tcab):

c0(
1

3
) + c1(0) = −1

3

c0(0) + c1(
1

3
) =

1

3

c0(
1

3
) + c1(0) = −1

3

c0(−1

3
) + c1(−1

3
) = 0

c0(0) + c1(
1

3
) =

1

3

c0(−1

3
) + c1(−1

3
) = 0

(4.3)

This has the unique solution set (c0 = −1, c1 = 1) which can be determined from the first two
equations and then verified by substitution in the remaining four, and so the contributions from
Tcab can be subsumed into the terms Tabc and Tacb by changing their coefficients:

Tabc → Tabc(1 + c0) = 0

Tacb → Tacb(1 + c1) = 2Tacb

Tcab → 0

(4.4)

There are no more terms in the expression and so the algorithm terminates returning 2Tacb,
the only remaining non-zero term, as its output.

4.2 Architecture

meld is implemented as a C++ algorithm inside Cadabra. Algorithms in Cadabra are imple-
mented as virtual classes which derive from the base Algorithm class and provide two methods:
can_apply which examines a tree node and returns whether the algorithm can be applied at this
position in the tree, and apply which applies the algorithm at this point. The base Algorithm

class defines a apply_pre_order and a apply_generic method which iterate through an entire
expression tree, in pre- and post- order respectively, calling can_apply and conditionally apply

at each node in the tree. In the Python bindings, the class structure is abstracted away so that
the algorithm can be called as a function. Knowing this structure is sufficient for the following
discussion, however a more rigorous introduction to the design of algorithms in Cadabra is
available in a previous paper [73].

The implementation of meld is split across two files, the header core/algorithms/meld.hh1

and the implementation core/algorithms/meld.cc2. These expose the meld class (which trans-
lates into the meld function in Python) which implements the algorithm described in this chap-
ter. Two other implementation files, core/Adjform.hh3 and core/Adjform.cc4 provide data
structures used by meld and will be referred to. All references to code made in this chapter will
use the versions of these files linked to here, as future versions of Cadabra may modify or move
these files.

On top of the main canonicalisation routine which is discussed here, there are other related

1https://github.com/kpeeters/cadabra2/blob/b03150540db47ccb7536a12022c4a13c775525ac/core/algorithms/
meld.hh

2https://github.com/kpeeters/cadabra2/blob/b03150540db47ccb7536a12022c4a13c775525ac/core/algorithms/
meld.cc

3https://github.com/kpeeters/cadabra2/blob/b03150540db47ccb7536a12022c4a13c775525ac/core/Adjform.hh
4https://github.com/kpeeters/cadabra2/blob/b03150540db47ccb7536a12022c4a13c775525ac/core/Adjform.cc
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simplification routines implemented in meld which will be discussed at the end of the chapter.
The implementation of all these routines is contained within the meld class and divided into
separate can_apply_* and apply_* routines, with the canonicalisation through Young projection
marked by the tableaux suffix. There is additionally an auxiliary class ProjectedTerm defined
within meld’s class namespace which is specific to the tableaux routines.

4.3 Data structures

4.3.1 Dummy independent representations of tensors

One important consideration which was absent in the above example of meld is the handling of
dummy indices. Unlike implementations in mono-term canonicalisers which treat dummy index
symmetries as a separate group of symmetries to be applied as minimising the lexical order is
important, in the Young projection algorithm it is enough to remove any possible breaking of
the manifest symmetry in the projected expressions due to the ambiguity in the naming of the
dummy indices, otherwise even simple expressions such as

Saa + Sbb (4.5)

would never be treated as equal. A naïve approach would be to rename the dummy indices
before the projection using an algorithm such as Cadabra’s rename_dummies. This works for
the expression above, but more complicated expressions where the dummy indices are crossed
between factors in a product might still result in identical projections up to dummy index
namings, for instance the identity

RabcdRabcd = 2RabcdRacbd (4.6)

which is a result of a Bianchi identity is displayed here with all dummy indices canonicalised.
However, the two projections contain no identical terms, with the symmetry only becoming
manifest after all terms in the projection are rearranged so that their first factor is Rabcd.
Indeed, the symmetry can always be restored if the renaming is performed after the projection
but in large projections which can contain millions of terms this is an expensive solution.

In order to avoid the problem altogether, the meld algorithm instead stores expressions in
a way which is independent of dummy index names. This representation is implemented by
the Adjform class which, as the name suggests, stores connections between index slots in the
tensor rather than identifying that indices are contracted by giving them identical labels, in
the same way that an adjacency list represents a graph by storing the connections between its
nodes. Consider the expression (4.5) above. In the first term Saa the contraction implies that
the values in slots 0 and 1 of the tensor are identical. As the exact name used is unimportant,
the adjacency representation simply records that the index in slot 0 ‘points’ to the index in slot
1 and vice versa. Representing these by integer labels, we might rewrite the term in adjacency
notation as S10. As free indices do carry significant information they would be left unchanged.
As the second term has an identical index structure, differing only in the names of the dummy
indices, it is identical to the first term. The power of this representation is that we can therefore
automatically detect the equivalence between these terms from the notation, without having to
apply any further routines.

In the implementation, the Adjform class only encodes the index structure of an object, and
so for the expression above internally only holds an array of the two integers, [1, 0]. In order
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to increase efficiency, index names for free indices are mapped to negative integers (with the
mapping kept track of by the IndexMap class) so that the class only needs to hold an array of
integers.

One cost of storing the indices in this manner is that algorithms on the adjacency represen-
tation are more complicated than on regular index notation, for instance swapping the positions
of dummy indices in two different sets requires updating the values of the elements they point
to:

Tabab → Tabba

T2301 → T3210

(4.7)

This requires a conditional move for each index in the swap. On modern x86 architectures
this is optimised into two independent cmov instructions so in reality the extra overhead of this
complication is generally minimal. Of course, swapping a dummy index with its partner results
in the same adjform, just as an object written in dummy notation does, which can be optimised
as an early check.

4.3.2 Representation of a projected monomial

The data structure used to represent terms in the projection is based on the Adjform class
rather than the Ex class which Cadabra uses to store generic expressions. In order for this
to be possible, the algorithm must first split an expression into different sets of terms each of
which has the same tensorial structure so that each set can be melded independently as objects
are generally not distinguishable from their index structure alone (e.g. Aij 6= Bij). As the
symmetries which meld can canonicalise only relate objects to themselves this can be done with
no loss of generality. Not only does this reduce the complexity of the equations to be solved
when calculating linear dependence between the terms, but it also allows the algorithm to make
strong assumptions about the structure of the indices in each term which reduces the overhead
associated with storing each tensor. In order to create the sets of objects, each term must
be transformed by commuting terms and stripping scalar factors until the minimal amount
required to fully represent the index structure of the object remains which can be compared
against other terms. For instance, consider the following collection of expressions:

(a) 2AµνSρλ

(b) AµνkSρλ

(c) Rµνρλ

(d) AµγBγνSρλ

(4.8)

Clearly (a) and (b) should be able to be combined, assuming k is an object which can be
commuted through Aµν . However, simple techniques such as index counting would also match
against (c) which consists of a different tensor and is therefore incompatible, or checking whether
expressions share a common tensor would match against (d) whose index structure is incompat-
ible. Sorting an expression is also not a general solution, even in this instance lexical ordering
might place k between Aµν and Sρλ.

meld solves this problem by separating the factors making up each term into two separate
expressions consisting of the scalar parts of the expression and the indexed parts, which is per-
formed on the initial pass through the expression. The logic is contained inside the constructor
of the ProjectedTerm class, which is an auxiliary data structure for holding information about
each term:
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struct ProjectedTerm {

Ex scalar , tensor; // Scalar and tensor parts of the term

ProjectedAdjform projection; // Container as described above

Adjform ident; // Representation of the term as an adjform

Ex:: iterator it; // Pointer to the term in the original expression

bool changed; // Flag to set when this terms contains contributions from

another term

};

The class is a convenient way of encapsulating all the information required about a particular
term to avoid having to cross-reference between different data structures. The algorithm begins
by creating two new expression trees with empty \prod nodes at the top which are assigned
to the scalar and tensor objects in the ProjectedTerm object. Then, the individual factors
making up the term are iterated over. If the term has indices then it is attached as a new child
of the tensor expressions. If it has no indices, then before attaching it to the scalar expression
it is first checked to make sure that it is able to commute through any tensors to its left. This
ensures that the structure of the object isn’t altered in a way disallowed by the commutation
relations of the scalar factors. If the commutation is not possible, then the factor is considered
part of the structure of the tensor and appended to the tensor node.

Comparing two terms in an expression to check if they have matching tensorial structures
is implemented in the compare method of the ProjectedTerm class. Two objects can only be
melded if the tensor expression trees are identical up to some allowed differences in indices:

• The indices are in the same index set and are both covariant/contravariant

• The indices are in the same index set and are both ‘free’ (i.e. covariance/contravariance
has no meaning for the index)

• They are dummy indices in the same index set, and they are either

1. Both covariant/contravariant

2. Not separated by a derivative

These criteria may be over restrictive, preventing some objects with compatible structures from
being compared, however it is felt better to be overly strict and avoid ‘false positives’. The
structure is checked by simultaneously iterating over both expression trees comparing each node
in iteration order. Any mismatching nodes, or one iterator expiring before the other, results in
the two trees being considered not equal.

A second consideration is how to store the Adjform objects which make up the full projection,
which meld encapsulates in the ProjectedAdjform class. The data structure needs to allow for
the following requirements:

• Each Adjform object must be associated with a numeric factor corresponding to its con-
tribution to the overall projection

• The objects should be stored in a sorted order so that comparing the coefficients of
multiple projections can be done in linear time

• Accessing and inserting elements should be made as efficient as possible, in particular
avoiding structures which require linear time to find elements and involve shifting elements
during insertions
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Two natural choices of container emerge from these criteria: a preallocated array or a binary
search tree. A linked list is unsuitable due to linear element access, and a hash table does not
guarantee that the order of elements will be the same between containers.

For the purposes of this algorithm a binary search tree has been used to provide the best
performance, however it is not immediately clear why this is optimal and in order to form a
conclusion a discussion of the internals of both need to be explored which forms the content of
the rest of this section.

4.3.3 Contiguous storage solution

In theory, the most efficient storage mechanism is an array preallocated to be able to store all
elements in the projection. The preallocation is necessary for two reasons: not only to avoid
memory reallocations as the projection is calculated, but also as access to elements near the
end of the storage representing later permutations may be required early on in the projection
necessitating the other values be present so that the permutation can be identified by its index
in the array. This is therefore a dense representation where permutations which do not exist in
the projection must be explicitly given the value 0.

The number of terms in the projection of a particular monomial is dependent on the structure
of the symmetry as well as the structure of the dummy indices inside the expression. For a
given tableau with row lengths given by Y = {r1, r2, . . . , rn}, the total number of terms in
the expression generated by the projection operator acting on a tensor containing only free
indices, N(Y ), is given by the product of the number of permutations generated by each row
and column:

N(Y ) =

n∏
j=1

(rj ! )

m∏
j=1

(cj ! ) (4.9)

where cj are the lengths of the columns of Y , and the value of cj can be calculated as the
number of rows of Y with at least j cells:

cj =

n∑
i=1

Θ(ri − j) Θ(x) =

{
1 if x ≥ 0

0 if x < 0
(4.10)

However, although this will calculate the number of non-zero permutations in the resulting
projection, merely allocating space for this number of terms is insufficient as tensors with
different starting permutations of indices will have different non-zero permutations in the output
and thus space for all n! possible permutations must be allocated.

For a monomial containing dummy indices, the number of terms in the projection is reduced
due to some permutations being identical. The way in which this happens is non trivial, and
the number of terms can even vary depending on whether the projection is calculated using the
symmetrisers or antisymmetrisers first, as is shown here where the projection (up to an overall
factor) of the Riemann monomial Rabad is explicitly calculated using symmetrise_slots which
performs a symmetrisation of all the terms in an expression over the given index slots:

from cdb.utils.indices import symmetrise_slots

ex := R_{a b a d}:

symmetrise_slots(ex, [0,1], antisym=True)

symmetrise_slots(ex, [2,3], antisym=True)

symmetrise_slots(ex, [0,2])

symmetrise_slots(ex, [1,3]);
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2Rabad + 2Radab −Rabda −Raadb −Rdbaa −Rdaab −Rbaad −Rbdaa −Raabd −Radba
+ 2Rbada + 2Rdaba

ex := R_{a b a d};

symmetrise_slots(ex, [0,2])

symmetrise_slots(ex, [1,3])

symmetrise_slots(ex, [0,1], antisym=True)

symmetrise_slots(ex, [2,3], antisym=True);

2Rabad − 2Rabda − 2Rbaad + 2Rbada + 2Radab − 2Radba − 2Rdaab + 2Rdaba

Two expressions which contain the same number of dummy indices but in different locations
will also lead to different sets of non-zero terms. The maximum number of terms in a projection
involving n indices with d dummy pairs is given by all possible permutation of n distinguishable
objects divided by both the symmetry of interchanging dummy names, i.e. all permutations of
dummy labels d!, and the further redundancy of swapping the two indices in the dummy pair
(2d). This means that in general space for

n!

d! 2d
(4.11)

terms must be allocated.

Another problem with a contiguous storage system is finding the element corresponding
to a particular permutation by its index in the array. One possible solution is to store the
Adjform representation along with each element and perform a binary search of the array to
find the correct element, however the amount of extra storage required is undesirable, and the
solution is O(log(N)) complexity, where N is the total number of permutations, whereas a
contiguous storage system allows for O(1) access. Another solution is to construct an algorithm
for mapping each possible permutation to an integer i in the range 0 ≤ i < N . In the case of
unique permutations where N = n!, this problem is well known and has many solutions starting
with Lehmer in 1960 [74] and including recent additions to the literature such as the variable
length encoding published in 2021 [75].

The basic idea of the Lehmer code is to represent a sequence as a number written in a
factorial base, that is the digit d in position i represents d× i!, in the same way that in base-10
it would represent d×10i. The digit in the ith position is the number of objects which compare
less than it in the tail of the sequence. For example, to construct the Lehmer code of the
sequence [0, 2, 3, 1] the following steps would be taken:

Sequence Lehmer code
Explanation

4 3 2 1 3! 2! 1! 0!

0 2 3 1 0 0 numbers to the right of 0 less than it
0 2 3 1 0 1 1 number to the right of 2 less than it
0 2 3 1 0 1 1 1 number to the right of 3 less than it
0 2 3 1 0 1 1 0 0 numbers to the right of 1 less than it

Thus as an integer the Lehmer code is 0× 3! +1× 2! +1× 1! +0× 0! = 3. A construction in this
manner also happens to give the position of the permutations in the total set of lexicographically
ordered permutations:
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Lehmer
Sequence

Lehmer
Sequence

Lehmer
Sequence

Index Index Index

0 [0, 1, 2, 3] 8 [1, 2, 0, 3] 16 [2, 3, 0, 1]

1 [0, 1, 3, 2] 9 [1, 2, 3, 0] 17 [2, 3, 1, 0]

2 [0, 2, 1, 3] 10 [1, 3, 0, 2] 18 [3, 0, 1, 2]

3 [0,2,3,1] 11 [1, 3, 2, 0] 19 [3, 0, 2, 1]

4 [0, 3, 1, 2] 12 [2, 0, 1, 3] 20 [3, 1, 0, 2]

5 [0, 3, 2, 1] 13 [2, 0, 3, 1] 21 [3, 1, 2, 0]

6 [1, 0, 2, 3] 14 [2, 1, 0, 3] 22 [3, 2, 0, 1]

7 [1, 0, 3, 2] 15 [2, 1, 3, 0] 23 [3, 2, 1, 0]

When a permutation can include duplicate elements specific mentions in scientific literature
are sparse, in particular for the our case where the naming of duplicate elements is irrelevant,
however the topic is occasionally mentioned on mathematics forums56. It is of course still
possible to apply the classic Lehmer algorithm, however permutations will still be mapped onto
the range 0 ≤ i < n! with some gaps which do not correspond to any sequence

Lehmer
Sequence

Lehmer
Sequence

Index Index

0 [0, 1, 1, 3] 9 [1, 1, 3, 0]

1 [0, 1, 3, 1] 10 [1, 3, 0, 1]

4 [0, 3, 1, 1] 11 [1, 3, 1, 0]

6 [1, 0, 1, 3] 18 [3, 0, 1, 1]

7 [1, 0, 3, 1] 20 [3, 1, 0, 1]

8 [1, 1, 0, 3] 21 [3, 1, 1, 0]

The aim of course is to minimise the amount of storage space required by the algorithm,
and so allocating space for n! elements when far fewer are actually required is a suboptimal
solution. We will now show that an algorithm to map elements onto the exact range required
is achievable; first we will concentrate on a variation of the Lehmer code algorithm adapted for
the case when there may be repeated elements and then adapt this so that the naming of the
repeated elements is made irrelevant. The number of permutations of n elements where there
are d pairs of identical elements is given by

Pdis(n, d) =
n!

2d
(4.12)

where the label “dis” indicates that the pairs are distinguishable from each other. This value
is just the total number of permutations of n objects divided through by the symmetry under
exchange of the slots corresponding to dummy indices which halves the number of unique
permutations for each dummy pair. The concept of the algorithm is to iterate through the
permutation and for each index i to calculate wi, the total number of permutations which can
occur before it. The Lehmer code for the sequence is then given by

∑
i wi. For example given

the permutation [2, 3, 1, 2]:

1. For the first index to be 2, it must come after all permutations with first index 1. If the
first index is 1, then the remaining elements are [2, 2, 3] of which there are Pdis(3, 1) = 3

permutations, so w0 = 3.

5https://math.stackexchange.com/questions/3802978/permutation-with-repetition-index-conversion
6https://math.stackexchange.com/questions/879429/lexicographical-rank-of-a-string-with-duplicate-characters
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2. Remove the first index and consider the tail [3, 1, 2]. For the index 3 to come first, it must
come after all permutations starting with 1 or 2 so w1 = P (2, 0) + P (2, 0) = 4.

3. Again look at the tail [1, 2], but as this is already sorted no permutations come before it
so w2 = 0.

The final index is thus given by 3 + 4 + 0 = 7, which again is the position of the permutation
in the lexicographic ordering of permutations of this sequence:

Index Sequence Index Sequence

0 1, 2, 2, 3 6 2, 2, 3, 1

1 1, 2, 3, 2 7 2,3,1,2

2 1, 3, 2, 2 8 2, 3, 2, 1

3 2, 1, 2, 3 9 3, 1, 2, 2

4 2, 1, 3, 2 10 3, 2, 1, 2

5 2, 2, 1, 3 11 3, 2, 2, 1

This is an O(n) algorithm in the number of indices, and is therefore constant over the number
of terms in the projection. Applying this algorithm to a sequence where names of repeated
elements are irrelevant leaves some redundancy as can be seen be considering the unique per-
mutations of the sequence [a, a, b, b]:

Index Permutation Adj. rep.

0 a, a, b, b [1, 0, 3, 2]

1 a, b, a, b [2, 3, 0, 1]

2 a, b, b, a [3, 2, 1, 0]

3 b, a, a, b [3, 2, 1, 0]

4 b, a, b, a [2, 3, 0, 1]

5 b, b, a, a [1, 0, 3, 2]

As can be seen from the adjacency representations on the right only three of these six per-
mutations are unique. The interchangeability of dummy labels as a symmetry means that all
permutations of dummy index names are equivalent, so the number of unique permutations is
reduced by a factor of d!

Pindis(n, d) =
n!

d! 2d
(4.13)

which should be familiar from (4.11). The number of unique permutations of a sequence con-
sisting purely of d dummy index pairs is a special case of this formula:

Pindis(2d, d) =
(2d)!

d! 2d
=

1

2d
(2d)× (2d− 1)× . . .× 1

d× (d− 1)× . . .× 1

= ��(2d) (2d− 1)����(2d− 2) (2d− 3)����(2d− 4) . . . ��(2) (1)

��2(d) × ����2(d− 1) × ����2(d− 2) . . .��2(1)

= (2d− 1)(2d− 3) . . . 1

= (2d− 1)! !

(4.14)

where the second line is true as there are the same number of powers of 2 as terms in the
factorial. n! ! is known as the double factorial7 and we can see that d = 2 → 3! ! = 3 which
agrees with the explicit calculation of the unique permutations in the table.

7https://mathworld.wolfram.com/DoubleFactorial.html
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In Adjform.cc, a novel variation on the Lehmer code algorithm which maps an Adjform

object onto the range 0 < i < Pindis is implemented. The algorithm calculates the index by
calculating two separate values, iperm which is an index in the range 0 ≤ iperm < n! /((2d)! ) of
the permutation where all dummy indices are given the same label, and idummy in the range
0 ≤ idummy < (2d− 1)! ! which is the index of the permutation of the dummy indices. The final
index is then calculated as i = ((2d− 1)! ! iperm) + idummy which has a maximum value of

(2d− 1)! !

max(iperm)︷ ︸︸ ︷
(
n!

(2d)!
− 1) +

max(idummy)︷ ︸︸ ︷
((2d− 1)! !−1) = (2d− 1)! !

n!

(2d)!
− 1

=
(2d)!

d! 2d
n!

(2d)!
− 1

=
n!

d! 2d
− 1

(4.15)

as desired.

The algorithm begins by constructing two auxiliary arrays, perm which stores the permuta-
tion with all dummy indices relabelled to 0 and counts which is a mapping from a label to the
number of times it is repeated in perm. The entries in count can be greater than one for free
indices if the index name matters, e.g. for a index labelling a specific coordinate.

During this process, the index idummy is calculated. It begins with an initial value of 0, and
similarly to the algorithm described above for every dummy index D encountered the number
of preceding permutations is added, where the number of preceding permutations is given by
the total number of permutations of dummy indices excluding the pair to which D belongs
multiplied by number of dummy indices separating the pair. The logic here can be thought of
as the other dummy index in the pair belonging toD being treated as a free index and all dummy
indices having a lexicographic ordering greater than the free index. Therefore, every time it
is moved one index further from D the index is increased by the number of permutations of
remaining dummy indices. A small example helps to illustrate the idea: consider [a, b, a, c, c, b] =

[2, 5, 0, 4, 3, 1]:

1. The first index is 2, and after stripping this index off the arrangement is [4, f, 3, 2, 0] where
f represents the now free index and for consistency the values of each dummy index have
been decremented by one so they point to valid locations in the new list. As all free indices
order less than dummy indices, the smallest possible permutation would be [f, 4, 3, 2, 1]

and so we must traverse all permutations of the dummy indices to arrive at [4, f, 3, 2, 0].
The number of permutations is given by (2× 2− 1)! ! = 3, so we set idummy = 1× 3. We
also remove the free index f from the list as its position is now forced

2. We strip off the first index again to get [1, 0, f ]. Here, as f is in the third position, we must
count through two full sets of permutations of the remaining dummy indices. There is
only one way to arrange a single dummy index pair so we set idummy → idummy +2×1 = 5

3. We are left with a single dummy pair whose position is forced, so the final value is
idummy = 5

We can again confirm this by looking at a table of all 15 possible orderings:
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Index Sequence Index Sequence

0 [1, 0, 3, 2, 5, 4] 8 [3, 5, 4, 0, 2, 1]

1 [1, 0, 4, 5, 2, 3] 9 [4, 2, 1, 5, 0, 3]

2 [1, 0, 5, 4, 3, 2] 10 [4, 3, 5, 1, 0, 2]

3 [2, 3, 0, 1, 5, 4] 11 [4, 5, 3, 2, 0, 1]

4 [2, 4, 0, 5, 1, 3] 12 [5, 2, 1, 4, 3, 0]

5 [2,5,0,4,3,1] 13 [5, 3, 4, 1, 2, 0]

6 [3, 2, 1, 0, 5, 4] 14 [5, 4, 3, 2, 1, 0]

7 [3, 4, 5, 0, 1, 2]

Before the second part of the algorithm, a normalisation of the values in perm is performed:
free indices are represented by negative integers in the Adjform class, but it is preferable for the
algorithm to work on a consecutive range of integers starting at 0. Dummy indices are already
replaced with the label 0, so free indices f are given a label −f , and then packed by checking
the counts array for entries that are zero, removing these and shifting the labels.

In the second half of the algorithm, the perm array is traversed to calculate the value of
iperm which again is initially given the value 0. For each element i in perm, the number of
permutations which appear before it is calculated using the modified Lehmer algorithm for
distinguishable repeated indices above. The number of preceding permutations is calculated by
iterating over all indices less than the current element, decreasing its value in the count array
by one and then calculating

∑
j<i

[
((
∑
k count[k])− 1)!∑

k ((count[k]− δjk)! )

]
(4.16)

i.e. for each index less than i, its count is decremented and the number of permutations of the
sequence now represented by count is added to iperm.

We now have the ability to create a minimal dense representation of the projections of a
Adjform object with constant time read and write access — the caveat which comes with this
constant access is that the conversion from a Adjform to an index is very expensive as the
algorithm must process many instructions and requires the use of auxiliary storage.

4.3.4 Binary search tree storage solution

The other viable solution is to store the projection in a binary search tree. In this format,
instead of a contiguous block of memory each entry is stored as either a left or right child of
another entry, depending on whether it is compares less than or not less than the parent entry.
To maintain the binary structure of the tree, any nodes which do not have a left or right child
point to a ‘nil’ value instead. Thus, in order to find an element in the tree the search starts with
a root element and iterates through the children of this node choosing at each stage whether
to take the left or right branch allowing entire branches of the tree to be eliminated from the
search at each step. The worst case behaviour for tree operations is O(h), where h is the height
of the tree.

The order of insertion of elements can affect how high the tree is and therefore how efficiently
its elements can be accessed: compare how a tree is constructed from the sequence [1, 2, 3, 4]
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1

nil nil
→

1

nil 2

nil nil

→

1

nil 2

nil 3

nil nil

→

1

nil 2

nil 3

nil 4

nil nil

and the sequence [2, 1, 4, 3]

2

nil nil
→

2

1

nil nil

nil →

2

1

nil nil

4

nil nil

→

2

1

nil nil

4

3

nil nil

nil

The worst case, as demonstrated here, is when elements are inserted already sorted which results
in a tree with the same height as number of children, and thus element access becomes linear.

In order to resolve this issue, most implementation of binary search trees nowadays imple-
ment balancing trees, which ensure that when elements are inserted and deleted from the tree
both sides of the tree remain approximately the same size. One of the most popular implemen-
tations of this is known as a red-black tree, first described in 1978 [76] using the ideas developed
by Rudolf Bayer in 1972 [77]. The construction colours each node either ‘red’ or ‘black’ subject
to the following constraints:

• All nil values are black

• All children of red nodes are black

• The number of black nodes passed when travelling from a node to any of its nil descendants
is the same

By ensuring these are met every time a node is inserted or deleted from the tree, the balanced
nature can be assured ensuring that the height, and therefore search complexity, of a tree with
N elements is bounded by log2(N). Rebalancing the tree increases the cost of many insertions
and deletions, however these operations are not expensive and recolourings in particular on
average can run in constant time [78].

The worst case element access behaviour for a tree storing all permutations of n indices can
be approximated using a first order expansion of Stirling’s approximation [79]:

ln(n! ) = n(lnn− 1) (4.17)

which gives us
log2(N) = log2(n! ) = log2(e) ln(n! ) ≈ 1.44n(lnn− 1) (4.18)

which for scale is 12 comparisons at 8 indices and 25 comparisons at 12 indices. These sizes are
of course only reached if considering totally symmetric objects with no dummy indices, and on
average the search will not have to perform this many operations as the value may not be stored
at the lowest depth of the tree. Red-black tree searching algorithms are also highly optimised
with very low overheads, and so for indices around these values the binary search may be a
more efficient way of finding an element than computing the Lehmer code as described above.
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The major advantage that this representation has is of course that it permits a sparse
representation of the projection, with elements that are zero omitted instead of explicitly stored.
The compromise here is that extra information must be stored against each element to allow
it to be found. This can either be the Adjform object itself, or using the algorithm from the
previous section a single integer can be attached to each element. The elements of a Adjform

object are stored in single bytes, the numeric coefficient (as will be discussed at the end of
section 4.4.1) by a 4 byte integer type and the per-element overhead of a map type which, while
dependent on the implementation, is around 32 bytes8 , so the ratio between Ssparse and Sdense,
the per-node size of elements representing a permutation of n indices is given by

Ssparse

Sdense
≈ 4 + 32 + n

4
(4.19)

In order for the space required to be smaller in the sparse representation, the number of elements
stored must be greater than this factor:

SsparseNsparse < SdenseNdense (4.20)

For permutations of only free indices where Nsparse = N(Y ) and Ndense = n! this places the
constraint:

N(Y ) <
4n!

36 + n
(4.21)

The value of N(Y) is of course dependent on the shape of the tableau, but it is possible to gain
an appreciation of the magnitude of this number by looking at square tableaux. For a perfect
square n, the tableau consists of

√
n rows each with

√
n cells and similarly for the columns.

Using these values, (4.9) then becomes

N(Y ) =

√
n∏

j=1

(
√
n! )

√
n∏

j=1

(
√
n! ) = (

√
n! )2

√
n (4.22)

For values where n is not a perfect square, we can interpolate this function using the Gamma
function to give an approximation for a non trivial tableau with n cells:

Napprox(n) = Γ(1 +
√
n)2
√
n (4.23)

While this is an arbitrary choice of shape to use as a representative tableau, it generally pro-
duces a tableau whose complexity is representative of tableaux of mixed symmetries, and their
projection will help to illustrate how tableau shape can alter the complexity of the algorithm.
Using this as a value for N(Y ), the two sides of (4.21) are displayed in Fig. 4.1 which shows
that the crossover point where it uses less memory to store the projections in a binary tree is
around n = 10 indices.

The choice that has been made in implementing meld is to use a binary search tree. The
choice is made based on the following observations:

1. In most real world applications, the number of terms in the projection is reasonable
enough that the O(log(N)) accesses will often outperform the overhead of the constant
lookup for an array storage solution

2. In the more esoteric cases where the number of terms is very large, the sparse storage
8See for example the definition of _Rb_tree_node_base in gcc: https://github.com/gcc-mirror/gcc/blob/

16e2427f50c208dfe07d07f18009969502c25dc8/libstdc%2B%2B-v3/include/bits/stl_tree.h#L101

73

https://github.com/gcc-mirror/gcc/blob/16e2427f50c208dfe07d07f18009969502c25dc8/libstdc%2B%2B-v3/include/bits/stl_tree.h#L101
https://github.com/gcc-mirror/gcc/blob/16e2427f50c208dfe07d07f18009969502c25dc8/libstdc%2B%2B-v3/include/bits/stl_tree.h#L101


4.4. Symmetrisation algorithms Chapter 4

Figure 4.1: Plot showing the point where it becomes more efficient space-wise to use sparse
storage for a projection

provided by the binary search tree will use less space

3. In some cases where an object projects to 0, this can be spotted early on in the projection
as all the terms will have a coefficient of 0. By using a binary search tree, this is easy
to detect as it will mean that the tree is empty, and avoids a large memory allocation of
which almost all will never be used.

4. Some algorithms, such as symmetrisation, require iterating over all the non-zero terms in
the projection. For a dense storage solution, this requires iterating over many zero terms
in order to find the relevant terms which harms efficiency.

4.4 Symmetrisation algorithms

A central focus is, of course, the projection which makes the tensor symmetries manifest. The
implementation is split across the meld class, which calculates the symmetrisers and antisym-
metrisers corresponding to a Young tableau, and the ProjectedAdjform class which contains a
apply_young_symmetry method which is called on each symmetriser in turn.

As well as the symmetrisation due to the Young projection, another symmetrisation required
in order to ensure that the implicit symmetry due to identical objects is realised. Consider the
simple expression

AaAb +AbAa (4.24)

Although there is no explicitly defined symmetry between the index slots holding a and b, as
long as Aa is not self non-commuting, then by swapping the order of the objects in the second
term this expression can be collapsed to 2AaAb. meld can recognise this symmetry by treating
this symmetry as a projection operator too:

AaAb →
1

2
(AaAb +AbAa) (4.25)

This algorithm is implemented as a method of the ProjectedAdjform class which allows the
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symmetry to be applied to each element in the projection ensuring that the projection accu-
mulates the new symmetry.

4.4.1 Applying a young symmetriser

The symmetrisation algorithm is defined in the apply_young_symmetry method of the class
ProjectedAdjform. The algorithm accepts a list of the slots in the symmetriser and a flag
indicating whether it should symmetrise or antisymmetrise.

The symmetriser is applied to each Adjform in the projection in turn, and the new set of
terms produced by this are added to the projection. The terms in the projection before the
symmetriser is applied need to be stored in a separate copy as otherwise, because the terms in
the projection are modified as the symmetriser is being applied, this may result in new terms
being erroneously symmetrised.

As noted above, swapping elements in the adjacency representation can be more expensive as
swapping a dummy index involves also relabelling the other index in the pair. For this reason, it
is desirable to minimise the number of swaps required when calculating each permutation. This
is achieved by using an implementation of the Steinhaus-Johnson-Trotter (SJT) algorithm[80,
81] which iterates through all permutations requiring only one swap at each iteration. A further
benefit of this is that it produces a sequence of permutations where the parity of the permutation
switches between odd and even at each iteration making this trivial to keep track of.

For a given permutation P of the integers 1, 2, . . . , n, the algorithm works by generating two
auxiliary sequences: X such that X[P [i]] = i , i.e. the ith element of X gives the position of i
in P , and D9 where

D[i] =

{
+1 if P (i) is an odd permutation
−1 if P (i) is an even permutation

(4.26)

where P (i) is the sequence P where all values ≥ i have been removed. The algorithm finds the
largest value of i for which P [X[i] +D[i]] < i, and then swaps the values in positions X[i] and
X[i] +D[i]. For instance, starting with the sequence [1, 2, 3] the set of permutations produced
is

[1, 2

(2,3)︷ ︸︸ ︷
, 3]→ [1, 3 , 2]→ [3, 1︸ ︷︷ ︸

(1,3)

(1,2)︷ ︸︸ ︷
, 2]→ [3, 2 , 1]→ [2, 3︸ ︷︷ ︸

(2,3)

1,3︷ ︸︸ ︷
, 1]→ [2, 1, 3]

The sequence is initially fully sorted, so D[i] = −1 and X = [1, 2, 3]. For i = 3 we find
P [X[3] + D[3]] = P [2] = 2 < 3 so we swap the elements in P at positions X[3] = 3 and
X[3] + D[3] = 2 giving the next permutation in the sequence P → [1, 3, 2]. The subsequences
P (i) are still all even permutations; note that in practice D can be updated without explicitly
checking the parity of each subsequence as only sequences including the two elements which have
been swapped will change parity and so flipping all entries in D after this value will generate
the correct sequence. We also set X = [1, 3, 2] and again find P [X[3]+D[3]] = P [1] = 1 < 3 and
so swap the elements in P at positions X[3] = 2 and X[3] +D[3] = 1 and so P → [3, 1, 2]. This
continues until no suitable value of i can be found which satisfies the criteria P [X[i] +D[i]] < i

9The auxiliary sequence D is not mentioned in the description of the algorithm as first described by John-
son in [80], however its use is almost ubiquitous in reference implementations (c.f. https://rosettacode.org/
wiki/Permutations_by_swapping, https://www.npmjs.com/package/permutation-sjt?activeTab=readme and https:
//github.com/corentinway/permutation_way_rs. The idea is credited to the computer scientist Shimon Even with
all references to this pointing back to the Wikipedia entry for the algorithm https://en.wikipedia.org/wiki/
Steinhaus-Johnson-Trotter_algorithm#Even’s_speedup, although as I have been unable to find a copy of any
work by Even mentioning the idea I cannot confirm this.
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at which point the algorithm terminates.
Note that the algorithm requires a sequence of consecutive integers from 1 to n; the algorithm

can still be used for other sequences by using the values in P as ‘pointers’ to ith element of the
sequence, e.g. given S = [b, n, g] and P = [2, 3, 1], then the permutation of S corresponding to
P is given by [n, g, b].

Let us consider the application of the two symmetrisers 0 1 2 and 0 3 T on the tensor
Tabac. The adjacency representation of the tensor is [2, b, 0, c] and the initial coefficient is 1, so
the ProjectedAdjform object starts with the following data:

Slot

0 1 2 3

Weight

2 b 0 c 1

Of course, in the actual object the indices b and c are represented by negative integers but for
clarity they remain named here. The antisymmetriser 0 3 T is applied to the first (and only)
element in the projection so far. Starting from this element, each permutation of the elements
in the symmetriser are calculated using the SJT algorithm. The complete set of adjacency
representations in the projection are therefore incrementally calculated by applying the index
swap calculated by SJT.

Permutation Swapped Sign New term

[0, 3] — 1 [2, b, 0, c]

[3, 0] (0,3) -1 [c, b, 3, 2]

The terms in the last column form the complete symmetrisation of the term, with the weights
adjusted by the sign in the ‘Sign’ column to account for the antisymmetry. Thus, after the
symmetrisation in these indices the object contains the data

Slot

0 1 2 3

Weight

2 b 0 c 1

c b 3 2 -1

The symmetriser 0 1 2 is now applied to each term in succession: first [2, b, 0, c]:

Permutation Swapped Sign New term

[0, 1, 2] — 1 [2, b, 0, c]

[0, 2, 1] (1,2) -1 [1, 0, b, c]

[2, 0, 1] (0,2) 1 [b, 2, 1, c]

[2, 1, 0] (0,1) -1 [2, b, 0, c]

[1, 2, 0] (1,2) 1 [1, 0, b, c]

[1, 0, 2] (0,2) -1 [b, 2, 1, c]

and then [c, b, 3, 2]:
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Permutation Swapped Sign New term

[0, 1, 2] — 1 [c, b, 3, 2]

[0, 2, 1] (1,2) -1 [c, 3, b, 1]

[2, 0, 1] (0,2) 1 [b, 3, c, 1]

[2, 1, 0] (0,1) -1 [3, b, c, 0]

[1, 2, 0] (1,2) 1 [3, c, b, 0]

[1, 0, 2] (0,2) -1 [b, c, 3, 2]

These terms are summed up to produce the final projection; as this symmetriser is not an-
tisymmetric, the terms are summed up simply without taking into account the sign of the
permutation:

Slot

0 1 2 3

Weight

2 b 0 c 2

1 0 b c 2

b 2 1 c 2

c b 3 2 -1

c 3 b 1 -1

b 3 c 1 -1

3 b c 0 -1

3 c b 0 -1

b c 3 2 -1

Note that after the symmetrisation, the weight should be divided through by a normalisation
factor dependent on the shape of the tableaux to which the symmetrisers belong. The meld

algorithm intentionally does not divide through by the normalisation factor in order to ensure
that the weights can be stored as plain integer objects instead of using a rational number class
which impacts performance severely. It is possible to do this as each term in the expression
is acted upon by the same set of tableaux and therefore the normalisation factor picked up
by each term is equal. As meld only compares terms to each other, this global normalisation
cancels out and is therefore irrelevant.

4.5 Projection of an independent symmetriser

A common case for a symmetry is when a particular tensor is completely symmetric or antisym-
metric in some subset of indices. In these cases where there is no mixing of other symmetrisers
the Young projection will of course permit detection of identical terms, however all that the
projection is in practice doing is checking that those index slots contain the same set of index
names: if they do, then the set of all permutations of index names in those slots will be the
same. It is therefore much faster to sort the indices in each term lexicographically, which will
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detect any identical terms without requiring generating the n! terms in the totally symmetric
projection. In meld therefore, all symmetrisations of totally symmetric/antisymmetric index
sets are replaced with a sort. Note that if the subset of indices contains a dummy index then
it can no longer be treated as independent, as the dummy index’s partner may be located in a
slot where another symmetry is to be applied which would require the full projection.

4.5.1 Calculating symmetrisers for products of tableaux

Given a group of terms with the same tensorial structure, the set of symmetrisers corresponding
to that structure must be calculated in order for the projection operation to be applied. Each
term in the product of factors making up the tensor structure of the monomial is examined for a
TableauSymmetry property and if this exists the tableaux represented by that property are col-
lected. The symmetrisers are collected by performing a single pass over the collected tableaux,
for each iterating over the columns and then the rows to construct a list of symmetrizer_t
objects

struct symmetrizer_t {

std::vector <size_t > indices;

bool antisymmetric;

bool independent;

};

The indices are collected as the entries in the row or column, and the antisymmetric flag
set to true for columns and false for rows. The independent flag records if the indices in
the symmetriser are unique, i.e. do not appear in any other symmetriser, which allows the
projection to be optimised into a sort as described above. Of course, as the symmetrisers are
collected from tableaux independently of the actual index structure of the object which they
act upon it is not possible at this stage to determine if it contains any dummy indices which
would cause the symmetriser to not be independent, however its independence assuming the
indices are free is determined after all the symmetrisers have been collected by attempting to
commute it through all the other symmetrisers. The actual symmetrisation algorithm checks
both this flag and the index structure of the term it is symmetrising before deciding whether
to apply the sorting optimisation or not. Commuting the symmetriser through its neighbours
not only allows the detection of any independent symmetrisers, but also checks for two other
optimisations which can be applied:

• If two symmetrisers S1 and S2 have the same parity (i.e. both symmetric or both an-
tisymmetric) and S1 ⊆ S2 such that all slots in S1 also appear in S2, then the product
S1S2 ≡ S2S1 ≡ S2. To see this, consider a tensor Ti1i2...in and the symmetriser S2 which
permutes a set of slots {s1, s2, . . . , sk}. The result of applying S2 is

S2Ti1...in =
1

k!
(TP1(i1...in) + TP2(i1...in) + · · ·+ TPk!(i1...in) (4.27)

where the Pj are all the k! permutations of the indices in S2. Now consider S1 =

{s1, s2, . . . , sl} where l ≤ k so that S1 ⊆ S2 and the permutations of indices generated by
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S1 are given by Pj for 1 ≤ j ≤ l!. Then the action of S1 on (4.27) is

S1S2Ti1...in =
1

l! k!
(TP1P1(i1...in) + TP1P2(i1...in) + · · ·+ TP1Pk!(i1...in)+

TP2P1(i1...in) + TP2P2(i1...in) + · · ·+ TP2Pk!(i1...in)+

. . .

TPl!P1(i1...in) + TPl!P2(i1...in) + · · ·+ TPl!Pk!(i1...in))

(4.28)

Each row contains all permutations Pj(i1 . . . in) for 1 ≤ j ≤ k! in a different order, as it is
made up of the permutations Pj left-multiplied by a different Pj′ for each row. As there
are l! rows, this means each permutation appears l! times, so

S1S2Ti1...in =
1

l! k!
(l!TP1(i1...in) + l!TP2(i1...in) + · · ·+ l!TPk!(i1...in))

= S2Ti1...in

(4.29)

A proof for S2S1 ≡ S2 can be constructed in the same manner. For antisymmetrisers A1

and A2 ⊇ A1 then the result A1A2 ≡ A2A1 ≡ A2 also holds as in each row of (4.28) the
sign of the permutation Pj will be the same, depending only on the parity of Pj itself
regardless of which combination of permutations are used to construct it.

• Two symmetrisers which have opposite parity (i.e. one symmetric and one antisymmetric)
and share more than one slot cause the entire projection to be zero. Note that this is
different to the zero given in (3.36) which occurs because the object obeys two independent
symmetries of different parity which share a single index; when constructing a symmetriser
this necessarily does not result in the projection equalling zero or mixed symmetries would
be impossible to analyse by using Young projection operators. Consider

S = a b . . .

A = a b . . .
T

(4.30)

where the other slots in S and A need not overlap. Then the expression a
b
...

⊗ a b . . .

Ti1i2...ia...ib...in (4.31)

is equal to zero. To show this, we begin by using the inverse of the previous optimisation
to rewrite this as  a

b
...

⊗ a
b
⊗ a b ⊗ a b . . .

Ti1i2...ia...ib...in (4.32)

Let
Tk1k2...ka...kb...kn (4.33)
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be one of the permutations generated by the symmetriser a b . . . , then(
a
b
⊗ a b

)
Tk1k2...ka...kb...kn =

1

2
a
b

(Tk1k2...ka...kb...kn + Tk1k2...kb...ka...kn)

=
1

4
(Tk1k2...ka...kb...kn − Tk1k2...kb...ka...kn

+ Tk1k2...kb...ka...kn − Tk1k2...ka...kb...kn)

= 0

(4.34)

This is true of all the permutations generated by a b . . . and so the whole expression
(4.31) is equal to zero.

After these optimisations have been applied, the result is a list of symmetrisers which are
applied in order.

4.5.2 Calculating symmetrisers for sums of tableaux

Tensors in Cadabra can be assigned multiple tableaux symmetries; ordinarily these are treated
as though they were a tensor product of tableaux, but meld can also function as though they
were terms in a direct sum of tableaux by being passed the project_as_sum flag, e.g. in order
to obtain a projection which makes a cyclic symmetry Tabc = Tbca = Tcab manifest it is possible
to use the sum of a single-row and single-column tableau:H ( 1 2 3

)
⊕H

 1
2
3

Tabc =
1
6 (Tabc + Tacb + Tbac + Tbca + Tcab + Tcba)+
1
6 (Tabc − Tacb − Tbac + Tbca + Tcab − Tcba)

=
1

3
(Tabc + Tbca + Tcab)

(4.35)

Note that the Hermitian projection operators are required when dealing with sums of tableau;
in the case of pure rows and columns these are the same as the standard projectors.

In principle, other than needing to collect the set of Hermitian symmetrisers from each
tableau, the collection of the symmetrisers is the same as for collecting the symmetrisers as a
product with three main caveats:

• The symmetrisers are returned in a flat list, but it needs to be possible to detect the
breakpoints between different tableaux as they are not applied onto the same projection,
but are calculated as many projections and then summed

• It is no longer possible to perform the independent symmetriser optimisation, as the
result of the projection is a sum of projectors so the terms in the projection of a fully
symmetrised object will become mixed and can therefore not be treated as independent.

• The normalisation of the projector now matters, as the different projectors making up
the sum will in general have different normalisations and so this can no longer be factored
out as a global scaling.

Luckily these three problems are all able to work cooperatively towards a solution: meld in-
troduces a dummy symmetrizer_t object before the first symmetriser in each tableau which is
marked by the independent flag being set to true as the optimisation for independent symme-
try subsets of indices cannot be applied when summing projections so this flag is always false
for a real symmetriser. The object holds a single value in its data, which corresponds to the
normalisation constant of the tableau.
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In order to keep the integer arithmetic, instead of dividing through each projection by the
normalisation factor of the associated tableau, each projector is first multiplied through by the
product of all normalisations, e.g.

1

N(Y1)
P (Y1) +

1

N(Y2)
P (Y2) +

1

N(Y2)
P (Y2)→

N(Y2)N(Y3)P (Y1)+

N(Y1)N(Y3)P (Y2)+

N(Y1)N(Y2)P (Y3)

(4.36)

4.5.3 Applying a symmetriser in identical tensors

The final aspect of symmetrisation to be discussed is the symmetrisation of identical tensors.
The process requires symmetrising in each pair of identical tensors so that any expressions
which are equivalent up to swapped terms become manifestly identical:

AaAbAc → AaAbAc +AbAaAc

→ AaAbAc +AaAcAb +AbAaAc +AbAcAa

→ AaAbAc +AcAbAa +AaAcAb +AbAcAa

+AbAaAc +AcAaAb +AbAcAa +AaAcAb

(4.37)

This results in m identical tensors producing 2m terms. The symmetrisation is performed in
the apply_ident_symmetry method of the ProjectedAdjform class, and accepts three input
parameters:

• positions: The list of positions in the adjacency representation where the identical ten-
sors are located

• n_indices: The number of indices in the tensor

• commutation_matrix: A commutation matrix describing whether the terms can be swapped.

For instance, in the example above where the adjacency representation is [a, b, c], the zero-
indexed positions of the tensors are [0, 1, 2] and the number of indices is 1. Assuming that
[Aa, Ab] = 0 the commutation matrix would contain all ones indicating that the terms can
be swapped and picks up no change of sign on doing so. The only other values which are
accepted by the commutation matrix are −1 if the expression gains a sign change on the swap,
or 0 for any commutation relation more complicated which indicates that it is not possible to
symmetrise the two tensors. In the example above, the object initially starts with the data

Slot

0 1 2

Weight

a b c 1

First, all pairs involving the first tensor, in this example slots (0, 1) and (0, 2) in the set are
symmetrised:
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Slot

0 1 2

Weight

a b c 1

b a c 1

c b a 1

Next, all pairs involving the second slot are symmetrised. In this case this only requires
symmetrising in (1, 2) as we have already considered (0, 1):

Slot

0 1 2

Weight

a b c 1

a c b 1

b a c 1

b c a 1

c b a 1

c a b 1

4.6 Calculating linear dependence between terms

The final step of the algorithm involves detecting whether a projection can be written in terms
of a linear combination of other projections. The other projections can all be assumed to be
linearly independent from each other as they consist of terms which the algorithm has previous
processed and not melded. Let T{i} for 1 ≤ i ≤ n! be the set of index permutations of a tensor
T with n indices, then some projection Pk(T ) can be written

Pk(T ) = c1,kT{1} + c2,kT{2} + · · ·+ cn!,kT{n!} (4.38)

where ca,b are the possibly zero coefficients in the projection. At the (k + 1)th stage in the
algorithm, we have k projections and wish to write the (k + 1)th as a linear combination of
these, i.e. the equation to be solved is

l1P1(T ) + l2P2(T ) + · · ·+ Pk(T ) = Pk+1(T ) (4.39)
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where we wish to determine values for li. As each T{i} is independent, equations for each li can
be determined by comparing the coefficients of each T{i} term:

l1c1,1T{1} + l2c1,2T{1}+ · · ·+ lkc1,kT{1} = c1,k+1T{1}

l1c2,1T{2} + l2c2,2T{2}+ · · ·+ lkc2,kT{2} = c2,k+1T{2}

. . .

l1cn!,1T{n!} + l2cn!,2T{n!}+ · · ·+ lkcn!,kT{n!} = cn!,k+1T{n!}

(4.40)

There are n! such equations and can thus be represented by the n!×k matrix equation

Ck~l = ~ck+1 (4.41)

where we define Ck, ~l and ~ck+1 as
c1,1 c1,2 . . . c1,k

c2,1
. . .

...
cn!,1 cn!,k



l1

l2
...
lk

 =


c1,k+1

c2,k+1

...
cn!,k+1

 (4.42)

i.e. Ck = [~c1~c2 . . .~ck]. As each column of Ck is linearly independent, its rank is k and there are
thus three possibilities for the solution set

1. There are k non-zero rows in Ck and there is a single unique solution

2. There are more than k non-zero rows in Ck, which form a consistent system of linear
equations with a single unique solution

3. There are more than k non-zero rows in Ck, which do not form a consistent system of
linear equations and there is no solution.

In cases 2 and 3 standard linear algebra techniques, such as reducing the matrix Ck to row
echelon form, can be used to determine the solution set, however there are several reasons why
this is undesirable:

• Each projection may contain many thousands of terms, thus creating the explicit matrix
increases storage requirements

• Even if a sparse matrix representation is used, as opposed to the ProjectedAdjform objects
which can access elements using adjacency representations as keys matrices require integer
indexing requiring the expensive calculation of Lehmer codes each time an entry is required

• Most matrix libraries do not provide overloads for matrix operations using integer data
types

This last point is in some aspects unavoidable, as the linear combinations will in general consist
of rational multiples of terms and thus requires rational arithmetic types, however we still seek
to minimise the extent to which this is required. The explicit construction of the matrix Ck can
be avoided by instead finding a k×k submatrix C ′k constructed by selecting linearly independent
rows of the matrix and attempting to find a solution to the square system

C ′k
~l = ~c′k+1 (4.43)
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then substituting back into the full set of equations (4.40) to ensure that the solution is con-
sistent, which is the approach meld takes. As k is typically a relatively small number, solving
(4.43) is generally a very fast process with the expensive process being verifying the solution
such that the overall complexity is linear in the total number of unique terms in the projections.

Alongside C ′k, a map between the rows of the matrix and the adjacency representations the
row represents is kept. At the (k + 1)th stage, if there is no solution to (4.43) then the matrix
C ′k is grown by choosing a new term from ~ck+1 which ensures that the (k + 1)th column is
linearly independent of the first k columns. Consider a variant on the example in (4.1):

Tabc + Tbca + Tcab (4.44)

where the symmetry is described by
0 1
2

(4.45)

At the first stage, k = 0, we consider the first term Tabc with the projection

Slot

0 1 2

Weight

a b c 1

b a c 1

b c a -1

c b a -1

As C0 = 0 there are no solutions to (4.42). We form the matrix C ′1 by choosing an arbitrary
element from the projection of Tabc

Tabc

abc 1

At the next stage k = 1 we consider the term Tbca with the projection

Slot

0 1 2

Weight

a c b -1

b c a 1

c a b -1

c b a 1

The equation (4.42) is
[1][l1] = [0] (4.46)

with the solution l1 = 0. This immediately tells us that the two terms by themselves are linearly
independent, but in general we would iterate through all the equations in (4.40) between these
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two terms to check for consistency:

abc 0× 1 = 0

acb 0× 0 6= −1
(4.47)

As soon as the inconsistent equation is found, the solution is invalid and we instead grow
C ′1 → C ′2 by choosing a new representative term. Again the choice is arbitrary up to the
condition that the new column must be linearly independent from the first. The first term in
the projection, acb, satisfies this criteria so we set C ′2 to

Tabc Tbca

abc 1 0
acb 0 -1

At the final stage k = 2 we examine the projection of Tcab:

Slot

0 1 2

Weight

a b c -1

a c b 1

b a c -1

c a b 1

from which we derive the equation [
1 0

0 −1

][
l1

l2

]
=

[
−1

1

]
(4.48)

with the solutions l1 = l2 = −1. We again check the consistency of the equations

abc − 1× 1 +−1× 0 = −1

acb − 1× 0 +−1×−1 = 1

bac − 1× 1 +−1× 0 = −1

bca − 1×−1 +−1× 1 = 0

cab − 1× 0 +−1×−1 = 1

cba − 1×−1 +−1× 1 = 0

(4.49)

The solution is consistent and it is determined that −Tabc − Tbca = Tcab allowing these terms
to be combined.

4.7 The complete algorithm

We have now discussed all the individual algorithms which make up the various components of
meld. It is now time to zoom out from the low-level description of each component, and discuss
at a higher level how each part fits in to the overall picture. The logic of the apply_tableau

function will be examined line by line, with some whitespace and comments between logical
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sections omitted. Once a node where the algorithm can be applied has been determined using
can_apply_tableaux, the algorithm calls apply_tableaux:

194 bool meld:: apply_tableaux(iterator it)

195 {

The algorithm returns true if any melding took place, otherwise it returns false. The algorithm
begins by checking if the node is an equality, in which case both sides must be called separately:

196 if (*it->name == "\\ equals") {

197 bool res = false;

198 Ex:: sibling_iterator side = it.begin();

199 res |= apply_tableaux(side);

200 ++side;

201 res |= apply_tableaux(side);

202 return res;

203 }

Next the matrix and vector classes are specified using the mpq_class which Cadabra uses for
rational number types

205 using namespace boost:: numeric ::ublas;

206 using matrix_type = matrix <mpq_class >;

207 using vector_type = vector <mpq_class >;

A variable so that we know whether any melding has taken place and which will serve as the
return value for the algorithm is also defined before the main logic of the function

209 bool applied = false;

The first true step of the algorithm is to sort the terms into groups of matching structure:

212 std::vector <std::vector <ProjectedTerm >> patterns;

213 for (const auto& term : split_it(it, "\\sum")) {

214 ProjectedTerm projected_term(kernel , index_map , tr, term);

215 if (projected_term.ident.size() == 0)

216 continue;

217 bool found = false;

218 for (auto& pattern : patterns) {

219 if (pattern [0]. compare(kernel , projected_term)) {

220 found = true;

221 pattern.push_back(projected_term);

222 break;

223 }

224 }

225 if (!found)

226 patterns.emplace_back (1, std::move(projected_term));

227 }

split_it conditionally returns either an iterator by itself in a list, or a list of its children
depending on its name, allowing us to treat a non-sum node as a sum of one element. Each
term is converted to a ProjectedTerm object which is then compared against the first element
of each ‘pattern’; if it matches then the term is added to that pattern group or else if it matches
no pattern then a new pattern group is created to which it is appended. The algorithm then
continues to iterate over each pattern group

230 for (auto& terms : patterns) {

231 ScopedProgressGroup group(pm,

232 "Melding terms of form " + ex_to_string <DisplayTerminal >(kernel ,

terms [0]. tensor),

233 terms.size());
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The progress monitor provides output to the GUI, allowing the user to track the progress of
the algorithm which for large expressions with complicated symmetries might otherwise make
Cadabra unresponsive for a long time. Next, the matrix and linear solver for this pattern group
are initialised

240 linear ::Solver <mpq_class > solver;

241 matrix_type coeffs;

242 std::vector <Adjform > mapping;

The linear::Solver class implements the factorisation and solving algorithm for equations
of the form A~x = ~y for the variable ~x, as is the case for our problem. The matrix coeffs

corresponds to C ′k above, and the ith element of mapping is the adjacency representation corre-
sponding to the ith row of C ′k. We now collect the tableaux associated with the pattern group
by querying the properties of the first element in the group, and then collect the corresponding
symmetrisers

246 auto tabs = collect_tableaux(terms [0]. tensor);

247 std::vector <symmetrizer_t > symmetrizers;

248 bool is_zero = collect_symmetries(tabs , symmetrizers);

If the symmetries can only be satisfied if the object is identically zero, then collect_symmetries

returns true and we delete all the objects in the group, indicate that the algorithm has applied
some transformations and move on to the next pattern group

250 if (is_zero) {

251 // The term is identically zero due to its tableaux , delete all and

move

252 // onto next pattern

253 for (auto& term : terms) {

254 node_zero(term.it);

255 applied = true;

256 }

257 continue;

258 }

If the projection is not identically zero for any manifestly obvious reason, we begin iterating
over each term in the projection and calculate its projection:

261 for (size_t term_idx = 0; term_idx < terms.size(); ++ term_idx) {

262 group.progress ();

263 auto& term = terms[term_idx ];

264 symmetrize(term , symmetrizers);

It is still possible that the projection is zero, for example due to the arrangement of dummy
indices, and if so the term is erased

266 if (term.projection.empty()) {

267 // Empty adjform means that the term is identically equal to 0

268 node_zero(term.it);

269 terms.erase(terms.begin() + term_idx);

270 --term_idx;

271 applied = true;

272 }

If not, then we attempt to solve the equation (4.43). We declare the two vectors ~l and ~c′k+1,
named x and y respectively and initially assume there is no solution.

273 else {

274 // We need to try and express the current YP as a linear

combination of previous YPs
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275 // by solving "coeffs * x = y"

276 vector_type x, y;

277 bool has_solution = false;

If the matrix coeffs has some dimensions, i.e. k > 0, then we fill the vector ~y with the
corresponding elements and solve the square system:

279 if (coeffs.size1() > 0) {

280 y.resize(coeffs.size1());

281 for (size_t i = 0; i < mapping.size(); ++i)

282 y(i) = term.projection.get(mapping[i]);

283 x = solver.solve(y);

284 has_solution = true;

We assume that this solution is consistent, and now iterate through the already projected terms
in the pattern group and check for inconsistencies. To do this, we hold iterators to the first term
in each previously calculated projection (the lhs_its) as well as the first term in the current
projection (rhs_it). The term corresponding to the equation we are currently checking is held
in cur_term

300 std::vector <ProjectedAdjform :: const_iterator > lhs_its;

301 ProjectedAdjform :: const_iterator rhs_it = term.projection.

begin();

302 Adjform cur_term = rhs_it ->first;

lhs_its is populated, and if the first term of any of these projections sorts lexicographically
less than the first term of the current projection we update cur_term

305 for (size_t i = 0; i < term_idx; ++i) {

306 auto it = terms[i]. projection.begin();

307 if (it->first < cur_term)

308 cur_term = it->first;

309 lhs_its.push_back(it);

310 }

We now iterate through all the terms calculating each expression. As the ProjectedTerm storage
is sparse, instead of incrementing all iterators at the same time, they are only incremented once
we have calculated the term for the value they currently point to. This continues until all the
iterators are expired, i.e. all equations have been calculated:

313 size_t n_finished = 0;

314 while (n_finished < lhs_its.size()) {

Any iterators which point to cur_term are included in the sum and incremented, otherwise they
are left alone. The next term is concurrently calculated, starting as a value lexicographically
greater than any other adjacency representation can be, and then being compared to each
iterator after any increments have taken place:

319 Adjform next_term;

320 next_term.push_coordinate(std:: numeric_limits <Adjform ::

value_type >::max());

321 mpq_class sum = 0;

322 for (size_t i = 0; i < term_idx; ++i) {

323 if (lhs_its[i] != terms[i]. projection.end() &&

lhs_its[i]->first == cur_term) {

324 sum += x(i) * lhs_its[i]->second;

325 ++ lhs_its[i];

326 if (lhs_its[i] == terms[i]. projection.end())

327 ++ n_finished;

328 }
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329 if (lhs_its[i] != terms[i]. projection.end() &&

lhs_its[i]->first < next_term)

330 next_term = lhs_its[i]->first;

331 }

A similar process takes place for the right hand side of the equation

334 mpq_class rhs_sum;

335 if (rhs_it == term.projection.end() || rhs_it ->first !=

cur_term) {

336 rhs_sum = 0;

337 }

338 else {

339 rhs_sum = rhs_it ->second;

340 ++ rhs_it;

341 }

If the two sums do not agree, then has_solution is set to false and the consistency check can
end

344 if (sum != rhs_sum) {

345 has_solution = false;

346 break;

347 }

Finally, we check if the adjacency representation rhs_it points to compares less than the current
value of next_term and set cur_term ready for the next iteration

350 if (rhs_it != term.projection.end() && rhs_it ->first <

next_term)

351 next_term = rhs_it ->first;

352 cur_term = next_term;

353 }

Once all iterators on the left-hand side have expired, if there are still terms to process on the
right hand side then the set of equations is inconsistent

357 if (rhs_it != term.projection.end())

358 has_solution = false;

359 }

The logic now depends on whether we found a solution or not

361 if (has_solution) {

If the solution exists then the scalar component of the current term multiplied by the associated
weight in the vector ~l is added onto the scalar components of each term of which it is a linear
combination, and the changed flag for these terms set so that the algorithm knows to modify
these in the actual expression at the end of the process

367 for (size_t i = 0; i < term_idx; ++i) {

368 if (x(i) != 0) {

369 terms[i]. changed = true;

370 Ex:: iterator scalar_head = term.scalar.begin();

371 for (Ex:: sibling_iterator beg = scalar_head.begin()

, end = scalar_head.end(); beg != end; ++beg) {

372 auto new_term = terms[i]. scalar.append_child(

terms[i]. scalar.begin(), (Ex:: iterator)beg)

;

373 multiply(new_term ->multiplier , x(i) * (*

scalar_head ->multiplier));

374 }
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375 }

376 }

The applied flag is then set and the current term removed from the expression

377 applied = true;

378 node_zero(term.it);

379 terms.erase(terms.begin() + term_idx);

380 --term_idx;

If no solution was found, then the matrix C ′k is grown

382 else {

383 // Expand the dimensions of the matrix by 1

384 coeffs.resize(coeffs.size1() + 1, coeffs.size2() + 1);

We then find an adjacency representation which isn’t already included in the matrix and use
this as the next row of the matrix, filling in the new row and column

391 bool found = false;

392 for (const auto& kv : term.projection) {

393 auto pos = std::find(mapping.begin(), mapping.end(), kv

.first);

394 if (pos == mapping.end()) {

395 // Fill in bottom row

396 for (size_t i = 0; i < term_idx; ++i)

397 coeffs(coeffs.size1() - 1, i) = terms[i].

projection.get(kv.first);

398 // Fill in the righthand column

399 for (size_t i = 0; i < mapping.size(); ++i)

400 coeffs(i, coeffs.size2() - 1) = term.projection

.get(mapping[i]);

401 // Fill in the bottom right element

402 coeffs(coeffs.size1() - 1, coeffs.size2() - 1) =

term.projection.get(kv.first);

403 if (solver.factorize(coeffs)) {

404 mapping.push_back(kv.first);

405 found = true;

406 break;

407 }

408 }

409 }

A check to ensure that the matrix was grown is performed, to ensure that any bugs are caught
and the process doesn’t continue with junk values in the matrix

413 if (!found)

414 throw std:: runtime_error("Could not find a suitable

element to add to the matrix");

415 } // if (has_solution) {} else {}

416 } // if (term.projection.empty()) {} else {}

417 } //for (size_t term_idx = 0; term_idx < terms.size(); ++ term_idx)

Finally, once all terms in the pattern have been processed any terms which have had their scalar
components modified are updated in the actual expression

420 for (auto& term : terms) {

421 if (term.changed) {

422 // Replace the node with a product of the scalar and tensor

parts , then cleanup

423 tr.erase_children(term.it);

424 term.it = tr.replace(term.it, str_node("\\prod"));
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425 tr.append_child(term.it, term.scalar.begin());

426 tr.append_child(term.it, term.tensor.begin());

427 cleanup_dispatch(kernel , tr, term.it);

428 }

429 }

430 } // for (auto& terms : patterns)

The algorithm returns the applied flag to indicate if any changes took place

432 return applied;

433 }

4.8 Example usage

One of the motivating examples for the construction of the meld algorithm is the ability to
generally canonicalise expressions involving Riemann tensors where there may be hidden Bianchi
identities.A canonicalisation algorithm based on mono-term canonicalisation techniques, such
as the Butler-Portugal algorithm, would not be able to detect this type of symmetry, and many
are not listed in lookup tables used by pattern detection algorithms. An illustrative example is
the polynomial

RabcdRabcd +RabcdRacbd (4.50)

The second term is in fact equal to half the first term due to a Bianchi identity, so although
the simplification seems to be due to a mono-term symmetry as only two terms are involved
canonicalise has no effect on the expression

R_{a b c d}:: RiemannTensor.

canonicalise($R_{a b c d}R_{a b c d} + R_{a b c d}R_{a c b d}$);

RabcdRabcd +RabcdRacbd

however meld is able to simplify the expression

meld($R_{a b c d}R_{a b c d} + R_{a b c d}R_{a c b d}$);

3

2
RabcdRabcd

Of course, as meld only combines terms and makes no attempt to canonicalise the order of the
indices, if the expression were instead

RabcdRacbd +RabcdRabcd (4.51)

then meld calculates the projections in the inverse order and produces the output in terms of
RabcdRacbd:

meld($R_{a b c d}R_{a c b d} + R_{a b c d}R_{a b c d}$);

3RabcdRacbd

A simple polynomial such as this may be hard-coded into some computer algebra systems, but
the generality of meld can be shown by combining the expression with an antisymmetric tensor
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R_{a b c d}:: RiemannTensor.

\epsilon {#}:: AntiSymmetric.

ex := R_{a b e f}R_{c d g h}\ epsilon_{f e h g} + R_{a b e f}R_{c g d h}\

epsilon_{g e f h};

meld(ex);

RabefRcdghεfehg +RabefRcgdhεgefh

3

2
RabefRcdghεfehg

where the way in which the dummy indices interact may make lookup table techniques fail.
Another example is identity 3.1 given in [82]:

R(abc
mRd)me

f −RacemRbdmf +Racm
fRbde

m = 0 (4.52)

exA = asym($R_{a b c}^{m}R_{d m e}^{f}$, $_{a}, _{b}, _{c}, _{d}$,

antisymmetric=False)

ex2 := @(exA) - R_{a c e}^{m}R_{b d m}^{f} + R_{a c m}^{f}R_{b d e}^{m}.

meld(ex);

0

A more computationally expensive example involves a fourth order polynomial of the Weyl
tensor, which is symmetrically identical to the Riemann tensor

W_{m n p q}:: WeylTensor;

ex:= W_{p q r s} W_{p t r u} W_{t v q w} W_{u v s w}

- W_{p q r s} W_{p q t u} W_{r v t w} W_{s v u w}

- W_{m n a b} W_{n p b c} W_{m s c d} W_{s p d a}

+ (1/4) W_{m n a b} W_{p s b a} W_{m p c d} W_{n s d c};

meld(ex);

WpqrsWptruWtvqwWuvsw −WpqrsWpqtuWrvtwWsvuw −WmnabWnpbcWmscdWspda

+ (1/4)WmnabWpsbaWmpcdWnsdc

0

The algorithm over a series of runs averaged a runtime of 2.68s on a standard home machine
for this calculation.

Derivatives of Riemann tensors with a metric connection also satisfy higher order Bianchi
identities, with the standard example of the first derivative being

∇eRabcd +∇cRabde +∇dRabec (4.53)

The symmetry of the expression TeRabcd for some arbitrary tensor Te is given in general by the
Littlewood-Richardson decomposition of the direct product of the two tableaux

e ⊗ a c
b d

= a c e
b d

⊕
a c
b d
e

(4.54)

Only the tableau
a c e
b d

(4.55)
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satisfies the Bianchi identity and so the symmetry of the object is described by this ‘hook’
tableau. The process can be repeated [83, 84] for higher derivatives to show that the symmetry
of ∇e1∇e2 . . .∇enRabcd is

n+ 2 boxes︷ ︸︸ ︷
a b e1 e2

c d

. . . en (4.56)

Expressions involving derivatives of Riemann tensors can therefore be simplified by defining
objects with properties associating them with these hook tableaux and substituting them into
the equation before calling meld, however as this is such as common case the hook-tableau is
automatically calculated by meld when a derivative of a Riemann tensor is encountered

\nabla {#}:: Derivative.

R_{a b c d}:: RiemannTensor.

ex := \nabla_{e}{R_{a b c d}} + \nabla_{c}{R_{a b d e}} +

\nabla_{d}{R_{a b e c}};

meld(ex);

∇eRabcd +∇cRabde +∇dRabec
0

and similarly for higher order identities, such as the following from [85]

Rabcd;e
aRbe

fg;hiRcfgi;dh =
1

8
Rabcd;e

eRab
fg;hiRcdfg;ih (4.57)

\nabla {#}:: Derivative.

R^{a b c d}:: RiemannTensor.

R_{a b}^{c d}:: RiemannTensor.

R_{a b c d}:: RiemannTensor.

ex := \nabla^{e}{\ nabla_{a}{R^{a b c d}}}

\nabla^{h}{\ nabla^{i}{R_{b e}{}^{f g}}}

\nabla_{d}{\ nabla_{h}{R_{c f g i}}} -

1/8 \nabla^{e}{\ nabla_{e}{R^{a b c d}}}

\nabla^{h}{\ nabla^{i}{R_{a b}^{f g}}}

\nabla_{i}{\ nabla_{h}{R_{c d f g}}};

meld(ex);

0

Two more identities from [82] serve to demonstrate this point:

∇aRbcde −∇bRadce +∇cRadbe −∇dRbcae = 0 (4.58)

\nabla {#}:: Derivative.

R_{a b c}^{d}:: RiemannTensor.

ex := \nabla_{a}{R_{b c d}^{e}} - \nabla_{b}{R_{a d c}^{e}} +

\nabla_{c}{R_{a d b}^{e}} - \nabla_{d}{R_{b c a}^{e}};

meld(ex);

0

and
[∇a,∇b]Rcdef + [∇c,∇d]Rabef + [∇e,∇f ]Rabcd = 0 (4.59)
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\nabla {#}:: Derivative.

R_{a b c d}:: RiemannTensor.

ex :=

\nabla_{a}{\ nabla_{b}{R_{c d e f}}} - \nabla_{b}{\ nabla_{a}{R_{c d e f}}} +

\nabla_{c}{\ nabla_{d}{R_{a b e f}}} - \nabla_{d}{\ nabla_{c}{R_{a b e f}}} +

\nabla_{e}{\ nabla_{f}{R_{a b c d}}} - \nabla_{f}{\ nabla_{e}{R_{a b c d}}};

meld(ex);

0

The separation of scalar factors from projections in meld also means that even a Bianchi
identity with unknown ratios between the terms can be simplified

R_{a b c d}:: RiemannTensor.

ex := \alpha R_{a b c d} + \beta R_{a c d b} + \gamma R_{a d b c};

meld(ex);

αRabcd + βRacdb + γRadbc

(α− γ)Rabcd + (β − γ)Racdb

4.9 Complexity

As with all algorithms, one of the most important considerations is whether they run in a prac-
tical amount of time. In section 3.2.4, the complexity of mono-term canonicalisation algorithms
was discussed, and although meld is not directly analogous to classic canonicalisation algorithms
in its behaviour there are certainly many instances where their motivations are aligned and in
these cases comparisons between their complexities also becomes relevant. The complexity of
the meld algorithm is dependent on three main factors which are discussed in detail here. The
graphs used in this chapter were produced using the same Cadabra notebooks used in section
2.8 of [72].

4.9.1 Number of terms in the expression

For each term in a sum, meld must calculate the projection of the term and attempt to solve
the set of linear equations for the term. The cost of calculating the projection is constant
inside a particular pattern group, however solving the linear system depends on the number
of independent representations which have been discovered, with each equation to be solved
containing as many terms as there are independent representations and so the complexity
of the equation grows linearly with respect to this. The maximum number of independent
representations is determined by the symmetry of the object, with the ith stage of the algorithm
having at most i− 1 independent representations discovered (i.e. the total number of terms so
far processed) which leads to a worst case behaviour which is quadratic in the total number of
stages the algorithm must make, i.e. the number of terms N , and so the overall complexity is
given by

O(N + εN2) (4.60)

where the factor ε, related the difference in computation power required to calculate the projec-
tion and solve the linear system, is in practice very small making this term irrelevant especially
as the number of independent representations is almost always far smaller than N so the
quadratic behaviour almost never manifests in real world calculations.
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Figure 4.2: Behaviour of meld as the number of terms in the expression increases

The behaviour of melding randomly generated sums of Riemann monomials is shown in Fig.
4.2, with a line showing a linear regression fit superimposed.

4.9.2 Number of dummy indices in each term

Dummy indices introduce a redundancy in the number of permutations of a set of indices,
reducing the total number of independent terms which are possible in a projection. This reduces
the complexity of the algorithm by modifying two factors: the number of memory allocations
which must be made in order to generate new terms, and the number of equations to be checked
when solving the linear system. We therefore expect a reduction in the runtime of the algorithm
for expressions which differ only in having more pairs of dummy indices, i.e. each expression in
the chain

RabcdRefgh → RaabcRdefg → RaabbRcdef → RaabbRccde → RaabbRccdd (4.61)

The exact effect of this behaviour, shown in Fig. 4.3, is harder to quantify explicitly especially
for relatively small number of indices where the ratio cannot be treated as a continuous quantity,
and for many tableau shapes (including the Riemann symmetries) certain combinations of
dummy indices lead to expressions which are identically zero meaning that testing by generating
random expressions is heavily biased towards smaller runtimes for higher numbers of dummy
indices. The graph of the behaviour generally supports the reduction in complexity as the ratio
of dummy indices increases.
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Figure 4.3: Behaviour of meld as the ratio of dummy indices to free indices increases

4.10 Composition of tableaux

The tableau associated with the symmetry effects the complexity of the algorithm in numerous
ways:

1. The worst-case running time for the algorithm is proportional to n! for a tableau with n
cells, so tableaux which act over a smaller set of indices are more efficient to compute

2. The shape of the tableau itself effects the total number of terms which must be computed
during the projection

3. Terms whose symmetry is a combination of products of tableaux, for instance polynomials
of tensors, generally perform better than tensors described by a large tableau.

The effect the shape of the tableau has on the performance is shown in Fig. 4.410 for a
collection of 9 celled tableaux, which shows that the shape of the tableau can have a huge
impact on the efficiency.

When the projection of a product of N identical tableau is calculated, the computation
of the ith tableau requires projecting each term in the projection calculated for the (i − 1)

previous terms. Each projection does not produce an identical term to a previous projection,
as the projection is calculated over a different set of indices (assuming there are no dummy
indices). If each projection produces k terms, then a quadratic polynomial produces k2 terms,

10The optimisations for fully (anti-)symmetric tensors is disabled to make the mathematical structure clearer,
in reality the tableau shapes ⊗9 and ( ⊗9)T would be by far the most efficient
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Figure 4.4: Behaviour of meld as the ratio of dummy indices to free indices increases

and similarly a Nth order polynomial produces kN terms, and so the behaviour can be seen
to be exponential in the order of the polynomial for expressions containing only free indices;
dummy indices will of course reduce the complexity of the algorithm as discussed above. This
behaviour is shown in Fig. 4.5 where the runtime of melding expressions containing Riemann
polynomials is shown is shown to asymptotically approach an exponential curve. The effect by
which lower orders are above the expected line, but have a smaller growth rate, is at least in part
due to the constant overhead associated with calling meld and initialising the data structures
which does not vary with the polynomial order.

4.10.1 Comparison to canonicalise and practical limits

In general, the meld algorithm is far slower than canonicalisation routines based on e.g. the
Butler-Portugal algorithm due to the large expense which comes with calculating the Young
projection of a term. The performance becomes markedly worse as the number of indices
increases, with the worst-case factorial growth of meld unable to compete with the polynomial
complexity of the Butler-Portugal algorithm in these cases. Even in cases where the Butler-
Portugal algorithm also suffers from factorial growth, the overheads are generally smaller as far
fewer memory allocations and arithmetic operations are required per term compared to meld.

In many practical and real-world cases, this is not a problem. Many problems in physics
rarely require more than ten free indices to be expressed, and Fig. 4.5 demonstrates fifth-order
Riemann polynomials can be processed on the order of seconds on home computers which for
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Figure 4.5: Behaviour of meld as the ratio of dummy indices to free indices increases

many applications is perfectly acceptable behaviour. For many classes of calculations, even these
limits are far larger than will be encountered meaning that the ability to use meld at regular
intervals in a calculation to ensure that expressions are reduced to their minimum forms is very
viable.

In cases when very large polynomials might be considered, for instance in perturbation
theory, the main limiting factor of meld is the amount of memory available on the computer.
On modern computers, if the physical memory is exhausted then a region of virtual memory
on the hard disk is allocated however as meld must read concurrently from areas of memory
which are fragmented across the memory space11 the performance suffers considerably due to
the high overhead of performing the swap between physical and virtual memory spaces.

11The use of a binary search tree means that terms inside a projection are likely to be fragmented, however
even in the storage was contiguous solving the linear system requires reading terms from each projection, which
would be separated by the size of the projection and therefore likely very far removed in the situation where the
size of the projection has exhausted the memory
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Extension to meld

As alluded to earlier, canonicalisation through Young projection operators makes up a large part
of the overall logic of meld, but as an algorithm designed to provide the most general possible
tool for simplification there are other routines which it calls. Each sub-algorithm has its own
can_apply and apply methods, which meld delegates to; the definition of meld::can_apply1 is

41 bool meld:: can_apply(iterator it)

42 {

43 return

44 can_apply_diagonals(it) ||

45 can_apply_traceless(it) ||

46 can_apply_cycle_traces(it) ||

47 can_apply_tableaux(it);

48 }

and similarly the meld::apply method checks the can_apply_* for the particular sub-algorithm
before calling it. For completeness, the behaviour of these routines is described here.

5.1 Cyclic traces

The most substantial extra routine handles traces of expressions which are identical up to cyclic
permutations of their indices. It is a common identity [86, Chapter 3.9] that

Tr(A1A2 . . . An−1An) ≡ Tr(A2A3 . . . AnA1) ≡ Tr(A3A4 . . . A1A2) ≡ . . . (5.1)

even if [Ai, Aj ] 6= 0. If the objects are tensorial, then calculating equivalence using this identity
should be done independently of the names of any dummy indices, which is well suited to the
adjacency representation. In fact, it is possible to go further and express the problem in terms
of a cyclic projection of the indices: given an expression such as

Tr(Ti1i2Sj1Uk1k2k3) (5.2)

this can be expressed in an equivalent fashion which makes the cyclic symmetry manifest

1

3
Tr(Ti1i2Sj1Uk1k2k3 + Sj1Uk1k2k3Ti1i2 + Uk1k2k3Ti1i2Sj1) (5.3)

which can be represented by two AdjformEx objects, one for the indices
1Given in https://github.com/kpeeters/cadabra2/blob/c91481ac0024dd320ccdd94422dd5b3603136908/core/

algorithms/meld.cc
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Slot

0 1 2 3 4 5

Weight

i1 i2 j1 k1 k2 k3 1

j1 k1 k2 k3 i1 i1 1

k1 k2 k3 i1 i2 j1 1

and a second for the object names

Slot

0 1 2

Weight

T2 S1 U3 1

S1 U3 T2 1

U3 T2 S1 1

where extra information must be kept alongside the name to ensure that it uniquely identifies
an index set, to avoid the incorrect matching of e.g. PiQj and PjQi. As the cyclic symmetry
has been made manifest, it is now trivial to check if two terms in a trace are identical as they
will have matching adjacency projections.

This technique, whilst mathematically pleasing, is more computationally expensive than
calculating each cyclic permutation of a term and comparing it to another trace term, as not
only does this only require one of the two terms to be cycled, but also allows in the average case
for not all cyclic permutations of the other to need be calculated as a match may be found before
all permutations have been calculated. In the case where there are more than two terms, the
projection method must for each term calculate the projection and then solve a linear system
involving all the previous terms as for the Young projection linear problem, with a complexity
given by O(kN + εkN2) for N terms of k factors. The ‘term-by-term’ method on the other
hand requires for each term to compare against each unseen term for each cyclic permutation,
and thus the complexity is given by

N∑
i=1

(k(α+ β(N − i))) = αk

N∑
i=1

1 + βkN

N∑
i=1

1− βk
N∑
i=1

i

= αkN + βkN2 − 1

2
βkN(N + 1)

∝ O(kN + δkN2)

(5.4)

i.e. the complexity scales similarly, and the implementation in meld therefore takes this approach
in the apply_cycle_traces function. Similarly to how apply_tableaux uses a ProjectedTerm

class to hold information about each term it processes, the apply_cycle_traces uses a CycledTerm
class

struct CycledTerm {

Ex commuting , noncommuting;

Adjform indices;

std::vector <size_t > index_groups;
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Ex:: iterator it;

size_t n_terms;

bool changed;

}

As well as holding it, a reference to the object in the original expression, in the same way
that apply_tableaux splits an expression into scalar and tensor components when consider-
ing traces the expression is split into commuting and non-commuting components; only the
non-commuting components are cycled as it is always possible to find equality between the
commuting parts by sorting the terms in the expression and thus no new simplification can
be discovered by cycling these terms. If two terms are discovered to be meldable, then one is
removed from the tree and its commuting components combined into the commuting expression
for the other term and its changed flag set. After the algorithm completes, any objects marked
as changed have their forms in the original expression updated.

The indices adjacency object carries the index structure of the current permutation. After
each cycle, which moves the object at the end of the expression to the front, the indices must
be cycled by the number of indices held by the last object. To avoid recalculating this each
time, during the initial parsing of the expression the number of indices held by each object
is calculated and stored in the index_groups object and the total number of non-commuting
objects in the n_terms member. Checking that the number of terms in two expressions is the
same is a quick way to exit the algorithm early if there is no match.

The algorithm itself begins by constructing a list of CycledTerm objects for the trace object
under consideration

1249 bool meld:: apply_cycle_traces(iterator it)

1250 {

1251 assert (*it.begin()->name == "\\sum");

1252 bool applied = false;

1253 std::vector <CycledTerm > terms;

1254 for (const auto& term : split_it(it.begin(), "\\sum"))

1255 terms.emplace_back(term , index_map , kernel);

The main part of the algorithm is contained in a nested loop, the outer loop iterating over
each term under consideration and the inner loop over all the terms which come after it. As
mentioned above, any two terms which have a different number of terms are immediately skipped

1256 for (size_t i = 0; i < terms.size(); ++i) {

1257 for (size_t j = i + 1; j < terms.size(); ++j) {

1258 if (terms[i]. n_terms != terms[j]. n_terms)

1259 continue;

The algorithm then loops over all cyclic permutations of the object, comparing the non-
commuting structures and combining if they match and setting the applied flag

1260 for (size_t k = 0; k <= terms[j]. n_terms; ++k) {

1261 if (terms[i]. compare(kernel , terms[j])) {

1262 Ex:: iterator head = terms[j]. commuting.begin();

1263 for (Ex:: sibling_iterator beg = head.begin(), end = head.

end(); beg != end; ++beg)

1264 terms[i]. commuting.append_child(terms[i]. commuting.

begin(), (Ex:: iterator)beg);

1265 node_zero(terms[j].it);

1266 applied = true;

1267 terms[i]. changed = true;

1268 terms.erase(terms.begin() + j);

1269 --j;
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1270 break;

1271 }

1272 terms[j].cycle(kernel);

1273 }

1274 }

1275 }

Any modified terms are then updated and the applied flag returned to indicate if any changes
to the tree were made

1276 for (const auto& term : terms) {

1277 if (term.changed) {

1278 tr.erase_children(term.it);

1279 it = tr.replace(term.it, str_node("\\prod"));

1280 tr.append_child(it, term.commuting.begin());

1281 tr.append_child(it, term.noncommuting.begin());

1282 cleanup_dispatch(kernel , tr, it);

1283 }

1284 }

1285 return applied;

1286 }

To show how this handles commuting factors, consider the expression

Tr(αuiujvivj + βukvivkui); (5.5)

Clearly by naïvely cycling the factors the two expressions will never compare as equal as the
α and β factors will never match, however by only considering the non-commuting parts meld
manages to combine these two terms:

{u_{i}, v_{i}}:: NonCommuting.

Tr {#}:: Trace.

ex := Tr(\alpha u_{i} u_{j} v_{i} v_{j} + \beta u_{k} v_{i} v_{k} u_{i});

meld(ex);

Tr (αuiujvivj + βukvivkui)

Tr ((α+ β)uiujvivj)

As with the apply_tableaux algorithm, meld does not try to find a canonical order of the trace
arguments, and if the order of terms were reversed then the output would be Tr ((β + α)ukvivkui)

instead .

5.2 Traceless and diagonal objects

Two more types of indexed objects which meld deals with are traces of traceless object and non-
diagonal terms of diagonal objects. These algorithms are also implemented in the canonicalise
algorithm and are thus carried over with few changes into meld as these simplifications do not
benefit from using an adjacency representation as an intermediate data type but do fit into the
motivation of meld.

As the algorithms are not novel implementations their operation will not be discussed2

other than to mention that they are the first sub-algorithms to be called from the master apply
2Although can be viewed at

https://github.com/kpeeters/cadabra2/blob/c91481ac0024dd320ccdd94422dd5b3603136908/core/algorithms/
meld.cc#L88 and https://github.com/kpeeters/cadabra2/blob/c91481ac0024dd320ccdd94422dd5b3603136908/
core/algorithms/meld.cc#L119
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method of meld. This is because they are far cheaper to run than the apply_tableaux method,
and as they solely remove terms which are identically zero it is more efficient to call these first
and potentially remove terms rather than canonicalise them using apply_tableaux only to have
them removed.

5.3 Future considerations

Before moving on, it is worth mentioning some of the simplifications which meld is currently
unable to process but which fit naturally into its purview.

5.3.1 Side relations as projections

One natural question to ask is whether meld is also capable of applying side relations as pro-
jection operators to find simplifications. For example, given that

A ≡ B + C +D (5.6)

then this identity could be treated as a projection of A. An expression such as

A+B + C +D (5.7)

could then be treated in a similar fashion to the apply_tableaux algorithm with each term
written in terms of the basis [B,C,D] to build up the system of linear equations:

Component
Term A B C D

B 1 1 0 0

C 1 0 1 0

D 1 0 0 1

Attempting to write the last column in terms of the other three leads to a system of linear
equations

1× c1 + 1× c2 + 0× c3 = 0

1× c1 + 0× c2 + 1× c3 = 0

1× c1 + 0× c2 + 0× c3 = 1

(5.8)

which has the solutions
c1 = 1

c2 = −1

c3 = −1

(5.9)

The expression can therefore be simplified by replacing D with contributions from the other
terms

D = c1A+ c2B + c3C = A−B − C (5.10)

and so
A+B + C +D → A+B + C + (A−B − C)

= 2A
(5.11)

Of course, in this instance a far easier way to achieve the same goal is to simply swap the sides
of (5.6) to convert it into a substitution rule and substitute this into (5.7). However, computing
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it as a projection makes this a completely general process. The similarity of the process to
apply_tableaux is evident, however as each term is an expression object rather than an index
permutation a new data structure would need to be constructed although the implementation
of meld as it is would provide most of the tools required and the same general structure of the
algorithm could be kept.

In the case where the terms are composed of factors instead of just simple terms, the
idea can be extended with the basis extended from [B,C,D] to the complete set of products
[B2, BC,BD,C2, CD,D2] (assuming that [B,C] = [C,D] = [D,B] = 0). Then each term must
be distributed and added to the data structure as before for instance multiplying (5.7) through
by A we get

A2 +AB +AC +AD (5.12)

which, after decomposing each term according to (5.6), leads to the series of projections

Component
Term A2 AB AC AD

B2 1 1 0 0

BC 2 1 1 0

BD 2 1 0 1

C2 1 0 1 0

CD 2 0 1 1

D2 1 0 0 1

with the series of equations
c1 + c2 = 0

2c1 + c2 + c3 = 0

2c1 + c2 = 1

c1 + c3 = 0

2c1 + c3 = 1

c1 = 1

(5.13)

with the same solution set
c1 = 1

c2 = −1

c3 = −1

(5.14)

from which the reduction to 2A2 is calculated as above.

5.3.2 Dimension dependent identities

As well as index symmetries which can be expressed as Young tableaux, there are also an entire
class of symmetries which result from antisymmetrising a rank-n tensor in d dimensions where
d < n. As there are only d ways of labelling each index, this ensures that each term in the
antisymmetrisation is balanced by one of opposite sign which must be labelled in the same way
so that the expression is zero:

T[i1i2...in] = 0 (5.15)
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This is most clearly seen for a rank-2 tensor which lives in one dimension, the antisymmetrisation
is

T[ab] = Tab − Tba (5.16)

and as there is only one dimension each index must be labelled with the same coordinate, so
the two terms cancel out:

Txx − Txx = 0 (5.17)

This also applies to any tensor in d dimensions which has a subset of n > d indices in which it
is completely antisymmetric as this will lead to the same labelling problem. Identities involving
dimension dependence have been known for a long time (at least as far back as 1918 when
Weyl uses the identity ∗Riklm ≡ 0 in n < 4 dimensions [87]) but it wasn’t until 1970 when
Lovelock [88] showed how these can be derived as a consequence of antisymmetrisation that a
systematic method for verifying and constructing such identities was developed. Another big
advancement was the publishing of the paper by Edgar and Hoglund [89] which shows how
more identities which were thought to not be a consequence of any algebraic property of the
objects could also be derived through antisymmetrisation.

Cadabra allows for index sets to be defined over a set of coordinates or an integer range,
which makes simple applications of the principle possible e.g. in the simple case of a completely
antisymmetric tensor defined in a dimension which is less than its rank. With the literature now
containing general methods for constructing such identities, it is certainly possible to envisage
that it would be possible to extend this concept to more complicated situations.
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Chapter 6

Reusing Algorithms Through
Packaging

The discussion thus far has been on algorithms implemented in Cadabra using the underlying
C++ codebase. As Cadabra is intended to be used through the Python interface, the C++ layer
is mostly hidden to the user although it is possible to build and use Cadabra as a C++ library
which may be desirable in some circumstances, for example where it is necessary to interface
with a different C/C++ library which does not have Python bindings. This combination of
using C++ as a backend language with a interface to Python is used to differing degrees by many
other tools used in academic research, such as NumPy [90] and Pillow [91] which are written
entirely in C with the classes and functions exposed to Python, as well as SciPy [92] which uses
C for some of the more computationally expensive routines but also contains a large proportion
of pure Python code. There are also many components of Python’s standard library which are
written in C, such as the math library which simply exposes the functionality of the C math.h

library 1.
Structuring projects in this manner allows one to take advantage of the strengths of both

languages, allowing the native machine-code compiled routines written in C/C++ to run with-
out sacrificing efficiency whilst also allowing them to be accessed from the much simpler and
interactive Python environment. The prevalence of Python in the scientific community also
means that it provides a common interface from which many different tools can be used and
combined, not unlike how programs can be redirected and piped into each other using shell
environments like bash; in fact tools such as NumPy are intended for use as components for
constructing other packages and can be found in other Python libraries such as the data analysis
tool pandas [93] as well as Pillow and SciPy mentioned above. There are also numerous differ-
ent interactive environments available for Python which Cadabra can interact with, including
a kernel for Jupyter notebooks (the interface also used by SageMath) and the option to use
IPython or the default Python interpreter.

Cadabra makes extensive use of the reflection abilities of Python as well as a preprocessor
which allow it to hide much of the complexity associated with maintaining the state which is
required for Property declarations to be accessible to algorithms. Several of the components
Cadabra’s Python interface hides can be seen by comparing a simple example of making a
property declaration, constructing an expression and applying an algorithm to it

{ D, C, B, A }:: SortOrder.

1https://docs.python.org/3/library/math.html
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Figure 6.1: Components of Cadabra

ex := B A C D.

sort_product(ex); # prints 'DABC'

which using the pure C++ interface becomes

#include "cadabra2 ++.hh"

int main()

{

using namespace cadabra;

Kernel k;

k.inject_property(new SortOrder (), k.ex_from_string("{ D, C, B, A }"),

nullptr);

auto ex = k.ex_from_string("B A C D");

sort_product sp(k, *ex);

sp.apply_generic ();

DisplayTerminal dt(k, *ex);

dt.output(std::cout); // print 'DABC'

}

When using the Python interface knowledge of the Kernel object, the need to instantiate
algorithms as class instances and use a Display* class in order to produce output are all
unnecessary. There is an auxiliary cpplib namespace (developed over the course of this thesis)
which contains some convenience functions to simplify the C++ experience

#include <cadabra2 ++.h>

int main() {

using namespace cadabra;

using namespace cadabra :: cpplib;

Kernel k;

auto ex = "BACD"_ex(k);

apply_algo <sort_product >(k, ex);

std::cout << pprint(k, ex) << `\n';
}

but this only simplifies the constructions rather that allowing one to be totally agnostic of
them. The flexibility of Python is one of the key factors in making Cadabra so powerful and
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expressive.
The structure does however also come with some drawbacks, the first one which a developer

will come across is the added layer of complexity which arises from exposing the C++ interface
to Python due to both the interfacing code which must be kept in sync with changes to the
underlying library as well as ABI breaking changes between Python versions which can make
distribution of binaries more complicated. The challenges to accessibility that result from this
will be briefly examined later in section 8.1, however for now we will focus on a different
problem which comes about from the difficulties introduced for encouraging the community
to contribute improvements and fixes as although users are able to use Cadabra with only
knowledge of Python, development requires knowledge of C++ which is less common in the
sciences.

Community participation in open source software projects is very valuable, for as well as
improving the range of functionality through user submissions, which almost all pieces of soft-
ware including commercial products make use of, the smaller development teams and more
limited time which they have to work with on their projects means that some features are sim-
ply infeasible to implement without the added production capability the community brings. It
must however be kept in mind that only a small fraction of users will become involved enough
in a project to contribute to the codebase, and as even ‘small’ projects can consist of many
thousands of lines of code the barrier to entry is very large. This is of course neglecting the
other useful ways in which people can contribute including documentation, writing examples
and tutorials, as well as more passive modes of contribution such as submitting bug reports
and promoting use of the software amongst their colleagues. The scope of this chapter however
is in exploring how the Python import system can be used to make user contributed libraries
possible.

6.1 Packages in Cadabra

6.1.1 The Python import system

Pythons allows code from external sources to be used inside a script through the use of its
import system. This consists of a two stage process, first searching for the relevant module and
then binding it to a name in the user code. The native import system2 allows both modules
written in python and compiled modules compiled written in another language, most commonly
C/C++, but other languages which have bindings for the Python C API such as Rust with the
rust-cpython project, Go by making use of the magic C* namespace to access the Python C
API and even Haskell via C using its foreign function interface.

Python exposes imported modules as module objects, which are the same type regardless
of whether the source is a Python object or a binary file, and allows the contents of the module
to be accessed as members of the module object. Python also allows the module name to be
aliased, or for certain parts of the module to be inserted into the current scope

# Import matplotlib module and the pyplot submodule

import matplotlib.pyplot

# Import the pyplot submodule and assign to the name plt in the current scope.

# The matplotlib module is implicitly run but not bound to any name

import matplotlib.pyplot as plt

# Import all names in the matplotlib.pyplot module into the local scope

2This discussion is valid for CPython (used by Cadabra), but may be inaccurate for other Python implemen-
tations such as PyPy
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from matplotlib.pyplot import *

Note that the second two import statements skip the first step of loading the module, binding
the existing reference to new names in the scope instead of creating new references to the
module:

assert matplotlib.pyplot is plt

assert plt.plot is plot

This is because after the first import statement an entry for matplotlib.pyplot along with
all other dependencies it loads is inserted into sys.modules and this is searched before any
subsequent imports.

Python allows the import behaviour to be customised using the importlib library which lets
custom import machinery to be developed and ‘hooked’ into the import system. The hooks are
made of two parts: finders, which take a fully qualified package name and returns information
on how to import the package if it is able to, and loaders which use this information to import
the package into the current Python session.

6.1.2 Implementation

As Cadabra scripts and notebooks are not native Python, the import system does not work
with Cadabra code by default. However, as it is preprocessed into pure Python, extending the
import system to support Cadabra is natural and can take advantage of most of the native
mechanisms. Developing this packaging system was an early goal when starting work on this
thesis and has been the source of many pieces of auxiliary work related to both expanding the
number of algorithms distributed with Cadabra and producing papers on computer algebra
techniques for general relativity which will be discussed later in section 6.5.

Packages in Cadabra are implemented as notebooks which provides several benefits; devel-
opment and testing can be done in a single environment, packages can be written in Cadabra
instead of pure Python and documentation can be written using LATEX cells which is consistent
with the documentation of the core algorithms.

The Cadabra startup script cadabra2_defaults.py implements a custom finder, a class
which derives from importlib.abc.MetaPathFinder 3 which takes precedence over the default
finder, by being placed before the default finder instance in the sys.meta_path variable, and
checks if the name to import corresponds to a Cadabra .cnb notebook file, which it then
preprocesses into a pure Python .py file which is returned to the default Python loader.

The relevant method of MetaPathFinder is the find_specmodule which returns a ModuleSpec
object describing where the module should be loaded from:

41 @classmethod

42 def find_spec(cls , fullname , path , target=None):

The method first sets the path argument to the default system path if not provided, and converts
the import target name into a list of its components, so that a directory can be constructed
from them:

45 if '.' in fullname:

46 parents = fullname.split('.')

47 name = parents.pop()

48 else:

49 name = fullname

50 parents = []

3https://github.com/kpeeters/cadabra2/blob/27ba8de7dff03ab16470ec240f892dd14deb6689/core/cadabra2_
defaults.py.in#L36
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Next, each entry in the path variable is checked to see if it contains a file which Cadabra
recognises and can convert into a pure Python script:

55 for entry in path:

56 have_cnb = os.path.isfile(os.path.join(entry , name + ".cnb"))

57 have_cdb = os.path.isfile(os.path.join(entry , name + ".cdb"))

58 have_ipynb = os.path.isfile(os.path.join(entry , name + ".ipynb"))

59 if have_cnb or have_cdb or have_ipynb:

The file is created in a directory cadabra_packages which contains the pure Python versions
of the modules. If the package name contains multiple components then it is placed in a
subdirectory corresponding to this name, which must be made if it doesn’t exist

62 pkg_path = os.path.join(user_config_dir (), "cadabra_packages", *

parents)

63 # Create the path if it doesnt exist

64 if not os.path.exists(pkg_path):

65 os.makedirs(pkg_path)

The compile_package__ function, defined in the C++ codebase, is then called which performs
an appropriate preprocessing to convert from the Cadabra format to pure Python

66 if have_cnb:

67 compile_package__(os.path.join(entry , name + ".cnb"), os.path.

join(pkg_path , name + ".py"))

68 elif have_cdb:

69 compile_package__(os.path.join(entry , name + ".cdb"), os.path.

join(pkg_path , name + ".py"))

70 else:

71 compile_package__(os.path.join(entry , name + ".ipynb"), os.path

.join(pkg_path , name + ".py"))

The ModuleSpec object is then created and returned.

72 return ModuleSpec(

73 fullname ,

74 SourceFileLoader(fullname , os.path.join(pkg_path , name + ".py")

),

75 origin=os.path.join(pkg_path , name + ".py"))

At the end of the function, if no entry in path contained a suitable module file, None is returned
which allows Python to continue through the finders in sys.meta_path in order to locate the
requested import

77 # Return none if no notebook was found

78 return None

This allows Python to efficiently handle the actual loading and execution of the package and
create a byte compiled .pyc binary. If the time stamp of the preprocessed Python file is newer
that that of the original notebook the preprocessing step is skipped and a handle to the existing
.py file is returned. As the startup file is also pure Python, this allows Cadabra packages to be
imported into any Python environment, not only the Cadabra CLI and notebook interface.

Although being able to write Cadabra packages as notebooks allows for a rapid and intu-
itive development environment, for efficiency purposes it is sometimes necessary to implement
routines in C++. Of course the vast majority of Cadabra’s functionality is implemented as
the set of core algorithms which are written in C++ but it may be preferable to release some
algorithms as parts of packages instead of the core system:

• To replace algorithms which already exist in packages with more performant versions
without breaking backwards compatibility
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Figure 6.2: Example of some of the inheritance relationships between property types. The full
tree has been abridged and many relationships of the classes displayed have been omitted.

• To provide consistent interfaces by releasing packages which expose the same functions
but in different contexts, e.g. in the Python standard library the json and pickle li-
braries contain functions with the same names but which provide interfaces to different
serialization formats

• To provide specialised/niche algorithms with a low demand without cluttering the main
namespace

In the current implementation, the build system is only aware of how to build C++ packages
which are part of the main set of packages distributed with Cadabra, but the concept is easily
extendable and can be modularised into a standalone build system for creating binary packages,
although binary incompatibilities between Python versions and even C++ compilers means that
distribution has added complexity.

6.2 Interfacing properties in Python

As well as ensuring that the notebook format can be imported, is it also necessary to provide
some of the lower level functionality of the C++ library such as traversing the expression
tree and accessing methods of the various Property classes in order for users to develop more
advanced and ‘smarter’ algorithms. An interface for the expression objects has been previously
implemented with the ExNode class but a full property interface was still lacking.

Properties in Cadabra are implemented as class instances which are bound to ‘patterns’, i.e.
expressions which may contain wildcard symbols, which define the object type which describe.
This relational mapping is stored in the Cadabra kernel, and algorithms which need to be aware
of the existence (or lack of existence) of a certain property definition in order to act correctly
can query the kernel to see if a particular expression matches a pattern bound to a property
of that type. As shown above, when one wants to associate a pattern with a property on the
C++ side it is injected into the kernel using the inject_property method.

The property classes follow a natural inheritance hierarchy as shown in Fig. 6.2 which
serves two major purposes: simplifying the construction of properties by allowing them to
inherit behaviour, and allowing algorithms to check for higher-level properties for general be-
haviours e.g. symmetry or commuting behaviour, without having to know or check for specific
implementations.

From the Python interface, the kernel is mostly hidden from the user, with an alternative
interface used for declaring properties either using the Cadabra notation

expression :: Property

or by calling the property constructor directly
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Property(expression)

In both cases the kernel is inferred from the current scope rather than explicitly passed.
This makes the Cadabra user interface much more intuitive for a user, but means that the
Python interface for properties is quite different from the C++ interface. Originally, other
than calling the class constructors to register a property there was no way to retrieve prop-
erties or query any stored information inside the property. As this ability is useful in a wide
range of situations, and in particular for package developers, this functionality has been added
to Cadabra (in core/pythoncdb/py_properties.hh4 and core/pythoncdb/py_properties.cc5)
whilst maintaining backwards compatibility to prevent code in existing projects from breaking.

The library used to create the Python bindings is pybind11 [40] which makes use of C++11
templates to hide a lot of the complexity in interfacing types - in particular for our usage the
ability to specify parent classes using variadic templates minimises the amount of reduplication
of code required to replicate the inheritance relationships of each property. Each Python type
is a specialisation of a templated BoundProperty class which contains runtime type information
about the C++ class for the property it represents as well as inheriting from the BoundProperty
specialisations corresponding to the parent classes of the C++ property. In order to keep the
kernel abstracted away from the user on the Python side, accessing properties from patterns is
implemented a a static member function of each BoundProperty class.

6.3 Package structure

One of the main motivations for using the notebook format for packages is in order to allow them
to be self-documenting through the use of LATEX cells. As Cadabra already provides a mech-
anism for exporting notebooks to various different formats including pure LATEX and HTML,
this means that generating the documentation for a particular package can be automated as is
the case for the packages included in the standard distribution of Cadabra (discussed below)
and which can be found on the main Cadabra homepage6.

Various special LATEX commands have been introduced in order to make this as standardised
as possible with the aim of allowing a natural structure which makes understanding distributed
packages as simple as possible. Packages being with a package directive which contains the
name of the package as well as a brief description, and below this a more detailed description.
The exposed functions or classes of the package are placed below this with three cells devoted
to each piece of exposed functionality:

• A LATEX cell which uses the algorithm directive with the signature of the function or class
and a description of what it does

• A Python cell with the implementation

• An ‘ignore on import’ Python cell, which the compile_package__ function ignores but
which can be viewed and run inside the notebook, containing some tests to ensure the
function behaves correctly and which also provides some examples of how it can be used

4https://github.com/kpeeters/cadabra2/blob/dc44eaaf7c1b5e0e0271bc9cad14f0ccc2ed37f0/core/pythoncdb/
py_properties.hh

5https://github.com/kpeeters/cadabra2/blob/dc44eaaf7c1b5e0e0271bc9cad14f0ccc2ed37f0/core/pythoncdb/
py_properties.cc

6See for example https://cadabra.science/manual/cdb/core/component.html
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If a package needs to run any code automatically on import then it can also contain cells
containing this code, as the package is converted to a Python script before import these cells
will be run as though they appeared directly inside the imported code.

Although not enforced it is also expected that the majority of algorithms in a package follow
the standard Cadabra signature for algorithms by taking an input expression which is modified
in-place and also returned by the algorithm.

6.4 The cdb library

One of the primary uses of the packaging system is to provide a set of standard packages
distributed with Cadabra to extend the functionality with functions and classes which are
either do not fit within the scope of the core functionality or are more naturally implemented in
pure Python such as functionality which relies on other Python libraries such as SciPy. A direct
was follow on from the development of the packaging logic was the construction of a standard
library which are now distributed with Cadabra as the cdb.* set of packages and cover a range
of different areas.

The library is currently split across six modules: core for commonly used functionality
which isn’t built in to Cadabra, gauge_theory and relativity as proof of concept packages for
providing dedicated environments for specific fields, numeric for numerically evaluating Cadabra
expressions with SymPy, sympy for interfacing with the symbolic and in particular differential
equation solving capabilities of SymPy, and utils for lower level functionality which is useful
for people developing packages or manually modifying expression trees.

6.4.1 cdb.core

Fundamental operations which do not exist within the core of Cadabra, or which extend some
of the core algorithms, are implemented inside the cdb.core package. The different algorithms
are split among several subpackages with the largest being the manip library which provides
routines for manipulating equations in common ways such as multiplying through by a given
term

from cdb.core.manip import multiply_through

multiply_through($x/a + 1 = 0$, $a$);

x+ a = 0

isolating a particular sub-expression (if it appears linearly)

from cdb.core.manip import isolate

ex := 2a + 1/2 a * k - b = c * a + b * k + a - 4;

isolate(ex, $a$, auto_distribute=True);

a = (bk − 4 + b)(1− c)−1

and applying an operator through an expression

from cdb.core.manip import apply_through

apply_through($\partial{x_{\mu}} = 0$, $\partial {#}$);

∂(∂(xµ)) = ∂(0)
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along with many other similar routines.
Another major component of the core package is the component subpackage which provides

ways to retrieve components from expressions which are the result of applying the evaluate

algorithm which explicitly calculates components of a tensor:

{t,x}:: Coordinate.

{i,j}:: Indices(values ={t,x}).

ex:= b_{i} = a_{i}.

evaluate(ex, $a_{t}=1, a_{x}=2$, rhsonly=True);

get_component(ex, $x$);

bi = �i

{
�t = 1

�x = 2

bx = 2

Another example of this can be found in 2.5.1 where it is used to extract a particular component
of the connection and Ricci tensor, and again in 2.5.3 when selecting a particular component
of the expression to represent on a 2D plot.

6.4.2 cdb.numeric and cdb.sympy

The numeric package is a wrapper around some of the SymPy functions for evaluating ex-
pressions numerically which can be used at later stages of calculations to get concrete figures
from calculations, or in conjunction with plotting libraries such as matplotlib (which Cadabra
notebooks support) to produce plots of field equations.

Cadabra has inbuilt support for converting expressions to SymPy objects using the
SympyBridge which makes this a very natural route for implementing numeric calculations as
SymPy already has numerous methods for substituting values into equations as well as more
advanced functions such as numeric integration and differentiation.

As well as the ability to numerically evaluate expressions, SymPy also contains routines for
more advanced manipulations of expressions which Cadabra can make use of using the bridge
between the two libraries; in particular there are many techniques for dealing with differential
equations in SymPy which it does not make sense to implement in Cadabra as they are in
general highly non trivial and the large community working on SymPy ensures that the solvers
they provide are already of high quality. The cdb.sympy.solvers library provides high level
wrappers around these so that they work naturally on Cadabra expressions.

Examples of both these libraries being used can be found in 2.5.3 where the second order
differential equations for geodesics calculated are solved as a system of first order equations using
the cdb.sympy.solvers.linsolve function, and the equations are are numerically integrated to
produce the data points to be plotted using cdb.numeric.integrate.integrate_ode.

6.4.3 cdb.utils

The final part of the standard library which contains code worked on as part of this thesis is
the utils library which is aimed primarily at providing tools for helping people develop other
libraries; indeed much of the functionality is used in other places within the other parts of the
cdb.* libraries.

These include some helper functions to aid with navigating the expression tree, functions
to manipulate index names and positions and additional tools to help with timing and testing
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functions.

6.5 Structuring projects with packages

Although Cadabra can be used for performing short calculations, and even more complicated
calculations which fit logically inside a single notebook, it is also possible to perform far more
extensive and complicated tasks potentially including several different calculations which need
to be processed independently but at the end combined in order to produce a final result.
Attempting to perform such a calculation in a single notebook comes with several drawbacks:

1. The notebook can become difficult to keep track of from a logical perspective

2. Different calculations may attempt to define conflicting properties which can cause algo-
rithms to act incorrectly

3. It makes it difficult to extract particular parts of the calculation for reuse if they depend
on the particular state of the notebook where they are performed

In order to solve these problems, splitting a calculation up between multiple notebooks is
generally a sensible idea however this can make it difficult to combine the calculations at the
end without manually copying results from each intermediate result into a final notebook which
is more error prone and makes it difficult to rerun a calculation with e.g. different parameters.

The use of packages to structure a research project in order is one potential solution to this
problem, and due to the power of the underlying Python which Cadabra runs on it is very easy
to abstract certain calculations into packages which can help not only solve specific problems
but can be made general and distributed in order to aid other people in their calculations. This
is not a new concept, with Mathematica and other CAS programs offering packages hosting a
wide variety of user contributed libraries which stem from research projects, however the import
system of Python allows a lot more flexibility in the way in which it is possible to implement
this.

To showcase the viability of using Cadabra packages to construct a full research project, we
have worked on a paper, Cadabra and Python algorithms in General Relativity and Cosmology
II: Gravitational Waves [7] which uses Cadabra to perform calculations on first and higher
order gravitational waves. Perturbative solutions to General Relativity, as mentioned in section
2.5 in relation to the Schwarzschild metric, are very important as they allow us to analytically
examine complicated systems to a high degree of accuracy. A review of different approaches
taken in perturbative examinations of General Relativity can be found in [94].

As well as displaying some of the interesting ways in which Cadabra can be used in these
calculations, the relevant part of the project for the current discussion is the way in which it
has been structured using packages to highlight the reusability of much of the code as well
as how some of the results from earlier chapters in the paper are used in later chapters by
importing results as packages; for instance by using the decompositions of the Riemann tensor,
Ricci tensor and Ricci scalar calculated in section 4.4.1 in section 5 in order to calculate the
equations for first-order gravitational waves. The paper is designed to be read alongside the set
of notebooks which go along with it and which contain the calculations used to generate the
results inside the paper.
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6.5.1 Header packages

One of the main notebooks which is used throughout the project is the header package which
we developed in order to provide a set of functions which set up the environment for general
relativity to perform further calculations. The main function inside the header package is
init_properties which inserts all the property declarations for the spacetime and conventions
used into the kernel. In order to increase reusability, it takes a set of coordinates and metrics
which should be defined:

def init_properties (*, coordinates , metrics =[$g_{\mu\nu}$], signature =-1):

To use the provided coordinates in a property declaration the pull in syntax @(...) is used

@(coordinates):: Coordinate.

index_list := {\mu ,\nu ,\rho ,\sigma ,\alpha ,\beta ,\gamma ,\tau ,\chi ,\psi ,\

lambda ,\ lambda #}.

ncoords = Ex(len(coordinates))

@(index_list):: Indices(position=independent , values=@(coordinates)).

@(index_list):: Integer (1..@(ncoords))

Next the metrics are defined:

sig = Ex(signature)

for metric in metrics:

As they need to be defined with the Metric, InverseMetric and KroneckerDelta properties
several different loops are used, first the indices are lowered

for index in metric.top().indices ():

index.parent_rel = parent_rel_t.sub

@(metric):: Metric(signature=@(sig)).

then raised in a similar manner

for index in metric.top().indices ():

index.parent_rel = parent_rel_t.super

@(metric):: InverseMetric(signature=@(sig)).

before being each in turn lowered and raised with the property definition for a Kronecker delta
in between to ensure all index contractions are taken into account:

for index in metric.top().indices ():

index.parent_rel = parent_rel_t.sub

@(metric):: KroneckerDelta.

index.parent_rel = parent_rel_t.super

Next a series of conventional symbols are inserted into the kernel

i:: ImaginaryI.

\delta {#}:: KroneckerDelta.

\partial {#}:: PartialDerivative.

\nabla {#}:: Derivative.

d{#}:: Derivative.

The notebooks use a variety of objects some of which are notated using the same symbols which
can lead to ambiguities when entering the expressions into Cadabra. We therefore define some
symbol names using the LaTeXForm property so that we can use unique names inside the code
but have them display in a natural fashion in the output

ch{#}:: LaTeXForm("\Gamma").

{rm{#},rc{#},sc}:: LaTeXForm("R").

ei{#}:: LaTeXForm("G").

Lmb {#}:: LaTeXForm("\Lambda").
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Finally we define the symmetries of the objects which will be used in the notebooks

ch^{\rho}_{\mu\nu}:: TableauSymmetry(shape ={2}, indices ={1 ,2}).

rm^{\rho}_{\sigma\mu\nu}:: TableauSymmetry(shape ={1,1}, indices ={2 ,3}).

rc_{\mu\nu}:: Symmetric.

ei_{\mu\nu}:: Symmetric.

Having such a function means that at the top of every notebook where we perform calculations
we can simply import init_properties and call it using the set of coordinates pertinent to the
calculation ensuring which not only reduces the amount of typing but also reduces errors from
having forgotten a particular definition.

At the end of the header package is a series of functions which provide definitions for some
of the commonly used objects in terms of more basic objects, e.g.

def rs():

return $sc = g^{\mu\nu} rc_{\mu\nu}$

def ei():

return $ei_{\mu\nu} = rc_{\mu\nu} - \frac {1}{2} g_{\mu\nu} sc$

for the Ricci scalar and Einstein tensor. These are implemented as functions instead of simple
variables (e.g. rs = $sc = g^{\mu\nu} rc_{\mu\nu}$ for two reasons:

• It makes it impossible to accidentally alter the definitions which may cause errors if the
original definitions is required later on in the notebook

• They may depend on property definition for symbols such as derivatives which are not
available at the time of import as the init_properties function will not yet have been
called leading to a consistency error being thrown on import.

Although the header packages is specific to the calculations which we were performing, it
is possible to write a more general version and it is expected that various templates for these
header files will be included in the Cadabra standard library in the future to cover a wide
variety of different space-times and conventions.

6.5.2 The perturbation package

As our calculations concern various orders of gravitational waves a systematic way of defining
perturbed objects at various orders and retrieving specific perturbative orders from an expres-
sion was required. Cadabra comes with a system for handling perturbative orders through the
use of a Weight property representing the order of a symbol. The functions in this package were
not written as part of this thesis, but many optimisations and restructurings were performed
by us in order to make the package more useful

The first function in the package defPertSymbol accepts a symbol and an integer representing
a perturbative order and produces a new symbol with the order appended to the symbol with
the appropriate Weight property attached and a LaTeXForm property so that e.g. a2_{\mu} is
typeset in the more aesthetic

(2)

aµ. This is used to implement the next function defPertList

which calls defPertSymbol on a symbol for all integers up to a maximum perturbative order.
The perturbation package also defines the defPertSum function which expands a symbol out

into a sum of perturbative terms up to a particular order, e.g.

Φµ =
(0)

Φµ +
(1)

Φµ +
(2)

Φµ +
(3)

Φµ (6.1)

This can be used as a substitution rule to expand expressions out into perturbative terms. A
special function subsPertSums is also provided which performs this substitution and also accepts

118



Chapter 6 6.5. Structuring projects with packages

a maximum perturbative order; after the substitution it additionally distributes the result and
detects any terms which combine to have a weight greater than the maximum order and drops
these terms.

While far from constituting a complete package for general use, by abstracting away this
functionality into a package it again makes the writing of the notebooks for each chapter much
easier and more consistent. Providing such packages along with the paper, rather than just using
them to generate a notebook of results, also allows readers to experiment with the calculations
themselves by defining their own symbols and changing the parameters (such as the maximum
perturbation order) which I believe to be an invaluable tool to both students and researchers
alike.

6.5.3 Tensor Perturbations

Many of the chapters of the paper rely on using the definitions of tensors and gauges expanded
out to a particular perturbative order. The first computational chapter of the paper deals
with calculating these expansions and producing a general perturb algorithm which computes
expansions of an expression in terms of other perturbed quantities.

The notebook is structured in such a way that after calling init_properties and computing
various perturbative expansions the notebook is in a state where many of the definitions used
in the remaining chapters are in memory and ready to be used. This allows the later chapters
to simply import the notebook as a first step and then continue to explore different calculations
based on these definitions.

The culmination of the perturbation package and the general perturb function presented
in the notebook for this chapter will go on to be used as the basis for a perturbation package
for Cadabra although the algorithms in their current state are still not general enough to be
of use for calculations outside of this specific paper. This does however highlight one of the
great merits of releasing all the code used to write a paper: even if it is in its ‘raw’ form not
generally usable it can still provide a very useful springboard for other researchers to start from
and potentially expand into a tool which can find many other uses. This is in effect what we as
researchers are doing when releasing papers — as well as the final results an important part of
any paper is a discussion of the process and method used to arrive at the results and a paper
would be scarcely accepted if it omitted this important part of the discussion (perhaps save
Conway’s famously short paper [95]).

With an increasing number of published papers relying on computational methods to gen-
erate their results it is surprising how few also publish the complete code used to generate
these results as well as an overview of the techniques used. This is not to say that there aren’t
plenty of papers published describing new releases in software and how it can be used [96, 97,
98, 99] and it is very encouraging that journals within the physics community are interested in
publishing such papers which focus heavily on software development rather than pure physics,
however demonstrations of usage often do not push the boundaries of research whereas being
able to build upon the code used in a paper which is presenting new advances might provide
opportunities for even more rapid advancement in these sectors.
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Cadabra and Teaching
Computational Methods

We will now move on to a short aside to make some comments on the role computer algebra
takes in the classroom and provide a short overview of work on a pedagogic paper we co-
authored which aims to present Cadabra from a tutorial perspective. Something which became
immediately obvious during the course of writing this thesis was that whilst Mathematica was
known to many people, there was a general lack of awareness amongst many researchers in
maths and physics on the wide array of software available for solving more niche problems
and I have thus felt it necessary to make some general comments on this — in particular with
regards to teaching Cadabra for students taking courses in subjects grounded on tensor field
theory.

As computers become more and more prevalent in all areas of research, the need for teach-
ing computational methods is also becoming ever greater. Many university courses nowadays
provide courses which give students an introduction to programming, and introduce a variety
of techniques related to numerical solutions to problems, however these courses rarely integrate
with other module options meaning that there is still a separation between the theoretical un-
derstanding of a problem and the ability for a student to calculate the solutions to a particular
problem. This is amplified in disciplines which traditionally use specialist languages such as
GAP for solving problems, as these are rarely taught to students and are non trivial to learn.

This is not to say that there is no movement inside universities towards increasing the
amount of information available to students when it comes to computational solutions and
recently the amount of material available for teaching and studying CAS has increased, for
instance the manuals developed by Daniel Schroeder who has advocated for more focus on this
in the classroom for a long time and who has released freely available textbooks [100, 101] on
techniques in various programming languages for students.

Of course this problem is not unique to students, as advances in computational methods
occur rapidly and the need to communicate easier and more efficient ways of solving classes of
problems among researchers is an essential part of the advancement of scientific ideas. These
ideas are communicated in a variety of different ways:

• Journal articles presenting new software systems or packages

• Papers making references and citations to the software systems that were used during the
course of their research
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• Presentations at scientific and computing conferences

• Discussions between researchers and research groups, whether in person or on scientific
forums

In addition to the Cadabra and Gravity paper demonstrating the use of packages and other
advanced Cadabra techniques, we have also written another paper Cadabra and Python algo-
rithms in General Relativity and Cosmology I: Generalities [102] aimed at introducing some
more fundamental ideas about programming in Cadabra and Python using topics in General
Relativity which are accessible to physicists at a postgraduate and higher level.

There is no shortage of different tools available for computational solutions to problems in
physics, and nor is there a single tool which can be used in every situation. However, when
first learning how to translate physics problems from pen-and-paper calculations to a computer
assisted solution Cadabra comes through as a natural choice for several reasons:

• Using a mixture of Python and LATEX the basic syntax should already be familiar to
a good majority of students with Python being one of the most popular languages for
scientific computing in general, and LATEX almost ubiquitous in the scientific community
for typesetting mathematics

• It is a relatively lightweight CAS tool suitable for home computing compared to many
other tools which provide far more complete experiences for advanced use cases but most
of which will remain unexplored for a student

• As it is open source there is no burden on the university or student to buy a licence

• The workflow is very natural consisting of a single expression undergoing a series of
transformations as one would also act with a pen-and-paper calculation

• Tensor field problems translate verbatim into Cadabra without the need to handle tensor
indices in a special manner

Many other tools also share these benefits, e.g SageMath is also based on Python and Redberry
is a lightweight tool, and there are of course downsides to using Cadabra too:

• Cross-platform support (in particular Windows support) is limited

• The workflow is different to many other tools as the expression tree Cadabra uses maps
very closely to the LATEX representation of an expression rather than the , so skills in
Cadabra do not necessarily translate well to using other CAS tools

• For very computationally intensive calculations it is not as performant as other tools

The main point however remains that there is a very low barrier of entry to using Cadabra and
thus even if it does not solve all the problems that an introduction to symbolic algebra requires,
giving students a simple way of putting problems from their courses into a compute to explore
these situations further is still an invaluable resource for the classroom.

General relativity is an excellent candidate for a subject to introduce ideas in symbolic
algebra, and in particular Cadabra, as it is a very well studied area with a large amount of
literature in both journals and textbooks which offer opportunities to study problems which are
easily solvable by hand as well as to explore more complicated techniques often requiring the
calculation of many components of a tensor which is ideally suited to computational techniques.
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There is also a large amount of scope for varying the conditions by either changing the space-
time metric or the geometry of the situation. Manipulating these ideas provides a mutual
benefit of having intuitive and concrete ways of adapting the code as well as also providing
more insight into the underlying physics of relativity by exploring different situations. At a
more advanced level, it provides a good framework for introducing how a particular CAS tool
works as the field is both familiar to many physicists and also utilises many common techniques
such as handling metric contractions, using tensor calculus and manipulating differential forms
which form the basis for many other fields in physics too.

Much of the original work discussed in the following discussion is not my own, with my con-
tributions mainly consisting of structural changes, optimisations to the code and clarifications
in places where the code was unclear however an overview of the paper is provided here as I
believe the way the paper is conceived is a useful tool for teaching computational methods in
general.

In the General Relativity and Cosmology I paper we begin with an introduction to the
formalism of general relativity in order to ensure that the reader has at least a fundamental
understanding of the physics which is explored throughout the paper. Although the paper
still assumes familiarity with general relativity and the underlying mathematics it can often
be useful to a reader to being with going over assumed knowledge in order to get used to the
conventions and style used by the author when the knowledge about to be used in an unfamiliar
context, in this case in a computer algebra program.

The first piece of Cadabra programming to be introduced is a header notebook, similar to
the one introduced in chapter 6, which both provides an introduction to how properties and
expressions in Cadabra work as well as giving an example of a project structure which uses
a shared notebook as a package in order to reduce duplication of code and incompatibilities
between notebooks in a project.

The rest of the paper is split amongst small projects which explore different areas of general
relativity, each of which highlight a different aspect of coding with Cadabra. The first project
is a calculation of the explicit form of the Lanczos-Lovelock Lagrangian. This reinforces the
concept of making Cadabra contextually aware of the objects inside expressions by defining
properties related to the specific project rather than the more general properties defined in the
header file. The chapter begins with a simple calculation of the linear curvature Lagrangian by
starting with the general first order expression and applying various algorithms to develop the
required form of the expression. It is then noted that the series of algorithms applied can be
abstracted away into a Python function demonstrating how a user might begin to build up a
collection of generic routines for dealing with expression in a particular project. As the section
continues to calculate higher order corrections, the general routine which has been developed
is used as a major simplification in the calculations.

The next project is a calculation of the field equations of general relativity from the Einstein-
Hilbert action. This is a more involved calculation which is less ‘automatic’ than the previous
project in that more thought must be given to the exact process which must be taken rather
than developing a single function to solve a problem generally. The chapter walks through the
calculation very slowly to ensure that there are no jumps in the physics which might distract
the reader from understanding how the computer is being programming to solve the problem.

The final project consists of solving the field equations derived in the previous section for
specific space-times. Not only does adding continuity between the sections help a learner follow
the concepts more easily, but solving the field equations allows us to explore yet another area
of Cadabra’s capabilities; namely component calculations and scalar manipulations.
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Finally we have written an appendix which uses the projects in the paper as demonstrations
on how to debug and profile Cadabra code. For many projects which beginner to computer
algebra will attempt there are usually two scenarios: the problem is either fairly trivial and can
be computed almost instantaneously, or is a seemingly innocuous problem but the algorithm
used to compute the result has a catastrophic complexity which means it is unlikely to finish
within the lifetime of the universe. Being able to predict the running time of a program, finding
bottlenecks and optimising the order of steps in an algorithm to minimise the complexity is
important and also not often discussed when teaching high level computing such as symbolic
algebra software and we therefore considered it an important aspect to include inside the paper.

There are of course many different techniques which can be taken to teach symbolic algebra
which depends heavily on the language being taught and the exact field for which it is being
taught, but it is perhaps not as openly discussed as it should be and thus opportunities to share
insights into how courses have been designed are useful resources. The overview given here of
how we have structured our attempt at a tutorial on the use of Cadabra is given in the hopes
that it is both useful and adds to the impetus of the discussion of pedagogic techniques.
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Software Development as Research

It is hard to deny the prevalence of computers in modern research and the impact which they
have had in allowing us to explore theories through calculations which were simply not possible
before. As well as being a useful tool for replacing the need to manipulate expressions by
hand and numerical evaluation, the use of computers in research also drives new techniques
and allows us to think about and visualise problems in a different way as noted in works such
as [103, 104, 105] . This relationship between research and the available tools will be the focus
of this chapter.

To a certain degree, this role played by computers is an extension of the notational paradigms
which we use to think about and reason with expressions on paper. A classic example is
the Leibniz notation of calculus where the object df

dx is deliberately written to look like a
fraction although many elementary operations which work for fractions will fail for this object,
especially if partial derivatives are considered. However the notation allows us to intuitively
think about the derivative as a fraction or ratio which allows us to think of other related concepts
such as solving differential equations by separation of variables as multiplying through by the
denominator (see e.g. [106] for more discussion on how notational conventions in calculus lead
to more natural thinking in different contexts).

Even more fundamental concepts such as symbolic algebra and graph plotting are also
merely useful human formalisms of the underlying mathematical logic which allows us to think
about, reason and manipulate them in ways which are less natural or not possible without such
tools. Similarly, access to computers opens up other ways of thinking about problems which
was not feasible before their introductions.

Among the main techniques which the power modern computing has allowed us to explore
include:

1. Fast calculation over different models and configurations

Looking at how applying different models to fit types of data, or how different initial con-
ditions and configurations of other parameters change the solution sets to a model, makes
checking the validity of different models and configurations against a desired outcome
very easy. This can be helpful in numerous ways, especially by providing an easy way to
scan different models to see which are viable for a particular problem. This opens up the
‘trial-and-error’ method to a variety of different contexts is an invaluable tool in research
which can quickly rule out dead-ends. This is of course still not viable if the number
of configurations is insurmountably large but nevertheless opens up this technique for
many every-day situations such as regression analysis which were impractical or at least
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inefficient to examine in this way.

2. Simulations of complex systems

A large class of problems are in general only exactly solvable when there are a small num-
ber of entities in the system, in fact generally only two-body problems have general closed
form solutions with higher n-order problems expected to be non-integrable [107] although
solutions have been analytically calculated for some non trivial systems e.g. [108]. There-
fore when calculating the dynamics of more complex systems approximations to two body
systems are often made by isolating the object whose dynamics are of interest and col-
lapsing all other objects into an overall effect with which it interacts. Computing allows
for numerical solutions to arbitrary precision, which means that the individual orbits of
entities in an n-body problem can be studied simultaneously and to a much higher degree
of precision in general.

3. Keeping track of large expressions

A limiting factor when carrying out calculations by hand is the size of the expression being
manipulated, as if they span multiple lines on paper then they quickly become unwieldy
and prone to copying or other accidental errors. This is of course a significantly smaller
problem for computers as not only are they only limited by their amount of memory which
can be made arbitrarily large, but are also very accurate in copying terms and so these
large expressions are less prone to error.

There are several types of problem which can cause expressions with extreme number of
terms, two of the most common examples are systems of large numbers of particles, where
the number of interaction terms scales quadratically with the number of particles, and
perturbative solutions which can have an even worse exponential or factorial scaling with
respect to the perturbative order.

4. Proof by Exhaustion

One of the possibilities computational techniques allow is to explicitly check predicates
over arbitrarily large sets allowing brute-force style proofs. The scale of these proofs has
increased enormously since the first major effort in 1976 by Appel and Haken to prove
the Four Colour Theorem [2, 109] which required checking 1482 configurations, through
the 1989 proof by Lam and Swiercz to prove the non-existence of n = 10 finite projective
planes [110] which they estimate to have required checking 2 × 1014 configurations of
points and lines, to recent proofs including the Erdős Discrepancy Conjecture for which
researchers at the University of Liverpool have solved for C = 2 [111] in 2014 and partial
results for C = 3 [112] in 2015, with the proof of C = 2 totalling a file size of over 13GB.

The whole concept of computer-assisted proofs, and in particular the use of computers
in proofs by exhaustions, has come under criticism on multiple occasions for both their
inelegance in only being able to state whether a particular result is true or not without
prima facie revealing any deeper insight into the problem [113, Chapter 3.5], as well their
‘black box’ nature which reflects that as these proof are not in any practical sense able to
be verified by hand requiring a level of trust in both the computation to be error-free which
cannot be guaranteed and the programmer to have not introduced any bugs when writing
the program [114, 115]. This second type of trust in the programmer can be seen as an
extension of the trust we put in non-computer proofs as the program itself is verifiable
by other people, however the trust in the computer to execute the program accurately is
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fundamentally different and in some senses it is not even in principle possible to verify
that a computer will execute instructions faithfully, for example by the mechanisms Ken
Thompson outlines in his paper Reflections on trusting trust [116].

We can of course point to the dedicated symbolic and numeric routines, backed by the
large amounts of processing power available on modern hardware, as the essential tools which
have been developed to make these techniques possible, however underlying many of these are
techniques and tools which are developed not specifically for academic purposes but which
serve just as important a role. This includes the development of the REPL (read-eval-print-
loop) programming environment [117] which provides quick feedback and makes rerunning
calculations with different inputs or parameters trivial and simple graphics interface wrappers
which allow the visualisation of simulations. However, even other considerations such as the
design of user interfaces can be influential in promoting researchers to be more productive
and think about problems in useful ways. Various articles on the design of user-interfaces
in academic design with regard to different contexts have been published; these include for
dynamic geometry software [118],

It must also be acknowledged that many of these ‘side-considerations’ can actually pose
serious technical challenges and many are not trivial to solve, and although the importance of
these tasks has been written about on multiple occasions [119, 120, 121] it is still often not
regarded on the same footing as the core scientific functionality. As the relationship between
these two aspects is so closely-bound it is, in my opinion, as unuseful to draw such sharp contrast
in the worth of one against the other as to argue on which begets which with a chicken and
an egg. On the other hand, it must also be considered that such tools are intended to assist
in performing other tasks, once a feature has been implemented on it further development can
detract from the central focus of the research and so clear design goals should be set.

The implementation of the packaging system from Chapter 6 is an example of a non trivial
feature which greatly impacts the usability of Cadabra and the ability of the community to
contribute to it. We will now examine some of the non-scientific tools which Cadabra includes
which both provide functionality required for Cadabra to run and help make using Cadabra
an efficient way to solve problems and collaborate, and then also examine in more detail the
specific implementation of some features.

8.1 Cross-platform compatibility and build systems

After reaching a certain critical mass, it becomes important for programming projects to imple-
ment a build system to take care of compiling the source files and piecing the various elements
together to form a final packaged and self-contained output. The implementation of this is often
highly influenced by the main language of the program, for example a Python project may use
setuptools1. Cadabra uses CMake [122], an open-source cross-platform C/C++ build system
which is used by many projects.

One of the very early goals when writing this thesis was to port Cadabra, which had previ-
ously been available only on Unix like systems, to Windows in order to increase availability as
Windows is by far the most dominant operating system at the time of writing.

1https://docs.python.org/3/distributing/index.html
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8.2 Notebook versioning

All but the most trivial of computing projects quickly find it necessary to use some form of
version control system (VCS) in order to make development manageable. There are three main
functions which a VCS provides: making experimentation easier by allowing easy reversion to
a previous revision, allowing multiple developers to work simultaneously on the same codebase
and the documentation of features as they are introduced [123]. The first public attempt to
create a VCS was carried out, like many early computing projects, at Bell Labs where in
1972 Marc J. Rochkind wrote a C implementation of his system SCCS (Source Code Control
System) [124]. This was a locking based approach where individual files could be checked out
by a developer to work on preventing others from making concurrent changes until the file was
unlocked; by keeping track of the revisions of each file this technically fulfilled the requirements
given above, however the locking-based system did not allow for strict concurrency as although
developers could work on separate parts of a codebase at the same time this made it impossible
to work on the same part and if a developer forgot to unlock a file or spent a long time making
changes then this could hinder the project workflow significantly.

This style of versioning was superseded by CVS (Concurrent Versions System) in 1986 which
advanced the technology in two significant ways: it allowed developers to work on their own
branch, which allowed them to work on the same file concurrently and then later compare and
merge the changes, and it also worked on a client-server model which allowed developers to
work from remote machine and work on a local branch only synchronizing with the main server
when operations such as pulling other people’s changes or pushing one’s own local changes were
required. Nowadays the most popular VCS is the open-source tool Git2 which was developed
in 2005 for developing the Linux kernel by Linus Torvalds as a reaction to the proprietary tool
BitKeeper [125].

While these tools are invaluable for collaborative projects and make looking at revisions
of plain-text source files very natural, one of the areas in which they are not performant is
working with structured and binary files. Notebook files, based on the JSON format, are an
example of a structured format which contains much information which is unimportant for
most of the tasks commonly required of users of a VCS and thus the pertinent information is
hidden amongst visual clutter. In order to provide functionality comparable to that of ‘flat’
source files therefore an external tool is required. The requirements of the tool as well as its
implementation are dependent on the format of the file and therefore generic tools are not
generally possible to produce (although attempts such as diffi [126] which can compare across
different file formats are proposed); for example while there are many examples of tools which
can diff (compute the differences between two files) JSON objects taking into account changes
which have no real significance such as white space and the ordering of keys, these are still
of little value for comparing notebooks where most of the interesting information is stored in
long string values containing escaped characters (\n, \t etc. which represent non-printable
characters) and which require a tool able to view deltas (‘atoms’ representing the individual
changes required to transform one sequence into another) at a smaller, more local level.

The popular notebook format Jupyter [127] has a tool nbdime [128] for performing versioning
related tasks. While the format of Cadabra’s .cnb notebook files differs from the Jupyter .ipynb
notebooks making the use of this tool directly for Cadabra impossible and the tool discussed
below is designed independently of the nbdime implementation, the functionality and design

2Based on data from https://www.openhub.net/repositories/compare, accessed July 2021, which reports 72%
of its repositories using Git
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goals are of course very similar and where choices have differed this will be discussed.

8.2.1 Cadabra notebook format

Cadabra notebooks files are JSON documents representing the notebooks structure as a tree.
Each cell is represented by a JSON object with some keys:

cell_id A unique 64-bit number identifying the cell

cell_origin String value of either client or server, detailing where the cell is constructed

cell_type String providing information on the type of data contained in the cell

hidden† Boolean option specifying whether the frontend should display the cell

source String contents of the cell

cells† Array of all direct children of this cell

The entries marked † are not required to be present. The tree starts at the cells entry of
the root object element which also contains other metadata not pertinent to the discussion.

8.2.2 Diffing algorithm

The mechanism used for creating a diff between two Cadabra notebooks which we have devel-
oped is a two step process: the first to calculate where cells have been inserted and deleted,
and the second to calculate differences between the contents of cells mutual to both notebooks.
The algorithm only considers input cells (i.e. the raw LATEX and Python code written by the
user) and not the contents of the output. The primary reason for this is that the output is very
commonly not of interest when examining the differences between notebooks, as for a deter-
ministic notebook the output is directly dependent only on the input, and for non-deterministic
notebooks, for instance making use of random number generators, the difference in the output
is a by-product of random number generation and therefore not revealing of anything useful.
This is not to say that there aren’t occasions where it may be useful to compare outputs, but
in order to comply with the earlier rule of not letting the development of auxiliary tools take
over from the main focus of writing research code it was decided to omit for now the extra
development and complexity this would entail.

Both steps use the same algorithm for calculating deltas between two sequences which
is implemented in the difflib.h library3 written specifically for Cadabra’s versioning imple-
mentation, and which is an implementation based on the Python difflib library. There are
other external C++ libraries which can perform sequence matching (for example dtl4 and
diff-match-patch5) but these fail to meet the design criteria, in particular not to introduce
any heavy external dependencies (such as diff-match-patch) and to produce the same output as
the Python difflib library to allow for better integration with Python code. Of course, of the
many factors such as complexity, stability and integrability the most important factor is the
visual appeal of the resulting diff; as this is generally dependent on the content being matched
as well as personal preferences, the use of the algorithm used by Python for comparing Cadabra

3https://github.com/kpeeters/cadabra2/blob/547d2efabccb79c66c07140a2108380dff8d3cb3/libs/internal/
include/internal/difflib.h

4https://github.com/cubicdaiya/dtl
5https://github.com/google/diff-match-patch
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source code, itself very similar to Python, seemed a suitable compromise (c.f. the study con-
ducted in [129], where the target language of Java which uses braces to in many places where
Python uses white space forces different design requirements).

The algorithm (also described in the Python documentation6) is based on a matching algo-
rithm known as Gestalt Pattern Matching first developed by Ratcliff and Obershelp (by whose
names it also commonly referenced) [130]. This algorithm is centred around finding the longest
matching subsequences between two sequences and then applying the same logic recursively
to the parts of the sequence on either side in order to try and preserve as many unbroken
subsequences as possible, although this does not produce the minimal set of deltas required to
transform one sequence into the other.

The implementation centres around two classes: SequenceMatcher and Differ, both of which
are templated on a ‘string type’, although this might be any type of sequence supporting the
string interface. The SequenceMatcher class’s main purpose is the get_opcodes method, which
produces a set of OpCode objects

struct OpCode {

tag_t tag;

size_t i1, i2, j1, j2;

};

which describe how to transform one sequence into another by application of the tag_t tags
t_replace, t_delete, t_insert and t_equal applied to the subsequences in the range [i1, i2)

for the first sequence and [j1, j2) for the second. Therefore, for the strings "good morning, C++"

and "a good day, C" the following opcodes (tag, (i1, i2), (j1, j2)) are produced:

INPUT "good␣morning ,␣C++"

(t_insert , (0, 0), (0, 2) ) "a␣good␣morning ,␣C++"

(t_equal , (0, 5), (2, 7) ) "a␣good␣morning ,␣C++"

(t_replace , (5, 12), (7, 10) ) "a␣good␣morning day,␣ C++"

(t_equal , (12, 15), (10, 13)) "a␣good␣day,␣C++"

(t_delete , (15, 17), (13, 13)) "a␣good␣day ,␣C++"

OUTPUT "a␣good␣day ,␣C"

and where the effect of the operations is displayed on the right hand side. As can be seen, the
inclusion of equal subsequences allows the entire string to be constructed from the opcodes.

The Differ class acts one level above SequenceMatcher, with the main method get_deltas

accepting two lists of strings and returning a list of Delta objects

struct Delta {

tag_t tag;

string_type a, b;

std::vector <OpCode > opcodes;

};

get_deltas examines each string in the first input in turn, comparing it against each string
in the second input to calculate a similarity score in the range [0, 1], also known as the ratio
between the two strings. If the score is above a supplied threshold, a t_replace (or t_equal

if the strings are identical) Delta object is returned with the series of opcodes produced by
a SequenceMatcher instance called with these two strings. Any strings appearing earlier in
the second list generate a t_insert Delta object, and if no string similar enough is found a
t_delete Delta object is generated.

The first step in the calculation of the notebook diff makes use of the Differ class with the
two lists containing a list of the IDs of the input cells of each notebook and the threshold set to

6https://docs.python.org/3/library/difflib.html
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1, as we are only interested in exact matches. The list of Delta objects this produces enables
us to identify which cells have been inserted, deleted and retained. The output of this is an
ordered list of changes as shown in the example below which enumerates the differences between
the two cell lists in notebooks A and B, where sequential numbers representing creation order
are used instead of UUIDs for clarity and greyed out cells are inserted for alignment:

Notebook A

Cell 1

Cell 2

Cell 3

Cell 4

Cell diff list

= Cell 1

- Cell 2

= Cell 3

+ Cell 5

+ Cell 6

= Cell 4

+ Cell 8

Notebook B

Cell 1

Cell 3

Cell 5

Cell 6

Cell 4

Cell 8

Figure 8.1: Illustration of how a list of diffs can be constructed from two lists of cells

The final step is to compare the contents of cells which appear in both notebooks. For
this, the string contents of each cell is split into a list of lines and a Differ instance created
to compare these two lists. For this, the value of the threshold is set to a value < 1 in order
to allow lines to be marked with the t_replace tag instead of always a pair of t_delete and
t_insert tags.

The effect of different thresholds can be seen in Fig. 8.2 where a code snippet where a piece
of code has been refactored into a function is shown. A value which is able to accurately guess
whether a line has been modified or replaced can not only be subjective but also depend on
the use case; for the Cadabra diff tool a cut-off of 0.75 has been used. It would be possible
to develop other metrics for determining the similarity between two lines by using semantic
information about a line, for example if we consider trying to find a match for the string

message = "Hello , world"

in the lines

print_message ("Hello , world")

msg = "Goodbye , world!"

then whereas the first line has a roughly 10% higher ratio with the input, the semantic in-
formation of the brackets and operators might encourage us to choose the second line as the
match.
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a.cdb

ex:=0.
for i in range (3):

l=Ex(i)
ex=ex+$k_{@(l)}$

ex;

b.cdb

def make_series(x, n):
ex:=0.
for i in range(n):

l=Ex(i)
ex=ex+$@(x)_{@(l)}$

return ex

cutoff = 0.1

+ def␣make_series(x,␣n):
- ex:=0.
+ ␣␣ex:=0.
? ++

- for␣i␣in␣range (3):
? ^

+ for␣i␣in␣range(n):
? ++ ^

- ␣␣l=Ex(i)
+ ␣␣␣␣l=Ex(i)
? ++

- ␣␣ex=ex+$k_{@(l)}$
? ^

+ ␣␣␣␣ex=ex+$@(x)_{@(l)}$
? ++ ^^^^

- ex;
? -

+ ␣␣return ex
? +++++++++

cutoff = 0.5

+ def␣make_series(x,␣n):
- ex:=0.
+ ␣␣ex:=0.
? ++

- for␣i␣in␣range (3):
? ^

+ ␣␣for␣i␣in␣range(n):
? ++ ^

- ␣␣l=Ex(i)
+ ␣␣␣␣l=Ex(i)
? ++

- ␣␣ex=ex+$k_{@(l)}$
? ^

+ ␣␣␣␣ex=ex+$@(x)_{@(l)}$
? ++ ^^^^

- ex;
+ ␣␣return ex

cutoff = 0.9

- ex:=0.
- for␣i␣in␣range (3):
+ def make_series(x, n):
+ ␣␣ex:=0.
+ ␣␣for i in range(n):
- ␣␣l=Ex(i)
+ ␣␣␣␣l=Ex(i)
? ++

- ␣␣ex=ex+$k_{@(l)}$
- ex;
+ ␣␣␣␣ex=ex+$@(x)_{@(l)}$
+ ␣␣return ex

Figure 8.2: Illustration of how the cut-off ratio changes the granularity of the resulting diff
using some Cadabra code as an example.

8.2.3 Tool integration

We have developed three interfaces to the diffing functionality in order to ensure the tool can
be used for a range of purposes. The primary tool is a GUI window integrated into the main
Cadabra program which provides the two versions side-by-side with differences highlighted using
red and green highlighting to indicate deletions and insertions. This can also be supplied with
a Git executable from which it can automatically compare the current version of the file being
edited to a previous commit.

The other two interfaces are included in an auxiliary package cdb-nbtool and provide a
CLI interface which produces coloured output for the comparison between two files. Instead
of calling the Git directly to produce a diff between two commits, instead cdb-nbtool can be
passed an option allowing it to be called directly from the Git diff subcommand by setting up
the Git configuration files.

8.2.4 Considerations for future development

The current implementation provides the core functionality required by a diffing tool, but there
are further features which can be implemented. As ‘non-core’ features however, it must be
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stressed that particularly in an academic piece of software although there are possible routes
for extension, actually implementing them should be primarily driven by need rather than
convenience.

One large aspect of a notebook which is ignored by the current tool is the contents of the
output cells. For the reasons described earlier there is often no relevant information contained in
the outputs which doesn’t derive from differences in the inputs, but this is not true of situations
where data is read from an external source. In these cases, although the external data can also
be diffed seeing its impact on the output of a calculation might be more useful.

There are two primary concerns when extending the tool to deal with outputs. The first of
these is that the outputs might be in different formats e.g. LATEX, textual output or a binary
image format. These all require different approaches for comparison which may be significantly
more complex than the text diffing algorithm described above and even more suited to specific
needs.

Secondly, each time a notebook is rerun the output cells are destroyed and recreated with
the output of the latest run. This means that differences in the structure of the output cells
cannot be detected by using cell IDs to identify them. This problem is linked to a similar issue
where, either by splitting or moving into a different location in the notebooks, a cell may have
its ID changed even though it is ‘semantically’ the same cell. The primary solution for this
problem is to create lists of cell IDs which are not common to both versions of the notebook.
The method illustrated in Fig. 8.1 can then be used with the contents of the cell replacing the
cell ID and the threshold set to some value < 1 which can be determined empirically. This is
one method of heuristically determining whether two cells should be compared.

8.3 Creating a debugging environment

A common need amongst all programming environments is a need for a set of tools to debug the
code which we write. Programming in an academic situation is no different, and the ability to
examine calculations at every stage and perform introspection of what is going on inside more
complicated routines is important for the workflow of an academic researcher.

Python provides a lot of tools for debugging with the pdb providing a very powerful interface
for stepping through code at a very low level to understand exactly what the state of a program
is as each instruction is performed. From the perspective of a user of Cadabra however this is
probably too fine grained in detail as it is less often the actual underlying code which we wish to
debug so much as how the expression we are working on is being changed at each step. Whilst
the notebook interface provides a very simple way to structure and run calculations it is not
an ideal interface for debugging as it is awkward to see the output of single commands, view
intermediate results in a cell and as the output is formatted in LATEX large amounts of output
(which are often produced in the middle of a calculation before any canonicalisation, factoring
or other simplifications have taken place) can take up large amounts of space, be difficult to
suppress and increase the compilation time reducing the efficiency of the workflow.

It is far easier to perform these sorts of debugging steps in a REPL environment, such as
the Cadabra CLI, however breaking up the workflow between both the notebook interface and
the command line interface is awkward and in cases where a bug in a calculation is caused by
the current state of the notebook it can be difficult to reproduce the error in the command line
environment.

As a way of providing more sophisticated debugging tools in the notebook interface, a
console which shares state with the kernel of the notebook but allows for a interactive REPL
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environment has been developed. As well as providing a way to quickly test out the result of
certain expressions in the current state of the notebook it also allows redirecting output from a
notebook cell to the console which mitigate the problems mentioned above and has the added
benefit of providing a clear visual distinction between the debugging output and the output
expected from the cell.

The notebook interface is implemented as a client-server: the GUI the user interacts with
is a client instance which spawns a server which can be sent Cadabra code to interpret and
return the result to the client to display back to the user. Each code block which is sent to the
server is assigned a cell ID so that the data returned can be identified. Outputs are returned
with their own cell ID as well as their parents with the expectation that the GUI will produce a
corresponding visual cell attached to the input cell. In some cases output cells may also spawn
children, i.e. LATEX output will have a child containing the plaintext Cadabra input form so
that the result of the output can be copied and pasted into an input cell.

As the console is designed to live ‘outside’ of the cell-like interface it does not fit naturally
into this model and the outputs from the server requested by the console need to be handled
separately. In order to do this, the console registers with the client a special ‘interactive’ cell
ID through which it makes all its requests to the server. The client is then able to recognise
any messages which return with this ID and also needs to keep track of the IDs of the returned
cells in case more outputs are spawned from these. Instead of creating visual cells to display
the output, the console keeps track of various marks inside the text buffer it uses which are
labelled with the cell IDs allowing it to asynchronously insert outputs into the console below
the input they were generated from asynchronously to any other inputs it might send.

The Cadabra script run at the startup of the notebook interface also defines a console

object with a log method which can be called from within cells inside the notebook which
sends a message to the server requesting the return ID to be the interactive cell ID providing
a way of pushing output to the console from cells.

8.4 GUI Elements

The design of a user interface, in particular a graphical one, contains many different compo-
nents which are designed to hopefully make a program intuitive, productive, responsive and
discoverable for a user. Although not a primary focus of my work, contributing towards im-
proving the GUI of Cadabra in these respects was nevertheless an important part of improving
the software as a whole. The two main elements which were contributed were a hook to the
cell buffers to implement syntax highlighting which can make common syntax errors stand out
and help quickly identify the role of different elements of the code, and a hook between the
algorithms and the status bar of the program to display information about the current progress
which can make long running algorithms (such as meld) more responsive by providing feedback
to the user.

8.4.1 Syntax highlighting

GTK, the GUI framework used to implement the notebook interface for Cadabra, supports an
external library gtksourceview7 for text buffers with syntax highlighting and many other code
editing features. It was decided to not use this library to implement the syntax highlighting
feature in Cadabra for a few reasons:

7https://wiki.gnome.org/Projects/GtkSourceView
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1. It is a large extra dependency of which highlighting is only a small part

2. Although designed on top of the GTK toolkit it was not at the time of consideration fully
cross-platform compatible

3. The Cadabra syntax is not fully compatible with Python’s and so it would have been
necessary to construct a lexer for Cadabra so that it would not be a drop-in replacement
for the current text buffers

For more complicated languages such as C++ implementing a syntax highlighter would be
very complex and in general would require a way to introspect the code using a parser such
as LLVM, but for the Python/Cadabra and LATEX syntax found within a Cadabra notebook
it can be implemented in a single pass state machine. We have therefore developed a syntax
highlighting algorithm for the Cadabra notebook frontend. The mechanism for parsing and
highlighting the LATEX cells is outlined here, a similar technique is used for the Cadabra code
although there are more token types increasing the complexity slightly.

In the implementation, there are five separate states which need to be highlighted differently:

1. Normal text

2. Commands (words beginning with a backslash)

3. Parameters (following a command and enclosed in curly or square brackets)

4. Maths (enclosed inside dollar signs)

5. Comments (beginning with a percent sign until the end of a line)

The parser starts in normal mode and scans each character in turn. When it encounters a
character which begins a new state, it marks the position of the character as the start of the
region to be highlighted and updates an internal variable to indicate that it is in a new state. It
then continues through the buffer character by character until encountering a character which
indicates it needs to change state again. At this stage it applies the highlighting between the
marked character and the current position, replaced the mark with a pointer to the current
character and changes its internal state again. Fig. 8.3 gives an overview of the five different
states the parser highlights and the characters which cause transitions between these states.

There are two extra cases which must also be taken into account related to highlighting
parameters. The first is that inside a parameter there may be nesting of brackets, in this case
instead of the first closing bracket to cause a state transition the parser should wait until all
internal brackets have been closed. For this the parser holds counters containing the current
bracket depth which is increased when an opening bracket is encountered and decremented when
a closing bracket is found; only when the depth returns to zero is a state change triggered. The
second is that immediately after a parameter another opening bracket will start a new parameter
however this should not occur at any arbitrary point in normal mode and so an extra state
to expect a parameter is required which returns to parameter mode if an opening bracket is
encountered but returns to normal mode on encountering any other character.

Of course the number of things which can be done with a simple one-pass state machine
such as this is limited, but for the purposes of simple highlighting these machines are efficient
and perform well .
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Comment
Mode

Normal
Mode Maths ModeCommand

Mode

Parameter
Mode

Expect
Parameter
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newline%
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non-alpha
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$

(if depth==0)

} or ]

{ or [
{ or [

not { or [

depth+=1

{ or [
depth-=1

} or ]

Figure 8.3: Flowchart of different states the LATEX parser for syntax highlighting can be in and
the transitions between states

8.4.2 Progress information

Long running algorithms can be a cause of uncertainty for users as it can be unclear whether
an algorithm is working as intended, has entered an infinite loop or whether Cadabra has
simply stopped responding. However reporting progressing from an algorithm to the GUI is
complicated by the separation of the client and the server. The implementation of an extension
to Cadabra which allows asynchronous conversation between the client and server allowing the
frontend to dynamically inform the user of the current state of the underlying Python process
was developed after we introduced the meld algorithm which is an example of a potentially
long-running process.

For each kernel instance, a single ProgressMonitor object is constructed to which all progress
information is reported. The object is created inside of Python and can be fetched from the
C++ codebase in order for algorithms to talk to it. The ProgressMonitor handles a stack of
activities and reports the progress of the highest activity on the stack; every time an algorithm
is invocated new activity is added to the stack but algorithms (or other code) can add custom
activities to give a more informative picture of what is going on. Each activity can assign a
total number of tasks which it must perform and can push updates to report how many of the
tasks which it has completed, this is presented to the user as a progress bar in the GUI.

In order for the progress monitor to report the progress to the client it can be provided with
a callback function which is called every time some activity or progress is pushed to it. When
Cadabra is spawned from the GUI client this callback is set to a Python function which causes
the server to send a progress_update message which the client reads and uses to update the
progress bar.
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Conclusion

Computing has become a core tool for almost everyone in scientific research, and has both
rapidly increased the speed and efficiency at which we work as well as opening doors to new
possibilities for broadening our understanding of many different fields. The ability for us to
move at such a fast pace is due not only to advances in hardware which make computationally
expensive calculations possible on even modest home hardware, but also advances in our ability
to make tools which open up the world of computing to a wider audience. Developments in
our understanding of how to design tools to make different types of workflow easier, such as
notebooks, versioning control and interactive prompts, has opened up different channels for
us to communicate scientific ideas by sharing programs which allow us to explore calculations
in a freer way by replacing calculations which are tedious by hand with algorithms which can
swiftly perform transformations to expressions. One of the most important facets of modern
academic computing is the relation between the power of software to perform calculations and
to communicate these ideas, but this link is easily overlooked resulting in reduplication of code
and ideas, multiple competing libraries performing the same tasks and a lack of transparency
of the code used to generate results.

In this thesis I have aimed to present as many different aspects of the software develop-
ment cycle as possible in order to demonstrate the vast number of considerations that go into
functionality we mainly take for granted in most of the applications we use. Many of these
appear to be trivial problems on the surface, but have been developed slowly and with careful
balancing of motivations which I believe makes the study of their history, usage and lower level
details essential when it comes to writing any form of software; however instances of this being
mentioned in relation to academic software are vanishingly few.

There are a variety of skills which go into writing software which are not directly related to
scientific research or the computing skills which many researchers develop when using academic
software, but which are nonetheless essential for the developers of this software; for example
writing GUI interfaces, threading and concurrency, ideas related to different data structures,
resource management and build systems to name but a few. Learning these skills is often not
recognised within the academic community when it can in fact, as I hope has been displayed
here, constitute a sizeable proportion of a project.

The first part of this thesis concentrated on what would at first sight seem to be the core aim
of anyone writing software for research: constructing algorithms to solve and facilitate solving
equations which arise in physics and mathematics. The meld algorithm in particular provides
a different perspective on what the aim should actually be when ‘canonicalising’ an expression
with the standard algorithms for many years attempting to turn each individual term into a
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canonical form, as opposed to meld which attempts to canonicalise on a more zoomed out level,
considering the expression as a whole. This allows a more general approach, implemented in
meld using the Young projection operator, to finding identical objects which means that general
expressions with multi-term symmetries can be reduced to their smallest basis of independent
objects.

The reuse of code is one of the central factors I have attempted to highlight throughout
this thesis, and the packaging system developed for Cadabra allows the open source community
to easily create and share libraries and contribute to the set of packages which make up the
Cadabra ‘standard library’. The use and utility of packages in writing papers and sharing code
was displayed through the set of gravity papers [102, 7] which not only rely heavily on the
packaging system to provide a consistent interface across the notebooks, but the development
of these papers also inspired many very generic algorithms to be included into the standard
library. This is a very good showcase of how open source projects provide a springboard
whereupon developers and users can mutually benefit from each other in order to make not
only the software more comprehensive but also allow for rapid feedback and developing which
allows users to experiment with features quickly.

The discussion on the gravity papers also highlights the importance of being able to commu-
nicate through notebooks and how important it is to provide pedagogic materials for people to
show them how to effectively use CAS in order to solve problems in their fields. Notebooks are
one of the most natural ways in which we can communicate ideas using CAS as they emulate
the physical idea of performing a calculating and annotating the ideas and concepts placing
different stages into different logical sections. CAS notebooks have the major advantage over
hard-copy papers of allowing viewers to modify and adapt parameters or forms of expressions
in order to gain a better insight into the calculation without having to manually go through the
algebraic manipulations. This concept is well presented in the second gravity paper, where vari-
ables such as the perturbation order are defined in a way which makes them easily modifiable
to view the result of the calculation at different orders.

The second part also covers many of the other considerations which went into the develop-
ment of Cadabra which make it easier and more efficient to use. The two most prominent of
these are the development of the versioning control system for notebooks and the interactive
console. Neither concept is original, even within academic software, however both can be in-
valuable tools at different stages when attempting to solve a problem using Cadabra, and the
ideas have not (as far as I have been able to ascertain) been presented from the viewpoint of an
academic writer before. For fear of having repeated the point too many times before, such ideas
often go unnoticed in the broader context of academia and I therefore hope to have provided a
starting point from which other developers, who are specifically writing for academic audiences,
can turn to when approaching these tools.

The development of any piece of software is a multi-faceted project, and the development of
a piece of academic software perhaps even more so due to the amount of knowledge of different
fields required to build tools for researchers studying in many varied and niche areas. If I were
to make any broad comment on what this thesis is about, and what I hope the reader will be
able to have gained from it, then it is exactly this lack of a single overarching umbrella under
which the task of writing academic software can be placed; indeed, far from being an ‘edge
case’ the field stretches throughout and finds both inspiration and utility in all the scientific
disciplines, natural, mathematical and computational.
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