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Abstract—Channel modeling has always been the core part
in communication system design and development, especially in
5G and 6G era. Traditional approaches like stochastic channel
modeling and ray-tracing (RT) based channel modeling depend
heavily on measurement data or simulation, which are usually
expensive and time consuming. In this paper, we propose a novel
super resolution (SR) model for generating channel character-
istics data. The model is based on multi-task learning (MTL)
convolutional neural networks (CNN) with residual connection.
Experiments demonstrate that the proposed SR model could
achieve excellent SR performances in mean absolute error and
standard deviation of absolute error. Advantages of the proposed
model are demonstrated in comparisons with other SOTA deep
learning models. Ablation study also proved the necessity of
multi-task learning and techniques in model design. The con-
tribution in this paper could be helpful in channel modeling,
network optimization, positioning and other wireless channel
characteristics related work by largely reducing workload of
simulation or measurement.

Index Terms—Wireless channel modeling, ray-tracing (RT),
super resolution (SR), multi-task learning (MTL), convolutional
neural network (CNN),

I. INTRODUCTION

Thanks to the fast advances in the fifth generation (5G)
wireless communication, our world is stepping into the era
of Internet of Everything (IoE) [1]. To enable ultra-low la-
tency and high reliability communication services in dense
connected areas like urban districts, accurate wireless channel
model is a necessity. Correct knowledge of the propagation
channel is also critical for radio coverage estimation, network
optimization and for many related applications [2]. Naturally,
channel modeling is seen as the foundation for planning and
optimizing communication and related systems [3].

Channel modeling is the process of characterizing the
propagation principles of radio waves in realistic environ-
ments, and provides insight theoretical guidance for the de-
sign, deployment and optimization of communication systems.
Generally, stochastic channel modeling (SCM) and ray-tracing
(RT) based deterministic modeling are two main modeling
approaches [4]. For SCM, channel characteristics like path
loss (PL), propagation condition (line of sight or non line
of sight), delay spread, angular spreads and Rician K-factor
are required to generate channel coefficients and thereafter to
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model the wireless channel. Massive channel measurements in
different environments, which are usually time-consuming and
expensive, must be conducted to obtain the necessary channel
characteristics data [5]. On the other side, RT based modeling
approach can generate accurate channel data if given precise
propagation environment and configuration, but at the cost
of high computational complexity and enormous calculation
time [6]. Therefore, a fast and reliable channel characteristics
data generation method will effectively address the limitations
above.

One of the promising solutions is machine learning (ML)
method. The recent surge of ML is revolutionizing almost
every branch of science and technology, including wireless
channel modeling. The wireless channel is a time-varying
nonlinear system, which contains multi-dimensional informa-
tion in time, spatial and frequency domain. Machine learning
has very powerful learning and inferring capabilities. It can
automatically learn from channel data so that the structural
relationship between data in complex environments can be
extracted to approximate nonlinear systems. Moreover, ma-
chine learning is very efficient in mining information from
high dimensional data, which can significantly expedite data
processing.

Current research in this area are still inadequate. Most of
recent works focused on predicting only one of the channel
characteristics like PL (Radio Coverage Prediction) [2]. The
input is mostly restricted to building information, satellite
image [7], map [8] and just one of the characteristics. Few
works attempt to estimate several channel characteristics at
the same time. As for ML methods, traditional algorithms
such as Random Forests (RF), Support Vector Machine (SVM)
and K-Nearest Neighbors (KNN) as well as Deep Learning
(DL) methods such as Convolutional Neural Network (CNN)
[8], Transformer [9] and Generative Adversarial Network
(GAN) [10] are frequently employed. Also, the estimation
targets are usually restricted to one or two characteristics. In
general, few works have studied Multi-Task Learning (MTL)
models for generating channel characteristics data with several
characteristics as input. The connection between different
characteristics awaits to be exploited.

In this paper, instead of prediction or estimation, we propose
a super resolution (SR) model for channel characteristics.
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Fig. 1: The overview of proposed residual network based MTL SR model for wireless channel characteristics. ① RT simulation
and dataset generation. ② The SR model training process. ③ Evaluation.
Dataset1: Channel characteristics dataset

The model is based on MTL CNN with residual connection.
Overview of our work is shown in Fig.1. Given 3D models of
urban areas and the corresponding EM parameters, CloudRT
platform outputs channel characteristics dataset and the dataset
is used for SR model training. Data from the dataset are
degraded into low resolution data as input. Original high
resolution data are used as the ground truth. MTL loss is em-
ployed to better balance multi tasks. We evaluate our proposed
SR model by ablation study and comparisons with other DL
models. Specifically, we make the following contributions:

• In dense urban areas, RT simulation by self devel-
oped CloudRT was conducted and channel characteristics
dataset are constructed based on simulation results.

• A residual network based MTL SR model is proposed.
Weighted masks are added in loss function. Homoscedas-
tic uncertainty is employed to balance the single task
losses during training. Residual connection and iterative
up-and-down technique are implemented in CNN blocks
for better SR performances.

• Training process and results of evaluation are provided.
The proposed SR approach generally performs better than
other SOTA DL models. Comparing with baseline, the
proposed approach could achieve very good SR results in
all channel characteristics targets and deteriorate signifi-
cantly less than baseline with larger scale factor. Ablation
study proved that the techniques in training and model
design are necessary.

II. SIMULATION AND DATASET CONSTRUCTION

This section describes the procedures of RT simulation and
dataset construction. In this paper, we used self developed
CloudRT [11] [12] platform to generate channel characteristics
data.

RT approach is widely used to generate accurate channel
characteristics in a specific environment. Based on 3D elec-
tronic map and electromagnetic (EM) parameters provided
by ITU-R P.1238-7, RT simulation is conducted in dense
urban areas on CloudRT platform. More than 100 simulation
regions are manually selected from urban areas of four major

TABLE I: RT Simulation configuration

Carrier frequency 3.55 GHz
System bandwidth 100 MHz
Frequency resolution 1 MHz
Antenna Omni-directional vertical polarization
Simulation range 1 km×1 km
Tx location 30 - 50 m above the ground
Rx location 2 m above the ground

TABLE II: Channel Characteristics Dataset

Characteristic Normal Range NaN Value Unit
PL [-200,0) 200 dB
Kp (-30,0] 100 dB
DS (0,500) -100 ns
ϕ [0,360) -360 °
θ [0,180) -180 °

LOS/NLOS -1/0 1

cities in China: Beijing, Shanghai, Hangzhou and Xi’an. The
simulation regions are 1km × 1km squares with 3D electronic
map resolution of 200 × 200. Transmitter (Tx) is located
on one of the high buildings near the center of simulation
region, and a large LOS area should be maintained. The
receivers (Rx) are located 2 meters above ground, uniformly
distributed by distance of 5 meters on the horizontal plane.
Only receivers outside buildings are considered in simulation.
Table I summarizes the simulation configuration and details
of it can be found in [13].

Kp =

∑Nr

i=1 Pi − P0∑Nr

i=1 Pi

(1)

The channel characteristics dataset is constructed based on
RT simulation results. Definitions of path loss (PL), root mean
squared (RMS) delay spread (DS), RMS azimuth (ϕ) angular
spread of arrival, RMS elevation (θ) angular spread of arrival,
line of sight (LOS) and non line of sight (NLOS) follows the
usual. We redefined Racian-K factor as multi-path power ratio
Kp in (1), where Pi and P0 is the power of ray i and ray of



direct propagation. In LOS area, Kp is the ratio of power of
all rays except P0 to the total power. In NLOS area, Kp is
equal to zero. Kp is continuous in both LOS and NLOS areas
thus suitable for ML. The 6 characteristics are also SR targets
in this paper. We use PL, Kp, DS, ϕ, θ, LOS/NLOS as the
abbreviations or symbols of the channel characteristics and SR
targets, as shown in TABLE II. Values which are far beyond
ordinary thresholds in communication systems are set as the
minimum (PL, Kp) or the maximum (DS) of corresponding
normal range. NaN value represents the channel characteristics
data of receivers which locate inside buildings. NaN value
should be void but set as real number out of normal range
so that ML model is able to distinguish. A data in channel
characteristics dataset is a 200 by 200 tensor with 7 channel
(including building heights). The input data are processed by
down-sampling by certain scale factor and up-sampling by
interpolation so that the shape remains the same. In total, 753
data were generated and combined to construct the dataset.

III. METHODOLOGY

A. Problem Definitions and Terminologies

Super-resolution is a notion of recovering High Resolution
(HR) data from the Low Resolution (LR) data [14]. The
LR data mostly originates from HR data with a process of
degradation:

ILR = D (IHR; δ) (2)

where ILR, IHR, D, δ denote LR data, HR data, degradation
process which is usually unknown, and parameters of degra-
dation such as scaling factor. Usually ILR, IHR are the input
training data and the ground truth correspondingly.

SR can be described as the model of recovering ILR to
IHR. The recovery (approximation) result is denoted as ÎHR.
F represents the recovery model with parameters θ. Take DL
as the example, F is the neural network while θ is the weights
and other related parameters in the neural network.

ÎHR = F (ILR; θ) (3)

To this end, the objective of SR is as follows:

θ̂ = argmin
θ

L(ÎHR, IHR) + λΦ(θ) (4)

where L is the loss function between recovery result ÎHR and
ground truth IHR. Φ is the regularization term with parameters
θ and λ is the weight factor. The best SR model would
minimize the loss to the least with respect to θ.

B. Residual Network based Multi-Task Learning Model

The proposed residual network based MTL model consists
of two parts: backbone part and fine-tune part, as in Fig. 2.
The backbone part is to extract high-dimensional features from
input data while the fine-tune part focuses on each of the tasks
to achieve the best SR performances.

The CNN block contains two convolutional layers with
activation function ReLU. The size of data during convolution
remains 200 × 200. The number of CNN blocks N is

Fig. 2: The overview of proposed MTL CNN model with
residual connection

Fig. 3: An illustration of Mgt and Mna. Mask values are all
set as 0.01. The background is electronic map of Tiananmen
Square in Beijing, China.

set to be 3 in our work, but a larger number of blocks
may also achieve excellent SR performances based on our
previous experiments. To be noted, the numbers of channels
in convolutional layers are set to be iterative up-and-down,
as shown in the illustration of CNN block. The iterative
up-and-down technique can filter irrelevant information in
input data. Residual connection is also necessary for good
SR performances. Several CNN blocks are concatenated with
residual connection to construct the backbone part. In fine-tune
part, 6 lightweight models are designed for the corresponding
targets. Lightweight models are two layer CNN like in CNN
block but number of channels remain fixed. We also observed
a little bit better performances of SR with other models in fine-
tune part. Note that for NaN/LOS/NLOS, outputs of the fine-
tune nets are the probabilities of corresponding propagation
conditions.

C. Loss Functions and Evaluation Metrics

As explained in Section II, only receivers outside the
building are considered in simulation. As a result, NaN values
are given real number to guarantee that the input data is a
regular matrix or tensor. Also, there will always be some



ground truth values (elements) in the matrix of input data.
However, both NaN values and ground truth values are trivial
in SR process. To keep the loss function continuous and to
help ML models concentrate on SR values of desired positions,
weighted loss is introduced as the mask of NaN values Mna

and the mask of ground truth Mgt, which are illustrated in
Fig. 3.

Several kinds of loss functions and evaluation metrics such
as pixel loss, and content loss are widely used in image
SR tasks. Differently, only pixel loss is accepted in channel
characteristics SR task. According to previous experiments,
L1 (norm) loss is employed for training as it performs better
than L2 loss and peak signal noise ratio (PSNR).

There are 6 SR targets in this paper as mentioned in section
II. For LOS/NLOS, SR process is essentially to classify be-
tween LOS and NLOS area. For the rest targets, the SR process
are regression. Due to the difference between classification
and regression, the loss functions are categorized into two
scenarios where L1 norm are used for regression and cross
entropy are used for classification, as in (7) and (8). The loss
function Lm in training can be described as follows:

Lm(Î , I) =

{
lossce(Î , I), if target m is LOS/NLOS

lossl1(Î , I), others
(5)

where Î and I are SR recovered data and ground truth. Before
the calculation of loss function, both Î and I should be
weighted by Hadamard Product with Mgt and Mna:

Iweighted = Ioriginal ◦Mna ◦Mgt (6)

n, h, w, represents the number of values to be estimated
(SR) and side lengths of input data. k stands for the class
among LOS/NLOS/NaN in (8).

lossl1(Î , I) =
n

(hw)
2

∑
i,j

|Îi,j − Ii,j |1 (7)

lossce(Î , I) = − n

(hw)
2

∑
i,j

Ii,j,k log Îi,j,k (8)

During the pre-train stage, homoscedastic uncertainty [15] is
employed to balance the single-task losses as in (9). Not only
the weights in neural networks W but also noise parameters σ
are trainable and updated through standard back propagation
during training.

LMTL(W,σ) =
∑
m

Lm

2σ2
m

+
∑
m

log(σm) (9)

The evaluation metric is much simpler than training loss.
Basically, values of receiver located in building areas (NaN
values) and ground truth values are not included in calculation.
The metric for evaluating SR performance of LOS/NLOS is
classification accuracy. For the rest targets, mean absolute error
(MAE) and standard deviation of absolute error (SDE) are
regarded as the metrics.

IV. EXPERIMENTS

A. Training Configuration and Implementation
In this work, DL training are performed by PyTorch 1.10.2

on a work station with 1 NVIDIA GeForce RTX 3090 GPU,
Intel Core i9-9900K CPU and 32 GB DDR4 RAM.

The training process are divided into two stage: pre-train
stage and fine-tune stage. In pre-train stage, (9) is used as
the loss function for back propagation and weights of the
entire SR model are updated. Next, in fine-tune stage, only
weights of fine-tune part in the SR model are updated while
backbone part remains unchanged. The purpose of this design
is to obtain a general feature extractor (backbone part) for
channel characteristics SR. By doing so, it’s very fast and
convenient to concatenate lightweight models for specific tasks
when comparing with DL models aiming at only one channel
characteristic.

Data augmentation is employed to the training set for en-
hancing diversity of the inputs. The training set is transformed
by rotation of 90, 180 and 270 degree as well as horizontally
and vertically flipping. As a result, the training dataset is
incremented by 5 times.

The proposed SR model is trained for 100 epochs in both
of two stages. The learning rate is set as 0.00001. Adam
optimizer is used for gradient descent. Batchsize is set as
1. The channel characteristics dataset is randomly split into
training set and test set by ratio of 7:3. Experiments with scale
factor 2, 4 and 8 were conducted.

B. Backbone Part
As mentioned above, backbone part of the proposed SR

model is regarded as a general feature extractor. The compar-
ison of DL models is summarized in Table III. Our proposed
SR model could achieve 3.26 dB for MAE of PL with scale
factor 2. Under the same configuration, several kinds of DL
models including ResNet50, vision transformer (ViT) [16] and
GAN-SR [17] were tested. Performances of these SOTA DL
models are not satisfying. For backbone part, ResNet50 is the
best in tested DL models but the MAE is around 7-8 dB.
After several experiments of ViT by changing the number
of transformer encoder and the number of heads in attention
layer, the best result of MAE is around 8 dB. Performances of
GAN are much worse than CNN and ViT. The best results
of GAN is higher than 12 dB for MAE. Moreover, few
experiments show that the loss of generator and the output
of discriminator (probability that ÎHR is real) converge at the
end. Nash equilibrium between generator and discriminator
could hardly be reached. For other targets, SR results of these
DL models are also much worse than those of the proposed
model.

The reasons of why SOTA DL models doesn’t work well are
analyzed. First, the data size of channel characteristics dataset
is much smaller than popular computer vision datasets like
CIFAR-10, ImageNet and MINST. Second, texture, style and
smoothness of images should be considered in image SR but
not regarded as objectives in characteristics SR task. As a re-
sult, deeper models with larger number of parameters are more



(a) Path Loss (b) Kp (c) RMS ϕ Spread

(d) Accuracy of LOS/NLOS Classification (e) RMS Delay Spread (f) RMS θ Spread

Fig. 4: MAE and classification accuracy of 6 SR targets during training process.

liable to over-fitting. The comparison of SR performances and
model complexity are presented in Table III. For the proposed
model, both the number of parameters (Params) and floating
point of operations (FLOPs) are much smaller than other DL
models.

TABLE III: Comparison of Deep Learning Models

Proposed Model ResNet50 ViT GANSR

Params / k 4.25 8610 13040 28670
FLOPs / GMac 0.34 2.58 10.33 12.42
MAE of PL / dB 3.26 (best) 7-8 7-8 >12

C. Performance of Proposed Model

MAE and classification accuracy of 6 SR targets during
training process are shown in Fig. 4. Clearly for six targets,
the MAE and classification accuracy of SR are decreasing
during training and converge at the end. In pre-train stage
(1-100 epochs), MAE and classification accuracy decrease
very quickly with some minor jitters due to MTL loss. This
indicates that the proposed model and MTL loss is effective
as a feature extractor to achieve fairly good SR performances
with multi inputs and tasks. In fine-tune stage (101-200
epochs), few jitters are observed. MAE and classification
accuracy decrease slowly to converge at the end so that better
SR performances could be achieved in fine-tune stage. We
also observed that given scale factor as 8, the classification
accuracy of LOS/NLOS jitters greatly. We will look into this
part in future research.

In general, the best SR results achieved by the proposed
model is demonstrated in Table IV and Table V. Compared
with bilinear interpolation, both MAE and SDE of the pro-
posed model is far smaller. Moreover, SR performances of
the proposed model deteriorate significantly less than bilinear
interpolation when scale factor is relatively larger (4 or 8).

D. Ablation Study

Ablation study was conducted to investigate the effective-
ness of MTL and techniques in the proposed model. MTL
represents the proposed model without residual connection
and iterative up-and-down technique. It is set as the baseline
model for comparison. STL means the baseline model with
only single task (PL) during training.

Table VI demonstrates the cumulative performance gain of
MAE and SDE in ablation study. The evaluation metric is
PL. Apparently, SR of single task learning is incomparable
to MTL. RES Residual connection and iterative up-and-down
technique could reduce MAE and SDE for 20% on average.
DA could also enhance SR performance in some extent. It’s
noticed that the enhancement of DA and RES decreases much
when scale factor are large (4 and 8).

V. CONCLUSION

In this paper, a novel residual network based MTL model is
proposed for SR of wireless channel characteristics. RT simu-
lation was conducted and channel characteristics dataset were
constructed based on simulation results. Weighted masks are
introduced in loss function which can help better fit randomly



TABLE IV: Comparison of MAE between Proposed model
and Bilinear Interpolation

Scale
Targets PL Kp DS ϕ θ

LOS/
NLOS

2 Proposed 3.26 0.47 6.84 1.6 5.34 98%
Bilinear 16.58 6.73 13.46 12.97 16.6 85%

4 Proposed 4.29 0.69 9.99 2.31 8.55 95%
Bilinear 26.76 11.06 20.41 21.13 26.53 72%

8 Proposed 5.80 0.99 14.09 3.57 12.53 87%
Bilinear 36.77 15.54 27.9 29.71 36.92 65%

Unit dB dB ns ° ° Acc.

TABLE V: Comparison of SDE between Proposed model and
Bilinear Interpolation

Scale
Targets PL Kp DS ϕ θ

2 Proposed 5.04 0.89 10.06 4.29 9.84
Bilinear 31.69 13.55 18.18 23.75 27.57

4 Proposed 6.61 1.19 13.61 5.92 14.33
Bilinear 43.24 18.75 24.94 32.72 38.41

8 Proposed 8.30 1.55 16.94 8.00 18.13
Bilinear 51.15 22.46 30.23 39.27 46.2

distributed building regions. A general MTL model with two
stage training methods are proposed. The proposed model
could achieve SR results of PL with MAE of 3.26 dB and
98% classification accuracy of LOS/NLOS areas given scale
factor as 2. It also outperforms other SOTA DL models and the
reasons are discussed. The proposed model demonstrates huge
advantages in channel characteristics SR tasks especially when
scale factor is relatively large. Ablation study also proved
the necessity of residual connection, iterative up-and-down
techinque and multi-task learning. In future, we will continue
the study of channel characteristics SR problem by refining
proposed MTL model on network structure and MTL loss
function. Relations between upper bounds of SR performances
and scale factor will also be explored.
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