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1. INTRODUCTION 

 

1.1. Research Background 

Economic growth creates dynamic changes in the global market, including the maritime 

industry. On a worldwide scale, huge demand for industrial cargo transport promotes intense ship 

movement and replacement [1]. As the demand for newbuilding specifications also changes 

according to the circumstances, developing a ship with adequate specifications to satisfy this 

demand is essential. 

Meanwhile, the use of digital infrastructure to alter a business model and implement 

value-producing opportunities naturally generates a large data stream called big data. With the 

reduction in cost of data collection tools, a large amount of data can be obtained from various 

sources and formats [2,3]. This is significant for a broader understanding of the current and future 

conditions of various industries. Therefore, big data analytics will be a critical advantage in the 

future [4].  

In the maritime industry, big data are being generated through advancements in navigation 

systems [5,6]. Together with the voyage data recorder, an automatic identification system (AIS) 

is required by the International Convention for the Safety of Life at Sea to aid navigation and 

avoid collisions of ocean-going ships. Towards its development, the deployment of satellite-

based AIS receiver enables an accurate ship’s geospatial monitoring on a worldwide scale [7]. 

From the ship side, an AIS transponder also transmits a ship’s identification number, position, 

course, speed, and destination. These systems uphold the digitalization of previously analog-

stored data, such as ship specifications, port limitations, and sailing routes [8]. 

The collection of static and dynamic big data in maritime logistics has allowed various 

studies to be conducted. Safety improvement, energy efficiency, logistics optimization, and 

predictive analysis have been broadly discussed [9-12]. Similarly, many data-driven studies have 

introduced a demand forecasting application for both regional and global scales. Forecasting 

analyses, such as the cargo throughput and shipbuilding market, have also been presented in some 

studies [13-25]; however, the demand for new ship specifications is unlikely to have been covered. 
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1.2. Objective in This Study 

With big data in maritime logistics, ship operation monitoring is becoming relevant. 

Besides, shipbuilding tends to apply risk-based design rather than rules-based design, with aims 

of compatibility of design and performance [26,27]. Likewise, the International Maritime 

Organization (IMO) greenhouse gas (GHG) reduction strategy [28,29] set out a new future 

guideline. Therefore, it is crucial to examine the actual ship operation characteristics in the 

particular route to optimize its future ship design, both cost- and GHG-effectively. 

Our prior studies examined the demand for new ship specifications by proposing a basic 

ship-planning support system using big data in maritime logistics [30]. We built the system and 

conducted the simulations in the form of a basic study. The proposed system was applied to the 

target ship of Capesize dry bulk carrier, which operated on relatively fixed routes, such as 

Australia and Brazil to East Asia routes [31]. Assuming the target ship operated in a time-charter 

contract manner, we built an algorithm to replicate its ship bidding scheme. However, the scope 

of that study was limited by the target routes and ship allocation considerations. The previous 

system delivered the simulations by only considering the ships’ fuel costs; by contrast, this study 

has proposed an enhancement to our basic ship-planning support system. Additionally, we have 

broadened the scope of the geographical area to a global scale to understand the ship 

specifications in demand. Furthermore, we proposed the voyage-charter contract in addition to 

the assumed time-charter contract scheme. Finally, we suggest two attributes to be considered in 

the ship allocation algorithm: ship cost (COST) aspects and GHG emissions. 

 

1.3. Structure of This Dissertation 

Accordingly, Figure 1 provides an overview of structure of this dissertation. The content 

of each chapter are summarized, as follows: 

 Chapter 1: This chapter described an overview of the dynamic changes in the global 

market and the significance of big data in maritime logistics. Moreover, the objective of 

the basic-ship planning support system is clarified. 

 Chapter 2: In this chapter, we discussed several studies and originalities in this study. We 

covered related studies utilizing big data in maritime logistics, which examined the 

forecasting of the cargo throughput, shipbuilding and new ship, and optimization in ship 

deployment. Additionally, we described the novel aspects of this study, including an 

improvement and originally proposed features compared to the prior study. 
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Figure 1. Structure of this dissertation. 
 

 Chapter 3: This chapter provided the basic concept for developing the basic-ship planning 

support system. We defined the accessible big data in maritime logistics used in this study, 

including ship movement data, ship data, port data, and route data. Moreover, we clarified 

that the system configuration consists of the developed model, such as the global network 

model, cargo movement model, ship model, and ship allocation algorithm. 

Chapter 1

Introduction

Chapter 2

Literature Review

Chapter 3

Basic Concept

Chapter 4

Model Development

Chapter 5

Case Studies and Discussions

Chapter 6

Concluding Remarks

Global Network Model Cargo Movement Model Ship Model

Ship Allocation Algorithm

Big Data in Maritime Logistics
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 Chapter 4: This chapter gives an account of the detailed model development configured 

in the basic-ship planning support system. Using the available data, we modeled the global 

network model, cargo movement model, and ship model. The results produced by these 

models were then arranged as an input to calculate GHG and COST, and the ship 

allocation algorithm. Moreover, the defined algorithms to simulate ship allocation are 

discussed. 

 Chapter 5: This chapter presents the case studies and discussions. We propose case studies 

intended for Capesize and Panamax–MiniCape dry bulk carriers, and future scenarios of 

the IMO GHG reduction strategy. We conducted case studies utilizing the defined 

algorithms; ship replacement while preserving existing ship allocation, optimization of 

ship allocation using existing ships and with new ships instance, in time- and voyage-

charter contracts.  

 Chapter 6: This last chapter summarizes the discussions mentioned above and future tasks 

considered. 
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2. LITERATURE REVIEW 

 

2.1. Related Studies utilizing Big Data in Maritime Logistics 

In recent years, studies utilizing big data in maritime logistics have emerged as predictive 

analytics tools. These have mainly discussed energy efficiency improvement, accident avoidance, 

and logistics optimization. Focusing on regional and global scales, some studies have examined 

the forecasting of the cargo throughput, shipbuilding market, and new ship specifications [9-12]. 

Table 1 lists several studies on these topics. 

 

Table 1. Related studies utilizing big data in maritime logistics. 

Author Forecasting Scope Logistical Context 1 Shipping Market 2 Used Data 3 

[13] Cargo Throughput Country Co Po 

[14–16] Cargo Throughput Country Co Po, St 

[17] Cargo Throughput Global Bu Ai 

[18,19] Cargo Throughput Global Bu Ai, Sh 

[20] Shipping Market Global Ta Ai, St 

[21] Shipbuilding Market Global Co, Bu, Ta St 

[22–24] Shipbuilding Market Global Bu Sh, St 

[25] Shipbuilding Market Global Co, Bu Ai, Sh, St 

[30] New Ship Specification Region Bu Sm, Sh, Po, Ro, St 

This Study New Ship Specification Global Bu Sm, Sh, Po, Ro, St 
1 Country: From or to a country; Region: Connections between more than two countries; Global: 

Worldwide scale; 2 Co: Container; Bu: Bulk Carrier; Ta: Tanker; 3 Ai: AIS data; Sm: ship movement data; 

Sh: ship data; Po: port data; Ro: route data; St: statistical data. 
 

2.1.1. Overview of Studies discussing Cargo Throughput Forecasting 

A number of studies constructed a long-term model predicting cargo demand based on 

regression analysis and neural networks using a combination of ship and port data. Yang and 

Chang [13] researched forecasting the demand for container throughput in five ports in Taiwan. 

This study is composed mixed-precision neural network consisting of a convolutional neural 

network for the learning process and long short-term memory to identify the significant features. 

The proposed method can predict container throughput effectively compared to other forecasting 

approaches, as shown in Figure 2. This finding gives potential future cost reduction in the 

planning and development of ports. 
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Figure 2. The forecasting method proposed by Yang and Chang [13]: Convolutional neural network and 

long short-term memory (CNN-LSTM). 
 

Furthermore, Jugović et al. [14] discussed the aspects that influence maritime shipping 

markets. This study presents three key economic concepts to analyze the supply and demand in 

the freight market: supply function, demand function, and equilibrium price. In the case of short-

term equilibrium, the balance of supply and demand is determined by the effectiveness of ships 

in operation. Moreover, long-term equilibrium conditions have fluctuated following the order of 

new ships and a scrap of old ships. This is related to the sale and purchase market, new buildings, 

and demolition. 

Akar and Esmer [15] investigated the container volume forecasting of container ports in 

Turkey. Multi regression analysis is proposed, and the cargo handling capacity of these ports until 

2023 was analyzed. In this perspective, the predicted cargo amount varies depending on the 

location of ports. Assuming no changes in the container ships’ size category, the expected 

container throughput in 2023, 12.7 million TEU, can be handled by the target ports. 

(a) (b) (c)

(d) (e) (f)
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Similarly, Gökkuş et al. [16] examined the accuracy of four forecasting models to forecast 

the annual container throughput in the ports of Istanbul, Izmir, and Mersin. The proposed models 

include Artificial Neural Network with Artificial Bee Colony and Levenberg-Marquardt 

Algorithms, Multiple Nonlinear Regression with Genetic Algorithm (MNR-GA), and Least 

Square Support Vector Machine. All proposed models but MNR-GA results in moderate forecasts 

for all target ports. To conclude, this study reported an increase in 2023 container traffic by 67% 

and 95% at target ports Izmir, Mersin, and Instanbul, respectively. 

Moreover, Jia et al. [17] estimated the payload of bulk carriers based on the AIS-reported 

draught data. Initially, this study verifies the quality of AIS data by using the port calls from ship 

agents. Moreover, this study estimated the ships’ payload and evaluated the estimation through a 

multi-factor regression model. The findings described that the draught information captured and 

evaluated in AIS data and port calling data are reliable in estimating the ships’ payload. In 

addition, the future global carbon footprint per transport mode is measured considering the 

estimated payload. However, this study does not compare the estimation results to the cargo 

amount sourced from alternative statistical data. 

Similarly, Zhou and Hu [18] examined an AIS-based iron ore trade volume estimation. 

The actual shipment was obtained by inputting the static and dynamic data, in the form of ship 

and AIS data, into the constructed back-propagation neural network (BP-NN). This study 

estimated the trade volume of iron ore in 2018. In the annual context, the error of estimated value 

in China is statistically less than 0.5%, as shown in Figure 3. Despite its dependency on the ship 

size category and cargo type, this study confirmed the practicability of BP-NN to estimate the 

trade volume of iron ore bulk carriers. 
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Figure 3. The AIS-based estimated iron ore payload by Zhou and Hu [18]:China’s Monthly Iron Ore 

Imports in 2018 (%). 
 

In addition, Kanamoto et al. [19] discussed the applicability of the AIS data of dry bulk 

carriers to forecast future cargo movement. This study estimated the dry bulk cargo movement, 

such as iron ore, coal, grain, fertilizers, and iron and steel products. The available database of 

AIS data is used to forecast the future cargo movement for each cargo type by using the logit 

model. This study clarified the relationship between significant routes with large cargo movement, 

ship sizes, and sailing distances for the observed cargo type. The proposed model forecasted the 

cargo movement of iron ore and coal in 2030. The findings pointed out the growth of imports 

towards developing countries, generating the demand for the smaller size of the dry bulk carrier. 

The results of estimated cargo movement allow future studies to analyze the ships’ allocation and 

charter contracts. 

 

2.1.2. Overview of Studies discussing Shipping and Newbuilding Markets 

For the case of shipping and newbuilding markets, Prochazka et al. [20] analyzed the 

effectiveness of AIS data to comprehend the characteristics of the crude oil tanker spot-market 

charterer. This study provided the spatial pattern of contracting to represent the actual fixtures, 

which were determined by several factors: shipping market conditions, seasonality, charterers’ 

condition, and ships’ age and flag. The effectiveness of the carbon pricing policy has been 

reported to reduce GHG emissions. The experimental condition indicated that charterers own the 

main role of allocating ships based on their geographical position, allowing lower sailing speed. 

This study put forward future tasks considering a ship allocation reflected by the market 
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conditions. This scheme is described to dynamically reallocate ship allocation depending on the 

available ship capacity, dwelling time, and current position in the existing and future conditions. 

Using statistical data, Sharma and Sha [21] formulated the forecasting model to predict 

the newbuilding index. The proposed model was composed of the integration of neural networks 

(NN), weighted fuzzy logic (WF), and genetic algorithms (GA). The economic conditions in five 

years span are predicted by using NN. Next, the output of NN, together with other statistical data, 

was inputted to WF and GA. This study presented discrete case studies: global container 

throughput, newbuilding index, and newbuilding market share. The findings allow shipbuilders 

and industrial partners to comprehend the current and forecasted shipbuilding market. 

Similarly, Wada et al. [22-24] suggested a system dynamics model forecast the 

shipbuilding market demand and long-term GHG emissions reduction measures. Several 

simulations were conducted using the proposed demand-forecasting model, including the ship 

price prediction model, to prove the constructed system. Focusing on the supply and demand in 

the shipbuilding market, this study discussed the scenarios of shipbuilding capacity adjustment. 

Finally, Lee and Jung [25] built a platform to collect big data in the shipbuilding market 

and forecast the ship order quantity of container ships and bulk carriers. This study proposed an 

autoregressive model and carried out distinctive analyses of the ship demand estimation model, 

analysis of ship satellite navigation information, customer profiling, and unstructured data 

analysis. The further application of the proposed model is to simulate case studies considering 

the business plans of shipbuilders. 

The abovementioned studies have discussed a macro-level forecasting model for 

fluctuations in the shipping and shipbuilding markets. However, they have not examined the 

operation-level demand forecasting to understand competitive ship specifications following 

market changes. 

 

2.1.3. Overview of Studies discussing Optimization Studies in Ship Deployment and Contracts 

Several studies proposed an optimization method for ship deployment and contracts. 

Zhang et al. [32] analyzed the cold chain shipping mode selection, ship selection, and ship 

deployment between containerized and bulk reefers. Each ship is deployed considering the 

economic and environmental objectives of adopting the value-based management. In this context, 

the proposed decision framework allows optimization of ships’ sailing speed following its 

contract scheme and cargo value depreciation of perishable goods. The two decision models have 
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been executed in this scheme: the sensitivity scenario analyses. This study evaluated GHG 

emitted from the cold chain shipping. When the goods are less perishable, the results indicated 

that the average sailing speed tends to decrease along with an increase in bunker prices. This 

indicates that the importance of sailing speed differs depending on the cargo type.  

Similarly, Venturini et al. [33] discussed the berthing times and positioning optimization 

in container terminals. A novel mathematical formulation is introduced to integrate the berth 

allocation problem and sailing speed optimization. It investigates the trade-off between fuel 

consumption reductions and dwelling time extension. Up to 40% potential GHG emissions 

reduction is reported compared with when the ship sails at its design speed. These studies reported 

the correlation between the ship’s sailing speed and GHG emissions. 

Arslan and Papageorgiou [34] adopted multi-stage stochastic programming to deal with 

the bulk carrier renewal problem, focusing on ship-sizing and deployment. It was reported to 

provide a total cost reduction. Lin and Liu [35] developed a genetic algorithm to solve the tramp 

shipping routing problem of the Handymax dry bulk carrier. The combined mathematical model 

was proposed to overcome ship allocation and cargo movement problems. These studies 

formulated a novel method to optimize the operation-level ship allocation. However, a particular 

case study of an actual ship allocation was not considered. 

Yang et al. [36] discussed the diverse applications of AIS data, including the ship 

performance evaluation. Dynamic route planning in the Baltic Sea Region to reduce ship owners’ 

COST and GHG emissions were examined [37]. The reported benefit can surpass the cost in the 

proposed cost-benefit analysis by reducing sailed distances and GHG emissions. It proved the 

applicability of AIS data to evaluating ship allocation in a specific region. Dynamic optimization 

was specified as a future research opportunity to optimize ship allocation considering various 

routes and external factors. 

Bai et al. [38] examined the potency of financial hedging and operational risk 

management strategies to overcome significant earning risks in the tramp shipping scheme. 

Ordinary least square regression and the Bayesian belief network were proposed to account for 

the data of 31 tramp shipping companies, such as ship age, sailing distances, and AIS data. 

Operational risk management strategies were reported to effectively mitigate bunker price and 

freight rate fluctuation risks. It confirmed that ship allocation optimization is attainable by 

utilizing big data in maritime logistics. 
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2.2. Originalities in This Study 

According to our literature review, no study has been carried out on demand forecasting 

at the particular operational level to recognize the benefit of new ship specifications in the future. 

Therefore, Arifin et al. [30] proposed a basic ship-planning support system by integrating big 

data in maritime logistics (see Table 1). We have explored the possibility of simulating operation-

level ship allocation and successfully built a ship allocation algorithm as the core of our system. 

Table 2 shows the resemblance between Arifin et al. [30] and this study.  

 

Table 2. Resemblance between Arifin et al. [30] and this study. 

Author 
Target 

Ship 1 

Cargo 

Types 2 
Route 3 

Operation 

Period 

Ship Allocation Consideration 

COST 4 GHG 5 

Arifin 

et al. [30] 
Iron Ir 

Australia, Brazil– 

Japan, Korea 

2014 

[39] 
Fuel na 

This 

Study 

Cape; 

Pana 

Ir; Co; 

Gr; Ot 
Worldwide 

2018 

[39,40] 

Fuel; Ops; 

Dep; Stoc 
ME; AE 

1 Iron: iron ore bulk carrier; Cape: Capesize dry bulk carriers with deadweight tonnage more than 100,000; 

Pana: Panamax–MiniCape dry bulk carriers with deadweight tonnage 65,000–140,000. 
2 Ir: iron ore; Co: coal; Gr: grain; Ot: others. 
3 Korea: South Korea. 
4 Ships’ costs of Fuel: fuel; Ops: operation; Dep: depreciation; Stoc: stockpile. 
5 COST: ship’s cost; GHG: ship’s GHG emissions; na: not available; na: not available–no consideration 

of GHG; ships’ GHG emitted from of ME: main engine; AE: auxiliary machineries. 
 

Arifin et al. [30] have concentrated on iron ore bulk carriers operating on limited routes. 

Further, this study explores wider target ships, including Capesize and Panamax–MiniCape dry 

bulk carriers. We expand our model to comprise the worldwide routes of iron ore, coal, grain, 

and others. In our system, the ship allocation algorithm is constructed independently, covering 

the attributes of COST and GHG emissions. In this context, COST consists of the costs of fuel, 

operation, depreciation, and stockpile. In addition, GHG emissions comprise the GHG emitted 

by ships’ main engine and auxiliary machinery.  
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The following improvements have been suggested by the Arifin et al. [30]: 

 Target route and cargo type: Prior simulations [30] were executed on limited target routes 

and cargo types, such as Australia, Brazil, Japan, and South Korea routes of iron ore. In 

contrast, this study has broadened the scope of simulations to accommodate iron ore, coal, 

grain, and other cargo type routes worldwide. 

 Ship allocation algorithm: The key performance index (KPI) in the prior ship allocation 

algorithm [30] considered only the fuel cost as the COST variable. Therefore, the 

previously generated ship allocation simulation directly reflected the estimated fuel cost, 

which was a fraction of the actual COST. This study has proposed more realistic COST 

attributes [1], such as the costs of fuel, operation, depreciation, and stockpiling. 
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3. BASIC CONCEPT 

 

3.1. Big Data in Maritime Logistics used in This Study 

 

3.1.1. Description of Ship Movement Data 

This dataset presents dynamic data of the ship movement and its attributes. In this study, 

the port calling data of ships were obtained from the Market Intelligence Network (MINT) 

database of IHS Markit Ltd. [39] and the AXSDry database of AXSMarine [40]. These databases 

are defined as the ship movement data, which provide the historical ship position in a port-level 

manner for various ship types. Moreover, the quality of the database of port calling data has been 

discussed by Wada et al. [41]. This study evaluated the data acquisition between the port calling 

data of the MINT database [39] and the operation reports of the ship’s operator. The findings of 

this study confirm that 95% of the ship operation reports from 2015 to 2018 are covered in the 

ship movement data. 

We then extracted the ship movement data of the Capesize and Panamax–MiniCape dry 

bulk carriers, which are dry bulk carriers with a deadweight tonnage (DWT) of more than 100,000 

and 65,000–140,000, respectively [39,40]. The time range of Capesize dry bulk carriers (DWT 

more than 100,000) port calling data extracted from the MINT database [39] was from January 

2015 to May 2019. Table 3 provides the content enclosed in this data, such as the ship 

specification, route information, and operation conditions. The ship specification in this data 

includes the variables of administration and principal particulars, such as ships’ IMO number, 

name, type, group owner, registered owner, manager, operator, and DWT. The route information 

in this data poses the voyage information in both loading and unloading, namely voyage calling 

type, country of origin and destination, zone of origin and destination, port of origin and 

destination, terminal of origin and destination, and indicated destination. Lastly, the operation 

conditions in this data hold date and draught data, including dates of arrival and departure, 

estimated time arrival, and draughts of arrival and departure. Furthermore, we aggregated the 

data into voyage records. Initially, the ship movement data contained 328,670 entries, including 

calling types of anchorage, port, and terminal.  
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They were defined as the set of a ship origin port’s departure data and destination port’s 

arrival date. Hence, any operation between these entries was considered an outlier by referring to 

Arifin et al. [30]. Later, the entry numbers were reduced to 36,849 entries of laden and ballast. 

 

Table 3. Features of MINT database [39]. 

Features 1 Variables Attributes 

Ship IMO Number Administration 

Ship Specification 

Ship Name Administration 

Ship Type Administration 

Ship Group Owner Administration 

Ship Registered Owner Administration 

Ship Manager Administration 

Ship Operator Administration 

Ship DWT Principal Particulars 

Voyage Calling Type Voyage Information 

Route Information 

Origin Country Loading Information 

Origin Zone Loading Information 

Origin Port Loading Information 

Origin Terminal Loading Information 

Indicated Destination Loading Information 

Destination Country Discharge Information 

Destination Zone Discharge Information 

Destination Port Discharge Information 

Destination Terminal Discharge Information 

Voyage Departure Date Date and Time 

Operation Conditions 

Voyage Arrival Date Date and Time 

Voyage ETA Date and Time 

Arrival Draught Draught Rate 

Departure Draught Draught Rate 
1 IMO Number: International Maritime Organization number; DWT: deadweight tonnage; ETA: estimated 

time arrival. 
 

  



Figures title: 

15 

In the case of Panamax–MiniCape dry bulk carriers (DWT 65,000–140,000), the port 

calling data extracted from the AXSDry database [40] ranged from August 2017 to September 

2018. This dataset contained 31,527 entries (January 2013 to December 2020: 1,812,635 entries) 

of cargo throughput in laden and ballast operations. Table 4 provides the content in the AXSDry 

database [40], such as the ship specification, route information, operation conditions, and cargo 

information. These attributes are similar to the previously discussed MINT database [39], except 

for the cargo information. The ship specification in this data includes the variables of 

administration, principal particulars, and performances, namely ships’ name, type, DWT, design 

speed, and maximum draught. 

The route information in this data poses the voyage information in loading and unloading, 

such as the zone of loading and discharge, country of loading and discharge, port of loading and 

discharge, and berth of loading and discharge. The operation conditions in this data include dates 

of loading and discharge, the draught of loading and discharge, average speed of laden and ballast 

voyages, voyage duration of laden and ballast, and duration of loading and discharge. Lastly, 

cargo information holds commodity name and group, charter, and voyage intake (cargo 

movement). 
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Table 4. Features of AXSDry database [40]. 

AXS Features Variables Attributes 

Ship Name Administration 

Ship Specification 

Ship Type Administration 

Ship DWT Principal Particulars 

Ship Design Speed Performances 

Ship Max Draught Performances 

Loading Zone Loading Information 

Route Information 

Loading Country Loading Information 

Loading Port Loading Information 

Loading Berth Loading Information 

Discharge Zone Discharge Information 

Discharge Country Discharge Information 

Discharge Port Discharge Information 

Discharge Berth Discharge Information 

Commodity Name Cargo Type 

Cargo Information Commodity Group Cargo Type 

Voyage Intake Cargo Movement 

Voyage Loading Date Date and Time 

Operation Conditions 

Voyage Discharge Date Date and Time 

Loading Draught Laden Draught Rate 

Laden Voyage Avg Speed Laden Avg. Sailing Speed 

Laden Voyage Duration Laden Sailing Days 

Loading Duration Laden Port Staying Time 

Discharge Draught Ballast Draught Rate 

Ballast Voyage Avg Speed Ballast Avg Sailing Speed 

Ballast Voyage Duration Ballast Sailing Days 

Discharge Duration Ballast Port Staying Time 
1 DWT: deadweight tonnage. 
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3.1.2. Description of Ship Data 

This dataset presents static data of the ships’ specifications. The ship data from the Sea-

web Ships database of IHS Markit Ltd. were used in this study [42]. We downloaded the ship 

data of dry bulk carriers with DWT ranging from 10,000 to 400,000 [31], for ships built or 

expected to be delivered from 1942 to 2023. This dataset contained 11,744 entries, including the 

technical and non-technical attributes, as shown in Table 5.  

 

Table 5. Features of Sea-web Ships database [42]. 

Ships’ Attributes Variables 1 

Administration 
IMO Number; Callsign; Flag; Class; 

Shipbuilder; Registered Owner; Ship Manager; Operator. 

Principal Particular 
DWT; GT; Displacement (t); 

Length (m); Breadth (m); Draught (m); Depth (m). 

Performance Built Year; Main Engine Power (kW); Design Speed (kn) 
1 IMO Number: International Maritime Organization number; DWT: deadweight tonnage; GT: gross 

tonnage. 
 

Several attributes of each ship are included in this data, such as ships’ administration, 

principal particular, and performance. The administration attributes enclosed ships’ IMO number, 

callsign, flag, class, shipbuilder, registered owner, ship manager, and operator. The principal 

particular attributes hold ships’ DWT, gross tonnage (GT), displacement, length, breadth, draught, 

and depth. Finally, the performance attributes include ships’ built year, main engine power, and 

design speed. 

 

3.1.3. Description of Port Data 

This dataset presents static data of the port and its specifications. The port data from the 

Sea-web Ports of IHS Markit Ltd. and the IHS Fairplay Ports and Terminals Guide were used in 

this study [43,44]. We downloaded the worldwide port data containing 5918 entries, including 

2098 ports. Table 6 presents the attributes of each port comprised in this data, such as ports’ 

administration, facility information, location information, and ship size limitation. 
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Table 6. Features of Sea-web Port and Ports and Terminal Guide databases [43,44]. 

Ports’ Attributes Variables 1 

Administration 
Port Name, World Port Number; UNLOCODE,  

ISPS Compliant, Time Zone (GMT). 

Facility Information 
Facilities of Break Bulk; Container; Dry Bulk; Dry Dock; Liquid; 

LNG, LPG; Multipurpose; Passenger; RoRo. 

Location Information 
Country; Coordinates of Latitude and Longitude;  

Decimals of Latitude and Longitude. 

Ship Size Limitation Max. DWT; Max. Length (m); Max. Breadth (m); Max. Draught (m). 
1 UNLOCODE: United Nations Code for Trade and Transport Locations; ISPS: International Ship and 

Port Facility Security Code; GHT: Greenwich Mean Time; LNG: liquefied natural gas; LPG: liquefied 

petroleum gas; RoRo: roll-on roll-off; DWT: deadweight tonnnage. 
 

The administration attributes enclose ports’ name, world port number, United Nations 

Code for Trade and Transport Locations (UNLOCODE), International Ship and Port Facility 

Security Code (ISPS) compliant, and time zone. The facility information attributes contained 

ports’ facilities of break bulk, container, dry bulk, and other cargo types. The location information 

attributes included ports’ country, coordinates of latitude and longitude, and decimals of latitude 

and longitude. Finally, the size limitation attributes hold ships’ DWT, length, breadth, and 

draught. 

 

3.1.4. Description of Route Data 

This dataset presents static data on the routes and their sailing distances. The distance 

table of the IHS Fairplay Ports and Terminals Guide was used in this study [44]. Table 7 presents 

the features of this data. Three attributes are attached to each route: port of origin, destination, 

and distances. The port of origin and destination attributes enclosed ports’ name, country, 

coordinates of latitude and longitude, and decimals of latitude and longitude.  

Moreover, the distances hold the shortest direct distances and distances via Panama Canal. 

In this context, we consider the shortest direct distances since it sets out the distance of sailing 

directly and via a canal. This distance is presumed to be able to be served by the largest dry bulk 

carriers possible [45]. We extracted the worldwide sailing distances served by dry bulk carriers 

containing 53,592 entries. 
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Table 7. Features of distance table [44]. 

Routes’ Attributes Variables 

Port of Origin  

and Destination 

Port Name; Country; Coordinates of Latitude and Longitude;  

Decimals of Latitude and Longitude. 

Distances Shortest Direct Distances (nm); Distances via Panama Canal (nm). 

 

3.2. Configuration of Ship Basic-Planning Support System 

Arifin et al. [30] proposed a maritime logistics database (MLDB) and ship allocation 

model in the previous study. These were assembled in the previously built basic ship-planning 

support system, as shown in Figure 4. In this context, MLDB integrates the available big data in 

maritime logistics, such as ship movement data, ship data, port data, and route data. The MLDB 

was defined as a relational database; for example, the operation conditions can be clarified by 

integrating the ship movement data and ship data. 

 

 
Figure 4. System configuration of Arifin et al. [30]. 
 

Moreover, the following error cleaning methods were performed to ensure the reliability 

and quality of the data used to construct the MLDB: 

 Keeping the first recorded instance in the ship movement data based on its arrival date 

and time and considering its duplicated instances as an outlier.  

 An instance with an average sailing speed more than its design speed, calculated by 

considering the sailing days and sailing distance between origin and destination ports, is 

treated as an outlier. 

Maritime Logistics Big Data

Route DataPort DataShip DataShip Movement Data

Ship Allocation Model

Shipper Model

Request for transportation

Shipowner Model

Estimation results

Operator Model

Simulation of ship allocation

Maritime Logistics Database (MLDB)

Integration of Maritime Logistics Big Data
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 An instance with unavailable data, such as the missing voyage data and draught data, is 

considered an outlier 

Moreover, the abovementioned data are inputted into the ship allocation model. Three 

distinct models were developed in the ship allocation model by Arifin et al. [30], as follows: 

 Shipper model: This model issues a request for transporting a certain cargo amount 

between origin and destination ports. This model is defined using cluster analysis. •  

 Shipowner model: This model represents each ship and its operation conditions. This 

model estimates the draught rate (%), average sailing speed (kn), and port staying time 

(d) by using the deep learning (DL) model. These variables were later used to calculate 

the voyage attributes; transported cargo movement (t), sailing days (d), and fuel cost 

(USD).  

 Operator model: This model includes the voyage attributes calculation and allocates ships 

to transport the cargo movement demand. 

Furthermore, three discrete models and a ship allocation algorithm were assembled in our 

basic ship-planning support system, as shown in Figure 5. We modeled a global network model, 

cargo movement model, and ship model using the available big data in maritime logistics. The 

global network model defines the ports worldwide and their attributes in its sailing network. The 

cargo movement model covers an estimation of cargo movement between ports. The ship model 

includes each ship and its specifications and predicts the ships’ operation conditions.  

 

 
Figure 5. System configuration of this study. 
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The ship allocation algorithm reconstructs the ship allocation, which is the core of our 

basic ship-planning support system. An input of the cargo movement demand, route list, and 

existing ship list are needed to observe the changes in ship allocation by adding future scenarios, 

such as presenting the new ships in the ship list. We can also identify new ships that are replacing 

existing ships from their results, making it possible to assess competitive ships in demand. 

The resemblance between Arifin et al. [30] and this study is shown in Table 2. Arifin et 

al. [30] have concentrated on iron ore bulk carriers operating in the Australia, Brazil, Japan, and 

South Korea routes of iron ore. Meanwhile, the developed ship allocation model considers only 

fuel cost to allocate a ship to serve a certain route. Further, this study explores wider target ships, 

including Capesize and Panamax–MiniCape dry bulk carriers. In this study, we expanded our 

previously constructed model to comprise the worldwide routes of iron ore, coal, grain, and others. 

In our system, the ship allocation algorithm is constructed independently, covering the attributes 

of COST and GHG emissions. In this context, COST attributes consist of fuel, operation, 

depreciation, and stockpile costs. In addition, GHG emissions comprise the GHG emitted by 

ships’ main engine and auxiliary machinery. 

 

3.2.1. Description of Global Network Model 

This model was called the shipper model in Arifin et al. [30] containing the ports’ 

specifications, sailing routes, and sailing distances. Formerly, this model specified limited target 

routes and cargo types, namely Australia, Brazil, Japan, and South Korea routes of iron ore. Prior 

study fails to acknowledge the potential of available maritime logistics big data to expand the 

scope of this model.  

Therefore, we extended its scope to include a worldwide sailing network served by 

Capesize and Panamax–MiniCape dry bulk carriers accommodating iron ore, coal, grain, and 

other cargo types worldwide. Additionally, we characterized these ports into main ports and port 

clusters. For case studies conducted in this study, this model was composed of the available ship 

movement data [39,40]. Thus, this model contained 593 ports (52 main ports and 79 port clusters) 

of Capesize dry bulk carriers and 1234 ports (147 main ports and 85 port clusters) of Panamax–

MiniCape dry bulk carriers. This model also contains the sailing distances considering the 2018 

ship movement data. Hence, this model comprised 1085 sailing routes of Capesize dry bulk 

carriers and 3338 sailing routes of Panamax–MiniCape dry bulk carriers [44]. 
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3.2.2. Description of Cargo Movement Model 

This model was not defined independently and constructed in the prior study [30], 

consisting of the cargo movement and type between the ports. Previously, this model described 

the cargo movement towards the limited scope of transported iron ore in the Australia, Brazil, 

Japan, and South Korea routes. However, the previous study cannot cover the global cargo 

movement trend using the available maritime logistics big data.  

On a worldwide scale, we used the arrival draught in the MINT ship movement data [39] 

of Capesize dry bulk carrier in 2018 to estimate the cargo amount. Moreover, for the case studies 

of Panamax–MiniCape dry bulk carriers, we adopted the documented cargo throughput in the 

AXSDry ship movement data [40]. This was recorded in the discrete date and time, allowing us 

to form OD tables containing monthly and annual cargo movement. Later, this model results in 

cargo movement towards various routes arranged in origin-destination (OD) tables and is used as 

the cargo amount to be transported in the ship allocation algorithm. 

 

3.2.3. Description of Ship Model 

This model was called the shipowner model in Arifin et al. [30], containing the ships’ 

specifications and operation conditions. Formerly, this model characterized ships that operated 

in limited target routes, particularly Australia, Brazil, Japan, and South Korea routes of iron ore. 

This scope resulted in an inadequate perspective to perceive the ships’ characteristics worldwide 

using the accessible maritime logistics big data.  

This model depicts the ships’ specifications in this study, covering the technical and non-

technical variables, such as the principal dimensions and ownership information. In this study, 

this model was created specifically for ships instance that occurred in 2018 ship movement data. 

Thus, this model contained 1647 ships of Capesize dry bulk carriers and 2479 ships of Panamax–

MiniCape dry bulk carriers. In addition, this model generates the operation conditions, which 

include draught rate, average sailing speed, and port staying time when a ship is allotted to a 

particular route. This model also predicts the operation conditions for each ship’s laden and 

ballast voyages, namely draught rate (%), average sailing speed (kn), and port staying time (d), 

which were later inputted into the GHG and COST calculations.  
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For the case of Capesize dry bulk carrier, operation conditions were defined using the DL 

model, taking into account the MINT ship movement data [39]. On the other hand, we adopted 

the route-base average (R-AVG) to specify the operation conditions of Panamax–MiniCape dry 

bulk carriers since the ship’s operation conditions were explicitly stated in the AXS ship 

movement data [40]. 

 

3.2.4. Description of Ship Allocation Algorithm 

This model was labeled the ship allocation model in Arifin et al. [30], consisting of the 

KPI in each set of ships and route. Previously, this model calculated KPI considering each ship’s 

fuel cost when allocated to a certain route. These ships were later offered for Australia, Brazil, 

Japan, and South Korea routes of iron ore. In this context, this scheme will simulate the selection 

of ships to carry certain cargo amounts and routes. However, the previously proposed mechanism 

fails to give sufficient consideration to ship allocation, such as other COST variables and the 

emitted GHG caused by the allocated ships’ operation. 

Accordingly, this model computes the GHG emissions [28,29] and COST [1,29,46,47] 

when a ship is designated to a specific route. Then, this model allocates a ship onto a route with 

the highest merit to transport a certain cargo amount in a time- and voyage-charter contract 

manner by adopting a greedy algorithm that considers the COST- and GHG-optimized ship 

allocation. Thus, this model optimizes the ship allocation and the global COST and GHG 

emissions, which are visualized regionally to understand the changes in the new ship allocation. 
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4. MODEL DEVELOPMENT 

 

4.1. Overview of Model Development 

Following what has already been discussed, we developed several models: the global 

network model, cargo movement model, and ship model. The global network model characterizes 

each port and route served by the target ships. The Cargo movement model describes the 

worldwide port-to-port cargo movement demand (CARGO) served by the target ships. The ship 

model represents individual target ships’ data and operation conditions. Further, the results of 

these models are used as input to the calculations of GHG emissions [28,29] and COST 

[1,29,46,47]. The total GHG emissions consist of the GHG emitted from ships’ main engine, 

auxiliary engine, and boiler, whereas the total COST contains the costs of ships’ fuel, operation, 

depreciation, and stockpile. 

Further to the calculated attributes of ships toward certain routes, we proposed three 

discrete algorithms as the ship allocation algorithm following a specific scheme: existing ships 

replacement by using new ships without changing their allocation, ship allocation optimization 

in a time-charter contract manner, and ship allocation optimization in a voyage-charter contract 

manner. Algorithm 1 proposes an optimization by offering a direct clone of the existing ship, a 

new ship with the exact specifications and operation conditions that serve the same annual 

allocations. Algorithm 2 reconstructs the ship allocation to transport the cargo movement demand 

using the offered ships in a time-charter contract manner. Algorithm 3 reconstructs the ship 

allocation to transport the cargo movement demand using the offered ships in a voyage-charter 

contract manner. Hence, using the defined algorithm, the following were the objectives of the 

conducted simulations:  

 Target ship: Capesize dry bulk carrier (DWT 100,000 or more, 1647 ships);                       

Panamax–MiniCape dry bulk carriers (DWT 65,000-140,000, 2479 ships); 

 Cargo types: Iron ore, coal, grain, and others; 

 Route: Worldwide (sailing routes served by target ship); 

 Operation period: 2018; 

Finally, we summarized the results of the average DWT, sailing speed, and ship age graphically 

in a great circle format [53-55].  
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4.2. Development of Global Network Model 

4.2.1. Overview of Global Network Model 

This model defines each port and route served by the Capesize and Panamax–MiniCape 

dry bulk carriers.  We extracted a list of ports visited by such carriers from the ship movement 

data worldwide. In addition, we provided an overview of this model in Table 8.  

 

Table 8. Overview of the global network model. 

Target Ship 1 Capesize Panamax–MiniCape 

Ship Movement Data MINT [39] AXSDry [40] 

Operation Period 2013–2019 2013–2020 

Cargo Types 2 Ir, Co Ir, Co, Gr, Ot 

Port Numbers 593 1234 

Main Port Numbers 52 147 

Other Port Numbers 541 1087 

Port Cluster Numbers 79 85 

2018 Route Numbers 1085 3338 
1 Capesize: dry bulk carriers with deadweight tonnage more than 100,000; Panamax–MiniCape: dry bulk 

carriers with deadweight tonnage 65,000–140,000. 
2 Ir: iron ore; Co: coal; Gr: grain; Ot: others. 
 

4.2.2. Methodology to define Global Network Model 

The various ports that occurred in the operation period were divided into main ports and 

port clusters. Main ports represented each port with significant port calling numbers, whereas 

port clusters included all the other ports served by the Capesize and Panamax–MiniCape dry bulk 

carriers. Capesize’s port and route network contain 52 main ports and 541 other ports as 79 port 

clusters, as shown in Figure 6. Moreover, the Panamax–MiniCape’s port and route network 

contains 147 main ports and 1087 other ports as 85 port clusters, as shown in Figure 7. 
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Figure 6. Worldwide ports of the global network model of Capesize dry bulk carrier. 
 

  

Main Port : 52 ports   Other port: 541 ports



28 

 
 

 
Figure 7. Worldwide ports of the global network model of Panamax–MiniCape dry bulk carrier.. 
 

4.2.3. Results of Global Network Model 

The main port and other port numbers consisted in the global network model of Capesize 

dry bulk carrier are presented in Table 9. The main ports are mainly located in China (21 ports), 

Japan (7 ports), Australia (6 ports), and Brazil (4 ports) and accounted for 77.2% of the iron ore 

and coal trade in 2018, as seen from the worldwide port calling numbers of the Capesize dry bulk 

carriers in MINT ship movement data [39]. 

  

Main Port : 147 ports   Other port: 1087 ports
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Table 9. Country list of the global network model of Capesize dry bulk carrier. 

Country Main Port Numbers Other Port Numbers 

China 21 63 

Japan 7 46 

Australia 6 12 

Brazil 4 11 

South Korea 3 14 

Colombia 2 6 

Netherlands 2 9 

South Africa 2 4 

Canada 1 14 

Chinese Taipei 1 5 

Egypt 1 7 

India 1 21 

Singapore 1 0 

Others 0 329 
 

In Table 10, the main port and other port numbers in the global network model of 

Panamax–MiniCape dry bulk carrier. The main ports are mainly located in China (28 ports), 

Australia (14 ports), Brazil (11 ports), Indonesia (11 ports), India (10 ports), Japan (9 ports), 

United States of America (7 ports), and South Korea (7 ports) and accounted for 71.3% of the 

iron ore and coal trade in 2018, as seen from the worldwide port calling numbers of the Panamax–

MiniCape dry bulk carriers in AXSDry ship movement data [40]. Similar to Capesize’s port 

calling numbers, these rates indicate that most port calling numbers were served in these countries. 

This tendency matches the worldwide top exporters and importers ranking of iron ore and coal in 

2018 [31], as shown in Table 11. 
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Table 10. Country list of the global network model of Panamax–MiniCape dry bulk carrier. 

Country 1 Main Port Numbers Other Port Numbers 

China 28 93 

Australia 14 28 

Brazil 11 24 

Indonesia 11 76 

India 10 36 

Japan 9 80 

South Korea 7 12 

USA 7 95 

Russia 5 16 

Canada 4 36 

Malaysia 4 17 

Netherlands 3 6 

Taiwan 3 8 

Colombia 3 4 

South Africa 2 6 

UAE 2 13 

Argentina 2 14 

Saudi Arabia 2 8 

Others 20 515 
1 USA: United States of America; UAE: United Arab Emirates. 
 

Table 11. Top exporters and importers of iron ore and coal in 2018 [31]. 

Iron Ore Exporters Iron Ore Importers Coal Exporters Coal Importers 

Country 

Name 1 

Market 

Share (%) 

Country 

Name 1 

Market 

Share (%) 

Country 

Name 1 

Market 

Share (%) 

Country 

Name 1 

Market 

Share (%) 

Australia 57 China 71 Indonesia 33 China 19 

Brazil 26 Japan 8 Australia 30 India 18 

Africa 4 Europe 7 Russia 11 Japan 15 

Canada 3 Korea 5 USA 8 Korea 11 

Others 10 Other 9 Others 18 Others 37 
1 Africa: South Africa; Korea: South Korea; USA: United States of America. 
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This model also contains each port limitation and the sailing distance between the ports. 

The port limitations are set by port data and the largest possible ship visiting a port. Following 

the sailing routes included in the 2018 ship movement data [39,40], the sailing distances were 

extracted from the IHS Fairplay Ports and Terminals Guide [44]. Finally, this model comprised 

1085 sailing routes of Capesize dry bulk carriers and 3338 sailing routes of Panamax–MiniCape 

dry bulk carriers. 

 

4.3. Development of Cargo Movement Model 

4.3.1. Overview of Cargo Movement Model 

This model defines the worldwide port-to-port CARGO served by the Capesize and 

Panamax–MiniCape dry bulk carriers. This study defined the CARGO between ports based on 

the estimated cargo movement for the case of Capesize dry bulk carrier (DWT more than 

100,000) and the reported voyage intake for Panamax–MiniCape (DWT 65,000–140,000). 

Additionally, we provided an overview of this model in Table 12. 

 

Table 12. Overview of the cargo movement model. 

Target Ship 1 Capesize Panamax–MiniCape 

Ship Movement Data MINT [39] AXSDry [40] 

Operation Period 2018 2018 

Cargo Types 2 Ir, Co Ir, Co, Gr, Ot 

2018 Route Numbers 1085 3338 

Cargo Movement Estimation Equations (1) and (2) Equations (3) and (4) 

Origin-Destination Tables Annual Annual and Monthly 

2018 Cargo Movement (MT) 1652 1168 
1 Capesize: dry bulk carriers with deadweight tonnage more than 100,000; Panamax–MiniCape: dry bulk 

carriers with deadweight tonnage 65,000–140,000. 
2 Ir: iron ore; Co: coal; Gr: grain; Ot: others. 
 

4.3.2. Methodology to define Cargo Movement Model 

For the case of Capesize dry bulk carrier, CARGO was estimated by considering the ship’s 

DWT and draught when it arrived at the destination port, which was included in the 2018 MINT 

ship movement data [30]. The set of available Capesize dry bulk carriers and its iron ore and coal 

routes are represented as 𝐼 and 𝐽, respectively. 
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The cargo movement (𝐶𝑀𝑖𝑗) per trip for each ship 𝑖 serving the route 𝑗 (t), and the annual 

cargo movement (𝐶𝐴𝑗) of the route 𝑗 (t/y), are calculated as follows: 

  

 
𝑪𝑴𝒊𝒋 = 𝑫𝑾𝑻𝒊 ×

(
𝒅′

𝒊𝒋

𝑫𝒊
⁄ )

(𝟏 − 𝟎. 𝟐)
    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, 

(1) 

 

 𝑪𝑨𝒋 = ∑(𝑪𝑴𝒊𝒋)

𝒊

    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (2) 

 

where 𝐷𝑊𝑇𝑖  is the ship 𝑖  DWT, 𝑑′
𝑖𝑗  is the ship 𝑖  arrival draught (m), and 𝐷𝑖  is the ship 𝑖 

maximum draught (m), 𝑖 is an individual ship (1647 Capesize dry bulk carriers operating in 2018), 

and 𝑗 is an individual route (1085 routes of iron ore and coal in 2018). The 𝐶𝐴𝑗 for each cargo 

type was collected later in the OD tables. Hence, these tables contained the annual cargo 

movement in a port-level manner. 

This study classified the ship movement data into two voyage modes by referring to Arifin 

et al. [30]; laden and ballast. We applied Equation (1) to calculate the cargo movement (𝐶𝑀𝑖𝑗) 

carried by ship 𝑖 only for its laden voyage. Then, the transported annual cargo movement (𝐶𝐴𝑗) 

is calculated by using Equation (2). It summarized all the laden instances in the route 𝑗 towards 

the target year.  

Furthermore, this model also defines the worldwide port-to-port CARGO served by the 

Panamax–MiniCape dry bulk carriers. For the case of the mentioned ship type, CARGO between 

ports were defined based on the operational-level voyage intake (cargo movement, 𝑐𝑚𝑖𝑗𝑚) was 

reported in AXSDry database [40]. The calculation using Equation (1) to estimate the cargo 

movement demand is redundant since the cargo movement information is already stated. 

Moreover, the cargo type was previously categorized based on the arrival port of this data. 

Hence, this data records discrete cargo types on each operation, such as iron ore, coal, grain, and 

others, making it possible to group certain cargo types into specific time ranges. Thus, the OD 

tables for each cargo type could be collected monthly- and annual-basis. 
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The set of months in a year is represented as 𝑀. The cargo movement (𝑐𝑚𝑖𝑗𝑚) per trip for 

each ship 𝑖 serving the route 𝑗 in month 𝑚 (t) was collected to form the monthly cargo movement 

(𝑐𝑚𝑗𝑚) of the route 𝑗 (t/m), and annual cargo movement (𝐶𝐴𝑗) of the route 𝑗 (t/y), as follows: 

 

 𝒄𝒎𝒋𝒎 = ∑(𝒄𝒎𝒊𝒋𝒎)

𝒊

    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱,    ∀𝒎 ∈ 𝑴, (3) 

 

 𝑪𝑨𝒋 = ∑(𝒄𝒎𝒋𝒎)

𝒎

    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱,    ∀𝒎 ∈ 𝑴, (4) 

 

where 𝑐𝑚𝑖𝑗𝑚  is the cargo movement per trip for each ship 𝑖  serving the route 𝑗  (t), 𝑖  is an 

individual ship (2479 Panamax–MiniCape dry bulk carriers operating in 2018), 𝑗 is an individual 

route (3338 routes of iron ore, coal, grain, and others in 2018), and 𝑚 is an individual month in 

a year (1: January (Jan), 2: February (Feb), 3: March (Mar), 4: April (Apr), 5: May, 6: June (Jun), 

7: July (Jul), 8: August (Aug), 9: September (Sep), 10: October (Oct), 11: November (Nov), 12: 

December (Dec)).  

 

4.3.3. Results of Cargo Movement Model 

Finally, Table 13 shows a sample of the annual iron ore OD table of Capesize dry bulk 

carrier [39]. The data enclosed in this table was used as the cargo movement demand in the case 

studies intended for ship allocation in the time-charter contract. 

 

Table 13. A sample of 2018 annual iron ore origin–destination (OD) table of Capesize dry bulk carrier [39]. 

Origin Ports 1 
Destination Ports Cargo Movement (MT) 2 

Caofeidian Zhoushan Tianjin Ningbo Rizhao Yingkou 

Port Hedland 57.79 30.70 39.10 26.11 34.18 19.49 

Port Walcott 8.47 14.62 8.91 11.13 8.31 3.22 

Itaqui 12.42 12.56 2.78 4.34 2.83 3.21 

Dampier 10.77 11.35 12.65 9.56 8.04 6.95 

Tubarao na 6.06 0.35 0.83 na na 

Sepetiba 4.06 2.41 1.05 5.07 2.21 0.34 

Saldanha Bay 0.36 4.87 1.24 2.16 2.94 0.90 

Canada-B na 2.74 na 1.27 na na 

Guaiba Island 3.33 1.36 1.88 0.57 0.57 0.36 

Cape Preston 0.81 9.39 1.40 0.46 na 0.11 
1 Port cluster of Canada-B: ports of Baie-Comeau, Canso, Halifax, Port Cartier, Quebec, and Sept-Iles. 
2 na: not available–no cargo movement. 
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For the case of Panamax–MiniCape dry bulk carriers, Table 14 shows a sample of the 

annual iron ore OD table, whereas Table 15 presents a sample of the monthly iron ore OD table 

of Panamax–MiniCape dry bulk carriers [40]. The data enclosed in these OD tables were used as 

the cargo movement demand in the case studies intended for ship allocation in time- and voyage-

charter contracts, respectively. 

 

Table 14. A sample of 2018 annual iron ore OD table of Panamax–MiniCape dry bulk carrier [40]. 

Origin Ports 1 
Destination Ports Cargo Movement (MT) 2 

Ningbo Ghent Dunkirk Rotterdam Tangshan China-B 

Cape Preston 8.06 na na na 0.95 0.43 

Port Hedland 0.40 na na na 0.49 1.70 

Geraldton 0.06 na na na 2.27 0.93 

Tubarao na 0.70 0.23 0.23 na na 

Port Cartier na 1.66 2.60 na na 0.07 

Europe na 0.10 0.21 1.17 na na 

Richards Bay 0.08 na na na 0.51 0.49 

Pd. Madeira na 1.32 0.26 na na na 

Milne Inlet na 0.19 0.86 1.92 na na 

Sept-Iles na 1.02 0.58 0.32 na na 
1 Port cluster of Europe: ports of Aaheim, Bremanger Quarry, Fredericia, Klaipedia, Kokkola, Kotka, 

Liepaja, Lulea, Mo I Rana, Muuga, Tahkoluoto, and Ventspils. 
2 na: not available–no cargo movement. 
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Table 15. A sample of 2018 monthly iron ore OD table of Panamax–MiniCape dry bulk carrier [40]. 

Origin Ports 1 
Cargo Movement (x100,000 t) of Ningbo 2 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Cape Preston 7.4 5.3 6.5 6.4 4.2 8.5 6.4 8.4 7.4 6.4 9.4 4.4 

Port Hedland 0.7 1.1 na na 1.1 1.1 na na na na na na 

Geraldton na na na na na 0.6 na na na na na na 

Tubarao na na na na na na na na na na na na 

Port Cartier na na na na na na na na na na na na 

Europe na na na na na na na na na na na na 

Richards Bay na na na na na na na na na 0.8 na na 

Pd. Madeira na na na na na na na na na na na na 

Milne Inlet na na na na na na na na na na na na 

Sept-Iles na na na na na na na na na na na na 
1 Port cluster of Europe: ports of Aaheim, Bremanger Quarry, Fredericia, Klaipedia, Kokkola, Kotka, 

Liepaja, Lulea, Mo I Rana, Muuga, Tahkoluoto, and Ventspils. 
2 Jan: January (Jan); Feb: February; Mar: March; Apr: April; May: May, Jun: June; Jul: July; 

Aug: August; Sep: September; Oct: October; Nov: November; Dec: December; na: not available–

no cargo movement. 
 

4.4. Development of Ship Model 

4.4.1. Overview of Ship Model 

This model contains the individual ship data, Capesize and Panamax–MiniCape dry bulk 

carriers, and their operation condition. We extracted a list of dry bulk carriers that operated in the 

ship movement data worldwide. This model encloses each ship and its static information, such 

as principal particulars and performances. In the ship movement data, these ships were coupled 

with their operation conditions; draught rate, average sailing speed, and port staying time. Later, 

we adopted a mechanism to predict the operation conditions for each available ship and port. 

Table 16 gives an overview of this model. 
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Table 16. Overview of the ship model. 

Target Ship 1 Capesize Panamax–MiniCape 

Ship Movement Data MINT [39] AXSDry [40] 

Operation Period 2013–2019 2013–2020 

Cargo Types 2 Ir, Co Ir, Co, Gr, Ot 

2018 Route Numbers 1085 3338 

2018 Ship Numbers 1647 2479 

Operation Condition 

Prediction 
Deep Learning Route-Base Average 

1 Capesize: dry bulk carriers with deadweight tonnage more than 100,000; Panamax–MiniCape: dry bulk 

carriers with deadweight tonnage 65,000–140,000. 
2 Ir: iron ore; Co: coal; Gr: grain; Ot: others. 
 

4.4.2. Description of Ship Specifications 

This model contains each ship and its attributes. In the 2018 ship movement data [39,40], 

the Capesize and Panamax–MiniCape dry bulk carriers consisted of 1647 and 2479 ships, 

respectively. These ships are individually attached to several technical and non-technical 

variables, as shown in Table 5. Each ship is tied to several attributes, such as administration, 

principal particulars, and performance. The administration attributes include ships’ IMO number, 

callsign, flag, class, shipbuilder, registered owner, ship manager, and operator. The principal 

particular attributes identify ships’ DWT, gross tonnage (GT), displacement, length, breadth, 

draught, and depth. Finally, the performance attributes present ships’ built year, main engine 

power, and design speed. 

From the abovementioned variables, we obtained both static and dynamic variables. The 

static variable is the one that is commonly fixed toward the operation period of the ships [1]. This 

variable covers the ships’ administration, principal particulars, and performances. Further, these 

features are used to calculate the GHG emissions and COST and to assess the compatibility of 

ships’ dimensions and ports’ size limitations. 

On the contrary, the dynamic variable represented the condition at only the current 

operation period of the ships. This term is generally attached to the administration variables of 

the ships, except its IMO number and shipbuilder since these variables are attached to a ship 

towards its lifetime. The administration variables that include ownership information, such as 

flag, registered owner, ship manager, and operator, are subject to change towards the operation 

period of the ships. 
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4.4.3. Methodology to predict Operation Condition 

In addition to what has already been discussed, each ship is tied to its operation condition 

whenever a ship is assigned to a certain route. Therefore, it is necessary to know this information 

for all available routes. A ship’s operation conditions throughout a particular route are assumed 

to be its typical performance, despite of the operation terms in the practiced contract. This study 

defines the operation conditions as follows: 

 Draught rate: The ratio between the arrival draught and the ship’s design draught at the 

destination port; 

 Average sailing speed: The ship’s average sailing speed starting from its departure time 

at the origin port to its arrival time at the destination port; 

 Port staying time: The ship’s port staying time starts from its arrival time until its 

departure time at the destination port. 

For the Capesize dry bulk carrier, we constructed a DL model distinctively to predict the 

operation conditions in each voyage mode: laden and ballast. We proposed DL as the prediction 

method in this case by referring to our previous studies [30]. Figure 8 shows an overview of the 

proposed DL model. With each operation condition as the target feature, the model takes into 

account the following Capesize dry bulk carrier features as an input: 

 Ship specifications [42]: 1658 entries, which consist of DWT, length, breadth, draught, 

design speed, main engine power, and built year; 

 Port data [43]: 564 entries, which consist of port limitations of length, breadth, and 

draught; 

 Ship movement data [39,44]: 36,596 entries of worldwide operations from January 2015 

to May 2019, which consist of dates of arrival and departure, ports of origin and 

destination, and sailing distances; 

 Statistical data [48]: 49 entries, which consisting of monthly average high-sulphur fuel oil 

(HSFO) bunker prices in various bunker hubs. 
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Figure 8. Deep learning (DL) model to predict operation conditions. 
 

The same architecture is used to predict the abovementioned operation conditions. Its 

input features are represented as binary vectors by using the one-hot encoding. These are 

normalized using Min-Max scaling before the training process.  

The proposed DL model is comprised of three hidden layers of 128 nodes equipped with 

Rectified Linear Unit activation functions. We applied the optimizer of the Root Mean Square 

prop and the loss function of mean absolute error loss. Finally, we applied the holdout method to 

train our model, in which 70% was for the training data, 20% for the validation data, and 10% 

for the test data.  

The same applies to Panamax–MiniCape dry bulk carriers; we estimated the operation 

conditions for the laden and ballast voyage mode. We predicted the operation conditions of this 

dry bulk carrier size category by adopting the R-AVG since the transported cargo types at the 

operational level are distinctively reported in AXSDry ship movement data [40]. A sample of the 

recorded operation conditions in this data is shown in Table 17 and Table 18. 
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Table 17. A sample of recorded operation conditions in AXSDry data [40]: laden voyage. 

Ship 

Name 
1 

Voyage 

Loading 

Port 

Voyage 

Discharge 

Port 

Voyage 

Loading 

Date 

Voyage 

Discharge 

Date 

Laden Voyage 2 

DR SS SD PS 

Ship 

A 

Port Hedland Rizhao 2017-12-15 2018-01-07 100% 10.4  27.5  1.3  

Port Hedland Tianjin 2018-01-30 2018-02-16 100% 9.9  21.2  1.1  

Port Hedland Taicang 2018-03-05 2018-04-08 100% 10.8  35.4  1.4  

Port Hedland Lianyungang 2018-04-26 2018-05-12 100% 10.7  20.0  1.5  

Port Hedland Zhenjiang 2018-07-10 2018-08-09 101% 11.8  31.4  1.4  

Port Hedland Jiangyin 2018-09-11 2018-10-02 99% 11.4  22.4  1.3  

Ship 

B 

Gladstone Haimen 2018-05-25 2018-06-14 92% 11.3  22.7  1.5  

Newcastle Yuhuan 2018-07-28 2018-08-20 92% 10.5  25.8  0.9  

Newcastle  Yuhuan 2018-09-07 2018-09-26 92% 10.5  21.9  1.3  

Newcastle  Yuhuan 2018-10-16 2018-11-11 92% 10.2  29.4  1.3  

Brisbane Longkou 2018-12-02 2018-12-22 94% 9.8  22.4  0.0  
1 Ship A: dry bulk carriers with deadweight tonnage 99,000 transporting iron ore; Ship B: dry bulk carriers 

with deadweight tonnage 105,000 transporting coal. 
2 DR: draught rate (%); SS: average sailing speed (kn); SD: sailing days (days); PS: port staying time 

(days). 
 

Table 18. A sample of recorded operation conditions in AXSDry data [40]: ballast voyage. 

Ship 

Name 
1 

Voyage 

Loading 

Port 

Voyage 

Discharge 

Port 

Voyage 

Loading 

Date 

Voyage 

Discharge 

Date 

Ballast Voyage 2 

DR SS SD PS 

Ship 

A 

Port Hedland Rizhao 2017-12-15 2018-01-07 49% 12.5  24.0  4.6  

Port Hedland Tianjin 2018-01-30 2018-02-16 60% 12.6  18.7  4.0  

Port Hedland Taicang 2018-03-05 2018-04-08 52% 14.0  19.7  2.3  

Port Hedland Lianyungang 2018-04-26 2018-05-12 51% 12.2  14.3  4.0  

Port Hedland Zhenjiang 2018-07-10 2018-08-09 51% 12.7  35.2  2.0  

Port Hedland Jiangyin 2018-09-11 2018-10-02 50% 13.0  23.7  1.7  

Ship 

B 

Gladstone Haimen 2018-05-25 2018-06-14 53% 12.9  12.7  2.9  

Newcastle Yuhuan 2018-07-28 2018-08-20 53% 10.9  19.8  2.8  

Newcastle  Yuhuan 2018-09-07 2018-09-26 52% 11.9  22.1  3.7  

Newcastle  Yuhuan 2018-10-16 2018-11-11 53% 11.1  19.4  4.1  

Brisbane Longkou 2018-12-02 2018-12-22 52% 10.9  22.3  2.7  
1 Ship A: dry bulk carriers with deadweight tonnage 99,000 transporting iron ore; Ship B: dry bulk carriers 

with deadweight tonnage 105,000 transporting coal. 
2 DR: draught rate (%); SS: average sailing speed (kn); SD: sailing days (days); PS: port staying time 

(days). 
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Next, this section applied the R-AVG by gathering the operation conditions on all 

available routes worldwide. We have provided an example of the R-AVG of draught rate case 

only since the scheme of R-AVG for average sailing speed and port staying time cases are the 

same. The port calling data instances and cargo types are represented as 𝑈 and 𝐶, respectively. 

Moreover, the number of 𝑈 is described as 𝑈′. The average draught rate (𝐷𝑅𝑗𝑐) for each route 𝑗 

transporting cargo type 𝑐 (%) is calculated as follows: 

 

(22) 𝑫𝑹𝒋𝒄 =
𝟏

𝑼′
× ∑ ∑(𝑫𝑹𝒖𝒊𝒋𝒄)

𝒖𝒊

    ∀𝒖 ∈ 𝑼,    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱,    ∀𝒄 ∈ 𝑪, (5) 

 

where 𝑈′ is the number of 𝑈, 𝐷𝑅𝑢𝑖𝑗𝑐 is the draught rate of a port calling data instance, 𝑢 is an 

individual port calling instance (16,110 Panamax–MiniCape dry bulk carriers operating in 2018), 

𝑖 is an individual ship (2479 Panamax–MiniCape dry bulk carriers operating in 2018), 𝑗 is an 

individual route served by Panamax–MiniCape dry bulk carriers (3338 routes of iron ore, coal, 

grain, and others in 2018), and 𝑐 is an individual cargo type served by Panamax–MiniCape dry 

bulk carriers (1: iron ore, 2: coal, 3: grain, 4: others).  

 

4.4.4. Evaluation of Predicted Operation Condition 

The average operation conditions of the worldwide routes (AVG) are the baselines that 

affirm the benefits of adopting the DL model. In the case of Capesize dry bulk carrier, the mean 

absolute error (MAE) is applied to compare the DL prediction and AVG results, as shown in 

Table 19.  

 

Table 19. Mean absolute error of DL model predictions. 

Operation Condition 

Mean Absolute Error (MAE) of 

Deep Learning (DL) Model Worldwide Average (AVG) 

Laden Voyage Ballast Voyage Laden Voyage Ballast Voyage 

Draught rate (%) 1.686 3.923 4.115 4.721 

Avg. sailing speed (kn) 1.181 1.427 1.318 1.434 

Port staying time (d) 1.273 2.439 1.819 3.129 
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The DL prediction results indicate a higher accuracy than the AVG. In the case of draught 

rate, DL returned MAE of 1.686 and 3.923 in laden and ballast voyages, respectively. These 

values prove 59% and 17% higher precision than AVG for both voyage modes. Similarly, port 

staying time predicted by using DL resulted in MAE of 1.273 and 2.439 in laden and ballast 

voyages, respectively. These suggest 30% and 22% more definitive values compared to AVG. 

Later, we will use the operation condition prediction results of the DL model to calculate the 

CARGO, GHG, and COST variables for each Capesize dry bulk carrier. 

Furthermore, similar to the Capesize dry bulk carrier, AVG is used as the baselines to 

confirm the advantage of adopting the R-AVG. The R-AVG results indicate a higher accuracy 

than the AVG, as shown in Table 20. 

 

Table 20. Mean absolute error of route-base average (R-AVG). 

Operation Condition 

MAE of 

Route-Base Average (R-AVG) AVG 

Laden Voyage Ballast Voyage Laden Voyage Ballast Voyage 

Draught rate (%) 2.133  1.374  4.714  2.120  

Avg. sailing speed (kn) 1.049  1.037  1.468  1.248  

Port staying time (d) 0.431  0.516  0.885  0.882  
 

Table 20 suggests that R-AVG owns a lower MAE compared to the AVG. The draught 

rate in R-AVG yielded MAE of 2.133 and 1.374 in laden and ballast voyages, justifying an 

advancement of 55% and 35% compared to AVG, respectively. Similarly, port staying time 

delivered using R-AVG resulted in MAE of 0.431 and 0.516 in laden and ballast voyages, 

respectively. These outcomes confirm 51% and 42% improvement comparatively to AVG. 

Finally, we will use the annual R-AVG of operation conditions to calculate the GHG and COST 

variables for each Panamax–MiniCape dry bulk carrier. 

 

4.5. Methodology to Calculate GHG emissions 

4.5.1. Overview of GHG emissions Calculation 

In this section, we have provided an overview of the calculation process of cargo 

movement (𝐶𝑀), GHG emissions (𝐺𝐻), and total COST (𝑇𝐶). Figure 9 illustrates the calculation 

process and its correlated variables. The variables and constants which were taken as the input, 

the used equations, and the resulted output were explained in this section.  
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For these calculations, ship movement data [39,40], ship data [42], and the assumed 

constants [1,28,29,48] were used as the input. Constants were defined based on ship movement 

and ship data attributes. Next, we processed these data by applying Equations (1)–(4) and 

Equations (6)–(15) to calculate 𝐶𝑀 and 𝐺𝐻, respectively. In this study, these were calculated for 

both cases of Capesize and Panamax–MiniCape dry bulk carriers but 𝐶𝑀, since AXSDry ship 

movement data [40] of Panamax–MiniCape dry bulk carriers comprised voyage intake (𝐶𝑀).  

Cargo movement (𝐶𝑀) was calculated by inputting actual draught (𝑑), ship deadweight 

tonnage (𝐷𝑊𝑇), and ship maximum draught (𝐷) using Equations (1) and (2). Making use of 

Equation (6), the actual power of the main engine ( 𝑝 ) can be calculated. Moreover, fuel 

consumption of main engine and auxiliary machinery (𝐴, 𝐵) are defined using Equations (7) and 

(8). We can calculate the total GHG emissions (𝐺𝐻) by applying Equation (15). 
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Figure 9. Calculation process of cargo movement, GHG emissions, and ship cost. 
 

4.5.2. Calculation Process of GHG Emissions 

We calculated the total GHG referred to in prior IMO GHG studies [28,29]. It comprised 

the GHG emissions from the main engine and auxiliary machinery (an auxiliary engine and a 

boiler). This calculation used ship data [42] and port data [43], as well as the global network 

model and ship model results. First, we calculated the actual power the main engine operated on 

average in sailing mode. 
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The actual power of the main engine (𝑝𝑖𝑗) of a ship 𝑖 operating in the route 𝑗 (kW) is 

calculated as follows [28,29,32,33]: 

 

 
𝒑𝒊𝒋 =

𝑷𝒊 × (
𝒅𝒊𝒋

𝑫𝒊
⁄ )

(
𝟐
𝟑

)

× (
𝒗𝒊𝒋

𝑽𝒊
⁄ )

𝟑

𝜼𝒘𝒊𝒋 × 𝜼𝒇𝒊𝒋
    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, 

(6) 

 

where 𝑃𝑖 is the ship 𝑖 maximum main engine power (kW), 𝑑𝑖𝑗 is the ship 𝑖 actual draught (m), 𝐷𝑖 

is the ship 𝑖 maximum draught (m), 𝑣𝑖𝑗 is the ship 𝑖 average sailing speed (kn), 𝑉𝑖 is the ship 𝑖 

design speed (kn), and 𝜂𝑤𝑖𝑗  and 𝜂𝑓𝑖𝑗  are the correction factors of weather and fouling, 

respectively, 𝑖  is an individual ship (1647 Capesize and 2479 Panamax–MiniCape dry bulk 

carriers operating in 2018), and 𝑗 is an individual route (1085 routes of Capesize’s iron ore and 

coal and 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others in 2018). The 𝑃𝑖, 

𝐷𝑖, and 𝑉𝑖 of each ship were acquired from the ship data [42], 𝑑𝑖𝑗 and 𝑣𝑖𝑗 were generated by the 

ship model, 𝜂𝑤𝑖𝑗 and 𝜂𝑓𝑖𝑗 were considered constants with values 0.909 and 0.917, respectively, 

as shown in Table 21 [28,29].  

 

Table 21. Correction factors of weather and fouling of various ship types [28,29]. 

Ship Type Ship Capacity 1 
Weather 

correction factor (𝜂𝑤) 

Fouling 

correction factor (𝜂𝑓) 

Bulk carrier; 

General cargo; 

Tanker 

0‒9,999 DWT 0.909 0.917 

10,000‒+ DWT 0.867 0.917 

Container Ship 
0‒999 TEU 0.909 0.917 

1000‒+ TEU 0.867 0.917 
1 DWT: deadweight tonnage; TEU: twenty equipment unit. 
 

After calculating 𝑝𝑖𝑗, the main engine fuel consumption (𝐴𝑖𝑗) for a ship 𝑖 serving the route 

𝑗 (t) is calculated as follows:  

 

 𝑨𝒊𝒋 = (𝒑𝒊𝒋 × 𝒔𝒇𝒄𝒊 × 𝒔𝒕𝒊𝒋)    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (7) 
 

where 𝑝𝑖𝑗  is the actual power of the main engine (kW), 𝑠𝑓𝑐𝑖  is the ship 𝑖  specific fuel oil 

consumption of the main engine (g/kWh), 𝑠𝑡𝑖𝑗 is the round-trip sailing time (d), 𝑖 is an individual 

ship (1647 Capesize and 2479 Panamax–MiniCape dry bulk carriers operating in 2018), and 𝑗 is 

an individual route (1085 routes of Capesize’s iron ore and coal and 3338 routes of Panamax–
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MiniCape’s iron ore, coal, grain, and others in 2018). In this study, the main engine of ship 𝑖 was 

assumed to be a slow-speed diesel engine fueled by heavy fuel oil (HFO), as shown in Table 22. 

Thus 𝑠𝑓𝑐𝑖 , for ships built before and after 2001 were assumed to be 185 and 175 g/kWh, 

respectively [28,29]. 

 

Table 22. Specific fuel oil consumption of various main engine and fuel types [28,29]. 

Main Engine 

Type 

Fuel 

Type 1 

Specific Fuel Consumption (g/kWh) 2 

Before 1984 1984–2000 After 2000 

Slow-speed Diesel 

(SSD) 

HFO 205 185 175 

MeOH na na 350 

LNG-Otto 

(Slow-speed Dual-fuel) 
LNG na na 148 

1 HFO heavy fuel oil; MeOH: methanol; LNG: liquefied natural gas. 
2 na: not available–no information. 
 

In addition to the main engine, we estimated the auxiliary machinery fuel consumption 

(an auxiliary engine and a boiler). The daily average fuel consumption of the auxiliary engine 

(𝑎𝑖) and boiler (𝑏𝑖) were determined by a linear correlation between the ship size and the average 

fuel consumption of the auxiliary machinery [28,29], as shown in Figure 4.  

 

 
Figure 10. Daily average fuel consumption of auxiliary engine and boiler [28,29]. 
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The auxiliary machinery fuel consumption (𝐵𝑖𝑗) for a ship 𝑖 operating on the route 𝑗 (t) is 

calculated as follows: 

 

 𝑩𝒊𝒋 = (𝒂𝒊 + 𝒃𝒊) × 𝒔𝒕𝒊𝒋    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (8) 
 

where 𝑎𝑖  is the ship 𝑖 auxiliary engine daily average fuel consumption of the ship’s auxiliary 

engine (t/d), 𝑏𝑖 is the ship 𝑖 boiler daily average fuel consumption of the ship (t/d), 𝑠𝑡𝑖𝑗 is the 

round-trip sailing time (d), 𝑖 is an individual ship (1647 Capesize and 2479 Panamax–MiniCape 

dry bulk carriers operating in 2018), and 𝑗 is an individual route (1085 routes of Capesize’s iron 

ore and coal and 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others in 2018). 

Next, the possible annual trip numbers (𝑛𝑖𝑗) of a ship 𝑖 serving the route 𝑗 is defined as follows:  

 

 𝒏𝒙𝒊𝒋 =
(𝒚𝒅 − 𝒎𝒅𝒊)

(𝒔𝒕𝒊𝒋 + 𝒑𝒔𝒊𝒋)
    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (9) 

 

 𝒏𝒚𝒊𝒋 = (
𝑪𝑨𝒋

𝑪𝑴𝒊𝒋
)    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (10) 

 

 𝒏𝒊𝒋 = {
𝒏𝒙𝒊𝒋 𝒊𝒇 (𝒏𝒙𝒊𝒋 ≤ 𝒏𝒚𝒊𝒋)

𝒏𝒚𝒊𝒋 𝒊𝒇 (𝒏𝒙𝒊𝒋 > 𝒏𝒚𝒊𝒋)
    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (11) 

 

where 𝑛𝑥𝑖𝑗  and 𝑛𝑦𝑖𝑗  are the possible trip numbers considering the annual economic days and 

annual cargo movement, respectively, 𝑖 is an individual ship (1647 Capesize and 2479 Panamax–

MiniCape dry bulk carriers operating in 2018), and 𝑗  is an individual route (1085 routes of 

Capesize’s iron ore and coal and 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and 

others in 2018). The 𝑦𝑑 is the number of days in a year, taken as 365 (d), 𝑚𝑑𝑖 is the assumed 

annual maintenance days (d), 𝑠𝑡𝑖𝑗 is the round-trip sailing time (d), 𝑝𝑠𝑖𝑗 is the loading–unloading 

time (d), 𝐶𝐴𝑗 is the annual transported cargo movement of route 𝑗 (t/y), and 𝐶𝑀𝑖𝑗 is the ship 𝑖 

cargo movement per trip serving the route 𝑗 (t).  
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Likewise, using the assembled monthly OD tables in the case of Panamax–MiniCape dry 

bulk carriers [40], we can managed to calculate the possible monthly trip numbers (𝑛𝑖𝑗𝑚) of a 

ship 𝑖 serving the route 𝑗 as follows: 

 

 𝒏𝒚𝒊𝒋𝒎 = (
𝒄𝒎𝒋𝒎

𝒄𝒎𝒊𝒋𝒎
)    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱,    ∀𝒎 ∈ 𝑴, (12) 

 

 𝒏𝒊𝒋𝒎 = {
𝒏𝒙𝒊𝒋 𝒊𝒇 (𝒏𝒙𝒊𝒋 ≤ 𝒏𝒚𝒊𝒋𝒎)

𝒏𝒚𝒊𝒋𝒎 𝒊𝒇 (𝒏𝒙𝒊𝒋 > 𝒏𝒚𝒊𝒋𝒎)
    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱,    ∀𝒎 ∈ 𝑴, (13) 

 

where 𝑛𝑥𝑖𝑗 and 𝑛𝑦𝑖𝑗𝑚 are the possible trip numbers considering the annual economic days and 

monthly cargo movement, respectively, 𝑐𝑚𝑗𝑚  is the monthly transported cargo movement of 

route 𝑗 (t/m), 𝑐𝑚𝑖𝑗𝑚 is the ship 𝑖 cargo movement per trip serving the route 𝑗 in month 𝑚 (t), 𝑖 is 

an individual ship (2479 Panamax–MiniCape dry bulk carriers operating in 2018), and 𝑗 is an 

individual route ( 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others in 2018). 

Finally, we define the total GHG emissions, which cover the GHG emissions of the main 

engine and auxiliary machinery. We calculate the annual GHG emissions (𝐺𝐻𝑖𝑗) for a ship 𝑖 

operating in the route 𝑗 (t/y) as follows: 

 

 𝑮𝑯𝒊𝒋 = ((𝑨𝒊𝒋 × 𝑪𝑭) + (𝑩𝒊𝒋 × 𝒄𝒇)) × 𝒏𝒊𝒋    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (14) 

 

where 𝐴𝑖𝑗  is the main engine fuel consumption (t), 𝐵𝑖𝑗  is the auxiliary machinery fuel 

consumption (t), 𝐶𝐹 and 𝑐𝑓 are the HFO and marine diesel oil (MDO) carbon factors (t-CO2/t-

fuel), respectively, 𝑛𝑖𝑗 is the possible annual trip numbers, 𝑖 is an individual ship (1647 Capesize 

and 2479 Panamax–MiniCape dry bulk carriers operating in 2018), and 𝑗 is an individual route 

(1085 routes of Capesize’s iron ore and coal and 3338 routes of Panamax–MiniCape’s iron ore, 

coal, grain, and others in 2018). Furthermore, the monthly GHG emissions (𝐺𝐻𝑖𝑗𝑚) for a ship 𝑖 

operating in the route 𝑗 (t/m) is calculated as follows: 

 

 𝑮𝑯𝒊𝒋𝒎 = ((𝑨𝒊𝒋 × 𝑪𝑭) + (𝑩𝒊𝒋 × 𝒄𝒇)) × 𝒏𝒊𝒋𝒎    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱,    ∀𝒎 ∈ 𝑴, (15) 

 

where 𝐴𝑖𝑗  is the main engine fuel consumption (t), 𝐵𝑖𝑗  is the auxiliary machinery fuel 

consumption (t), 𝐶𝐹 and 𝑐𝑓 are the HFO and marine diesel oil (MDO) carbon factors (t-CO2/t-

fuel), respectively, 𝑛𝑖𝑗𝑚  is the possible monthly trip numbers, 𝑖  is an individual ship (2479 
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Panamax–MiniCape dry bulk carriers operating in 2018), and 𝑗 is an individual route (3338 routes 

of Panamax–MiniCape’s iron ore, coal, grain, and others in 2018). Table 23 shows the emission 

factors defined in the IMO GHG study [28,29], 𝐶𝐹 and 𝑐𝑓 were taken as 3.114 and 3.206 t-

CO2/t-fuel, respectively. 

 

Table 23. Emission factors for various fuel types [28,29]. 

Fuel Type 1 Emission Factors (t-CO2/t-fuel) 

HFO 3.114 

MDO 3.206 

LNG 2.750 

MeOH 1.375 
1 HFO heavy fuel oil; MDO: marine diesel oil; LNG: liquefied natural gas; MeOH: methanol. 
 

Moreover, we construct the case studies intended for future scenarios by following the 

target of the IMO GHG emissions reduction strategy [28,29]. The minimum goal of GHG 

emissions reduction is 50% in 2050 compared to 2008 [49-51]. Implementation programs of zero-

carbon and low-carbon fuels were pointed out as a measure considering this scheme. 

Furthermore, we offer that the main engine is fueled by fuels with lower emission factors 

for the case studies intended for future scenarios. These fuels own discrete 𝑠𝑓𝑐𝑖 and 𝐶𝐹 compared 

to HFO, which was previously discussed in the calculation of main engine fuel consumption (𝐴𝑖𝑗, 

see Equation (7)). In this context, liquefied natural gas (LNG) and methanol (MeOH) were 

proposed as lower emission factors by referring to IMO GHG studies [28,29]. 

Table 22 highlights the specific fuel oil consumption (𝑠𝑓𝑐𝑖) of various main engines and 

fuel types, including the proposed fuel types [28,29]. In this context, 𝑠𝑓𝑐𝑖 is an extension of its 

engine types; slow-speed diesel engines utilized MeOH, and slow-speed dual-fuel engines 

utilized LNG. The value of 𝑠𝑓𝑐𝑖 (g/kWh) for LNG and MeOH were 148 and 350, respectively. 

These numbers suggest different fuel consumption for the same main engine power after 2000 

rather than HFO. The fuel consumption by using LNG as fuel renders 15% less consumption 

compared to HFO. In contrast, two times fuel is consumed by using MeOH as the main engine 

fuel. Later, these were used as 𝑠𝑓𝑐𝑖 of Equation (7). 
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However, the reduction of total GHG emissions is not directly generated by 𝑠𝑓𝑐𝑖. In this 

context of the proposed fuel, the emission factors of LNG and MeOH are presented in Table 23. 

These fuel types hold emission factors (t-CO2/t-fuel) of 2.750 and 1.375, respectively. These 

values depicted 12% and 56% emissions factors compared to HFO. Accordingly, these were used 

as 𝐶𝐹 of Equation (14) in the case studies intended for future scenarios. Finally, Table 24 presents 

the obtainable reduction in total GHG emissions of the main engine, delivered by each fuel type. 

 

Table 24. Obtainable GHG emissions from main engine for various fuel types [28,29]. 

Fuel 

Type 

Specific Fuel 

Consumption 

(sfc, in g/kWh) 

Emission 

Factors 

(CF, g-CO2/g-fuel) 

Total GHG 

Emissions 

(GH, g) 1 

Obtainable 

Reduction  

(%) 

HFO 175 3.114 545 0 

LNG 148 2.750 407 25.3 

MeOH 350 1.375 481 11.7 
1 Calculated by using Equation (4) where the actual power of the main engine (𝑝𝑖𝑗) and the round-trip 

sailing time (𝑠𝑡𝑖𝑗) were assumed constants as 1. 
 

As previously discussed, MeOH holds 1.375, the lowest emission factor compared to 

other fuel types. However, a drawback of this fuel type is the large specific fuel consumption of 

350. On the other hand, LNG placed moderate emissions factors in the middle of HFO and MeOH 

but with the lowest specific fuel consumption compared to other fuel types. Hence, these 

attributes allowed 25.3% and 11.7% GHG emissions reduction compared to HFO. 

 

4.5.3. Evaluation of GHG Emissions Calculation 

In this section, we will evaluate the GHG emissions calculation scheme. An evaluation of 

the GHG calculation is shown in Table 25. We calculated the main engine GHG emissions using 

the 2018 worldwide average ship age and draught rate of the Capesize dry bulk carriers [39] and 

the average variables depicted in the IMO GHG study [28]. For the following size categories, an 

error margin of less than 4% indicated the applicability of our GHG calculation scheme.  

 

Table 25. Evaluation of GHG calculation. 

Size Category GHG Emissions (MT) Error 

(DWT x1000) IMO GHG Study [28] This Study (%) 

100–199 39 38.8 0.5 

200–+ 22 22.7 3.2 
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4.6. Methodology to Calculate COST 

4.6.1. Overview of COST Calculation 

In the previous section, we have provided an overview of the calculation process of cargo 

movement (𝐶𝑀), GHG emissions (𝐺𝐻), and total COST (𝑇𝐶). The variables and constants taken 

as the input, the used equations, and the resulting output are explained in Figure 9. For these 

calculations, ship movement data [39,40], ship data [42], and the assumed constants [1,28,29,48] 

were used as the input. Constants were defined based on ship movement and ship data attributes. 

In the COST context, fuel cost (𝐹𝐶) by applying Equations (16). Later, refer to the response 

surface presented in Figure 10 and Figure 11, with the Equations (17)–(18), operation cost (𝑂𝐶) 

and depreciation cost (𝐷𝐶 ) are calculated. Further, stock cost (𝑆𝐶 ) is determined by using 

Equation (19)–(21). Finally, the annual total COST (𝑇𝐶) is calculated using Equation (22). 

 

4.6.2. Calculation Process of COST 

In this study, the total COST considers the fuel, operation, depreciation, and stockpile 

costs [1]. The fuel cost represents the cost of the fuel needed to transport specific cargo from the 

origin port to the destination port. The operation cost describes the cost of operating the ship. It 

comprises the crew, consumables, repairs, and insurance costs. The depreciation cost is the 

reduction in the ship’s resale price after a year. The stockpile cost depicts the cost of stockpiling 

transported cargo at the destination port until the cargo is consumed based on the port’s daily 

cargo movement demand. 

 

4.6.2.1. Calculation Process of Fuel Cost 

The fuel cost is calculated from the fuel consumption. The fuel cost (𝐹𝐶𝑖𝑗) for a 

ship 𝑖 serving the route 𝑗 (USD) is calculated as the total GHG emissions equation by 

replacing the GHG emissions carbon factor (𝐶𝐹, 𝑐𝑓) with fuel price constants (𝐹𝑃, 𝑓𝑝), 

as follows: 

 

 𝑭𝑪𝒊𝒋 = ((𝑨𝒊𝒋 × 𝑭𝑷) + (𝑩𝒊𝒋 × 𝒇𝒑))    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (16) 

 

where 𝐴𝑖𝑗  is the main engine fuel consumption (t), 𝐵𝑖𝑗  is the auxiliary machinery fuel 

consumption (t), 𝐹𝑃 and 𝑓𝑝 are the HFO and MDO prices (USD/t-fuel), respectively, 𝑖 is 

an individual ship (1647 Capesize and 2479 Panamax–MiniCape dry bulk carriers 

operating in 2018), and 𝑗 is an individual route (1085 routes of Capesize’s iron ore and 
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coal and 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others in 2018). 

After observing the fluctuation in maritime fuel price, Figure 11 presents the HFO and 

MDO prices from various bunker site [48]. 𝐹𝑃 and 𝑓𝑝 were assumed to be USD 300 and 

USD 600, respectively.  

 

 
Figure 11. Bunker prices of high-Sulphur fuel oil 380 cSt and marine diesel oil in various bunker hubs [48]. 
 

Similar to what has already been discussed in the calculation of total GHG emissions, 

low-carbon fuels are later offered in the case studies intended for future scenarios. This study 

proposed LNG and MeOH as the fuel with lower emissions factors [28,29]. Thus, these fuel types 

are tied to their prices (𝐹𝑃) in the context of the main engine’s fuel cost. Table 26 shows bunker 

prices for various fuel types in 2030–2050 by referring to the price-forecasting included in the 

recent IMO GHG study [28]. In this current insight, the increase in fuel costs can be ascertained 

by utilizing LNG- and MeOH-fueled main engines. 

 

Table 26. Bunker prices for various fuel types in 2030–2050 [28]. 

Fuel Type 1 Fuel Price in 2030–2050 (USD/t) 2 

HFO 375 

LNG 590 

MeOH 400 
1 HFO heavy fuel oil; LNG: liquefied natural gas; MeOH: methanol. 
2 Assumed no fluctuation of fuel prices toward these years. 
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4.6.2.2. Calculation Process of Operation Cost and Depreciation Cost 

We composed response surfaces using the DWT and age of the dry bulk carrier 

ships to calculate the operation and depreciation costs. Considering Stopford [1], we 

expanded the correlation between the Capesize dry bulk carrier operation cost to other 

bulk carrier size classes [29,46,47]. Similarly, the depreciation cost was acquired by 

referring to the bulk carrier newbuilding and secondhand prices [48]. Figure 12 shows the 

daily operation cost for the given ship DWT and ship age which is defined by referring to 

the following attributes: 

 Daily operation cost of Capesize bulk carriers [1]. 

 Operation cost ratios of various bulk carrier size categories in 2011; Capesize, 

Panamax, Handymax, and Handysize [46]. 

 Ship DWT range for various bulk carrier size categories in 2011; Capesize, 

Panamax, Handymax, and Handysize [47]. 

 Average ship DWT for various bulk carrier size categories in 2011; Capesize 

(205,000 DWT), Panamax (76,000 DWT), Handymax (51,000 DWT), and 

Handysize (27,000 DWT) [29].  
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Figure 12. Bulk carrier daily operation cost for the given ship deadweight tonnage (DWT) and ship age 

[1,29,46,47]. 
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Figure 13. Bulk carrier ship prices for the given ship DWT and ship age [1,29,46,47]. 
 

Correspondingly, the depreciation cost is determined by referring to the bulk 

carrier newbuilding and secondhand ship prices in 2019 [48]. The ship prices for the given 

ship DWT and ship age are shown in Figure 13. The annual depreciation cost is obtained 

from the difference between the ship price in the current year and the previous year. Then, 

the daily depreciation cost was taken as the annual depreciation cost divided by the 

number of days in a year, taken as 365 days. Finally, we represent these attributes in the 

bulk carrier operation cost and depreciation cost response surfaces, as shown in Figure 14 

and Figure 15. 
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Figure 14. Response surfaces of bulk carrier operation cost: 3D and 2D visualizations [1,29,46,47]. 
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Figure 15. Response surfaces of bulk carrier depreciation cost: 3D and 2D visualizations [1,29,46,47]. 
 

Thus, the operation and depreciation costs (𝑂𝐶𝑖𝑗, 𝐷𝐶𝑖𝑗) for a ship 𝑖 operating on 

the route 𝑗 (USD) are calculated using the following equation:  

 

 𝑶𝑪𝒊𝒋 = (𝒐𝒄𝒊 × 𝒔𝒕𝒊𝒋)    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (17) 
 

 𝑫𝑪𝒊𝒋 = (𝒅𝒄𝒊 × 𝒚𝒅)    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (18) 
 

where 𝑜𝑐𝑖 is the ship 𝑖 daily operation cost (USD/d), 𝑠𝑡𝑖𝑗 is the round-trip sailing time (d), 

𝑑𝑐𝑖 is the ship 𝑖 daily depreciation cost (USD/d), 𝑦𝑑 is the number of days in a year (d), 
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taken as 365, 𝑖 is an individual ship (1647 Capesize and 2479 Panamax–MiniCape dry 

bulk carriers operating in 2018), and 𝑗 is an individual route (1085 routes of Capesize’s 

iron ore and coal and 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others 

in 2018). 𝑜𝑐𝑖 and 𝑑𝑐𝑖 for each ship 𝑖 are shown in Figure 5a,b, respectively, based on each 

ship’s DWT and age.  

 

4.6.2.3. Calculation Process of Stockpile Cost 

Additionally, this study establishes the stockpile cost to resemble the cargo 

stockpile cost at the destination port. Origin and destination ports of route 𝑗 are defined 

as 𝑘  and 𝑙 , respectively. The stockpile cost is determined by referring to the daily 

destination port’s cargo movement demand (𝐶𝐷𝑙, t/d), which is calculated as the sum of 

cargo movements (∑ (𝐶𝐴𝑘𝑙)𝑘 ) arriving at the destination port 𝑙 divided by 365 days (𝑦𝑑). 

Then, the accumulated period (𝑠𝑑𝑖𝑗, d) is calculated by rounding off the division of cargo 

movement (𝐶𝑀𝑖𝑗) carried by a ship 𝑖 to the destination port 𝑙 by the daily destination port 

cargo movement demand (𝐶𝐷𝑙) as follows:  

 

 𝑪𝑫𝒍 = (∑(𝑪𝑨𝒌𝒍)

𝒌

) × (
𝟏

𝒚𝒅
)    ∀(𝒋, 𝒍) ∈ 𝑱, (19) 

 

 𝒔𝒅𝒊𝒋 = ⌊
𝑪𝑴𝒊𝒋

𝑪𝑫𝒍
⌋    ∀𝒊 ∈ 𝑰,    ∀(𝒋, 𝒍) ∈ 𝑱, (20) 

 

where 𝑖  is an individual ship (1647 Capesize and 2479 Panamax–MiniCape dry bulk 

carriers operating in 2018), 𝑗 is an individual route (1085 routes of Capesize’s iron ore 

and coal and 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others in 

2018), and 𝑙 is destination port of route 𝑗. Hence, the stockpile cost (𝑆𝐶𝑖𝑗) for a ship 𝑖 

serving the route 𝑗 (USD) is calculated as follows: 

 

 𝑺𝑪𝒊𝒋 = (∑ 𝑪𝑴𝒊𝒋 − (𝑪𝑫𝒍 × 𝒙)

𝒔𝒅𝒊𝒋

𝒙=𝟎

) × 𝒔𝒄𝒍    ∀𝒊 ∈ 𝑰,    ∀(𝒋, 𝒍) ∈ 𝑱, (21) 

 

where 𝑠𝑐𝑙 is the stockpile cost unit (USD/t/d), which depends on the port and cargo type, 

𝑖 is an individual ship (1647 Capesize and 2479 Panamax–MiniCape dry bulk carriers 

operating in 2018), and 𝑗 is an individual route (1085 routes of Capesize’s iron ore and 
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coal and 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others in 2018), 

and 𝑘 and 𝑙 are an individual port (1085 origin and destination ports of iron ore and coal 

in 2018). In this study, 𝑠𝑐𝑙 was defined as a constant by referring to the average stockpile 

cost of the Japan Port Association [52]. Table 27 presents the stockpile cost units (USD/t/d) 

for various cargo types. Hence, 𝑠𝑐𝑙 for the routes of Capesize’s iron ore and coal were 

taken as 0.012 and 0.042 USD/t/day, respectively. Similarly, 𝑠𝑐𝑙  on Panamax–

MiniCape’s routes were considered for the cargo types of iron ore, coal, grain, and others. 

 

Table 27. Stockpile cost units for various cargo types [52]. 

Cargo Type 1 Stockpile Cost Units (USD/t/d) 

Iron Ore 0.012 

Coal 0.042 

Grain 0.186 

Others 0.186 
1 Others: other dry bulks. 
 

4.6.2.4. Calculation Process of Total COST 

Finally, we define the total COST, which includes the fuel, operation, 

depreciation, and stockpile costs. The annual total COST (𝑇𝐶𝑖𝑗) for a ship 𝑖 operating on 

the route 𝑗 (USD/y) is obtained as follows: 

 

 𝑻𝑪𝒊𝒋 = ((𝑭𝑪𝒊𝒋 + 𝑶𝑪𝒊𝒋 + 𝑺𝑪𝒊𝒋) × 𝒏𝒊𝒋) + 𝑫𝑪𝒊𝒋    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (22) 

 

where 𝐹𝐶𝑖𝑗 is the fuel cost (USD), 𝑂𝐶𝑖𝑗 is the operation cost (USD), 𝑆𝐶𝑖𝑗 is the stockpile 

cost (USD), 𝐷𝐶𝑖𝑗 is the depreciation cost (USD), 𝑛𝑖𝑗 is the possible annual trip number, 𝑖 

is an individual ship (1647 Capesize and 2479 Panamax–MiniCape dry bulk carriers 

operating in 2018), and 𝑗 is an individual route (1085 routes of Capesize’s iron ore and 

coal and 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others in 2018).  
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Furthermore, the monthly total COST (𝑇𝐶𝑖𝑗𝑚) for a ship 𝑖 operating on the route 

𝑗 (USD/m) is obtained as follows: 

 

 𝑻𝑪𝒊𝒋𝒎 = (𝑭𝑪𝒊𝒋 + 𝑶𝑪𝒊𝒋 + 𝑺𝑪𝒊𝒋 + 𝑫𝑪𝒊𝒋) × 𝒏𝒊𝒋𝒎    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱,    ∀𝒎 ∈ 𝑴, (23) 
 

where 𝐹𝐶𝑖𝑗 is the fuel cost (USD), 𝑂𝐶𝑖𝑗 is the operation cost (USD), 𝑆𝐶𝑖𝑗 is the stockpile 

cost (USD), 𝐷𝐶𝑖𝑗 is the depreciation cost (USD), 𝑛𝑖𝑗 is the possible annual trip number, 𝑖 

is an individual ship (2479 Panamax–MiniCape dry bulk carriers operating in 2018), and 

𝑗 is an individual route (3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and 

others in 2018). Finally, a sample of the COST composition (USD/t) is shown in Figure 

16. 

 

 
Figure 16. A sample of the COST composition. 
 

A declining trend in the COST composition (USD/t) can be observed towards 

the larger ship DWT. The larger ship's fuel and operation costs to transport one-ton cargo 

are getting lower. On the contrary, it can be observed that the depreciation and stockpile 

cost significantly increase following the size of the ship. These values draw a tendency 

for larger ships to be economically-effective for both iron ore and coal cargo types. 
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4.4.1. Evaluation of COST Calculation 

In this section, we will evaluate the COST calculation scheme. Table 28 presents an 

evaluation of the COST composition with the following COST item parameters [1]: 

 Fuel: 2005 HSFO 380cst and MDO Rotterdam bunker prices (USD) [48]; 

 Depreciation: 2005 daily depreciation cost (USD/d) [48]; 

 Ship: Operation conditions of a ten years old ship in 2005 [42]. 

The error margin is between 0.7% and 4.1% for the COST item parameters, which justifies the 

practicability of our COST calculation scheme. 

 

Table 28. Evaluation of COST calculation. 

COST item 
COST Composition (%) Error 

Stopford [1] This Study (%) 

Fuel 35.2 34.4 0.7 

Operation 16.2 20.3 4.1 

Depreciation 48.6 45.3 3.3 

 

4.7. Development of Ship Allocation Algorithm 

4.7.1. Algorithm 1: Ship Replacement while Preserving the Existing Ship Allocation 

4.7.1.1. Definition of Algorithm 1 

This algorithm proposes an optimization by offering a direct clone of the existing 

ship, a new ship with the exact specifications and operation conditions that serve the same 

annual allocations. The existing ship is replaced if the new ship offers practically lower 

COST or GHG emissions. Locally, a new ship justifies the replacement of an existing ship 

with the capability to reduce COST or GHG emissions. Globally, a collection of existing 

ships is replaced by new ship formations. 

 

4.7.1.2. Methodology of Algorithm 1 

In this scheme, for each instance of an existing ship 𝑖, we offered a new ship 𝑖′ 

with the same specifications, operation conditions, and annual allocations as the ship 𝑖 but 

with the admiralty coefficient (ADM) of the year 2021. Additionally, we proposed two 

optimization schemes: COST- and GHG-optimized. In this section, we have provided an 

example of a COST-optimized case.  
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Along with the calculation of the annual COST (𝑇𝐶𝑖𝑗) per ton cargo (𝐶𝑀𝑖𝑗) of a 

ship 𝑖, we also calculated the annual COST (𝑇𝐶𝑖′𝑗) per ton cargo (𝐶𝑀𝑖′𝑗) of an offered 

ship 𝑖′. Thus, the KPI (𝑤𝑖𝑗, 𝑤𝑖′𝑗) for each ship 𝑖 and 𝑖′ serving the route 𝑗 is defined as 

follows:  

 

  𝒘𝒊𝒋 = (
𝑻𝑪𝒊𝒋

𝑪𝑴𝒊𝒋
),    𝒘𝒊′𝒋 = (

𝑻𝑪𝒊′𝒋

𝑪𝑴𝒊′𝒋
)    ∀(𝒊, 𝒊′) ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (24) 

 

Finally, we acquired the global merit (𝑊𝑖𝑗), for an offered new ship 𝑖′ replacing 

an existing ship 𝑖 by fulfilling the following conditions: 

 

  𝑾𝒊𝒋 = {
𝒘𝒊𝒋 𝒊𝒇 (𝒘𝒊𝒋 − 𝒘𝒊′𝒋) < 𝟎

𝒘𝒊′𝒋 𝒊𝒇 (𝒘𝒊𝒋 − 𝒘𝒊′𝒋) > 𝟎
    ∀(𝒊, 𝒊′) ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (25) 

 

where 𝑊𝑖𝑗  represents a COST-effective ship, 𝑖  and 𝑖′  are an individual ship (1647 

Capesize and 2479 Panamax–MiniCape dry bulk carriers operating in 2018), and 𝑗 is an 

individual route (1085 routes of Capesize’s iron ore and coal and 3338 routes of 

Panamax–MiniCape’s iron ore, coal, grain, and others in 2018). A ship 𝑖′ is determined 

to replace the ship 𝑖 only if it offers a lower KPI. With the same ship allocation, these 

steps resulted in a new ship replacing the existing ship after conducting them for all the 

ships. Additionally, the seized COST reduction can be examined for an existing ship 𝑖 

replaced by a new ship 𝑖′. 

 

4.7.2. Algorithm 2: An Optimization for Reconstructing Ship Allocation in Time-Charter 

Contract 

4.7.2.1. Definition of Algorithm 2 

Based on the greedy algorithm approach, this algorithm reconstructs the ship 

allocation to transport the worldwide cargo movement demand using the available ships 

in the existing ship allocation or with the new ships instance. Using the total COST and 

GHG emissions for each ship and route, the allocation algorithm transports the same cargo 

amount as the existing ship allocation in a time-charter contract manner. This algorithm 

allocates ships conforming to the limitations of port dimensions for certain ships. 
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4.7.2.2. Methodology of Algorithm 2 

In this algorithm, a ship with the highest global merit is sequentially designated 

to transport cargo on a certain route on a one-year time-charter contract by replicating the 

ship bidding process to obtain the most advantageous ship. The allocation algorithm was 

adopted separately for both cases to achieve a global reduction in the total COST and 

GHG emissions. Next, we have provided an example of the ship allocation in the COST-

optimized case since the allocation scheme for both the COST- and GHG-optimized cases 

are the same. 

The annual COST (𝑇𝐶𝑖𝑗) per ton cargo (𝐶𝑀𝑖𝑗) was set as an individual ship KPI 

(𝑦𝑖𝑗). Additionally, the average KPI for the route 𝑗 (�̅�𝑗) is known; therefore, the merit for 

each ship 𝑖 operating in the route 𝑗 (𝑚𝑖𝑗) is defined as follows:  

 

  𝒚𝒊𝒋 = (
𝑻𝑪𝒊𝒋

𝑪𝑴𝒊𝒋
)    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (26) 

 

  �̅�𝒋 =
𝟏

𝑰
× ∑(𝒚𝒊𝒋)

𝒊

    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (27) 

 

  𝒎𝒊𝒋 = (�̅�𝒋 − 𝒚𝒊𝒋)    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (28) 
 

Finally, the global merit (𝑀) is obtained as follows:  

 

  𝑴 = 𝒎𝒂𝒙(𝒎𝒊𝒋)    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱, (29) 
 

where 𝑖  is an individual ship (1647 Capesize and 2479 Panamax–MiniCape dry bulk 

carriers operating in 2018), and 𝑗 is an individual route (1085 routes of Capesize’s iron 

ore and coal and 3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others in 

2018). 

A set of ships and routes with global merit 𝑀  is the most COST-effective 

allocation. After that, the annual cargo movement demand of the route 𝑗  ( 𝐶𝐴𝑗 ) is 

subtracted by the annual cargo carried by that ship (𝐶𝑀𝑖𝑗). The allocation algorithm is 

then repeated until all the cargo movement demands are assigned to a particular ship, 

while the allocated ship (𝑖) is removed from the available ship list (𝐼). All these processes 

result in the operation-level ship allocation. The annual CARGO, total COST, and GHG 



Figures title: 

63 

emissions were elaborated for each ship 𝑖 allotted on a specific route 𝑗. Therefore, we 

could explain the reduction in the total COST and GHG emissions and visualize the results 

geographically. 

 

4.7.3. Algorithm 3: An Optimization for Reconstructing Ship Allocation in Voyage-Charter 

Contract 

4.7.3.1. Definition of Algorithm 3 

Identical to Algorithm 2 that we have previously discussed, this algorithm is built 

based on the greedy algorithm approach. This algorithm was created to simulate the ship's 

bidding process in a monthly voyage-charter contract. This algorithm inputs the created 

monthly OD tables and the calculated COST and GHG emissions. Fulfilling the demand 

to transport all the worldwide cargo movement demand described in monthly OD tables, 

this algorithm sequentially allocates all available ships in the existing ship allocation and 

with new ships instance for some scenarios. 

 

4.7.3.2. Methodology of Algorithm 3 

In this algorithm, a ship can be allocated when its specifications, length, and 

breadth are under the limitations of port dimensions. Among these static limitations, this 

algorithm selects a ship with the highest global merit to transport cargo of each operation 

on a certain route. A ship is allocated individually by simulating the ship allocation in a 

monthly voyage-charter contract. This algorithm is utilized separately for both COST and 

GHG emissions cases to acquire the monthly optimized ship allocation. 

In this section, we have discussed an application example in the COST-optimized 

case since the allocation mechanism for both the COST- and GHG-optimized cases are 

the same. The global merit selection (𝑀) in this algorithm is similar to what has already 

been discussed in the prior section, by replacing the annual COST (𝑇𝐶𝑖𝑗) with the monthly 

COST (𝑇𝐶𝑖𝑗𝑚) in the KPI calculation, as follows: 

 

  𝒚𝒊𝒋𝒎 = (
𝑻𝑪𝒊𝒋𝒎

𝒄𝒎𝒊𝒋𝒎
)    ∀𝒊 ∈ 𝑰,    ∀𝒋 ∈ 𝑱,    ∀𝒎 ∈ 𝑴, (30) 

 

where 𝑦𝑖𝑗𝑚 is the monthly KPI of an individual ship, 𝑇𝐶𝑖𝑗𝑚 is the monthly total COST 

(USD/m), 𝑐𝑚𝑖𝑗𝑚 is cargo amount (t) transported by ship 𝑖, 𝑖 is an individual ship (2479 



64 

Panamax–MiniCape dry bulk carriers operating in 2018), and 𝑗 is an individual route 

(3338 routes of Panamax–MiniCape’s iron ore, coal, grain, and others in 2018). Next, a 

ship and route with global merit 𝑀  is considered having the most COST-effective 

allocation. Afterward, the cargo movement in the operation carried by the selected ship 

(𝑐𝑚𝑖𝑗𝑚) is subtracted from the route's monthly cargo movement demand (𝑐𝑚𝑗𝑚). These 

processes result in an allocation of a ship at the operational level. 

Furthermore, the above scheme is then repeated until all the cargo movement 

demands are allocated to a particular ship. For each route 𝑗, the annual CARGO, total 

COST, and GHG emissions were summarized. Thus, the reduction in the total COST and 

GHG emissions from the optimized ship allocation could be explained and visualized. 

 

4.7.4. Methodology to visualize Simulation Results 

We visualize the ship allocation results in great circle format [53-55]. In this instance, 

visualization nodes are not defining one port but several ports based on their defined region. The 

region of available ports is shown in Figure 17 and Figure 18. Moreover, Table 29 presents our 

defined 24 geographical regions for both Capesize and Panamax–MiniCape dry bulk carriers, 

despite the number of available ports. 

 

 
 

Main Port : 52 ports   Other port: 541 ports
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Figure 17. Specified region of worldwide ports of Capesize dry bulk carrier. 
 

 
 

 
Figure 18. Specified region of worldwide ports of Panamax–MiniCape dry bulk carriers. 
  

Main Port : 147 ports   Other port: 1087 ports
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Table 29. Defined region for simulation results visualization. 

Region 1 Latitude Longitude 

North-Europe 54.28 17.40 

West-Europe 47.58 -1.56 

West-North America 46.36 -121.37 

Black Sea 44.56 31.03 

East-North America 39.98 -74.66 

North-East Asia 34.30 133.72 

East-Mediterranean 32.63 35.76 

West-Mediterranean 32.02 -7.83 

Red Sea 30.58 32.28 

Gulf of Mexico 29.11 -93.47 

South-East Asia 25.00 110.00 

Persian Gulf 22.73 56.33 

Indian subcontinent 12.80 76.19 

Caribbean Sea 10.27 -65.43 

West-Africa 4.27 0.99 

East-South East Asia -1.48 117.03 

East-South America -2.58 -44.37 

West-South East Asia -6.21 107.61 

West-Australia -20.67 116.70 

East-Australia -22.54 150.31 

South-South America -22.97 -43.93 

South-Africa -33.03 17.97 

South-Australia -33.76 142.92 

West-South America -35.00 -60.00 
1 Region: defined geographical region. 
 

To give a better overview, we graphically summarize the simulation results, such as 

average DWT, average sailing speed (kn), and average ship age (y/o). The connections between 

visualization nodes present two attributes; thickness and color. In this study, the thickness 

represents cargo movement (MT), and the color variant represents average values. 
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A sample of great circle visualization is shown in Figure 19. The state of the allocated 

ships, average DWT, average sailing speed, and average ship age between nodes could co be 

clarified.  

 

 
 

 
 

 
Figure 19. A sample of great circle visualization: (a) average DWT, (b) average sailing speed, and (c) 

average ship age. 
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The amount of cargo movement (MT) as line thickness in Figure 19. Specifically, Figure 

19a presents the great circle visualization of average DWT in the simulation results. This figure 

has the route with an average DWT of less than 70,000, 70,000–80,000, 80,000–90,000, and more 

than 90,000 colored in blue, green, yellow, and red. We can confirm that the ships with the largest 

average DWT (>90,000) were allocated on the routes of South East Asia, East Australia, and 

South Australia to Japan and China. 

Moreover, Figure 19b shows the great circle visualization of average sailing speed in the 

simulation results. This figure has the route with an average sailing speed (kn) of less than 6, 6–

8, 8–10, and more than 10, colored in blue, green, yellow, and red. The visualization suggests 

that routes with major cargo movement; South East Asia, East Australia, and South Australia to 

Japan and China allocated the ships with an average sailing speed 8–10 knots. 

In a similar scheme, we visualized the average ship age in the great circle format, as shown 

in Figure 19c. This visualization owns the route with average ship age (y/o) of less than 5, 5–10, 

10–15, and more than 15, colored in blue, green, yellow, and red. This shows that the routes with 

the highest cargo movement (85 MT) consist of 5–10 years old ships. To conclude the presented 

visualization sample, we can identify that larger ships served major routes. In addition, these are 

typically younger ships operated at moderate speeds. 
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5. CASE STUDIES AND DISCUSSIONS 

 

5.1. Case Studies intended for Capesize Dry Bulk Carrier 

5.1.1. Overview of Case Studies intended for Capesize Dry Bulk Carrier 

We conducted several simulations using algorithms 1 and 2: ship replacement while 

preserving existing ship allocation (case study 1), optimization of ship allocation using existing 

ships (case study 2), and optimization of ship allocation using new ships instance (case study 3). 

Table 30 shows an overview of case studies of Capesize dry bulk carriers. First, we analyzed the 

actual ship allocation to understand the current ship allocation characteristics. Case study 1 

analyzed new ships to replace existing ships without changing their allocation. Case study 2 

reconstructed the ship allocation using only the existing ships. Case study 3 reconstructed the 

ship allocation using the existing ships and new ships instance (Table 31). Finally, we 

summarized the results of the average DWT and sailing speed graphically in a great circle format 

[53-55]. The following were the objectives of the simulations:  

 Target ship: Capesize dry bulk carrier (DWT 100,000 or more, 1647 ships); 

 Cargo types: Iron ore and coal; 

 Route: Worldwide (sailing routes served by target ship); 

 Operation period: 2018; 

 Assumed fuel attributes (specific fuel consumption, g/kWh; emissions factor, t-CO2/t-

fuel; fuel prices, USD): HFO (175–185; 3.114; 300) and MDO (daily average fuel 

consumption [28,29]; 3.206; 600). 
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Table 30. Overview of case studies of Capesize dry bulk carrier. 

Case 

Study 
Method 

Offered 

Ships 1 

Ship 

Allocation 2 

Cargo 

Movement 3 

Operation 

Conditions 4 

Fuel 

Attributes 5 

1 Algorithm 1 existing existing 
2018; 

Ir, Co 
existing 2018 

2 Algorithm 2 existing optimized 
2018; 

Ir, Co 
predicted 2018 

3 Algorithm 2 
existing, 

new 
optimized 

2018; 

Ir, Co 
predicted 2018 

1 existing: existing ships in the actual ship allocation [39,42]; new: new ships instance. 
2 existing: actual ship allocation; optimized: reconstructed ship allocation. 
3 2018: worldwide cargo movement in 2018 [39]; Ir: iron ore; Co: coal. 
4 existing: operation conditions in the actual ship allocation; predicted: predicted operation conditions by 

using deep learning model. 
5 2018: assumed fuel attributes in 2018 [48]. 
 

5.1.2. Definition of New Ships Instances in Case Studies intended for Capesize Dry Bulk Carrier 

For case studies 1 and 3, we offered new ships with the same principal particulars but with 

the ADM of Capesize dry bulk carrier in 2021 (𝐴𝐷𝑀𝐶21 ). Figure 20 presents the ADM of 

Capesize dry bulk carriers before and after common structural rules for bulk carriers (CSR-BC).  

 

 

Figure 20. Ship admiralty coefficient (ADM) of Capesize dry bulk carrier before and after common 

structural rules for bulk carriers (CSR-BC) [42,56,57]. 
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In case study 1, a new ship (𝑖′) was defined for each existing ship (𝑖) of the 2018 ship 

allocation. The existing and new ships of Capesize dry bulk carriers are defined as 𝐼 and 𝐼′, 

respectively. Thus, the main engine power (𝑃𝑖′) of the new ship 𝑖′ was reduced by preserving a 

constant ship 𝑖 design speed as follows [56]: 

 

  𝑷𝒊′ = 𝑷𝒊 × (
𝑨𝑫𝑴𝒊

𝑨𝑫𝑴𝑪𝟐𝟏
)    ∀𝒊 ∈ 𝑰,    ∀𝒊′ ∈ 𝑰′, (31) 

 

where 𝑃𝑖 is the main engine power of the existing ship 𝑖 (kW), 𝐴𝐷𝑀𝑖 is the ADM of the existing 

ship 𝑖, 𝐴𝐷𝑀𝐶21 is the defined ADM of Capesize dry bulk carrier in 2021: 697.29, and 𝑖 is an 

individual ship (1647 Capesize dry bulk carriers operating in 2018). 

Moreover, in case study 3, the new ship specifications were sampled from the existing 

ships of the 2018 ship allocation. The set of sampled ships is defined as 𝑆. We defined these ships 

as more efficient since they had the ADM of Capesize dry bulk carrier in 2021: 697.29 (see Figure 

20). Hence, the main engine power (𝑃𝑠
′) was reduced by retaining a constant ship 𝑠 design speed 

as follows [56]: 

 

  𝑷𝒔
′ = 𝑷𝒔 × (

𝑨𝑫𝑴𝒔

𝑨𝑫𝑴𝑪𝟐𝟏
)    ∀𝒔 ∈ 𝑺, (32) 

 

where 𝑃𝑠 is the main engine power of ship 𝑠 (kW), 𝐴𝐷𝑀𝑠 is the ADM of ship 𝑠, 𝐴𝐷𝑀𝐶21 is the 

defined ADM of Capesize dry bulk carrier in 2021: 697.29, and 𝑠 is an individual ship (six ships 

sampled from 1647 Capesize dry bulk carriers operating in 2018). Table 31 lists the specifications 

of the new ships. These ships had the same principal particulars as the sampled ships but lower 

main engine power. 
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Table 31. Assumed specifications of the new ships. 

New 

Ship 
DWT  1 

d  

(m) 1 

B 

(m) 1 

L 

(m) 1 

v  

(kn) 1 

Age 
2 

Existing 

ME Power 

(kW) 3 

New Ship 

ME Power 

(kW) 3 

ME Power 

Reduction  

(%) 3 

A 100,076 12.9 43 250 14.5 1 11,400 10,414 9.5 

B 183,194 18.2 45 292 14.5 1 15,815 15,317 3.2 

C 208,377 18.3 50 300 14.5 1 17,300 16,795 3.0 

D 261,046 18.8 57 327 14.5 1 22,324 19,446 14.8 

E 297,204 21.4 55 327 14.5 1 23,280 21,042 10.6 

F 403,508 23 65 361 14.5 1 29,260 25,583 14.4 
1 DWT: new ships’ deadweight tonnage; d: new ships’ draught; B: new ships’ breadth; L: new ships’ 

length; v: new ships’ design speed;  
2 Age: assumed ship age;  
3 ME: main engine. 
 

5.1.3. Actual Ship Allocation of Capesize Dry Bulk Carrier 

Before conducting simulations, it is necessary to analyze the typical features of the actual 

ship allocation. Figure 21 proportionally illustrates the ships’ average DWT and sailing speed, 

such that the line thickness indicates the annual cargo movement on each route, and the sorted 

colors represent the DWT and sailing speed variance. 

In the West Australia–China routes, which have the highest cargo movement, the average 

DWT is 180,000–200,000, and the average sailing speed is 8.5–9.5 knots, which indicates the use 

of smaller ships at typically slower speeds. Additionally, the long-distance routes, such as Brazil–

China, show the ships operating with an average DWT of 200,000–260,000 and an average 

sailing speed exceeding 9.5 knots, which indicates that the routes are served by larger ships at 

higher speeds. 
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Figure 21. Actual ship allocation of Capesize dry bulk carrier: (a) Average DWT and (b) sailing speed. 
 

 

5.1.4. Case study 1: Ship Replacement while Preserving the Existing Ship Allocation 

5.1.4.1. Definition of Case Study 1 

This case study attempted to directly replace each existing ship with a new ship 

without changing the actual ship allocation and then to observe the changes in the total 

COST and GHG emissions, including COST-optimized ship replacement while 

preserving the existing ship allocation (case study 1a) and GHG-optimized ship 

replacement while preserving the existing ship allocation (case study 1b). The following 

were the parameters of case study 1:  

 Method: Allocation algorithm 1; 

 Offered ships: A new ship with the ADM of Capesize dry bulk carrier in 2021 

for each existing ship in the actual ship allocation. 
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5.1.4.2. Results of Case Study 1 

The allocated new ship rates for cases 1a and 1b are shown in Figure 22. Both 

the cases show a typically high allocation rate for new ships. Figure 22a shows the major 

routes in which the allotted new ships take for over 40%–60% of the operation numbers. 

Meanwhile, Figure 22b shows that the new ships accounted for more than 60% of the 

worldwide operation numbers. 

 

 
 

 

Figure 22. Ship replacement while preserving existing ship allocation of Capesize dry bulk carrier: 

Allocated new ship rate of (a) case study 1a (COST-optimized) and (b) case study 1b (GHG-optimized). 
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As shown in Table 32, minor reductions in the total COST and GHG emissions 

can be seen in case study 1. In case study 1a, new ships replaced 58.8% of the total number 

of existing ship operations, which reduced the total COST by 3.5%, and the GHG 

emissions were reduced by 5.6% compared to the actual ship allocation. Moreover, case 

study 1b allotted 87.5% of its operations to new ships, which allowed a 9.7% reduction in 

the GHG emissions, but the total COST increased by 0.4%. 

 

5.1.5. Case study 2: Optimization of Ship Allocation in Time-Charter Contract using Existing 

Ships 

5.1.5.1. Definition of Case Study 2 

In this case study, we discussed optimizing the ship allocation using only the 

existing Capesize dry bulk carrier. The two case studies covered are: COST-optimized 

ship allocation using existing ships (case study 2a) and GHG-optimized ship allocation 

using existing ships (case study 2b). The following were the parameters for case study 2:  

 Method: Allocation algorithm 2; 

 Offered ships: The existing ships operated in the current ship allocation. 

 

5.1.5.2. Results of Case Study 2 

The results obtained for case study 2 are illustrated in Figure 23 and Figure 24. 

From Figure 23a, we can ascertain that the Brazil–China routes allotted larger ships with 

a DWT of more than 260,000 and an average sailing speed of more than 9.5 knots. The 

average DWT of ships designated to the Brazil–China routes increased, compared to the 

actual ship allocation, due to the use of larger ships.  

In Figure 23b, the major routes are allocated to ships with an average sailing 

speed of 8.5–9.5 knots. Subsequently, Figure 24a depicts a similar average DWT as the 

actual ship allocation, and the average sailing speed shown in Figure 24b is generally 

slower. This analysis indicated the importance of speed reduction in optimizing the ships' 

fuel consumption and GHG emissions. 
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Figure 23. Ship allocation optimization in time-charter contract using existing ships of Capesize dry 

bulk carrier: Case study 2a (COST-optimized) (a) average DWT and (b) sailing speed. 
 

As summarized in Table 32, case study 2a reduced the total COST by 7.3% 

compared to the actual ship allocation, whereas the total GHG emissions were reduced by 

14.8% in case study 2b. Additionally, the ship operation numbers of case studies 2a and 

2b were reduced by 1.1% and 2.2%, respectively. The operation-level alterations made 

such changes in the ship allocation, despite simply employing the existing ships. 

Nevertheless, a significant reduction in the total COST and GHG emissions could not be 

obtained using only the existing ships. 
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Figure 24. Ship allocation optimization in time-charter contract using existing ships of Capesize dry 

bulk carrier: Case study 2b (GHG-optimized) (a) average DWT and (b) sailing speed. 
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5.1.6. Case study 3: Optimization of Ship Allocation in Time-Charter Contract with New Ships 

Instance 

5.1.6.1. Definition of Case Study 3 

In addition to the analysis of case study 2 (Section 5.1.5), this case study presents 

a set of new ships. We examined the competitive new ships that could replace the existing 

ships by conducting simulations to optimize the ship allocation with these new ships. The 

following were the parameters of case study 3:  

 Method: Allocation algorithm 2; 

 Offered ships: The existing ships of case study 2 and new ships. 

As new ships could be allotted indefinitely, we discussed the following case 

studies: COST-optimized ship allocation with new ships instance (case study 3a) and 

GHG-optimized ship allocation with new ships instance (case study 3b). 

 

5.1.6.2. Results of Case Study 3 

This case study optimized the ship allocation by allowing the existing ships to be 

replaced by new ships. This allowed us to ascertain the average DWT and sailing speed 

patterns simultaneously on a global scale. Figure 25 and Figure 26 show the ship 

allocation results of case study 3. From Figure 25a and Figure 26a, we can observe that 

both the case studies allocated ships with a similar average DWT. The major routes in 

Figure 25b have a uniform average sailing speed of more than 8.5 knots, similar to case 

study 2. The allocated ships’ lower average sailing speed compared to the actual ship 

allocation can be seen in Figure 26b. The short- and long-distance routes allocated ships 

with an average sailing speed of less than 8.5 knots and 8.5–9.5 knots, respectively. This 

indicated that the importance of sailing speed varied depending on the sailing distance. 
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Figure 25. Ship allocation optimization in time-charter contract of Capesize dry bulk carrier with new 

ships instance: Case study 3a (COST-optimized) (a) average DWT and (b) sailing speed. 
 

  

(x1000)  –180  180–200  200–260 260–+

(a) Case study 3a (COST-optimized) average DWT

646
517
388
258
129
64
32

(in MT)

(b) Case study 3a (COST-optimized) average sailing speed

646
517
388
258
129
64
32

(in MT)

(in kn)     –8.0   8.0–8.5    8.5–9.5 9.5–+



80 

 
 

 

Figure 26. Ship allocation optimization in time-charter contract of Capesize dry bulk carrier with new 

ships instance: Case study 3b (GHG-optimized) (a) average DWT and (b) sailing speed. 
 

In Table 32, we observe that case study 3a reduces the total COST by 9.5% 

compared to the actual ship allocation. These reductions were accounted for by new ships, 

replacing 40.9% of the existing operations. In case study 3b, the GHG emissions were 

reduced by 22.8%, but the total COST increased by 4.6%. To conclude, we identified a 

significant reduction in the total COST and GHG emissions by adding new ships. 
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5.1.7. Discussion 1: Significance of the Total COST and GHG Emissions Reductions 

The results of each case study are compiled in Table 32. Case studies 1a and 1b employed 

new ships covering 58.8% and 87.5% of the worldwide operation numbers using allocation 

algorithm 1. However, only minor changes were typically observed compared to the actual ship 

allocation, with a 3.5% total COST reduction in case study 1a and a 9.7% GHG emissions 

reduction in case study 1b.  

Case study 2 optimized the ship allocation using only the existing ships operating in the 

current ship allocation by deploying allocation algorithm 2. Case study 2a realized a 7.3% total 

COST reduction, two times which of case study 1a, compared to the actual ship allocation. For 

the GHG emissions aspect, case study 2b achieved a 14.8% reduction, 1.5 times that of case study 

1b. A more significant reduction in the total COST and GHG emissions was achieved in case 

study 2 than in case study 1.  

In addition, using only the existing ships, differences in the allocated ship size can be 

observed in the case study 2 through the average sailing distances for each ship size category, as 

shown in Figure 27. For ships with DWT more than 260,000, an increase in the average sailing 

distances can be ascertained in COST-optimized case (Case 2a), whereas GHG-optimized case 

(Case 2b) allocated more operations with average sailing distances similar to the actual ship 

allocation.  

 

 

Figure 27. Average sailing distances of case study 2: ship allocation optimization in time-charter 

contract using existing ships of Capesize dry bulk carrier. 
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On the other hand, in the COST optimized case (Case 2a), ships with DWT 180,000–

200,000 and 200,000–260,000 were averagely sailed less than actual ship allocation; in the 

contrary, these ships were averagely sailed longer distances in GHG-optimized case (Case 2b). 

Case study 3 proposed new ships in applying allocation algorithm 2 under the same 

constraints as case study 2. The new ships were defined as being able to be allocated indefinitely, 

which allowed such ships with higher merits to replace the existing ships as needed. In case study 

3a, 40.9% of the operation numbers were served by the new ships, allowing a 9.5% total COST 

reduction compared to the actual ship allocation. For GHG emissions, 48.2% of the operation 

numbers in case study 3b were served by the new ships. This enabled a considerable reduction of 

22.8% in GHG emissions. Additionally, case study 3 allocated new ships at a considerably lower 

rate than case study 1. Nevertheless, the most significant reduction in the total COST and GHG 

emissions was actualized by presenting the new ships for the ship allocation optimization. 

 

Table 32. Results of case studies 1, 2, and 3. 

Case Studies 

Total COST GHG Emissions Total Operation  Operation Number 

of Allocated New 

Ships (%) 1 

in Million USD in MT Numbers 

(Reduction in %) (Reduction in %) (Reduction in %) 

Actual  10,848 34.9 9185 
na 

ship allocation (0.0) (0.0) (0.0) 

Case study 1a 10,469 33.0 9185 
58.8 

(COST-optimized) (-3.5) (-5.6) (0.0) 

Case study 1b 10,883 31.6 9185 
87.5 

(GHG-optimized) (−0.4) (-9.7) (0.0) 

Case study 2a 10,063 32.7 9091 
na 

(COST-optimized) (-7.3) (-6.6) (-1.1) 

Case study 2b 10,249 29.8 8989 
na 

(GHG-optimized) (-5.6) (-14.8) (-2.2) 

Case study 3a 9827 30.3 8246 
40.9 

(COST-optimized) (-9.5) (-13.3) (-10.3) 

Case study 3b 11,345 27.0 7560 
48.2 

(GHG-optimized) (−4.6) (-22.8) (-17.7) 
1 na: not available–no new ship in the ship allocation. 
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5.1.8. Discussion 2: New Ship Demand 

In the previous section, case study 3 specified that notable results could be obtained by 

optimizing the ship allocation with the new ships instance. The allocated new ship rates of case 

studies 3a and 3b are shown in Figure 28. The allocated new ship rate was observed to vary 

depending on the sailing distance. Similarly, in the COST- and GHG-optimized cases, more than 

60% of the new ships were allocated in the West Australia–China routes, the major iron ore routes 

with 646 million tons of cargo movement demands. 
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Figure 28. Ship allocation optimization of Capesize dry bulk carrier with new ships instance: Allocated 

new ship rate of (a) case study 3a (COST-optimized) and (b) case study 3b (GHG-optimized). 
 

Next, we examined the distinct specifications of the demanded new ships in the West 

Australia–China routes. Figure 29 shows the composition of operations in the COST- and GHG-

optimized ship allocations with the new ships instance. The new ship E (DWT 290,000) was the 

most allocated, accounting for 47.9% and 54.7% of the COST- and GHG-optimized ship 

allocation operations, respectively. 
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Figure 29. COST- and GHG-optimized ship allocation with new ships instance (case study 3): 

Composition of operations in the routes of West Australia–China. 
 

This proved that the new ship E specification improvement, through the ADM of Capesize 

dry bulk carrier in 2021, presented a larger benefit than the existing ships in both the optimization 

cases. Moreover, looking at the significant main port restrictions of West Australia–China (Table 

33), the largest new ship that entered was the new ship E, thus confirming that the demanded ship 

was a large iron ore bulk carrier. 

 

Table 33. Significant main port limitations of West Australia and China. 

Region Port Name 
Cargo Throughput  

(MT) 

L 

(m) 1 

B  

(m) 1 

d  

(m) 1 

West 

Australia 

Port Hedland 386.8 340.0 57 25.5 

Dampier 124 330.1 57 25.5 

Port Walcott 118.1 330.1 57 25.5 

China 

Caofeidian 77.8 362.0 65 24.3 

Jingtang 71.7 333.0 60 25.5 

Zhoushan 66.1 362.0 65 23.3 

Tianjin 62.1 340.0 60 22.2 

Rizhao 50.5 340.0 62 22.6 
1 L: ports’ length restriction; B: ports’ breadth restriction; d: ports’ draught restriction. 
 

 

New ship A

(DWT 100,000)

New ship B

(DWT 180,000)

New ship C

(DWT 200,000)

New ship D

(DWT 260,000)

New ship E

(DWT 290,000)

New ship F

(DWT 400,000)

Existing ships

GHG-optimized ship allocation 

(case study 3b)

COST-optimized ship allocation 

(case study 3a)

6.9%

10.1%

47.9%

35.1% 26.0%

1.0% 8.7%

9.4%

54.7%
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5.2. Case Studies intended for Panamax and MiniCape Dry Bulk Carriers 

5.2.1. Overview of Case Studies intended for Panamax–MiniCape Dry Bulk Carriers 

We conducted several simulations using algorithms 1, 2, and 3: ship replacement while 

preserving existing ship allocation (case study 4), optimization of ship allocation in time- and 

voyage-charter contracts using existing ships (case study 5), and optimization of ship allocation 

time- and voyage-charter contracts with new ships instance (case study 6). Table 34 shows an 

overview of case studies of Panamax–MiniCape dry bulk carrier. The following were the 

objectives of the simulations:  

 Target ship: Panamax–MiniCape dry bulk carriers (DWT 65,000-140,000, 2479 ships); 

 Cargo types: Iron ore, coal, grain, and others; 

 Route: Worldwide (sailing routes served by target ship); 

 Operation period: 2018; 

 Assumed fuel attributes (specific fuel consumption, g/kWh; emissions factor, t-CO2/t-

fuel; fuel prices, USD): HFO (175–185; 3.114; 300–375) and MDO (daily average fuel 

consumption [28,29]. 

 

Table 34. Overview of case studies of Panamax–MiniCape dry bulk carrier. 

Case 

Study 
Method 

Offered 

Ships 1 

Ship 

Allocation 2 

Cargo 

Movement 3 

Operation 

Conditions 
4 

Fuel 

Attributes 5 

4 Algorithm 1 existing existing 
2018; 

Ir, Co, Gr, Ot 
existing 2018 

5 Algorithms 2, 3 existing optimized 
2018; 

Ir, Co, Gr, Ot 
predicted 2018 

6 Algorithms 2, 3 
existing, 

new 
optimized 

2018; 

Ir, Co, Gr, Ot 
predicted 2018 

7 Algorithms 2, 3 new optimized 
2030; 2050; 

Ir, Co, Gr, Ot 
predicted 

2030– 

2050 
1 existing: existing ships in the actual ship allocation [40,42]; new: new ships instance. 
2 existing: actual ship allocation; optimized: reconstructed ship allocation. 
3 2018: worldwide cargo movement in 2018 [40]; 2030: predicted worldwide cargo movement in 2030 

[58]; 2050: worldwide cargo movement in 2050 [58]; Ir: iron ore; Co: coal; Gr: grain; Ot: others. 
4 existing: operation conditions in the actual ship allocation; predicted: predicted operation conditions by 

using route-base average. 
5 2018: assumed fuel attributes in 2018; 2030–2050: assumed fuel attributes for future scenarios. 
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5.2.2. Definition of New Ships Instance in Case Studies intended for Panamax–MiniCape Dry 

Bulk Carriers 

For case studies 4 and 6, we offered new ships with the same principal particulars but with 

the ADM of Panamax–MiniCape dry bulk carriers in 2021 (𝐴𝐷𝑀𝑃21). Figure 30 presents the 

ADM of Panamax–MiniCape dry bulk carriers before and after CSR-BC.  

 

 

Figure 30. Ship ADM of Panamax–MiniCape dry bulk carriers before and after CSR-BC [42,56,57]. 
 

In case study 4, a new ship (𝑖′) was defined for each existing ship (𝑖) of the 2018 ship 

allocation. The set of existing and new ships of Panamax–MiniCape dry bulk carriers are defined 

as 𝐼 and 𝐼′, respectively. Thus, the main engine power (𝑃𝑖′) of the new ship 𝑖′ was reduced by 

preserving a constant ship 𝑖 design speed. 𝑃𝑖′  is calculated as the Capesize dry bulk carrier’s case 

(Equation (31)), by replacing the ADM of Capesize dry bulk carrier in 2021 (𝐴𝐷𝑀𝑃21) with the 

ADM of Panamax–MiniCape dry bulk carriers in 2021 (𝐴𝐷𝑀𝐶21), as follows [56]: 

 

  𝑷𝒊′ = 𝑷𝒊 × (
𝑨𝑫𝑴𝒊

𝑨𝑫𝑴𝑷𝟐𝟏
)    ∀𝒊 ∈ 𝑰,    ∀𝒊′ ∈ 𝑰′, (33) 

 

where 𝑃𝑖 is the main engine power of the existing ship 𝑖 (kW), 𝐴𝐷𝑀𝑖 is the ADM of the existing 

ship 𝑖, 𝐴𝐷𝑀𝑃21 is the defined ADM of Panamax–MiniCape dry bulk carriers in 2021: 705.96, 

and 𝑖 is an individual ship (2479 Panamax–MiniCape dry bulk carriers operating in 2018). 
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Moreover, in case study 6, the new ship specifications were sampled from the existing 

ships of the 2018 ship allocation. The set of sampled ships is defined as 𝑆. We defined these ships 

as more efficient since they had the ADM of Panamax–MiniCape dry bulk carriers in 2021: 

705.96 (see Figure 30). Hence, the main engine power (𝑃𝑠
′) was reduced by retaining a constant 

ship 𝑠 design speed. 𝑃𝑠
′ is calculated as the Capesize dry bulk carrier’s case (Equation (32)) by 

replacing the ADM of Capesize dry bulk carrier in 2021 (𝐴𝐷𝑀𝑃21) with the ADM of Panamax–

MiniCape dry bulk carriers in 2021 (𝐴𝐷𝑀𝐶21), as follows [56]: 

 

  𝑷𝒔
′ = 𝑷𝒔 × (

𝑨𝑫𝑴𝒔

𝑨𝑫𝑴𝑷𝟐𝟏
)    ∀𝒔 ∈ 𝑺, (34) 

 

where 𝑃𝑠 is the main engine power of ship 𝑠 (kW), 𝐴𝐷𝑀𝑠 is the ADM of ship 𝑠, 𝐴𝐷𝑀𝑃21 is the 

defined ADM of Panamax–MiniCape dry bulk carriers in 2021: 705.96, and 𝑠 is an individual 

ship (eight ships sampled from 2479 Panamax–MiniCape dry bulk carriers operating in 2018). 

These ships had the same principal particulars as to the sampled ships but lowered main engine 

power, as shown in Table 35. 

 

Table 35. Assumed specifications of the new ships. 

New 

Ship 
DWT  1 

d  

(m) 1 

B 

(m) 1 

L 

(m) 1 

v  

(kn) 1 

Age 
2 

Existing 

ME Power 

(kW) 3 

New Ship 

ME Power 

(kW) 3 

ME Power 

Reduction  

(%) 3 

A 66,485 12.9 36 200 14.5 1 8470 7892 6.8 

B 67,508 13.2 32 225 14.5 1 9000 8051 10.5 

C 75,122 13.8 32 225 14.5 1 10,750 8403 21.8 

D 77,679 12.9 37 229 14.5 1 10,224 8603 15.9 

E 85,001 14.0 37 229 14.5 1 9660 9198 4.8 

F 95,790 14.5 38 235 14.5 1 12,950 9937 23.3 

G 106,415 13.6 43 254 14.5 1 13,560 10,807 20.3 

H 118,863 14.8 43 260 14.5 1 13,560 11,757 13.3 
1 DWT: new ships’ deadweight tonnage; d: new ships’ draught; B: new ships’ breadth; L: new ships’ 

length; v: new ships’ design speed;  
2 Age: assumed ship age;  
3 ME: main engine. 
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5.2.3. Actual Ship Allocation of Panamax–MiniCape Dry Bulk Carriers 

Similar to Capesize dry bulk carrier (Section 5.1.3), the typical characteristics of the actual 

ship allocation must be ascertained. The ships’ average DWT, ship age, and sailing speed in the 

actual ship allocation of Panamax–MiniCape dry bulk carriers are respectively shown in Figure 

31. The line thickness indicates the annual cargo movement on each route, and the sorted colors 

represent the variance of the DWT, ship age, and sailing speed. 

In the South East Asia–China routes, which have the largest cargo movement, the average 

DWT is 75,000–85,000, the average ship age is 3–10 years old, and the average sailing speed is 

less than 8 knots, which indicates the use of smaller ships at typically slower speeds. Additionally, 

the long-distance routes, such as Brazil–China, show the operated ships with an average DWT of 

75,000–85,000, the average ship age is 10–15 years old, and an average sailing speed was 

exceeding 9–10 knots, which indicates that the routes are served by older ships at higher speeds. 
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Figure 31. Actual ship allocation of Panamax–MiniCape dry bulk carriers: (a) Average DWT, (b) sailing 

speed, and (c) ship age. 
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5.2.4. Case study 4: Ship Replacement while Preserving the Existing Ship Allocation 

5.2.4.1. Definition of Case Study 4 

This case study attempted to directly replace each existing ship with a new ship 

without changing the actual ship allocation and then to observe the changes in the total 

COST and GHG emissions, including COST-optimized ship replacement while 

preserving the existing ship allocation (case study 4a) and GHG-optimized ship 

replacement while preserving the existing ship allocation (case study 4b). The following 

were the parameters of case study 1:  

 Method: Allocation algorithm 1; 

 Offered ships: A new ship with the ADM of Panamax–MiniCape dry bulk 

carriers in 2021 for each existing ship in the actual ship allocation. 

 

5.2.4.2. Results of Case Study 4 

The allocated new ship rates for cases 4a and 4b are shown in Figure 32. Both 

the cases show a typically high allocation rate for new ships. Figure 32a shows the major 

routes in which the allotted new ships take over 70%–90% of the operation numbers. 

Meanwhile, Figure 32b shows that the new ships accounted for more than 90% of the 

operation numbers on most routes. 
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Figure 32. Ship replacement while preserving existing ship allocation of Panamax–MiniCape dry bulk 

carriers: Allocated new ship rate of (a) case study 4a (COST-optimized) and (b) case study 4b (GHG-

optimized). 
 

As shown in Table 36, minor reductions in the total COST and GHG emissions 

can be seen in case study 4. In case study 4a, new ships replaced 73.8% of the total number 

of existing ship operations, which reduced the total COST by 3.5%, and the GHG 

emissions were reduced by 3.3% compared to the actual ship allocation. Moreover, case 

study 4b allotted 94.9% of its operations to new ships, which allowed a 4.8% reduction in 

the GHG emissions, and the total COST was reduced by 3.0%. 
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5.2.5. Case study 5: Optimization of Ship Allocation in Time- and Voyage-Charter Contracts 

using Existing Ships 

5.2.5.1. Definition of Case Study 5 

In this case study, we discussed optimizing the ship allocation using only the 

existing ships of Panamax–MiniCape dry bulk carriers. The four case studies covered are: 

COST-optimized ship allocation in time-charter contracts using existing ships (case study 

5a), GHG-optimized ship allocation in time-charter contracts using existing ships (case 

study 5b), COST-optimized ship allocation in voyage-charter contract using existing ships 

(case study 5c), and GHG-optimized ship allocation in voyage-charter contract using 

existing ships (case study 5d). The following were the parameters for case study 2: 

 Method: Allocation algorithms 2 and 3; 

 Offered ships: The existing ships of Panamax–MiniCape dry bulk carriers 

operating in the current ship allocation. 

 

5.2.5.2. Results of Case Study 5 

The results obtained for case study 5 are illustrated in Figure 33, Figure 34, 

Figure 35, and Figure 36. From Figure 33, we can ascertain the route with the largest 

cargo movement; South East Asia–China routes allotted larger ships with an average 

DWT of 85,000–95,000 and an average ship age of 3–10 years old. With the same average 

ship age, the average DWT of ships designated to South East Asia–China routes increased 

compared to the actual ship allocation due to the use of larger ships.  

In Figure 34, the major routes are allocated to ships with an average ship age of 

3–10 years old, including the long-distance routes of Brazil–China. Subsequently, the 

average DWT of ships allocated to these routes was increased compared to the actual ship 

allocation, with an average DWT of 85,000–95,000. In addition, South East Asia–China 

routes in Figure 34 depict a similar average DWT as the actual ship allocation but older 

ships with an average ship age of 10–15 years old. To reduce the global GHG emissions 

in the time-charter contract, these results indicated the importance of typically young 

larger ships for long-distance routes. 
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Figure 33. Ship allocation optimization in time-charter contract using existing ships of Panamax–

MiniCape dry bulk carriers: Case study 5a (COST-optimized) (a) average DWT and (b) ship age. 
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Figure 34. Ship allocation optimization in time-charter contract using existing ships of Panamax–

MiniCape dry bulk carriers: Case study 5b (GHG-optimized) (a) average DWT and (b) ship age. 
 

Furthermore, from Figure 35, we can ascertain that the major routes allocated 

ships with various average DWT compared to the actual ship allocation. Moreover, the 

average ship age ranges between 3–10 and 10–15 years old. These suggest that the ships 

were designated following the monthly cargo movement fluctuation. Thus, the 

significance of reducing the total COST for each route in the voyage-charter is diversified. 

In Figure 36a, the size of allocated ships in major routes is more evenly 

distributed with an average DWT of 75,000–85,000 and 85,000–95,000. Subsequently, 

Figure 36b depicts a uniform average ship age of 3–10 years old. These results indicated 

the importance of younger ships in optimizing the GHG emissions. 
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Figure 35. Ship allocation optimization in voyage-charter contract using existing ships of Panamax–

MiniCape dry bulk carriers: Case study 5c (COST-optimized) (a) average DWT and (b) ship age. 
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Figure 36. Ship allocation optimization in voyage-charter contract using existing ships of Panamax–

MiniCape dry bulk carriers: Case study 5d (GHG-optimized) (a) average DWT and (b) ship age. 
 

As summarized in Table 36, case study 5a reduced the total COST by 0.4% 

compared to the actual ship allocation, which was less reduction compared to case study 

4a. Moreover, the total GHG emissions were reduced by 5.2% in case study 5b. 

Additionally, the ship operation numbers of case studies 5a and 5b were reduced by 6.5% 

and 5.0%, respectively. Next, considering the case of voyage-charter, case study 5c 

reduced the total COST by 7.6% compared to the actual ship allocation, whereas the total 

GHG emissions in case study 5d were reduced by 10.9%. In addition, the ship operation 

numbers of case studies 5c and 5d were reduced by 1.7% and 1.5%, respectively. The 

operation-level alterations made such changes in the ship allocation, despite simply 

employing the existing ships. Nevertheless, a significant reduction in the total COST and 

GHG emissions could not be obtained using only the existing ships. 
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5.2.6. Case study 6: Optimization of Ship Allocation in Time- and Voyage-Charter Contracts 

with New Ships Instance 

5.2.6.1. Definition of Case Study 6 

In addition to the analysis of case study 5, which is already discussed in Section 

5.2.5, this case study offers a set of new ships to the optimization. We examined the 

competitive new ships that could replace the existing ships by conducting simulations to 

optimize the ship allocation with these new ships. The following were the parameters of 

case study 6: 

 Method: Allocation algorithms 2 and 3; 

 Offered ships: The existing ships of case study 5 and eight new ships with the 

ADM of Panamax–MiniCape dry bulk carriers in 2021. 

As new ships could be allotted indefinitely, we discussed the following case 

studies: COST-optimized ship allocation in time-charter contract with new ships instance 

(case study 6a), GHG-optimized ship allocation in time-charter contract with new ships 

instance (case study 6b), COST-optimized ship allocation in voyage-charter contract with 

new ships instance (case study 6c), and GHG-optimized ship allocation in voyage-charter 

contract with new ships instance (case study 6d). 

 

5.2.6.2. Results of Case Study 6 

This case study optimized the ship allocation by allowing the existing ships to be 

replaced by new ships. This allowed us to ascertain the average DWT and sailing speed 

patterns simultaneously on a global scale. Figure 37 and Figure 38 present the ship 

allocation in the time-charter contract results of case study 6. We can observe that both 

case studies allocated ships with an identical average DWT of more than 95,000. Similarly, 

the major routes for both cases selected a ship with an average ship age of less than 3 

years old. Specifically, the difference between these cases can be ascertained in the 

average ship age of North America–Japan routes. Figure 37b and Figure 38b show that 

ships with average ship age 10–15 and less than 3 years old were allocated in these minor 

routes. With new ships instance, these indicated that the importance of DWT and ship age 

were equal in a time-charter contract. 
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Figure 37. Ship allocation optimization in time-charter contract of Panamax–MiniCape dry bulk carriers 

with new ships instance: Case study 6a (COST-optimized) (a) average DWT and (b) ship age. 
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Figure 38. Ship allocation optimization in time-charter contract of Panamax–MiniCape dry bulk carriers 

with new ships instance: Case study 6b (GHG-optimized) (a) average DWT and (b) ship age. 
 

Moreover, Figure 39 and Figure 40 present the ship allocation in voyage-charter 

contract results of case study 6. From Figure 39 a and Figure 40a, we can observe that 

both case studies allocated ships with a similar average DWT. South East Asia–China and 

Brazil–China routes allocated ships with the average DWT of 85,000–95,000 and 75,000–

85,000, respectively. Additionally, larger ships with an average DWT of more than 95,000 

were designated for Australia–China and Australia–Japan routes. 

Furthermore, Figure 39b and Figure 40b show disparity in the allocated ships’ 

average ship age. Ships with an average age of 14–15 years old can be observed in the 

South East Asia–China and South East Asia –Japan routes of Figure 39b. On the other 

hand, Figure 40b depicts a globally uniform average ship age of fewer than 3 years old.  
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With new ships instance, these indicated that the importance of DWT is equally 

proportionated to the monthly cargo movement of each route. In addition, the significance 

of new ships in reducing the GHG emissions was shown by the allocated ships that consist 

of an only younger ships. 

 

 
 

 

Figure 39. Ship allocation optimization in voyage-charter contract of Panamax–MiniCape dry bulk 

carriers with new ships instance: Case study 6c (COST-optimized) (a) average DWT and (b) ship age. 
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Figure 40. Ship allocation optimization in voyage-charter contract of Panamax–MiniCape dry bulk 

carriers with new ships instance: Case study 6d (GHG-optimized) (a) average DWT and (b) ship age. 
 

In Table 36, we observe that case study 6a reduced the total COST by 12% 

compared to the actual ship allocation. These reductions were accounted for by new ships, 

replacing 68% of the existing operations. In case study 6b, the GHG emissions were 

reduced by 20.9% by the allocated new ships of 77.4%.  

Similarly, considering the voyage-charter, case study 6c reduced the total COST 

by 13.7% compared to the actual ship allocation, whereas the total GHG emissions in case 

study 6d were reduced by 21.4%. Case studies 6c and 6d take new ships into their ship 

allocation by 70.7% and 85.2%, respectively. To conclude, we identified a significant 

reduction in the total COST and GHG emissions by adding new ships. 

  

(a) Case study 6d (GHG-optimized) average DWT

(x1000)  –75      75–85      85–95 95–+

85
50
30
20
10
5
2

(in MT)

(b) Case study 6d (GHG-optimized) average ship age

85
50
30
20
10
5
2

(in MT)

(in y/o)     –3       3–10       10–15 15–+



Figures title: 

103 

5.2.7. Discussion 3: Significance of the Total COST and GHG Emissions Reductions in Time- 

and Voyage-Charter Contracts 

The total GHG emissions and COST resulting from case studies 4, 5, and 6 are shown in 

Table 36. Applying algorithm 1 to the existing ship allocation, case studies 4a and 4b offered new 

ships with the same specification as the existing ships but higher ADM. However, it can be 

ascertained that only minor reductions in total GHG emissions and COST have resulted from 

those case studies. 

 

Table 36. Results of case studies 4, 5, and 6. 

Case Studies 

Total COST GHG Emissions Total Operation  Operation Number of 

Allocated New Ships 

(%) 1 

in Million USD in MT Numbers 

(Reduction in %) (Reduction in %) (Reduction in %) 

Actual  9747 30.1  16,110  
na 

ship allocation   (0.0) (0.0) (0.0) 

Case study 4a 9405 29.1  16,110  
73.8 

(COST-optimized) (-3.5) (-3.3) (0.0) 

Case study 4b 9453 28.6  16,110  
94.9 

(GHG-optimized) (-3.0) (-4.8) (0.0) 

Case study 5a 9711 29.1  15,067  
na 

(COST-optimized) (-0.4) (-3.2) (-6.5) 

Case study 5b 9749 28.5  15,307  
na 

(GHG-optimized) (0.0) (-5.2) (-5.0) 

Case study 5c 9002 27.2  15,844  
na 

(COST-optimized) (-7.6) (-9.6) (-1.7) 

Case study 5d 9101 26.8  15,873  
na 

(GHG-optimized) (-6.6) (-10.9) (-1.5) 

Case study 6a 8574 24.3  12,595  
68.0 

(COST-optimized) (-12.0) (-19.3) (-21.8) 

Case study 6b 8647 23.8  12,466  
77.4 

(GHG-optimized) (-11.3) (-20.9) (-22.6) 

Case study 6c 8411 24.3  15,092  
70.7 

(COST-optimized) (-13.7) (-19.4) (-6.3) 

Case study 6d 8498 23.6  15,096  
85.2 

(GHG-optimized) (-12.8) (-21.4) (-6.3) 
1 na: not available–no new ship in the ship allocation. 
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Moreover, applying algorithm 2, case studies 5a and 5b deliver lower reductions in total 

GHG emissions and COST compared to case studies 4a and 4b. On the other hand, using 

algorithm 3, case studies 5c and 5d result in even higher reductions. Referring to Section 5.1.7, 

this pattern differs from the Capesize dry bulk carrier cases. Furthermore, we observe the average 

economic days taken from the operation-level schedule of the allocated ships in case study 5, as 

shown in Table 37. 

 

Table 37. Average economic days taken from case study 5 

Case Studies 1 
Average 

Laden SD 

Average 

Ballast SD 

Average 

Loading PS 

Average 

Unloading PS 

Total 

Average ED 

Actual Ship 

Allocation 
162.0 116.5 14.6 20.1 313.1 

Case study 5a 

(COST-optimized) 
140.5 141.5 13.5 18.7 314.2 

Case study 5b 

(GHG-optimized) 
139.9 140.7 13.8 19.0 313.4 

Case study 5c 

(COST-optimized) 
146.1 114.4 14.3 19.7 294.6 

Case study 5d 

(GHG-optimized) 
145.8 114.6 14.4 19.7 294.5 

1 SD: sailing days (d); PS: port staying time (d); ED: economic days (d). 
 

It can be observed that optimization using algorithm 2 and annual cargo movement 

demand in case studies 5a and 5b, assuming all ships operating in time-charter contract, resulted 

in longer ballast operation time. This condition is caused by the assumption that a ship went 

round-trip, back and forth to the origin port. On the contrary, optimization using algorithm 3 and 

monthly cargo movement demand in the case studies 5c and 5d were able to allocate ships that 

acquired similar average ballast sailing days as the actual ship allocation. Furthermore, we can 

ascertain that this method is the most suitable to simulate the actual ship allocation of the 

Panamax–Minicape dry bulk carrier. 

Finally, optimization with new ships instance of case studies 6a, 6b, 6c, and 6d results 

lowest total GHG emissions and COST compared to other case studies. These case studies offered 

new ships with ADM in 2021, considering eight different DWT categories. Those guaranteed 

lower total GHG emissions and COST while the new ships can be allocated indefinitely. 

Moreover, using algorithm 3, case studies 6c and 6d are ascertained to achieve even higher 

reductions in total GHG emissions and COST compared to case studies 6a and 6b. 
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5.2.8. Discussion 4: New Ship Demand in Time- and Voyage-Charter Contracts 

In the previous section, case study 6 specified that notable results could be obtained by 

optimizing the ship allocation with the new ships instance. The allocated new ship rates of case 

studies 6a–6d are shown in Figure 41. The allocated new ship rate was observed to vary 

depending on the sailing distance. Generally, in the GHG-optimized cases of 6b and 6d, more 

than 60% of the new ships were allocated in the South East Asia–China routes, with the largest 

cargo movement demands. 
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Figure 41. Ship replacement while preserving existing ship allocation of Panamax–MiniCape dry bulk 

carrier: Allocated new ship rate of (a) case study 6a (COST-optimized), (b) case study 6b (GHG-

optimized) (c) case study 6c (COST-optimized), (d) case study 6d (GHG-optimized). 
 

Next, Figure 42  shows the composition of operations in the case studies 6a–6d. In the 

case of the time-charter contract, the largest new ship, new ship H (DWT 110,000), was the most 

allocated, accounting for 40% and 43.7% of the operations of the case studies 6a and 6b, 

respectively. On the other hand, the case studies of 6c and 6d allocated new ships evenly with the 

dominance of new ship C. This ship was allocated mostly for 20.8% and 25.2% of the operations 

in the case studies 6c and 6d. These proved that the new ship H and new ship C specification 

improvement, through the ADM of Panamax–MiniCape dry bulk carrier in 2021, to be the most 

competitive in the optimization case of time- and voyage-charter contracts, respectively. 

Moreover, looking at the size limitations of significant routes with the highest annual cargo 

movement demand (see Table 38), the largest new ship that entered was the new ship H, thus 

confirming that the demanded ship was a larger bulk carrier to carry iron ore, coal, and other 

cargo types. 
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Figure 42. COST- and GHG-optimized ship allocation with new ships instance (case study 6): 

Composition of operations in the worldwide routes. 
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Table 38. Size limitations of significant routes with highest annual cargo movement demand. 

Origin Port Destination Port 1 Cargo Type Annual CARGO (t/y) 2 L (m) 2 B (m) 2 

Newcastle  Japan-A Coal 7,725,659  300  50  

Newcastle  Japan-B Coal 12,899,395  300  50  

Newcastle  Japan-D Coal 8,431,933  300  50  

Newcastle  Japan-E Coal 7,097,576  300  50  

Newcastle  Taichung Coal 5,739,793  300  50  

Newcastle  Chinese Taipei-A Coal 4,715,928  292  45  

Newcastle  Kaohsiung Coal 4,557,594  300  50  

Fujairah Mesaieed Others 5,667,613  292  45  

Fujairah Middle East  Others 4,150,019  292  45  

Cape Preston Ningbo Iron Ore 8,059,747  300  48  
1 Port cluster of Japan-A: 19 ports of Gushikawa, Hakata, Hibikishinko, etc.; Japan-B: 26 ports of Etajima, 

Hashihama, Higashi-Harima, etc.; Japan-D: 12 ports of Hachinohe, Haramachi, Ishinomaki, etc.; Japan-

E: 9 ports of Ishikawa, Maizuru, Misumi, etc. Chinese Taipe-A: 8 ports of Taipei, Hualien, Suao, etc. 
2 CARGO: annual cargo movement demand (t/y); L: new ships’ length; B: new ships’ breadth. 
 

Furthermore, in the case of voyage-charter contracts, new ship C with a DWT of 75,000 

is the most allocated in both COST- and GHG-optimized cases. Figure 43 represents the average 

monthly cargo movement demand used in the ship allocation with the new ships instance. It can 

be ascertained that the monthly cargo movement demand, on average, lay under 75,000 tons. This 

condition confirms the competitiveness of new ship C since this size category is the largest 

possible to transport the monthly cargo movement. 
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Figure 43. Average monthly cargo movement demand used in the ship allocation with new ships 

instance (case studies 6c and 6d). 

 

5.3. Case Studies intended for Panamax Dry Bulk Carrier of Specific Ship Operator 

5.3.1. Overview of Case studies intended for Future Scenario 

In the previous sections, we presented the case studies considering worldwide ship 

allocation. These tend to give wide perspective towards the implementation of our system. Given 

that worldwide applicability have been explored, this study conduct the case study of ships 

operated by specific ship operator. 

We conducted case studies using algorithms 2 and 3, optimization of ship allocation time- 

and voyage-charter contracts intended for the Panamax dry bulk carriers of Ship Operator A (case 

study 7). The aim was to confirm the different results delivered by the proposed algorithms. The 

following were the objectives of the simulations:  

 Target ship: Panamax dry bulk carriers of Ship Operator A (DWT 74,000-93,000, 32 

ships); 

 Cargo types: Iron ore, coal, grain, and others; 
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1687

929
648

50 14 5 1 2 1 0 0 1
0

1000

2000

3000

4000
R

o
u

te
 N

u
m

b
er

s

Average Monthly Cargo Movement Demand (t) 



110 

 Assumed fuel attributes (specific fuel consumption, g/kWh; emissions factor, t-CO2/t-

fuel; fuel prices, USD): HFO (175–185; 3.114; 300–375) and MDO (daily average fuel 

consumption [28,29]; 3.206; 600). 

Table 39 presents the size categories consisting of ship lists of Ship Operator A. Herein, 

we are able to reconstruct the ship allocation considering COST- or GHG-optimized using the 

proposed algorithms. Because GHG emissions are linear to fuel consumption, this section 

discusses the actual ship allocation and several case studies focusing on COST-optimized cases 

of ship allocation using only existing ships in the time-charter (Case 7a) and voyage-charter (7b) 

contracts, and ship allocation with new ships presence in voyage-charter contract (Case 8). 

 

Table 39. Size categories consisted in ship list of Ship Operator A. 

Ship Size 

Category 

Ship 

Numbers 
DWT 1 

L 1 

(m) 

B 1 

(m) 

Avg. Ship 

Age 

A 8 75,000 225 32.3 17.1 

B 10 82,000 229 32.3 8.5 

C 9 85,000 229 35.0 5.9 

D 4 93,000 229 38.0 10.3 
1 typical DWT: deadweight tonnage; L: length; B: breadth. 
 

5.3.2. Actual Ship Allocation of Panamax Dry Bulk Carriers of Ship Operator A 

The cargo types in the actual ship allocation of Ship Operator A are shown in Figure 44, 

indicating that the majority of transported cargo types were grain and coal, where the major 

CARGO is in the Brazil–China routes. 

 

 

Figure 44. Visualization of actual ship allocation of panamax dry bulk carrier of Ship Operator A. 
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5.3.3. Case study 7: Optimization of Ship Allocation in Time- and Voyage-Charter Contracts 

using Existing Ships 

5.3.3.1. Definition of Case Study 7 

This simulation is arranged to evaluate the proposed algorithm 3, which is an 

optimization for reconstructing ship allocation in voyage-charter contracts. Worldwide, 

Ship Operator A operated 32 ships carrying four types of cargo, mainly in the voyage-

charter scheme. Hence, the total COST and GHG emissions resulting from the simulations 

are observed. This case study covered a ship allocation optimization using only the 

existing ships of Ship Operator A, following these parameters: 

 Method: Allocation algorithms 2 and 3; an optimization for reconstructing ship 

allocation in time- and voyage charter contract; 

 Offered ships: The existing ships operating in the actual ship allocation. 

 

5.3.3.2. Results of Case Study 7 

The results obtained for case study 7 are listed in Table 40. Case study 7a used 

algorithm 2 to allocate a ship by assuming it operated in a time-charter contract; therefore, 

a ship went round-trip, resulting in similar sailing distances back and forth to the origin 

port. Thus, this algorithm results in a longer ballast sailing day compared to the actual 

condition and fails to transport all CARGO. Hence, this scheme is considered unsuitable 

for simulating the actual contract that occurs in the actual ship allocation.  

 

Table 40. Results of case studies 7a and 7b.  

Ship 

Allocation 

Annual 

CARGO 

(MT) 

Annual 

Operation 

Numbers 

Annual 

GHG 

Emissions 

(MT) 

Annual 

COST 

(Million 

USD) 

Avg. Annual 

Laden 

Sailing Days 

(d) 

Avg. Annual 

Ballast 

Sailing Days 

(d) 

Actual 13.7 191 0.427 139.3 180.4 148.6 

Case 7a 11.3 156  0.411 141.3 153.8 178.7 

Case 7b 13.7 191 0.398 133.7 169.9 139.5 
 

Subsequently, case 7b, using algorithm 3, allocated a ship by assuming that it 

operated in a voyage-charter contract; thus, it made it possible for a ship to serve the next 

closer sailing route after its trip to a destination port. This algorithm results in a shorter 

ballast sailing day compared to the results of algorithm 2. In conclusion, we can observe 

that all the CARGO is transported, and there is reduction in total COST and GHG 
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emissions. Specifically, Figure 45 presents the economic days of the sample ship. At the 

operation level, we confirmed that using algorithm 3 (case 7b) resulted in ballast sailing 

days similar to the actual ship allocation. 

 

 

Figure 45. Economic days of a sample ship of Ship Operator A. 

 

5.3.4. Case study 8: Optimization of Ship Allocation in Voyage-Charter Contract with New Ships 

Instance 

5.3.4.1. Definition of Case Study 8 

This simulation was conducted to examine the demanded new ship specifications 

by inputting new ships into the simulation. We sampled new ships from each size category 

that occurred during the actual ship allocation (see Table 39). These ships were proposed 

to have a higher efficiency for a lower main engine power. This was determined by 

calculating the ADM [42,56,57], as shown in Figure 46. These ships can be allocated 

indefinitely, allowing the replacement of the existing ship operations. Hence, ships with 

high competitiveness against the existing ships can be observed. 
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Figure 46. Admiralty coefficient of ships of Ship Operator A. 

 

Extended from case study 7, this case study proposes new ships for COST-

optimized ship allocation in voyage-charter contracts, following these parameters: 

 Method: Allocation algorithm 3: Optimization for reconstructing ship allocation 

in voyage-charter contracts. 

 Offered ships: Existing ships in case study 7 and four new ships sampled from 

each size categories consisted in existing ships, as shown in Table 41. 

 

Table 41. Proposed new ship specifications.  

New 

Ship 
DWT 1 

d 1 

(m) 

B 1 

(m) 

L 1 

(m) 

v 1 

(kn) 

ME 2 

(kW) 
Age 3 

A 75,000 14.0 32.3 225 14.5 7746 

1 
B 82,000 14.5 32.3 229 14.5 8023 

C 85,000 14.5 35.0 229 14.5 8464 

D 93,000 14.9 38.0 229 14.5 9105 
1 DWT: new ships’ deadweight tonnage; d: new ships’ draught; B: new ships’ breadth; L: new ships’ 

length; v: new ships’ design speed;  
2 ME: main engine; 
3 Age: assumed ship age. 
 

5.3.4.2. Results of Case Study 8 

As new ships can be allocated indefinitely, case study 8 optimized ship allocation 

by allowing existing ships to be replaced by new ships. Changes in the composition of the 

ship allocation can be observed, as shown in Table 42.  
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Table 42. Allocated ships and operation numbers in case study 8. 

Ship Size 

Category 

Actual 

Ship Allocation 

Case 8 

(Voyage-Charter with New Ships) 

Ship 

Numbers 

Operation 

Numbers 

Ship 

Numbers 

Operation 

Numbers (Changes) 

A 8 48 9 71 (+23) 

B 10 59 11 66 (+7) 

C 9 44 6 38 (-6) 

D 4 30 3 12 (-18) 

Other 1 10 1 4 (-6) 

Total 32 191 30 191 
 

In this context, an increase in the number of ships allocated to size categories A 

and B can be observed. This condition, as a result of significant routes, was served by 

ships with these size categories, as shown in Figure 47.  

 

 
 

 

Figure 47. Visualization of actual ship allocation and ship allocation optimization of case study 8. 
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Moreover, considering the ship ages in actual ship allocation, ships with size 

category A are fairly older (more than 15 years old); thus, this emphasizes the importance 

of introducing new ships with higher efficiency, as shown in Figure 48. 

 

 

Figure 48. Ship age of ships in the actual ship allocation of Ship Operator A. 

 

5.4. Case Studies intended to examine Competitive Ship Dimension of Panamax and 

MiniCape Dry Bulk Carriers 

5.4.1. Overview of Case Studies intended to examine Competitive Ship Dimension of Panamax 
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In this section, we aimed to examine the changes in the allocated ships dimension by 

presenting only new ships to allocate worldwide CARGO of Panamax–MiniCape dry bulk 
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We conducted case studies using algorithms 2 and 3, optimization of ship allocation time- 

and voyage-charter contracts intended for the proposed new ships which sampled from the ship 

dimension consisted in worldwide ship allocation of Panamax–MiniCape dry bulk carrier, as 

shown in Table 43. The following were the objectives of the simulations:  

 Target ship: Panamax and MiniCape dry bulk carriers (DWT 65,000-140,000, 6 ships); 

 Cargo types: Iron ore, coal, grain, and others; 

 Route: Worldwide (sailing routes served by Panamax and MiniCape dry bulk carriers); 

 Operation period: 2018; 
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 Assumed fuel attributes (specific fuel consumption, g/kWh; emissions factor, t-CO2/t-

fuel; fuel prices, USD): HFO (175–185; 3.114; 300–375) and MDO (daily average fuel 

consumption [28,29]. 

 

Table 43. Assumed specifications of the new ships. 

New 

Ship 
DWT  1 

d  

(m) 1 

B 

(m) 1 

L 

(m) 1 

v  

(kn) 1 

Age 
2 

Existing 

ME Power 

(kW) 3 

New Ship 

ME Power 

(kW) 3 

ME Power 

Reduction  

(%) 3 

A 66,485 12.9 36 200 14.5 1 8470 7892 6.8 

B 75,122 13.8 32 225 14.5 1 10,750 8403 21.8 

C 85,001 14.0 37 229 14.5 1 9660 9198 4.8 

D 95,790 14.5 38 235 14.5 1 12,950 9937 23.3 

E 106,415 13.6 43 254 14.5 1 13,560 10,807 20.3 

F 118,863 14.8 43 260 14.5 1 13,560 11,757 13.3 
1 DWT: new ships’ deadweight tonnage; d: new ships’ draught; B: new ships’ breadth; L: new ships’ 

length; v: new ships’ design speed;  
2 Age: assumed ship age;  
3 ME: main engine. 
 

5.4.2. Case study 9: Optimization of Ship Allocation in Time- and Voyage-Charter Contracts 

using only New Ships 

5.4.2.1. Definition of Case Study 9 

Herein, we conducted several simulations using algorithms 2 and 3: optimization 

of ship allocation time- and voyage-charter contracts with all new ships instance (case 

study 9). These new ships were offered to transport the worldwide cargo of Panamax and 

MiniCape dry bulk carriers. Hence, this case study covered a ship allocation optimization 

using only the new ships, following these parameters: 

 Method: Allocation algorithms 2 and 3; an optimization for reconstructing ship 

allocation in time- and voyage charter contract; 

 Offered ships: The new ships sampled from the existing ships consisted in the 

actual ship allocation (Table 43). 
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5.4.2.2. Results of Case Study 9 

The results obtained for case study 9 are listed in Table 44. It can be observed 

that both time- and voyage-charter contracts scheme were able to reduce the total COST 

and GHG emissions compared to the actual ship allocation. This results considered linear 

to the discussion which already discussed in Section 5.2.7. 

 

Table 44. Results of case study 9. 

Case Studies 

Total COST GHG Emissions Total Operation  Operation Number of 

Allocated New Ships 

(%) 1 

in Million USD in MT Numbers 

(Reduction in %) (Reduction in %) (Reduction in %) 

Actual  9747 30.1  16,110  
na 

ship allocation   (0.0) (0.0) (0.0) 

Time-Charter 8574 24.3 12,595  
100 

COST-optimized (-12.0 (-19.3) (-21.8) 

Time-Charter 8646 23.8  12,466  
100 

GHG-optimized (-11.3 (-20.9) (-22.6) 

Voyage-Charter 8411 24.3  15,092  
100 

COST-optimized (-13.7) (-19.4) (-6.3) 

Voyage -Charter 8498 23.6  15,096 
100 

GHG-optimized (-12.8 (-21.5) (-6.3) 
1 na: not available–no new ship in the ship allocation. 
 

Specifically, Figure 49 indicated the changes in the allocated ships dimension. It 

can be observed that the largest operation numbers was belong to the ships with DWT 

75,000 in the actual ship allocation. In the time-series scheme, both COST- and GHG-

optimized allocated largest ships possible with DWT 115,000. On the other hand, an 

optimization assuming the ships operating in voyage-charter was majorly allocate ships 

with DWT 85,000. 
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Figure 49. Changes in the allocated ships dimension of case study 9. 

 

5.5. Case Studies intended for Future Scenario 

5.5.1. Overview of Case studies intended for Future Scenario 

We conducted several simulations using algorithms 2 and 3: optimization of ship 

allocation time- and voyage-charter contracts with all new ships instance (case study 6). Figure 

38 shows an overview of case studies of Panamax–MiniCape dry bulk carrier. The following 

were the objectives of the simulations:  

 Target ship: New ships of case study 6; 

 Cargo types: Iron ore, coal, grain, and others; 

 Route: Worldwide (sailing routes served by target ship); 

 Operation period: 2018; 

 Assumed fuel attributes (specific fuel consumption, g/kWh; emissions factor, t-CO2/t-

fuel; fuel prices, USD): HFO (175–185; 3.114; 300–375), MDO (daily average fuel 

consumption [28,29]; 3.206; 600), LNG (148; 2.750; 590), and MeOH (350; 1.375; 400). 

 

Table 45. Overview of case studies intended for future scenario. 

Case 

Study 
Method 
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Ships 1 

Ship 

Allocation 2 

Cargo 

Movement 3 

Operation 

Conditions 
4 

Fuel 

Attributes 5 

9 Algorithms 2, 3 new optimized 
2030; 2050; 

Ir, Co, Gr, Ot 
predicted 

2030– 

2050 
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2 optimized: reconstructed ship allocation. 
3 2030: predicted worldwide cargo movement in 2030 [58]; 2050: worldwide cargo movement in 2050 

[58]; Ir: iron ore; Co: coal; Gr: grain; Ot: others. 
4 predicted: predicted operation conditions by using route-base average. 
5 2030–2050: assumed fuel attributes for future scenarios. 
                

5.5.2. Case study 10: Optimization of Ship Allocation in Time- and Voyage-Charter Contracts 

intended for Future Scenario 

5.5.2.1. Definition of Case Study 10 

This section examined the potential ship allocation to achieve IMO GHG 

reduction strategy [28,29,49-51]. The minimum ambition sets a target of GHG emissions 

reduction by at least 50% by 2050 compared to 2008. Figure 50 shows the linear 

projection of the GHG emissions target from 2008 to 2050. We defined discrete case 

studies to cover short- and long-term scenarios of 2030 and 2050, respectively. The 

following were the parameters of case study 10:  

 Method: Allocation algorithms 2 and 3; 

 Offered ships: Eight new ships of case study 6 with the future ADM (2030 and 

2050) fueled with the alternative fuels with lower emission factors (LNG and 

MeOH). 

 

 

Figure 50. Linear projection of the GHG emissions target from 2008 to 2050 [49-51]. 
 

Eight new ship specifications were sampled as case study 6. We defined these 
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engine power (𝑃𝑠
′) of these new ships was reduced by retaining a constant ship 𝑠 design 

speed [56]. Thus, the defined specifications of the new ships in 2030 and 2050 are listed 

in Table 46. 

 

 

Figure 51. ADM of Panamax and MiniCape in 2030 and 2050 [42,56,57]. 
 

Table 46. Defined specifications of the new ships in 2030 and 2050. 

New 

Ship 
DWT  1 

d  

(m) 1 

B 

(m) 1 

L 

(m) 1 

v  

(kn) 1 

Age 
2 

Existing 

ME Power 

(kW) 3 

ME Power  

in 2030 

(kW) 3 

ME Power  

in 2050 

(kW) 3 

A 66,485 12.9 36 200 14.5 1 8470 7087  5777  

B 67,508 13.2 32 225 14.5 1 9000 7230  5893  

C 75,122 13.8 32 225 14.5 1 10,750 7546  6151  

D 77,679 12.9 37 229 14.5 1 10,224 7725  6298  

E 85,001 14.0 37 229 14.5 1 9660 8783  7160  

F 95,790 14.5 38 235 14.5 1 12,950 8923  7274  

G 106,415 13.6 43 254 14.5 1 13,560 9705  7911  

H 118,863 14.8 43 260 14.5 1 13,560 10,558  8606  
1 DWT: new ships’ deadweight tonnage; d: new ships’ draught; B: new ships’ breadth; L: new ships’ 

length; v: new ships’ design speed;  
2 Age: assumed ship age;  
3 ME: main engine. 
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as shown in Table 47. Each of these fuels will be used by the offered ships separately to 

observe its effect on the global GHG emissions reduction. 

 

Table 47. Properties of various main engine’s fuel types in 2030–2050 [28]. 

Fuel 

Type 

Main Engine 

Type 1 

Specific Fuel 

Consumption (g/kWh) 

Emission Factors 

(t-CO2 / t-fuel) 

Fuel Price 

(USD) 

HFO SSD 175 3.114 375 

Methanol SSD 350 1.375 400 

LNG LNG-Otto 148 2.750 590 
1 SSD: Slow-speed Diesel; LNG-Otto: Slow-speed Dual-fuel. 
 

Furthermore, for this case study, we projected the future annual and monthly 

cargo movement demand with the assumption that the growth of cargo movement demand 

is linear between 2030 and 2050 by referring to the Energy Transition Outlook by DNVGL 

[40,58],  as shown in Figure 52. 

 

 

Figure 52. Projection of Cargo Movement Demand [40,58]: (a) annual and (b) monthly. 
 

As the offered ships could be allocated indefinitely, we discussed the following 

case studies covered for each term: GHG-optimized ship allocation in time-charter 

contract using new ships in 2030 fueled by HFO, LNG, and MeOH (case study 10a), 

GHG-optimized ship allocation in voyage-charter contract using new ships in 2030 fueled 

by HFO, LNG, and MeOH (case study 10b), GHG-optimized ship allocation in time-

charter contract using new ships in 2050 fueled by HFO, LNG, and MeOH (case study 

10c), and GHG-optimized ship allocation in voyage-charter contract using new ships in 

2050 fueled by HFO, LNG, and MeOH (case study 10d). 
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5.5.2.2. Results of Case Study 10 

This case study formed the future ship allocation in 2030 and 2050 using only 

new ships. In addition, this case study neglects the capital cost that could occur to 

construct the offered new ships specification, such as the costs of shipbuilding, new 

engine type, and administration. In this case study, we offer ships fueled by HFO, LNG, 

and MeOH to transport the cargo movement of 2030 and 2050. Since this case study 

offered one-year-old new ships with operation conditions adopted from R-AVG of 2018, 

this will result in the same average ship age and sailing speed as the actual ship allocation. 

Thus, we will observe that the average DWT in the future ship allocation consisted of all 

new ships. 

Figure 53 shows the case study 10a results of the ship allocation optimization in 

the time-charter contract using new ships in 2030. First, we can observe an increase in 

cargo movement compared to actual ship allocation since this case study used projected 

cargo movement in 2030. Furthermore, we can observe identical results for all fuel cases. 

The major routes for all cases resulted in an average DWT of more than 95,000.  

Moreover, Figure 54 presents case study 10b results of the ship allocation 

optimization in voyage-charter contract using new ships in 2030. Contrary to the results 

of the time-charter contract, these cases allocated ships with various average DWT. In 

South East Asia–China routes, larger ships with an average DWT of more than 95,000 

were allocated. In addition, Brazil–China routes allocated smaller ships with an average 

DWT of 85,000–95,000. To conclude, despite the variation in average DWT of the 

allocated ships, the ship allocation in the voyage-charter contract shows identical average 

DWT for all fuel types. 
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Figure 53. Ship allocation optimization in time-charter contract using new ships in 2030: Case study 10a 

(GHG-optimized) average DWT using (a) HFO, (b) LNG, and (c) MeOH. 
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Figure 54. Ship allocation optimization in voyage-charter contract using new ships in 2030: Case study 

10b (GHG-optimized) average DWT using (a) HFO, (b) LNG, and (c) MeOH. 
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Furthermore, 

 

 

 
 

 

Figure 55 shows the case study 10c results of the ship allocation optimization in 

the time-charter contract using new ships in 2050. Initially, we can observe an increase in 

cargo movement compared to case studies 9a and 9b since this case study used projected 
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cargo movement in 2050. The results represented in 

 

 

 
 

 

Figure 55 agree with the abovementioned case study 10a. Identically, major 

routes allocated larger ships with an average DWT of more than 95,000, whereas both of 

these cases allocated the ships in the scheme time-charter contract. 
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Figure 55. Ship allocation optimization in time-charter contract using new ships in 2050: Case study 10c 

(GHG-optimized) average DWT using (a) HFO, (b) LNG, and (c) MeOH. 
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Finally, Figure 56 suggests the case study 10d results of the ship allocation 

optimization in voyage-charter contract using new ships in 2050. A similar trend of 

average DWT is also shown here since all these cases allocated ships in the same scheme. 

 

 

 

 

Figure 56. Ship allocation optimization in voyage-charter contract using new ships in 2050: Case study 

10d (GHG-optimized) average DWT using (a) HFO, (b) LNG, and (c) MeOH. 
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5.5.3. Discussion 5: Future Potential Emissions Reductions by using Fuels with Lower 

Emissions Factors 

The total GHG emissions resulting from case study 10 are shown in Table 48. Applying 

the algorithms 2 and 3 following short- (2030) and long-term (2050) future scenarios, case study 

9 offered only new ships with the same specification as new ships introduced in case study 6, but 

higher ADM considering linear projection to 2030 and 2050. Therefore, neglecting the capital 

costs of the new ships, major GHG emissions can be ascertained for all fuel type cases. 

 

Table 48. Total GHG emissions of case study 10. 

Case Studies 
Operation 

Period 

Cargo Movement 

Demand in t 

(Increase in %) 

GHG Emissions GHG-Effective 

in MT in t-GHG/t-CARGO 

(Reduction in %) (Reduction in %) 

Actual  
2018 

1168.2  30.1  0.0257  

ship allocation   (0.0) (0.0) (0.0) 

Case study 10a 
2030 

1525.0  28.2  0.0185  

(HFO-fueled) (30.5) (-6.2) (-28.1) 

Case study 10a 
2030 

1525.0  23.0  0.0151  

(LNG-fueled) (30.5) (-23.5) (-41.4) 

Case study 10a 
2030 

1525.0  25.8  0.0169  

(MeOH-fueled) (30.5) (-14.2) (-34.2) 

Case study 10b 
2030 

1525.0  27.6  0.0181  

(HFO-fueled) (30.5) (-8.4) (-29.8) 

Case study 10b 
2030 

1525.0  22.5  0.0148  

(LNG-fueled) (30.5) (-25.1) (-42.6) 

Case study 10b 
2030 

1525.0  25.2  0.0165  

(MeOH-fueled) (30.5) (-16.1) (-35.7) 

Case study 10c 
2050 

1565.7  25.1  0.0160  

(HFO-fueled) (34.0) (-16.6) (-37.8) 

Case study 10c 
2050 

1565.7  20.7  0.0132  

(LNG-fueled) (34.0) (-31.1) (-48.6) 

Case study 10c 
2050 

1565.7  23.1  0.0147  

(MeOH-fueled) (34.0) (-23.3) (-42.8) 

Case study 10d 
2050 

1565.7  24.6  0.0157  

(HFO-fueled) (34.0) (-18.3) (-39.0) 

Case study 10d 
2050 

1565.7  20.3  0.0130  

(LNG-fueled) (34.0) (-32.4) (-49.5) 

Case study 10d 
2050 

1565.7  22.6  0.0144  

(MeOH-fueled) (34.0) (-24.8) (-43.9) 
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Moreover, using LNG as the main engine’s fuel, case studies 9a and 9b suggest the highest 

reduction in total GHG emissions. Referring to these results, Figure 57 represents the annual 

GHG emissions reduction using LNG. It can be ascertained that using new ships with ADM of 

2050 and LNG as the main engine’s fuel were not adequate to achieve the IMO GHG reduction 

target. 

 

 

Figure 57. Annual GHG emissions reductions by using LNG (case studies 9a and 9b). 
 

Finally, we examine the effectiveness of an extended ADM by 10% and 20% projected 

from the linear ADM of Panamax–MiniCape dry bulk carriers, as shown in Figure 58. In this 

context, the main engine power of the offered ships was reduced accordingly. Figure 59 shows 

the results of annual GHG emissions reductions by using LNG with an extended ADM of 10% 

and 20%. It can be observed that the IMO GHG reduction target can be achieved by allocating 

the ships with the extended ADM by 20%.' 
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Figure 58. The extended ADM by 10% and 20% projected from the linear ADM of Panamax–MiniCape 

dry bulk carriers. 
 

 
Figure 59. Annual GHG emissions reductions by using LNG (case studies 9a and 9b) with an extended 

ADM by 10% and 20%. 
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6. CONCLUDING REMARKS 

 

In this study, we have proposed an enhancement to our basic ship-planning support system. 

We expanded the scope of our simulations to a worldwide scale, which allowed a broad 

comprehension of the demand ship specifications. In addition, we developed a ship allocation 

algorithm to consider the detailed COST and GHG emissions attributes. The system consisted of 

three distinct models and an algorithm to resemble the ship allocation bidding process: a global 

network model, cargo movement model, ship model, and ship allocation algorithm. The global 

network model defined the main ports and port clusters, resulting in a cluster of ports and their 

attributes, port and route limitations, and sailing distances. The cargo movement model specified 

the cargo movement and cargo types between the ports. The ship model represented each ship 

and its specifications. This model predicted the operating conditions: draught rate, average sailing 

speed, and port staying time for each ship serving a particular route.  

Ultimately, as the core of our system, the ship allocation algorithm reconstructed the 

operation-level ship allocation. It calculated COST and GHG emissions for each ship, and a 

greedy algorithm was used to resemble the ship allocation. This study proposed three algorithms: 

ship replacement while preserving the existing ship allocation and optimization for reconstructing 

the ship allocation in time- and voyage-charter contracts scheme. Allocation algorithm 1 offered 

a new ship with enhanced performance for each existing ship without changing the current ship 

allocation. Additionally, we reallocated the ship by applying allocation algorithms 2 and 3, which 

optimized the total COST and GHG emissions assuming the ships operated in time- or voyage-

charter contracts manner. We conducted discrete simulations: optimization using only the 

existing ships operating in the actual ship allocation and with new ships instance. The ship 

allocation optimization indicated that significant reductions in the total COST and GHG 

emissions were not achievable using only the existing ships. Using the developed system, we 

could recreate an operation-level ship allocation considering various scenarios.  

Finally, we confirmed the demanded new ship specifications by presenting the new ships 

instance. However, this study is only feasible for the current constraints of the Capesize and 

Panamax–MiniCape dry bulk carriers operating in the time- and voyage-charter contract, despite 

the presented results. The application of the proposed system for the accumulated ship size 

categories such as Handymax–Capesize dry bulk carriers are considered future tasks.  
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Likewise, considering the importance of weather routing, the weather correction factor in 

the main engine's actual power calculation, which was previously assumed constant, is possibly 

varied [59]. Hence, further studies are crucial to assess the applicability of our system beyond 

these limitations. 
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