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Abstract

Symmetry is a basic concept in physics. It is expected that a higher symmetric phase is

realized in the early universe and the symmetry spontaneously breaks down to the one of the

standard model in particle physics through the spacetime evolution. Chiral symmetry plays

an important role in the mechanism of dynamical mass generation for matter. It is signifi-

cant to reveal the phase structure in terms of the chiral symmetry. The phase structure is

ordinarily illustrated on a chemical potential-temperature (µ-T ) plane in high-energy physics

and it is well known that the structure varies with the physical conditions of the surrounding

environment. The study of the effects of various environments can lead to a better under-

standing of phase structures. Here, we focus on finite-size effects on chiral symmetry breaking

in strongly coupled systems of fermions.

Four-fermion interaction models are often used to describe spontaneous breaking of the

chiral symmetry. At first, we briefly review the four-fermion interaction models at zero tem-

perature and a finite temperature. In this thesis, the Gross–Neveu model is basically employed

as the simplest of these models of the chiral symmetry breaking. Evaluating the effective po-

tential in the leading order of the 1/N expansion, we investigate the phase structure with the

finite-size effect.

We discuss the phase structure with the finite-size effect at zero temperature. In the

previous works, the divergent part of the effective potential are simply removed along with a

finite part that depends on parameters of the system. We improve the procedure and evaluate

the effective potential, the dynamically generated fermion mass and the string tension. In

addition to the phase transition, we discuss a stable size of the system. The phase structure

are independent of the improvement, but the string tension is modified. The search for the

stable size of the system under the string tension revealed that the stable size is not realized.

Next, we consider the thermal effect in addition to the finite size effect. Caused by the

finite-size effect, more complex phase structures are realized at a finite temperature and a

finite chemical potential. In order to investigate the precise phase structure, we evaluate

not only the minimum but also for the other extrema of the effective potential. Through the

analysis, we show the phase diagrams on parameter planes. Complex structures of boundaries

is found at a certain size of the system for a low temperature and a high chemical potential.

We also evaluate the behavior of the thermodynamic quantities and find the stable size of the

system.
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Chapter 1

Introduction

It is well-known that the following four interactions are fundamental in physics: strong,

electromagnetic and weak interactions and gravity. The standard model in particle physics

describing the three interactions except for the gravity has great successes, for example, the

prediction of the Higgs boson and its discovery. These interactions in the standard model

are described quantum field theories based on a gauge symmetry, SU(3)c × SU(2)L × U(1)Y .

Quarks and leptons that construct matters are obtained as fundamental representations of

the group. Although the standard model has brilliantly succeeded, there are still unsolved

problems: mass gap, quantization of gravity, grand unified theories, neutrino masses, dark

matter, etc. To reveal physics beyond the standard model, many researchers have addressed

these problems.

Symmetry is essential in a gauge theory and several types of symmetry play important

roles in modern physics to construct theories. This can not be overemphasized. It is considered

that a theory with a higher symmetry was realized in the early universe and the symmetry of

the theory spontaneously breaks down to the theory indicated by SU(3)c×SU(2)L×U(1)Y and

the other types of symmetry through the time evolution of the universe. In other words, it is

expected that, just as a state of water changes between gas, liquid and solid, phase transitions

associated with spontaneous symmetry breaking occurred in the universe during the evolution

of the spacetime. Spontaneous symmetry breaking is also a key concept in modern physics.

Inspired by the Bardeen–Cooper–Schrieffer theory [1] on superconductivity, Y. Nambu and

G. Jona-Lasinio introduced the concept to particle physics with chiral symmetry in 1961 [2,3].

In this thesis, we focus on a phase transition with chiral symmetry.

The chiral symmetry is related to the strong interactions. As is known that the strong

interactions between quarks and gluons are described by quantum chromodynamics (QCD),

a non-Abelian gauge theory in quantum field theories. Asymptotic freedom is a property of

QCD [4,5]. At a high energy scale, perturbative approaches that work in quantum electrody-

namics are valid even in QCD. However, at a low energy scale, perturbative approaches do not

work and a non-trivial vacuum structure, called the QCD vacuum, appears. In the non-trivial

vacuum, color confinement and chiral symmetry breaking occur: the former is a phenomenon
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CHAPTER 1. INTRODUCTION

that quarks and gluons are not observed in isolation and the latter a mechanism that hadrons

dynamically obtain their mass through the condensates of quarks and anti-quarks. To inves-

tigate the vacuum structure, several approaches has been attempted: numerical calculations

by using lattice QCD (LQCD) that is a part of lattice gauge theories and effective models

that are induced by approximations and phenomenological considerations. Because LQCD is

constructed on a discretized Euclidean spacetime, a path integral becomes finite-dimensional

and hence can run on computers from the first principles. The effective models are not the

genuine QCD, but they can be discussed on a continuous spacetime and calculated exactly.

Moreover, the effective models can also have theoretically rich structures, such as integrability.

Phase transitions are phenomena that appear at several scales, as in particle physics and

condensed matter physics. Revealing a phase structure of a target is often a research goal

in several fields in physics, of course, QCD. For example, the schematic QCD phase diagram

is shown in Fig. 1.1: the vertical axis denotes temperature of the system and the horizontal

axis denotes quark chemical potential which is a conjugate variable of quark number density.

The chiral symmetry is broken in the hadron phase at a low temperature and a low chemical

potential, and restored in the other phase. It is an approximate symmetry, but this is a clue

to investigate the phase structure.

As is mentioned above, LQCD is a powerful non-perturbative tool to analyze the low

energy region, but there is the notorious problem called the sign problem at a finite quark

chemical potential [6,7]. The problem is caused by failure to interpret an integrand at a finite

chemical potential as a probability in the Monte Carlo method. Integrating degree of freedom

of quarks with a finite chemical potential, µ, one obtains a path integral measure, M(µ) that

satisfies (M(µ))∗ = M(−µ∗). This problem is common in particle physics and condensed

matter physics as long as the Monte Carlo method is employed. To resolve the problem, some

approaches are proposed: the Taylor expansion [8, 9], the analytic continuation from imagi-

nary chemical potential [10–14], the complex Langevin method [15–19], the Lifschetz thimble

method [20, 21], and the tensor renormalization group [22–25]. The tensor renormalization

group is particularly a method that has been developed in condensed matter physics. Since

the area that can be analyzed by these approaches are still restricted, the bulk of the QCD

phase diagram has been illustrated by using the effective models. As the other approach close

to the effective model, two-color QCD is proposed. In this theory, there is no sign problem.

The two-color QCD is different from the QCD in terms of symmetry, but it is reported that

the theory describes quantitatively three-color QCD [26]. Furthermore, the effective models

play important roles at present.
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Fig. 1.1: Schematic QCD phase diagram.

There are various effective models to investigate the phase structure. The Nambu–Jona-

Lasinio (NJL) model [2,3] is a simple model that describes dynamical chiral symmetry breaking

via quark and anti-quark interactions, and is often used for the purpose in terms of chiral

symmetry [27, 28]. Some types of four-fermion interaction models exist: the Gross–Neveu

model [29] that has a discretized symmetry through a quark and anti-quark interaction, the

extended NJL models with diquarks [30,31], and the Polyakov-loop extended NJL model [32]

that includes the effects of the color confinement. We adopt a four-fermion interaction model,

mainly the Gross–Neveu model, to analyze and discuss the phase structure with the chiral

symmetry, in this thesis.

States of matter depend on the physical conditions of surrounding systems. In Fig. 1.1,

the state of matter is designated by temperature and quark chemical potential. There are,

of course, various parameters to specify the condition of the system: temperature, entropy,

pressure, volume of the system, particle number, chemical potential, curvature of the space-

time, magnetic field, rotational velocity, boundary conditions, topology, dimensions of the

spacetime, and so on. A phase is basically realized by a state with the lowest thermodynamic

potential under the parameters considered in the system. Thus, studying with parameters

in addition to temperature and chemical potential leads to a better understanding of phase

structures. By using four-fermion interaction models, phase transitions in various conditions

are researched [27,28,33–35].

Related to high-energy experiments and compact stars (e.g. neutron stars), effects from the

magnetic field [36] and the rotational velocity [37, 38] to the phase structure are interesting
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to many researchers. The characteristic points of the two conditions are respectively the

dimensional reduction [39,40] that is a phenomenon in which an effective dimension becomes

lower than the original dimension, D, such as D → D − 2, and finite-volume effects with

topology of boundaries [41]. Moreover, although LQCD contains artifacts, finite-volume effects

and topological contributions from boundaries are not negligible in condensed matter physics

and LQCD. Looking back at the early universe, all the matter might be confined inside

an extremely small size space with a non-trivial topology. In string theory, the existence of

compactified extra dimensions is predicted. Thus, we believe that it is significant to reconsider

the finite-size effects, the contributions from the boundaries, and low-dimensional physics. In

this thesis, we discuss not only the thermal effects but also the finite-size effects and the

contributions from the boundaries on the phase structure for the chiral symmetry by using

the four-fermion interaction model.

There are some works studying the finite-size effect on the chiral symmetry in four-fermion

interaction models. Periodic and anti-periodic boundary conditions are often imposed [42–46]

(Refs. [47, 48] are in LQCD). It is found that the chiral symmetry breaking tends to be

enhanced because of the finite-size effect for the periodic boundary condition. On the contrary,

it is observed that the anti-periodic boundary condition tends to restore the chiral symmetry.

In this context, the finite temperature and chemical potential in the Matsubara formalism

can be regarded as the size and boundary condition for the imaginary time direction. The

boundary conditions can be more generalized to a U(1)-valued boundary condition for a

compactified space, such as the one-dimensional sphere S1. Some works on the U(1)-valued

boundary condition have previously done [49–54]. In general, such a boundary condition is

introduced from the Aharonov–Bohm effect [55] in an Abelian gauge theory. For instance, the

finite-size effect with the U(1)-valued boundary condition can be realized by the presence of

magnetic flux in a ring or cylinder. In condensed matter physics, inhomogeneous condensates

are discussed in a superconducting ring with magnetic flux [54]. As is discussed in [56] for

high energy physics, it is also pointed out that inhomogeneous phases can be favored in a

finite-size system.

To clarify the physical picture, it is important to evaluate thermodynamic quantities in

addition to the dynamically generated fermion mass; we calculate particle number density

and pressure. A well-known finite-size effect in quantum systems is the Casimir effect [57–70]

which is a phenomenon of attraction between two uncharged conductive plates placed parallel.

This is understood to be a phenomenon caused by a non-trivial vacuum. The Casimir force

was firstly introduced as an attractive force, but later it was pointed out that the force

could also be repulsive [71–73]. There is a study to connect the attractive force with the

repulsive force for perfect electromagnetic conductor plates [74]. These discussions are based

on electromagnetic fields, in other words, bosonic and vector fields. The Casimir effect has

been studied in a four-fermion interaction model [75–77]; particularly, the sign-flip phenomena

is also found in Ref. [76]. In the context of lattice simulations, the Casimir effect has been
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also studied [47,48,78–80].

In this thesis, we study the finite-size effect on chiral symmetry breaking in a strongly cou-

pled system of fermions by using a four-fermion interaction model. To clarify the discussion,

we consider a simple condition: one-dimensional sphere, S1, as a part of the background. Our

purpose is to show the finite-size effect on phase diagrams and clarify the phenomenological

consequences by evaluating the thermodynamic quantities.

This thesis is organized as follows: In Chapter 2, we give brief introductions about chiral

symmetry breaking in four-fermion interaction models without finite-size effects. In this thesis,

we evaluate the effective potential in the leading order of the 1/N expansion with supposing a

homogeneous chiral condensate. Next, the model at a finite temperature and a finite chemical

potential is introduced with a phase diagram in terms of the chiral symmetry. In Chapter 3,

we show the finite-size effects on chiral symmetry breaking in the Gross–Neveu model at zero

temperature based on [81]. We also improve the effective potential analysis from the previous

work [50]. Behavior of the dynamically generated fermion mass affected by the finite-size

effects is shown. We discuss the stable size with the Casimir effect. In Chapter 4, chiral

symmetry breaking at a finite temperature and a finite chemical potential is discussed with

the finite-size effects based on [82]. To investigate the precise phase structure, we introduce

new symbols and show the structure on bifurcation diagrams. We discuss the phase structure

and the stability of the system with thermodynamic quantities. Finally, Chapter 5 is devoted

to the summary and discussions.
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Chapter 2

Four-Fermion Interaction Model

In this chapter, we briefly review four-fermion interaction models: the Nambu–Jona-Lasinio

(NJL) model [2,3] and the Gross–Neveu (GN) model [29]. Both the models are well-known as

effective models of the quantum chromodynamics (QCD) in terms of the chiral symmetry and

the asymptotic freedom. They are simple models that describe spontaneous chiral symmetry

breaking. These two models are distinguished by the interaction terms and enjoy slightly

different symmetries. Although this difference does not affect on our analysis, we will mention

a note in two dimensions later.

2.1 Nambu–Jona-Lasinio Model

Let us consider an action of the NJL model with Nf -flavor fermions on a D-dimensional

Minkowski spacetime, MD, (2 ≤ D < 4):

SNJL =

∫
dDx

[
ψ̄(x)iγµ∂µψ(x) +

λ0
2Nc

(
(ψ̄(x)ψ(x))2 + (ψ̄(x)iγ5τ

aψ(x))2
)]
, (2.1)

where λ0 denotes a coupling constant of the four-fermion interaction, Nc the number of the

color, and τa a generator of SU(Nf ) (a = 1, 2, . . . , N2
f − 1). λ0 has the mass dimension

−(D−2). The indices of the flavors and colors are omitted below. Such a model is introduced

by Y. Nambu and G. Jona-Lasinio as first in the papers [2,3]. The model is evaluated in four

dimensions (D = 4), and hence the coupling has the mass dimension −2. This action (2.1) is

invariant under a global transformation of U(Nf )L ×U(Nf )R:

ψχ → eiθ
a
χτ

a+iθχψχ, (θaχ, θχ ∈ R) (2.2)

where ψχ (χ = L,R) denote left- and right-handed fermions, respectively. In particular, we

are interested in U(1)A, a part of the group. A transformation of the group is called a chiral

transformation:

ψ(x) → eiγ5θψ(x), (θ ∈ R). (2.3)

The invariance under the chiral transformation is due to no mass term.
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CHAPTER 2. FOUR-FERMION INTERACTION MODEL

A generating functional of the NJL model is given by

ZNJL =

∫
DψDψ̄ eiSNJL . (2.4)

Inserting a constant that is expressed as a path integral of auxiliary fields, σ̂(x) and π̂a(x),∫
Dσ̂Dπ̂a exp

[
−i Nc

2λ0

∫
dDx

(
σ̂(x)2 + π̂a(x)2

)]
, (2.5)

into the generating functional (2.4), and using the invariance of a path integral measure under

shifts, we obtain

ZNJL =

∫
DψDψ̄Dσ̂Dπ̂a eiSaNJL , (2.6)

SaNJL =

∫
dDx

[
ψ̄(x) (iγµ∂µ − σ̂(x)− iγ5τ

aπ̂a(x))ψ(x)− Nc

2λ0

(
σ̂(x)2 + π̂a(x)2

)]
. (2.7)

The Euler–Lagrange equation for σ̂(x) and π̂a(x) gives us constraints, σ̂(x) = −λ0ψ̄(x)ψ(x)/Nc

and π̂a(x) = −λ0ψ̄(x)iγ5τaψ(x)/Nc, respectively. Substituting these into the action (2.7), the

original one (2.1) is reproduced. At the classical level, the auxiliary fields are proportional to

composite operators of a fermion and an anti-fermion. Thus, the finite vacuum expectation

value of the auxiliary fields indicates spontaneous symmetry breaking of the chiral symmetry.

The action (2.7) is written as quadratic forms of the fermions and auxiliary fields. Integrat-

ing out the fermion and anti-fermion, the generating functional and the action are rewritten

as

ZNJL =

∫
Dσ̂Dπ̂a eiNcS[σ̂,π̂a], (2.8)

S[σ̂, π̂a] = − 1

2λ0

∫
dDx

(
σ̂(x)2 + π̂a(x)2

)
− i lnDet [iγµ∂µ − σ̂(x)− iγ5τ

aπ̂a(x)] , (2.9)

with Det denoting the determinant over the flavor indices, the spinor indices, and the continu-

ous spacetime coordinates. This generating functional (2.8) (or this action (2.9)) is represented

only by the degrees of freedom of the auxiliary fields. The above manner that makes a four-

fermion interaction term into a quadratic form by introducing a (pseudo)scalar field, is called

the Hubbard–Stratonovich transformation [83,84], or the auxiliary field method [85].

Although there is no degree of freedom of the fermion in the generating functional (2.8),

it is still difficult to evaluate analytically the action (2.9). To resolve this problem, we apply

the 1/Nc expansion and assume a homogeneous chiral condensate, in other words the vacuum

expectation values of σ̂(x) and π̂(x) are independent of the temporal and spatial coordinates.

We separate the auxiliary fields into the vacuum expectation values and fluctuations,

σ̂(x) = σ(x) + σ̃(x), π̂a(x) = πa(x) + π̃a(x). (2.10)

σ(x) denotes an order parameter of chiral symmetry. Under the 1/Nc expansion, we obtain

the effective action,

Γ[σ, πa] = −i lnZNJL = Nc (S[σ, π
a] +O (1/Nc)) . (2.11)

7
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Assuming the homogeneous chiral condensate, σ(x) = σ and πa(x) = πa, we obtain the

effective potential in the leading order of the 1/Nc expansion,

V (σ, πa) = −S[σ, π
a]∫

dDx
=
σ2 + (πa)2

2λ0
−
Nf tr I

2

∫
dDk

i(2π)D
ln
(
−k2 + σ2 + (πa)2

)
, (2.12)

where the trace, tr, denotes the diagonal sum with respect to the spinor indices. In our

numerical calculations, we set tr I = 2D/2. A vacuum state (equivalently, a ground state) is

determined by the minimum of the effective potential in the parameter space of σ and πa.

The value of the effective potential does not change as long as σ2 + (πa)2 has the same value.

Therefore, if σ2 + (πa)2 ̸= 0, the vacuum states distinguished by the values of σ and πa are

infinitely degenerated. Because these states are equivalent, we can choose the vacuum state

satisfying πa = 0 without loss of generality (V (σ) = V (σ, πa = 0)). In addition, we normalize

the effective potential at σ = 0 to V (0) = 0.

The effective potential (2.12) contains an UV divergence. It is known that results produced

by the NJL model depend on regularization schemes because the model is not renormalizable

[86, 87] as indicated by the mass dimension of the coupling, −2, in four dimensions. Here,

we show some regularization schemes: the sharp cutoff regularizations, and the dimensional

regularization.

Three-momentum cutoff regularization

First, we introduce a three-momentum cutoff parameter Λ3 in D = 4 as∫
d4k

i(2π)4
→
∫

dk0

i2π

∫
k2≤Λ2

3

d3k

(2π)3
, (2.13)

then the effective potential is given by

VΛ3(σ) =
σ2

2λ0
−
Nf

8π2

(
Λ3

(
2Λ2

3 + σ2
)√

Λ2
3 + σ2 +

σ4

2
ln

(
σ2

(Λ3 +
√
Λ2
3 + σ2)2

))
+
NfΛ

4
3

4π2
.

(2.14)

Four-momentum cutoff regularization

In a similar way, we can also introduce a four-momentum cutoff parameter Λ4 in D = 4 after

the Wick rotation as ∫
d4k

i(2π)4
f(−k2) →

∫
k2≤Λ2

4

d4k

(2π)4
f(k2), (2.15)

where f is an arbitrary analytic function. The effective potential is give by

VΛ4(σ) =
σ2

2λ0
−

Nf

16π2

(
Λ4
4 ln

(
1 +

σ2

Λ2
4

)
− σ4 ln

(
1 +

Λ2
4

σ2

)
+ σ2Λ2

4

)
. (2.16)
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Proper-time regularization

Another regularization scheme that uses a sharp cutoff is the proper-time method [88,89]. It

is useful to keep in mind the formal identity for a operator O, related to the zeta function

regularization [90,91],

tr lnO = − lim
s→0

d

ds

1

Γ (s)
tr

∫ ∞

0
dτ τ s−1e−τO. (2.17)

To treat the divergent term, we introduce a regularization parameter Λpt as∫
d4k

i(2π)4
ln
(
−k2 + σ2

)
→ −

∫ ∞

1/Λ2
pt

dτ τ−1

∫
d4k

(2π)4
e−τ(k2+σ2). (2.18)

The effective potential in the proper-time method reads

Vpt(σ) =
σ2

2λ0
+
Nf

8π2

∫ ∞

1/Λ2
pt

dτ τ−3e−τσ2 −
NfΛ

4
pt

16π2
. (2.19)

In this method, the effective potential is written as an integral over a proper-time space with

a lower limit, not as an integral over a momentum space with a upper limit.

Dimensional regularization

Finally, we introduce the dimensional regularization that is one of regularization schemes by

using analytic continuation. Considering a complex number D ̸= 4 (in particular, considering

2 ≤ D < 4), we can perform the integral over a momentum space,

1

2

∫
dDk

i(2π)D
ln
(
−k2 + σ2

)
=

Γ
(
1− D

2

)
(4π)D/2

(σ2)D/2

D
. (2.20)

Thus, we obtain the effective potential,

VDR(σ) =
σ2

2λ0
−NfCD

(σ2)D/2

D
, (2.21)

with a constant depending on the dimension D,

CD =
tr I

(4π)D/2
Γ

(
1− D

2

)
. (2.22)

This term diverges in two and four dimensions. There is no scale parameter in this expression

(2.21). We renormalize the coupling λ0 with a renormalization scale, µr. The renormalization

condition is given by
∂2VDR(σ)

∂σ2

∣∣∣∣
σ=µr

=
µD−2
r

λr
, (2.23)

where λr indicates a renormalized coupling that has the mass dimension zero. The renormal-

ized effective potential with the dimensional regularization is

VDR(σ) =
1

2

(
1

λr
+ (D − 1)NfCD

)
σ2µD−2

r −NfCD
(σ2)D/2

D
. (2.24)
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This expression is finite at 2 ≤ D < 4.

The NJL model at D = 2 is also called the chiral Gross–Neveu model. In particular, this

model is renormalizable (The mass dimension of the coupling becomes zero in two dimen-

sions.) and shares some features with the four-dimensional theory because these dimensions

of a background spacetime is even. Hence, the results produced by the model in two dimen-

sions does not depend on regularization schemes. Because of the well-known no-go theorem

stated by N. Mermin, H. Wagner, P. Hohenberg and S. Coleman [92–94], spontaneous chiral

symmetry breaking is prohibited in two dimensions, but the theorem becomes invalid in the

leading order of the 1/Nc expansion. This is because fluctuations that destroy the sponta-

neous symmetry breaking, are suppressed in the next to leading order of the expansion (see

Eq. (2.11)).

We comment on the dimensional regularization in the NJL model. Targets which is an-

alyzed by using this model is usually in four dimensions, but one can not take the four-

dimensional limit in this regularization because of the non-renormalizability. As is discussed

in Refs. [95–98], the results from the dimensional regularization in 2 < D < 2.5 is similar to

the results from the sharp cutoff; some properties of the nonet meson are reproduced.

As examples, we show the behavior of the effective potential for comparison of the different

cutoff regularizations in Figs. 2.1 and 2.2 (Nf = 1). It can be seen that there is only one

minimum of the effective potential at the origin, σ = 0, for the coupling constant smaller

than a certain value, but when the coupling constant becomes larger than the value, the

minimum is located at a point that is not the origin, σ ̸= 0. In other words, spontaneous

chiral symmetry occurs for the coupling constant larger than a certain value, and then the

fermion mass is dynamically generated. Such a value of the coupling constant at which a

second-order phase transition between a chiral symmetric phase and a chiral broken phase

occurs, is called a critical coupling constant.
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Fig. 2.1: The behavior of the effective po-

tential: the three-momentum cutoff regu-

larization. The coupling constant smaller

than the critical one corresponds to the

blue dashed curve (λ0Λ
2
3 = π2), and larger

than the critical one the orange solid curve

(λ0Λ
2
3 = 3π2).
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Fig. 2.2: The behavior of the effective po-

tential: the four-momentum cutoff regular-

ization/the proper-time regularization. In

the both cases, the coupling constant smaller

than the critical one corresponds the blue

dotted/green dot-dashed curve (λ0Λ
2
4/pt =

3π2), and larger than the critical one the or-

ange solid/red dashed curve (λ0Λ
2
4/pt = 8π2).

The minimum of the effective potential corresponds to a vacuum state that has the lowest

energy. Therefore, to discuss spontaneous chiral symmetry breaking in the model, we need to

find out the minimum. This is a solution of the gap equation,

∂V (σ)

∂σ

∣∣∣∣
σ=m

= 0, (2.25)

with m denoting a dynamically generated fermion mass. The behavior of the generated

fermion mass is shown in Fig. 2.3, and we can observe the second-order phase transitions.

The value of the generated fermion mass monotonically increases as the coupling constant

increases. Rewriting the gap equation as

0 =
∂V (σ)

∂σ

∣∣∣∣
σ=m

= mf(m;λ0), (2.26)

where f(m;λ0) is a function of zero or more orders ofm, and taking the chiral limit,m→ 0, we

obtain a critical coupling λc from f(m;λc) = 0. From Eq. (2.13), (2.15), and (2.19), the crit-

ical coupling constant is λ3,cΛ
2
3 = 2π2/Nf in the three-momentum cutoff regularization, and

λ4,cΛ
2
4 = λpt,cΛ

2
pt = 4π2/Nf in the four-momentum cutoff and proper-time regularizations.
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0 2 4 6 8
0.0
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0.4

0.6

0.8
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λΛ2/π2

m
/Λ

Fig. 2.3: The dynamically generated fermion mass as a function of the coupling constant,

λ0Λ
2
3/4/pt/π

2 (Nf = 1). The blue dot-dashed curve corresponds to the three-momentum cutoff

regularization, the orange solid curve the four-momentum cutoff regularization, and the green

dashed curve the proper-time regularization.

2.2 Gross–Neveu Model

The GN model is a four-fermion interaction model similar to the NJL model. The action on

a D-dimensional Minkowski spacetime, MD, (2 ≤ D < 4) reads

SGN =

∫
dDx

[
ψ̄(x)iγµ∂µψ(x) +

λ0
2N

(ψ̄(x)ψ(x))2
]
, (2.27)

with λ0 denoting a coupling constant of a four-fermion interaction that has the mass dimension

−(D − 2), and N the number of copies of fermions. This action (2.27) is invariant under a

discrete chiral (Z2) transformation, ψ(x) → γ5ψ(x). The action, of course, has the symmetry,

ψ → −ψ. In the original paper [29], the model is constructed in two dimensions, and thus the

coupling has no mass dimension.

Applying the same manner with the NJL model, we can obtain the effective potential of

the GN model in the leading order of the 1/N expansion,

V (σ) =
1

2

(
1

λr
+ (D − 1)CD

)
σ2µD−2

r − CD
(σ2)D/2

D
, (2.28)

where the coupling is renormalized according to the same procedure (2.23). We have used

the dimensional regularization. Due to the discrete symmetry, the same expression as in

Eq. (2.24), except for Nf , is obtained without choosing a vacuum state. And also, because

of the same reason, spontaneous discrete chiral symmetry breaking is not forbidden in two
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dimensions. Therefore, we employ the GN model to discuss spontaneous chiral symmetry

breaking in two dimensions. The expression of the effective potential in two dimensions is

V (σ) =
σ2

2λr
+
σ2

4π

(
−3 + ln

(
σ

µr

)2
)
. (2.29)

As mentioned above, the GN model in two dimensions is independent of regularization schemes

due to its renormalizablity. Furthermore, the model in three dimensions, or in any dimension

2 ≤ D < 4, is renormalizable in the sense of the leading order of the 1/N expansion [99,100].

In Fig. 2.4, the generated fermion mass in two and three dimensions are shown as a function

of the renormalized coupling, and the latter exhibits the second-order phase transition. The

chiral symmetry is always broken except for λr = 0 in two dimensions. The explicit expression

of the generated fermion mass is obtained as

m = µr

(
1

λrCD
+D − 1

) 1
D−2

. (2.30)

And also, the critical coupling, λc,D, is given by

λc,D = − 1

CD(D − 1)
. (2.31)

The behavior of the critical coupling is plotted in Fig. 2.5. For instance, λc,D=2 = 0 and

λc,D=3 = π/
√
2 ≃ 2.22. On the boundary, the second-order phase transition takes place.

D = 2 D = 3

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

λr

m
/μ
r

Fig. 2.4: The dynamically generated

fermion mass as a function of the coupling

constant in two (the blue solid curve) and

three (the orange dashed curve) dimensions.

Broken

Symmetric

2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

D

λ
c

Fig. 2.5: The critical coupling as a function

of the dimension, D. The chiral symmetry

is restored in the area below the black curve,

and broken in the other area.

As is shown by no mass dimension of the coupling, the GN model is renormalizable in

two dimensions, and hence there is no regularization dependence. However, differences re-

sulting from regularization schemes can also appear in two dimensions before one applies an

13
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appropriate renormalization. We here compare the effective potentials derived from the cutoff

regularization and the dimensional regularization in two dimensions. We can easily obtain the

expression for a momentum cutoff regularization by replacing three with one in Eq. (2.13),

VΛ1(σ) =
σ2

2λ0
−
∫
k2≤Λ2

1

dk

2π

√
k2 + σ2

=
σ2

2λ0
− 1

2π

Λ2
1

√
Λ2
1 + σ2 +

σ2

2
ln


(
Λ1 +

√
Λ2
1 + σ2

)2
σ2


 ,

(2.32)

with Λ1 denoting the cutoff in two dimensions. Expanding this in powers of σ/Λ1, we have

VΛ1(σ)

Λ2
1

=
σ2

2λ0Λ2
1

+
1

4π

(
σ

Λ1

)2
(
−1− ln 4 + ln

(
σ

Λ1

)2
)

+O

(
σ3

Λ3
1

)
, (2.33)

that is shifted as VΛ1(σ = 0) = 0. The effective potentials (2.33) and (2.29) that is derived

from the dimensional regularization are obviously distinguished in terms of the higher order

terms of Λ1, but also in terms of the coefficients in the second order.

Next, we briefly review the asymptotic freedom. The scale dependence of the renormalized

coupling, λr, is determined by the renormalization group equation,

µr
dV (σ)

dµr
= 0, (2.34)

in the leading order of the 1/N expansion. This equation based on the fact that physical

quantities are explicitly independent of the renormalization scale, µr, which is artificially

introduced. This equation is rewritten as

µr
∂V (σ;λr, µr)

∂µr
+ β(λr)

∂V (σ;λr, µr)

∂λr
= 0, (2.35)

where β(λr) is a beta function that stands for a dependence of the coupling on µr, and the

parameter dependence of the effective potential is written explicitly. Note that there is no

renormalization of σ in the leading order of the 1/N expansion because of our definition of

the auxiliary field, σ̂(x) ∼ λ0ψ̄(x)ψ(x) (below Eq. (2.7) at the page 7). Solving the equation

(2.35), we obtain

β(λr) =
D − 2

λc,D
(λc,D − λr)λr, (2.36)

in the leading order of the 1/N expansion. This result is consistent with Ref. [34].

The behavior of the beta function is plotted in Fig. 2.6. In two dimensions, the beta

function is always negative for λr > 0 (It means that the renormalized coupling is a mono-

tonically decreasing function of µr.), and thus the theory is asymptotically free. On the other

hand, there is an UV fixed point at λr = λc,D=3 in the three-dimensional theory; with in-

creasing µr, the value of the coupling monotonically decreases for λr > λc,D=3, and increases

for λr < λc,D=3.
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D = 2

D = 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.0

0.2

0.4

0.6

λr

β

Fig. 2.6: The beta function as a function of the coupling in two (the blue solid curve) and

three (the orange dashed curve) dimensions.

To make clear the behavior of the renormalized coupling, we solve a differential equation,

dλr
dt

= β(λr) =
D − 2

λc,D
(λc,D − λr)λr, (2.37)

with a dimensionless parameter, t = ln(µr/µr,0), and a reference scale, µr,0. Given λr(t =

0) = λr,0 at t = 0 (µr = µr,0) as an initial condition, we obtain a running coupling constant,

λr(t) = λc,D

(
1−

λr,0 − λc,D
λr,0

e−(D−2)t

)−1

. (2.38)

The behavior of the running coupling is shown in Fig. 2.7. The coupling constant for a strong

coupling, λr,0 > λc,D, monotonically decreases with increasing the renormalization scale, but

for a weak coupling, λr,0 < λc,D, shows the opposite behavior.
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λr (0) =π > λc = 0
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Fig. 2.7: The running coupling constant as a function of the dimensionless parameter, t =

ln(µr/µr,0) (left: two dimensions, and right: three dimensions ). The blue solid curves indicate

that the initial state is the strong coupling, λr,0 > λc,D. The orange dashed curve indicates

that the initial state is the weak coupling, λr,0 < λc,D.

2.3 Massive Model

We have mentioned the no-go theorem for continuous symmetries in Chapter 2.1 in two

dimensions, and also mentioned that the theorem becomes invalid in the leading order of the

1/N expansion. Alternatively, we can also avoid the theorem by choosing a discrete symmetry

as the symmetry of the theory (Chapter 2.2).

In this section, we consider a massive model in four-fermion interaction models. For

simplicity, we use the massive Gross–Neveu model,

SmGN =

∫
dDx

[
ψ̄(x) (iγµ∂µ −mbare)ψ(x) +

λ0
2N

(ψ̄(x)ψ(x))2
]
, (2.39)

with mbare denoting a bare fermion mass. The other parameters are the same ones in the

massless model (2.27). Because of the mass term that is a explicitly breaking , mbareψ̄(x)ψ(x),

the model does not enjoys the discrete chiral symmetry; in that sense, the discrete chiral

symmetry becomes an approximate symmetry. The massive model is not only realistic, but

also can avoid the no-go theorem. Thus, it is worthwhile to consider the massive model.

After shifting the auxiliary field by mbare, we apply the same manner in the massless GN

model, and then obtain the effective potential in the leading order of the 1/N expansion,

V (σ) =
σ2 − 2mbareσ

2λ0
− CD

(σ2)D/2

D
, (2.40)

where the constant term, λ−1
0 m2

bare, is omitted. Following the renormalization procedure
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(2.23), the effective potential is rewritten as

V (σ) =

(
1

λr
− CD(D − 1)

)(
σ2

2
−mbareσ

)
µD−2
r − CD

(σ2)D/2

D
. (2.41)

Taking the two-dimensional limit, we can see that the effective potential contains a divergence

proportional to the mass term. Hence, in order to construct the finite theory in 2 ≤ D < 4,

we need to renormalize the divergence to the mass.

The physical mass is defined as a pole position of the propagator, and realized as the

minimum of the effective potential [101, 102]. In that sense, mbare itself does not imply

physical mass unless it satisfies the minimum of the effective potential. In the weak coupling

limit, λr → 0, a mass parameter mbare is dominant in determining the physical mass. When

the mass parameter is zero, the effective potential is even and can have the minimum at σ = 0

for the weak coupling; intuitively, the mass parameter means the tilt of the effective potential.

Let us reconsider the massless model. The first-order derivative of the effective potential

with respect to σ always satisfies zero at the origin, σ = 0. This implies the fact that there

is always the trivial solution. Back to the massive theory again, the derivative at the origin

satisfies,
∂V (σ)

∂σ

∣∣∣∣
σ=0

= −
(

1

λr
+ CD(D − 1)

)
mbareµ

D−2
r . (2.42)

This indicates that the gap equation in the massive theory, mbare ̸= 0, does not always have

the trivial solution, and also the tilt of the effective potential at the origin becomes divergent

due to CD in the two-dimensional limit.

To resolve this problem, we apply a renormalization condition to mbare by using the

derivative at the origin (2.42),

∂V (σ)

∂σ

∣∣∣∣
σ=0

= −mr

λr
µD−2
r , (2.43)

where mr is a renormalized mass parameter. Under this condition, the divergence in the

two-dimensional limit is removed, and the trivial solution is excluded as long as mr ̸= 0. The

renormalized effective potential reads

V (σ) =
1

2

(
1

λr
+ CD(D − 1)

)
σ2µD−2

r − mr

λr
σµD−2

r − CD
(σ2)D/2

D
. (2.44)

In the weak coupling limit, λr → 0, the gap equation is approximately expressed as,

0 =
∂V (σ)

∂σ

∣∣∣∣
σ=m

≃ m−mr

λr
µD−2
r , (2.45)

then we can confirm the solution, m = mr, being the minimum of the effective potential.

Therefore, the renormalization condition for the mass parameter (2.43) means that the renor-

malized mass parameter gives a physical mass in the weak coupling limit. In Fig. 2.8, the

behavior of the generated fermion mass is shown as a function of λr. We can observe that the
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generated fermion mass monotonically and smoothly increases with increasing the coupling,

and the chiral symmetry is not restored in the weak coupling limit, λr → 0.

mr = 0

mr = 0.2

0 2 4 6 8
0.0
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1.0
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m
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D = 2

mr = 0.1

mr = 0
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1.0
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m
/μ
r

D = 3

Fig. 2.8: The dynamically generated fermion mass as a function of λr (left: two dimensions,

and right: three dimensions). The blue solid curve corresponds to the massive theory, and

the orange dashed curve the massless theory.

Finally, we check the scale dependence of the mass parameter, mr, in this section. In the

massive model, the renormalization group equation (2.34) is written as

µr
∂V (σ;λr,mr, µr)

∂µr
+ β(λr)

∂V (σ;λr,mr, µr)

∂λr
+mrγm(λr)

∂V (σ;λr,mr, µr)

∂mr
= 0, (2.46)

where γm(λr) is a coefficient related to the renormalized mass parameter, mr. Solving this

equation, the solution of β(λr) is Eq. (2.36). The solution of γm(λr) is given by

γm(λr) = −D − 2

λc,D
λr =

β(λr)

λc,D
− (D − 2). (2.47)

γm(λr) is linear with respect to λr and monotonically decreases from γm(λr = 0) = 0 in

arbitrary dimension.. Since we have solved β(λr), we can also solve the differential equation,

dγm(t)

dt
= −(D − 2)

(
1−

λr,0 − λc,D
λr,0

e−(D−2)t

)−1

mr, (2.48)

then

mr(t) =
λc,Dmr,0(

e(D−2)t − 1
)
λr,0 + λc,D

, (2.49)

with mr(t = 0) = mr,0 at t = 0 as an initial condition. The behavior of the renormalized

mass parameter, mr(t), is shown in Fig. 2.9. Regardless of whether the coupling is strongly

or weakly coupled, the value of the mass parameter decreases as the renormalization scale

increases.
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λr (0) =π > λc = 0
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Fig. 2.9: The renormalized mass parameter as a function of t = ln(µr/µr,0) (left: two

dimensions, and right: three dimensions). The blue solid curves indicate that the initial state

is the strong coupling, λr,0 > λc,D, and the orange dashed curve indicates that the initial state

is the weak coupling, λr,0 < λc,D.

2.4 Finite Temperature and Chemical Potential

In order to deal with more realistic situations in four-fermion interaction models, we extend

the models with a finite temperature and a finite chemical potential. Only thermal equilibrium

systems are treated. In this section and the following chapters, we use basically the GN model,

and the dimensional regularization.

The Matsubara formalism (or called the imaginary time formalism) [103–106] is well known

as an extension method to a finite temperature systems. In this formalism, a time direction is

extended to a complex plane by using analytic continuation, and a time, x0, is replaced with

an imaginary time, x0 → xD = −ix0 (xD ∈ R). The range of an integral over the imaginary

time is limited to a finite interval, [0, 1/T ], for a temperature T . In fermion systems, an

anti-periodic boundary condition is imposed to the imaginary time direction,

ψ(x1, x2, . . . , xD + 1/T ) = −ψ(x1, x2, . . . , xD) (2.50)

Thus, we can regard the imaginary time direction as a one-dimensional sphere, S1, with a

circumference of 1/T : the background spacetime RD−1 × S1. The generating functional (2.6)

is replaced with a partition function in thermodynamics,

ZGN,T =

∫
DψDψ̄ e−SGN,T , (2.51)

SGN,T =

∫
dD−1x

∫ 1/T

0
dxD

[
ψ̄(x)γ̃k∂kψ(x)−

λ0
2N

(ψ̄(x)ψ(x))2
]
, (2.52)
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where γ̃k is a Euclidean gamma matrix, (γ̃k)† = −γ̃k. Because of the finite range of the

integral, the Fourier transformation of fermions is discretized to the Matsubara frequencies,

ωn = (2n+ 1)πT (n ∈ Z).
Next, we introduce a chemical potential, µ. According to the Noether’s theorem, a particle

number density is obtained as a conserved quantity from a global transformation, ψ(x) →
eiαψ(x) (α ∈ R): ψ̄(x)γ0ψ(x). A chemical potential is a quantity that is conjugate to a

particle number in thermodynamics. Hence, we can introduce a chemical potential into the

thermal theory by replacing the action as follows,

SGN,T → SGN,T + µ

∫
dD−1x

∫ 1/T

0
dxD ψ̄(x)γDψ(x). (2.53)

Combining the discussions at a finite temperature and at a finite chemical potential, and

applying the procedures described in Chapter 2.1 and 2.2, we obtain the effective potential in

the leading order of the 1/N expansion,

V (σ;T, µ) =
σ2

2λ0
− tr I

2
T

∞∑
n=−∞

∫
dD−1k

(2π)D−1
ln
(
k2 + ω̃2

µ,n + σ2
)
, (2.54)

with ω̃µ,n = ωn − iµ. The integral over in the continuous momentum space is replaced with

the summation from −∞ to ∞.

We perform the Matsubara sum. By using the useful identity related to the zeta function

regularization (2.17), the second term in Eq. (2.54) can be written as

lim
s→0

tr I

2

∫
dD−1k

(2π)D−1

d

ds

1

Γ (s)

∫ ∞

0
dτ τ s−1e−τ(k2+σ2)T

∞∑
n=−∞

e−τω̃2
µ,n . (2.55)

After some calculations, we can confirm this term separated into terms come from the vacuum

state (not thermal), and the Fermi–Dirac distribution in finite temperature systems,

−CD
(σ2)D/2

D
− T tr I

(4π)
D−1
2 Γ

(
D−1
2

) ∫ ∞

0
dq qD−2

[
ln

(
1 + e

−
(√

q2+σ2+µ
)
/T
)
+ (µ→ −µ)

]
,

(2.56)

where (µ→ −µ) represents the term where µ is replaced by −µ in the previous term. As can

be seen from this expression, the contribution from a finite temperature does not include the

divergence. The Matsubara sum has been performed and the integral over the momentum

space remains. Thus, the effective potential at a finite temperature and a finite chemical

potential reads

V (σ;T, µ) =
1

2

(
1

λr
+ CD(D − 1)

)
σ2µD−2

r − CD
(σ2)D/2

D

− T tr I

(4π)
D−1
2 Γ

(
D−1
2

) ∫ ∞

0
dq qD−2

[
ln

(
1 + e

−
(√

q2+σ2+µ
)
/T
)
+ (µ→ −µ)

]
.

(2.57)
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We have applied the same renormalization procedure (2.23) as in the model at zero tempera-

ture. This is because there is no divergence in the finite temperature term. The contribution

from a finite temperature appears to push down the effective potential strongly near the origin

and weakly away from the origin. As a result, the chiral symmetry gets restored continuously

with increasing a temperature, and the second-order phase transition occurs.

To clarify the contribution from a finite chemical potential, we takes the zero temperature

limit. At zero temperature, the expression is given by

V (σ;T → 0, µ) =
1

2

(
1

λr
+ CD(D − 1)

)
σ2µD−2

r − CD
(σ2)D/2

D

− tr I

(4π)
D−1
2 Γ

(
D−1
2

) ∫ ∞

0
dq qD−2

(
|µ| −

√
q2 + σ2

)
θ(|µ| −

√
q2 + σ2),

(2.58)

where θ(x) is a step function defined by θ(x) = 1 for x > 0, and θ(x) = 0 for x < 0. From this

expression, the contribution from a chemical potential appears to push the effective potential

down in a range, |σ| < µ, without modifications of the shape of the effective potential outside

the range, |σ| > µ. The chiral symmetry can be restored discontinuously when a chemical

potential becomes larger than a certain value (Shown in Fig. 2.10).
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Fig. 2.10: Behavior of the effective potential at a finite temperature and chemical potential.

A phase diagram on a µ-T plane plotted by using Eq. (2.57) in two dimensions is shown

in Fig. 2.11. In this calculation, the coupling is fixed so that the generated fermion mass

normalized by µr is unity at zero temperature and chemical potential. A second-order phase

transition boundary is drawn in high temperature and low chemical potential area, and the line

ends at lower temperature and higher chemical potential; this point is called the critical end-
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point. When the model becomes massive, the critical line disappears and a crossover region

takes place. A first-order phase transition boundary exists in the massless and massive theory.

The critical temperature where the chiral condensate vanishes at zero chemical potential is

eγ/π ≃ 0.57 (on the vertical axis) and the chemical potential where the condensate jump from

a finite value to zero at zero temperature is 1/
√
2 ≃ 0.71 (on the horizontal axis) [107, 108].

Similarly in three dimensions, the former value is 1/ ln 4 ≃ 0.72 and the latter is 1 [33,109].
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Fig. 2.11: Phase diagram on the µ-T plane in two dimensions. The solid and dashed lines

show the first-order and second-order phase transition boundaries respectively. The chiral

symmetry is broken inside the boundary and the chiral condensate vanishes outside.
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Chapter 3

Finite-size Effect

We show finite-size effects on the dynamical chiral symmetry breaking by using a four-fermion

interaction model. In this chapter, we consider a situation at zero temperature in the GN

model based on our paper [81] (The GN model is also used in the next chapter.). The back-

ground spacetime where we analyze the finite-size effects is a (D− 1)-dimensional Minkowski

spacetime with a one-dimensional sphere, MD−1 × S1. To treat a theory with a finite-size

space, one usually needs to consider a boundary condition. We impose a U(1)-valued boundary

condition to fermions in the compactified direction,

ψ(x0, x1, . . . , xD−1 + L) = e−iπδψ(x0, x1, . . . , xD−1), (3.1)

with L denoting the size of S1 and δ a U(1) phase. In other words, going around the one-

dimensional sphere, the fermion gets the U(1) phase, δ: δ = 0 and 1 corresponding to periodic

and anti-periodic boundary conditions, respectively. The phase, δ, is a parameter that is

determined by conditions outside of the system or a non-trivial topology of the early universe.

When we use the term finite-size effect, we include both contributions from a finite volume

and a boundary condition.

3.1 Effective Potential Analysis

To analyze the theory with the compactified space, we follow the manner already described in

Chapter 2.4 as treating a model at a finite temperature. This is because the imaginary time

direction at finite temperature is also compactified to S1. The difference between the two lies

in the boundary condition. To apply the following replacement in the effective potential at

finite temperature (2.54), 
T → 1

L

ω̃µ,n → kδ,n =
2π

L

(
n+

δ

2

) , (3.2)
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we obtain the effective potential with the compactified space in the leading order of the 1/N

expansion,

V (σ;L, δ) =
1

2

(
1

λr
+ CD(D − 1)

)
σ2µD−2

r − CD
(σ2)D/2

D

− 2 tr I

(4π)
D−1
2 Γ

(
D−1
2

)
L

∫ ∞

0
dq qD−2Re

[
ln
(
1 + e−L

√
q2+σ2+iπδ

)]
.

(3.3)

In the large size limit, L→ ∞, this effective potential returns to Eq. (2.28) and reproduces the

theory without the compactified space. Because of the periodicity of the effective potential,

V (σ)|δ = V (σ)|δ+2nπ (n ∈ Z), it is enough to discuss the effective potential within the interval,

0 ≤ δ ≤ 1 or 0 ≤ δ ≤ 2.

In this massless model, it is convenient to use the solution of the gap equation at L→ ∞
instead of the renormalization scale, µr, to clarify finite-size effects. The expression of the

effective potential rewritten by using the generated fermion mass (2.30) reads

V (σ;L, δ)

mD
α

=CD

[
(−1)α

2

(
σ

mα

)2

− 1

D

(
σ2

m2
α

)D/2
]

− 2 tr I

(4π)
D−1
2 Γ

(
D−1
2

)
Lmα

∫ ∞

0

dq

mα

(
q

mα

)D−2

Re
[
ln
(
1 + e−L

√
q2+σ2+iπδ

)]
,

(3.4)

where α is a parameter taking 0 or 1. m0 is the usual dynamical mass in the large size limit,

L→ ∞, for the strong coupling, λr > λc,D, (shown in Fig. 2.4), and m1 is a mass parameter

defined by an absolute value of the solution of the gap equation (2.30) for the weak coupling,

λr < λc,D; as a result, the coupling constant is removed form this expression. Because the

critical coupling is vanishing in two dimensions, λc,D=2 = 0, we can describe the dynamical

chiral symmetry breaking for D = 2 only by using m0. Using this notation makes clear finite-

size effects; in other words, if we observe chiral symmetry restoration (breaking) by using the

effective potential written in m0 (m1), we find that it is due to the finite-size effects. The

same applies to the situations at a finite temperature and a finite chemical potential (using

the next chapter).

In the large size limit, L→ ∞ (Chapter 2), we have normalized the effective potential at

the origin to V (σ = 0) = 0. This is the usual way to remove the zero-point energy that is

divergent. However, when dealing with theories with a finite compactified space (as well as at

a finite temperature), it is necessary to pay attention to how to remove the zero-point energy;

this is the improvement from [50]. By using some formulae [90, 91, 109, 110], the effective

potential with the finite size (3.4) at the origin, σ = 0, is reduced to

V (σ = 0;L, δ) =
tr I

(4π)
D−1
2

Γ (D)

Γ
(
D+1
2

)Re [LiD (eiπδ)]
LD

, (3.5)

where Lia (x) is the polylogarithm function defined by Lis (z) =
∑∞

n=1 n
−szn. Thus, in the

normalization we have adopted, the value of the effective potential at the origin depends on
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the size, L, and the boundary condition, δ. In the large size limit, L→ ∞, or when the phase,

δ, takes a certain value, the value of the effective potential at the origin becomes zero. Such a

parameter dependence has a decisive contribution to the thermodynamic properties discussed

later.

The behavior of the effective potential is plotted in Fig. 3.1 for a fixed size, Lmα = 1.7.

Since the effective potential is axisymmetric, we show the region, σ ≥ 0. We can observe

that the effective potential lifts up and the position of the minimum moves away from the

origin with varying the boundary condition form δ = 1 (anti-periodic) to δ = 0 (periodic) for

both the strong coupling and the weak coupling. When the value of the effective potential

at the origin is close to zero, this means that the finite-size effects is small. Therefore, the

chiral symmetry tends to be restored near the anti-periodic boundary condition, δ = 1, and

enhanced near the periodic one, δ = 0, for the fixed size, Lmα = 1.7. These results are

consistent with Ref. [34, 42,43,111].
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Fig. 3.1: The effective potential as a function of σ for Lmα = 1.7. The two figures on the

left are in the strong coupling, λr > λc,D (α = 0), and the figure on the right is in the weak

coupling, λr < λc,D (α = 1).

3.2 Generated Fermion Mass

The dynamically generated fermion mass, denoted by m, is given by the minimum of the

effective potential, V (σ;L, δ). As reviewed in Chapter 2.2, this is obtained as a non-trivial

solution of the gap equation,
∂V (σ;L, δ)

∂σ

∣∣∣∣
σ=m

= 0. (3.6)

Since an exact solution can not be obtained, we evaluate the gap equation (3.6) numerically

and plot the behavior of the generated fermion mass as a function of the phase, δ, and the

size, L. In Fig. 3.2, the behavior of the generated fermion mass as a function of δ for the

fixed size, Lmα = 1.7. For the strong coupling, λr > λc,D, it is seen that the generated
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fermion mass monotonically decreases as the phase approaches one, δ → 1; in particular, the

chiral symmetry gets restored as the second-order phase transition in two dimensions. Near

the periodic boundary condition, the chiral symmetry breaking is enhanced (m/m0 > 1), and

even for the weak coupling, λr < λc,D, observed in the narrow regions.

D = 2
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0.0

0.2

0.4
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(a) λr > λc,D(α = 0), Lm0 = 1.7

D = 3
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(b) λr < λc,D(α = 1), Lm1 = 1.7

Fig. 3.2: The dynamically generate fermion mass as a function of δ (left: strong coupling,

and right: weak coupling). The blue solid curves is in two dimensions, and the orange dashed

curve in three dimensions.

In Fig. 3.3, the behavior of the generated fermion mass is shown as a function of L. At the

periodic boundary condition, δ = 0, the dynamical mass increases with decreasing the size,

L, and the chiral symmetry breaking is enhanced; as a result, the dynamical mass diverges

in the small size limit, L → 0. In contrast, at the anti-periodic boundary condition, δ = 1,

the finite-size effect restores the broken chiral symmetry as the second-order phase transition.

At δ = 0.4 for the strong coupling, the behavior of the generated mass indicates features of

both the periodic and anti-periodic boundary conditions. In this case, the generated fermion

mass converges to 1 from above in the large size limit, m/m0 → 1+ for L→ ∞, but the chiral

symmetry is restored in the small size limit, m/m0 → 0 for L→ 0.
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Fig. 3.3: The dynamically generated fermion mass as a function of L. The two figures on

the left are in the strong coupling, λr > λc,D (α = 0), and the figure on the right is in the

weak coupling, λr < λc,D (α = 1).

Since the order of the phase transition is second order, the phase boundary is obtained

in the chiral limit, m → 0, of the gap equation, in the same way as Eq. (2.26). The critical

length, denoted by Lcr, that divides the symmetric and broken phases is given by

Lcrmα =


2π

[
2(−1)α√

π

Γ
(
3−D
2

)
Γ
(
1− D

2

)ζ (3−D)

] 1
D−2

(δ = 0, 2)

2π

[
(−1)α√

π

Γ
(
3−D
2

)
Γ
(
1− D

2

) (ζ (3−D,
δ

2

)
+ ζ

(
3−D, 1− δ

2

))] 1
D−2

(0 < δ < 2)

,

(3.7)

where ζ (s) is the Riemann zeta function, and ζ (s, a) is the Hurwitz zeta function defined by

ζ (s, a) =
∑∞

n=0(n + a)−s: ζ (s, 1) = ζ (s). At the anti-periodic boundary condition, δ = 1,
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this formula coincides with the one of the critical temperature that is derived in Ref. [109]:

Lcrm0 ≃ 1.76 for (D, δ) = (2, 1), and Lcrm0 = ln 4 ≃ 1.39 for (D, δ) = (3, 1).

By using the critical length (3.7), the phase diagram is plotted on a δ-L plane in Fig. 3.4.

For the strong coupling, λr > λc,D, the chiral symmetric phase can be observed around the

anti-periodic boundary condition, δ = 1, while only the broken phase is observed at the

periodic boundary condition, δ = 0. For the weak coupling, λr < λc,D, the chiral symmetry

is broken near the periodic boundary condition, and the critical length is divergent at δ = 0

and 2 in three dimensions. As long as the size is finite, L <∞, the chiral symmetry is always

broken at the periodic boundary condition. It can be also observed that the finite-size effect is

more suppressed, and the critical length is smaller in three dimensions than two dimensions.
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(b) λr < λc,D(α = 1)

Fig. 3.4: The phase diagram on a δ-L (left: strong coupling, and right: weak coupling).

The chiral symmetry is restored below the curves for λr > λc,D, and between the curves for

λr < λc,D.

3.3 Casimir Effect

To consider a finite-size effect in the four-fermion interaction model onMD−1×S1, we evaluate
a response for the size given by the first derivative of the effective potential with respect to

L,

T (L, δ) = − ∂V (σ;L, δ)

∂L

∣∣∣∣
σ=m

, (3.8)

wherem is the fermion mass that is given by the minimum of the effective potential, V (σ;L, δ).

T (L, δ) is a string tension. Because the effective potential is a thermodynamic potential

density, the string tension is also a thermodynamic quantity. By using this thermodynamic

quantity, we discuss the phase transition and the stability of the system.
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The explicit expression of the string tension reads

T (L, δ)

mD+1
α

= − 2 tr I

(4π)
D−1
2 Γ

(
D−1
2

)
(Lmα)2

∫ ∞

0

dq

mα

(
q

mα

)D−2

× Re

[
ln
(
1 + e−L

√
q2+m2+iπδ

)
+

L
√
q2 +m2

1 + eL
√

q2+m2−iπδ

]
.

(3.9)

In Fig. 3.5, the behavior of the string tension is shown as a function of the phase, δ, for a

fixed length, Lmα = 1.7. For the strong coupling, λr > λc,D, sharp bends appear on the blue

curve (in two dimensions) near δ = 1. These sharp bends are observed at the same boundary

conditions where the chiral phase transition occurs in Fig. 3.2. On the other hand, it is shown

that the string tension is repulsive at the periodic boundary condition, δ = 0 and 2, and the

tension monotonically decreases as approaching the anti-periodic boundary condition, δ = 1.

During this decreasing, the sign of the tension, T (L, δ), changes near δ ∼ 0.5. An attractive

string tension is realized near the periodic boundary condition.

D = 2

D = 3

0.0 0.5 1.0 1.5 2.0

-0.2

-0.1

0.0

0.1

δ

T
/m
0
D
+
1

(a) λr > λc,D(α = 0), Lm0 = 1.7

D = 3

0.0 0.5 1.0 1.5 2.0

-0.1

0.0

0.1

0.2

δ

T
/m
1
D
+
1

(b) λr < λc,D(α = 1), Lm1 = 1.7

Fig. 3.5: The string tension as a function of δ for a fixed length Lmα = 1.7 (left: strong

coupling, and right: weak coupling).

Next, we plot the behavior of the string tension as a function of the size, L, in Fig. 3.6.

This string tension diverges and vanishes in the small and large size limit, L→ 0 and L→ ∞,

respectively. At the periodic (anti-periodic) boundary condition, δ = 0 (δ = 1), the tension

remains repulsive (attractive) and monotonically decreases (increases) with increasing the

size, L. A sharp bend appears on the orange curve (δ = 0.4) in Fig. 3.6 (a). From comparison

with Fig. 3.3, this bend exhibits the phase transition. The sign flip seen in Fig. 3.5 is not

observed in Fig. 3.6.
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Fig. 3.6: The string tension as a function of L. The two figures on the left are in the strong

coupling, λr > λc,D (α = 0), and the figure on the right is in the weak coupling, λr < λc,D

(α = 1).

In order to clarify the sign-flip points of the string tension, we numerically solve T (L, δ) =

0. The results of this numerical calculation are plotted in Fig. 3.7. Since the sign-flip bound-

aries appear in limited ranges of the phase, 0.4 < δ < 0.5 and 1.5 < δ < 1.6, we show only the

range, 0.4 < δ < 0.5. The string tension is repulsive and attractive on the left and right side

of the curve, respectively. For the strong coupling, λr > λc,D, the sign-flip boundary asymp-

totically approaches δ = 0.5 as the size increases. Referring the phase diagram (Fig. 3.4), the

system with the compactified space larger than Lm0 ≃ 0.5 is in the broken phase, and this

behavior of the sign-flip boundary is caused by the generated fermion mass; in other words,

the generated fermion mass extends the domain where the repulsive tension is induced. For

Lm0 ≲ 0.5, the system is in the chiral symmetric phase, and then the boundary is represented

by a vertical line. In the symmetric phase, the expression of the string tension (3.9) can be
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D 2 3

δ 0.423 0.462

Tab. 3.1: The phase δ where the sign of the string tension flips in the symmetric phase.

reduced to
T (L, δ)sym

mD+1
α

=
tr I

(4π)D−1

Γ (D + 1)

Γ
(
D+1
2

) Re
[
LiD

(
eiπδ

)]
(Lmα)D+1

. (3.10)

From this expression, it is clear that the solution of T (L, δ)sym = 0 is independent of L as

long as L is finite, and given by

Re
[
LiD

(
eiπδ

)]
= 0. (3.11)

The specific value of the sigh-flip phase is shown in Tab. 3.1.

For the weak coupling, λr < λc,D, the sign-flip boundary for arbitrary Lm1(< ∞) is

determined by the equation (3.11) because, as can be seen from Fig. 3.4, the system is in the

chiral symmetric phase.

Through the discussions of the string tension, it is found that the string tension is only

repulsive (attractive) near the periodic (anti-periodic) boundary condition. Therefore, near

both the boundary conditions, the compactified space can not remains finite. While the sign-

flip point exists at the intermediate boundary condition, 0.4 < δ < 0.5, as we have shown, this

point does not means a stable size. The stable size we call is the point where the string tension

becomes negative with increasing the system size and positive with decreasing the system size.

This is because when the size of the compactified space becomes larger (smaller) than this

point, the tension becomes repulsive (attractive). Here, let us go back to the discussion in

Chapter. 3.1. At the periodic (anti-periodic) boundary condition, the effective potential at a

finite size is larger than the one in the large (small) limit, L→ ∞ (L→ 0), which is consistent

with the string tension being repulsive (attractive).
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Fig. 3.7: The sign-flip boundaries between the repulsive (left side of the curves) and attractive

(right side of the curves) tension on a δ-L plane.

We have discussed dynamical chiral symmetry breaking in the GN model on MD−1 × S1

with the U(1)-valued boundary condition. Assuming the homogeneous chiral condensate and

using the zeta function regularization, we have obtained the explicit expression of the effective

potential for the vacuum expectation value of the fermion and anti-fermion composite field in

the leading order of the 1/N expansion.

In particular, we have focused on the topological effect stemming from the boundary

condition at zero temperature. We calculated the dynamically generated fermion mass as a

function of L and δ, and checked that only the second-order phase transition occurs. The

phase diagram has shown on a δ-L plane for the strong and weak couplings in Fig. 3.4.

To find a phenomenological consequence, we has discussed a string tension as the Casimir

effect in the model on MD−1 × S1. The critical lengths for chiral symmetry breaking are

observed as slightly sharp bends of the string tension. Moreover, we have found the explicit

expression for the sign-flip points in the symmetric phase, and the boundary lines dividing

the repulsive tension and attractive tension on the L-δ plane, Fig. 3.7. The phase transition

is observed as sharp bends in Fig. 3.7 (a). However, following our analysis, there is no stable

size for the string tension in the four-fermion interaction model at zero temperature.
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Chapter 4

Thermal and Finite-size Effects

In the preceding chapter, we have discussed finite-size effects in the GN model at zero tem-

perature. We here consider finite-size effects in the GN model at a finite temperature and a

finite chemical potential.

4.1 Effective Potential Analysis

Let us derive the effective potential in the leading order of the 1/N expansion on a D-

dimensional background spacetime, RD−2 × T2, a torus T2 ≃ S1 × S1, with a finite-size space

at a finite temperature. The formulation at a finite temperature and a finite chemical potential

is based on the discussion in Chapter 2.4.

The action of the model is

SGN,L,T =

∫
dD−2x

∫ L

0
dxD−1

∫ 1/T

0
dxD

[
ψ̄(x)γ̃k(∂k + µδDk )ψ(x)− λ0

2N
(ψ̄(x)ψ(x))2

]
,

(4.1)

with the U(1)-valued boundary condition in the compactified direction,

ψ(x1, . . . , xD−1 + L, xD) = e−iπδψ(x1, . . . , xD−1, xD), (4.2)

the anti-periodic boundary condition in the imaginary time direction,

ψ(x1, . . . , xD−1, xD + 1/T ) = −ψ(x1, . . . , xD−1, xD), (4.3)

and a chemical potential, µ. Applying the same procedures described in Chapter 2.1 and 2.2,

we obtain the effective potential in the leading order of the 1/N expansion,

V (σ;L, δ, T, µ) =
σ2

2λ0
− tr I

2

T

L

∞∑
n,n′=−∞

∫
dD−2k

(2π)D−2
ln
(
k2 + k2δ,n + ω̃2

µ,n′ + σ2
)
. (4.4)

There are two sums: quantized momenta, kδ,n, on the compactified direction and the Mat-

subara frequencies, ω̃µ,n′ , on the imaginary-time direction.
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By using the identity related to the zeta function regularization (2.17) again, the second

term in this expression (4.4) is separated into a non-thermal part and a thermal part by

performing the Matsubara sum. We takes the sum over the momentum space in the non-

thermal term, while the sum in the thermal term are left. The expression of the effective

potential on RD−2 × T2 reads

V (σ;L, δ, T, µ)

=
1

2

(
1

λr
+ CD(D − 1)

)
σ2µD−2

r − CD
(σ2)D/2

D

− 2 tr I

C̃D+1L

∫ ∞

0
dq qD−2Re

[
ln
(
1 + e−L

√
q2+σ2+iπδ

)]
− tr I

C̃D

T

L

∞∑
n=−∞

∫ ∞

0
dq qD−3

[
ln

(
1 + e

−
(√

q2+k2δ,n+σ2+µ
)
/T
)
+ (µ→ −µ)

]
,

(4.5)

with a constant, C̃D = (4π)D/2−1Γ (D/2− 1). In this expression, the coupling of the four-

fermion interaction is also renormalized by the same procedure (2.23) since these extensions

with L, δ, T , and µ have nothing to do with the UV divergence. The second term represents

the contribution from the vacuum, the third term the pure contribution from finite size, and

the last term the contribution from finite size, a finite temperature, and a finite chemical

potential. The first through third terms are the same as the effective potential with the

compactified space (3.3). We can confirm that this effective potential (4.5) reproduces the

one at a finite temperature and a finite chemical potential (2.57) in the large size limit,

L→ ∞, and the one with the compactified space (3.3) at zero temperature and zero chemical

potential, T = µ = 0.

We are interested in the situation in which the chiral symmetry is broken in the large

size limit, L → ∞. As is mentioned in Chapter 3.1, the normalized coupling, λr, and the

normalization scale, µr, can be removed from Eq. (4.5) by using the generated fermion mass,

m0, on MD. The expression (4.5) is simplified to

V (σ;L, δ, T, µ)

mD
0

=CD

[
1

2

(
σ

m0

)2

− 1

D

(
σ2

m2
0

)D/2
]

− 2 tr I

C̃D+1Lm0

∫ ∞

0

dq

m0

(
q

m0

)D−2

Re
[
ln
(
1 + e−L

√
q2+σ2+iπδ

)]
− tr I

C̃D

Tm−1
0

Lm0

∞∑
n=−∞

∫ ∞

0

dq

m0

(
q

m0

)D−3 [
ln

(
1 + e

−
(√

q2+k2δ,n+σ2+µ
)
/T
)
+ (µ→ −µ)

]
.

(4.6)

In the following, we numerically evaluate this effective potential (4.6) in two and three di-

mensions in the framework of the dimensional regularization. In Fig. 4.1, the typical behavior

of the effective potential is shown as a function of σ/m0 for a fixed size, Lm0 = 1.5, at the
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periodic boundary condition, δ = 0; only positive are is shown due to the axisymmetric. For

µ/m0 = 0 (left in Fig. 4.1), the minimum is located at σ/m0 > 1 by the finite-size effect at

δ = 0, and smoothly approaches the origin, σ/m0 = 0, by the thermal effect with increasing

T/m0. For µ/m0 = 0.7 and 0.9 (right in Fig. 4.1), the other minimum appears at the origin

for T/m0 = 0.1 and 0.2. As mentioned in Chapter 3.1, we do not normalized the effective

potential as V (σ = 0;L, δ, T, µ) = 0. Our normalization makes it easy to regard the minimum

of the effective potential as a thermodynamic potential.
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Fig. 4.1: The behavior of the effective potential for each chemical potential (above: D = 2,

and below: D = 3) for Lm0 = 1.5 and δ = 0 (purple: T/m0 = 0.1, green: T/m0 = 0.2, and

light blue: T/m0 = 0.4).

4.2 Phase Structure

An order parameter of chiral symmetry breaking is given by the expectation value of the

composite operator of the fermion and anti-fermion,
〈
ψ̄ψ
〉
. As long as we consider the mass-
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less theory, the quantity is proportional to the auxiliary field, σ, in the ground state. One

finds this state by evaluating the global minimum of the effective potential that satisfies

V (m;L, δ, T, µ) ≤ V (σ;L, δ, T, µ) for any σ; the value of the minimum, m, is equivalent to a

generated fermion mass. On the other hand, the local minima of the effective potential implies

the existence of metastable states. The metastable states as well as the ground state has some

phenomenological consequences. We assume a spatially homogeneous ground state as same

as the previous sections and evaluate the number of extrema. In that sense, our results do

not directly indicate the presence of the inhomogeneous phase, but the ground state can be

inhomogeneous in the existence of multiple minima in a certain region of a parameter space.

Phase diagrams

In order to find a precise phase structure of the GN model, we evaluate not only the global

minima but also the local minima of the effective potential, and hence we plot bifurcation

diagrams. Since we consider the massless theory, the effective potential is an even function of

σ. We classify the states by (i) the number of extrema and (ii) the position of the minimum

of the effective potential for σ ≥ 0. In this chapter, the class of the state is described by two

symbols that we introduce: a
bS and a

bB. The former and the latter denote a symmetric phase

and a broken phase, respectively. The superscript a is the number of extrema for σ ≥ 0 and

the subscript b is the number of the extrema from the origin to the minimum, i.e. the bth

extremum is the minimum and b ≤ a. As an example, we show the phase diagram on the µ-T

plane divided into four areas for D = 3, Lm0 = 8.0 and δ = 1.0. The correspondences between

the symbol and behavior of the effective potential are indicated in Fig. 4.2. The symmetric

phase 1
1S corresponding to (s) as the behavior of the effective potential, is realized at a high

temperature and chemical potential, outside the outer boundary. On the outer boundary, only

a second-order phase transition takes place. The broken phase, inside the outer boundary,

contains three areas identified by the by the number of the extrema and the position of the

minimum. A jump of the generated fermion mass between finite values is observed on the

boundary between (b1), 4
4B, and (b2), 4

2B.
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Fig. 4.2: Phase diagram on the µ-T plane (D = 3.0, Lm0 = 8.0 and δ = 1.0) and behavior of

the effective potential along the dashed line (T/m0 = 0.03). The arrows indicate the position

of the minimum.

Although we can also treat intermediate value boundary conditions, we analyze the phase

structure at the periodic (δ = 0) and anti-periodic (δ = 1) boundary conditions for simplicity.

The phase diagrams on the µ-T plane for some fixed sizes and boundary conditions in Figs.

4.3 (D = 2) and 4.4 (D = 3); the bottom figures are plotted at a larger size than the top

figures. As is mentioned in Chapter 2.4, it is known that, on usual non-compactified spaces

R and R2, the critical temperatures at zero chemical potential are eγ/π ≃ 0.57 (D = 2) and

1/ ln 4 (D = 3), and the chemical potentials where the generated fermion mass jumps at zero

temperature are 1/
√
2 ≃ 0.71 (D = 2) and 1 (D = 3) with the normalization by m0. The

finite-size effects primarily appear at a low temperature with a high chemical potential, and

a high temperature with a low chemical potential. The effects of the boundary conditions are

suppressed for a large size, but at a certain size prominently appear.

For instance, in two dimensions at Lm0 = 8.0 and δ = 0.0 (Fig. 4.3, bottom left), we can

observe the complex behavior of the boundaries. As the chemical potential increases at a low

temperature, the domain changes 4
4B → 5

5B → 5
3B → 5

1S → 3
1S → 1

1S and mass jumps appear

twice on the boundaries 5
5B → 5

3B and 5
3B → 5

1S.

38



CHAPTER 4. THERMAL AND FINITE-SIZE EFFECTS

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4

T/
m

0

μ/m0

2
2B

3
3B

1
1S

3
1S

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4

T/
m

0

μ/m0

2
2B

3
3B

3
1S

1
1S

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0 	0.2 	0.4 	0.6 	0.8 	1

T/
m

0

μ/m0

2
2B

3
3B
@@

5
3B5

5B c
c
cc

5
5B PPPP

4
4B XXX

1
1S

3
1S

   
5
1S

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0 	0.2 	0.4 	0.6 	0.8 	1

T/
m

0

μ/m0

2
2B

3
3B

1
1S

3
1S

Fig. 4.3: Phase diagrams in 2 dimensions on a µ-T plane (above: Lm0 = 3.0, below:

Lm0 = 8.0) for δ = 0.0 (lefts) and δ = 1.0 (rights).

The basic properties are common between two and three dimensions. Their differences

come from the continuous momentum in the additional non-compactified space, R. At

Lm0 = 4.0 and δ = 0.0 in three dimensions (Fig. 4.4, bottom left), only the second-order

phase transition takes place, and no critical end-point appears on the boundary dividing the

symmetric and the broken phases. In the broken phase, the generated fermion mass discon-

tinuously changes on the boundary between the areas, 4
4B and 4

2B.
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Fig. 4.4: Phase diagrams in 3 dimensions on a µ-T plane (above: Lm0 = 2.0, below:

Lm0 = 4.0) for δ = 0.0 (lefts) and δ = 1.0 (rights).

By observing the phase diagrams on the µ-T plane, we can recognize the differences that

emerge via the size of the system and the boundary conditions. In order to determine the

size dependence of the chiral symmetry, we next plot the phase structure on a L-T plane.

The phase diagrams on the L-T plane are shown in Figs. 4.5 (D = 2) and 4.6 (D = 3);

the bottom figures are plotted at a larger size than the top figures. The finite size effect

at T = µ = 0 enhances the chiral symmetry breaking for the periodic boundary condition,

and suppresses the symmetry breaking for the anti-periodic one [81]. However, it is also

observed that these relations are reversed for certain intervals of size at a finite temperature

and chemical potential. For low temperatures, the broken and the symmetric phases alternate

with increasing size of the system, L.
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Fig. 4.5: Phase diagrams in 2 dimensions on a L-T plane (above: µ/m0 = 0.5, below:

µ/m0 = 0.7) for δ = 0.0 (lefts) and δ = 1.0 (rights).
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Fig. 4.6: Phase diagrams in 3 dimensions on a L-T plane (above: µ/m0 = 0.5, below:

µ/m0 = 0.7) for δ = 0.0 (lefts) and δ = 1.0 (rights).
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Dynamically generated fermion mass

The dynamically generated fermion mass, m, satisfies the gap equation,

∂V (σ;L, δ, T, µ)

∂σ

∣∣∣∣
σ=m

= 0. (4.7)

We show the generated fermion mass as a function of the length of S1, L, and the U(1) phase,

δ, in Figs. 4.7 (D = 2) and 4.8 (D = 3). The dashed black line (m/m0 = 1) indicates the

value in the trivial condition (L → ∞, T → 0 and µ = 0). For µ = 0 (purple lines) the

generated fermion mass at δ = 0.0 is heavier than that at δ = 1.0. In the two graphs on

the top of Figs. 4.7 and 4.8, the generated fermion mass vanishes and the chiral symmetry is

restored around the periodic boundary condition (δ = 0.0) slightly below the critical chemical

potential.

This situation depends on the size, L. Observing the generated fermion mass as a function

of L (green and yellow lines), we see that the broken and symmetric phases alternate with

increasing length of S1, L. It is consistent with the phase diagrams, Figs. 4.5 and 4.6. The

generated fermion mass changes more smoothly in three dimensions than in two dimensions,

because of the continuous momentum.
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Fig. 4.7: Dynamically generated fermion mass as a function of δ (above) and L (below) in two

dimensions: (T/m0, µ/m0; color) = (0.005, 0.0; purple), (0.005, 0.7; green), (0.1, 0.7; yellow).
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Fig. 4.8: Dynamically generated fermion mass as a function of δ (above) and L (be-

low) in three dimensions: (T/m0, µ/m0; color) = (0.005, 0.0; purple), (0.005, 1.0; green),

(0.2, 1.0; yellow).

4.3 Thermodynamic Quantities

In Chapter 4.1 and 4.2, we have evaluated the effective potential and plotted the phase

diagrams on the µ-T and L-T plane and the dynamically generated fermion mass. Other

thermodynamic quantities are also derived from the effective potential. We here calculate

and discuss particle number density and pressure.

Grand potential

A minimum value of the effective potential can be naively regarded as the density of the grand

potential, denoted by Ω(L, δ, T, µ), as is mentioned at the last in Chapter 4.1. We set the value

of the grand potential to zero in the trivial conditions: an infinite volume, zero temperature

and zero chemical potential with a homogeneous and non-vanishing chiral condensate. The

definition of the grand potential that wee consider is given by

Ω(L, δ, T, µ) = V (m;L, δ, T, µ)LV − V (m0LV, (4.8)
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where V (σ) denotes the effective potential on the trivial spacetime (derived in Chapter 2.2)

and LV is (D − 1)-dimensional volume.

The grand potential is shown in Figs. 4.9 (D = 2) and 4.10 (D = 3) as a function of the

boundary condition, δ, and the length of S1, L. Bends of a line are observed at the same

parameters at which the fermion mass jumps apper in Figs. 4.7 and 4.8. Thus, the phase

boundary is found by observing the sharp bends if Figs. 4.9 and 4.10.

A stable size is a state for which the pressure is zero and becomes negative (positive) with

increasing (decreasing) a length. We find the existence of a stable size for a finite chemical

potential at a low temperature. For a finite chemical potential (green line), it is observed that

the grand potential at δ = 0.0 is minimized at Lm0 ∼ 4.0. This size is realized in the chirally

symmetric phase. This stable state disappears at µ = 0, because the grand potential (purple

line) is a monotonic function of L and divergent at the small L limit.

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

	0

	0.02

	0.04

	0 	0.5 	1 	1.5 	2

Ω 2
/m

0

δ

(a-1) Lm0 = 3.0

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

	0

	0.02

	0.04

	0 	0.5 	1 	1.5 	2

Ω 2
/m

0

δ

(a-2) Lm0 = 5.0

-0.15

-0.1

-0.05

	0

	0.05

	0 	5 	10 	15 	20

Ω 2
/m

0

Lm0

(b-1) δ = 0.0

-0.15

-0.1

-0.05

	0

	0.05

	0 	5 	10 	15 	20

Ω 2
/m

0

Lm0

(b-2) δ = 1.0

Fig. 4.9: Grand potential as a function of δ (above) and L (below) in two dimensions:

(T/m0, µ/m0; color) = (0.005, 0.0; purple), (0.005, 0.7; green), (0.1, 0.7; yellow).
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Fig. 4.10: Grand potential as a function of δ (above) and L (below) in three dimensions:

(T/m0, µ/m0; color) = (0.005, 0.0; purple), (0.005, 1.0; green), (0.2, 1.0; yellow).

Particle number density

To investigate the origin of the complex behavior of the phase diagrams, we study the contri-

bution of the chemical potential. The particle number density is defined by the derivative of

the grand potential with respect to the chemical potential,

ρ (L, δ, T, µ) = − 1

VL
∂Ω (L, δ, T, µ)

∂µ
. (4.9)

The explicit expression normalized by m0 is given by

ρ (L, δ, T, µ)

mD−1
0

=
tr I

C̃D

1

Lm0

∞∑
n=−∞

∫ ∞

0

dq

m0

(
q

m0

)D−3 sinhµ/T

cosh
√
q2 + k2δ,n +m2/T + coshµ/T

.

For instance, the expression in two dimensions reads

ρ2 (L, δ, T, µ)

m0
=

1

Lm0

∞∑
n=−∞

sinhµ/T

cosh
√
k2δ,n +m2/T + coshµ/T

. (4.10)
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We show the numerical results in Fig. 4.11 (D = 2)as a function of the boundary conditions,

δ, and the length of S1, L. In the limit T → 0, the each term of the sum is modified as

sinhµ/T

cosh
√
k2δ,n +m2/T + coshµ/T

−→ sgn(µ)θ
(
|µ| −

√
k2δ,n +m2

)
. (4.11)

A non-zero lower bound appears for k2δ,n, except for the periodic boundary condition. This

implies that the particle number, ρ2 (L, δ, T, µ)L, takes an integer value at zero temperature.

Because of the degeneracy of the states, the possible values are restricted to 0, 1, 3, 5, . . . for

δ = 0.0 and 0, 2, 4, . . . for δ = 1.0. It is found that the correspondences between Figs. 4.7 (the

generated fermion mass) and 4.11. The particle number density vanishes in the chiral broken

phase for m > 0. In the symmetric phase, the particle number density vanishes because

the non-zero lower bound for k2δ=1.0,n extremely suppresses the summation in Eq. (4.10) for

Lm0 ≲ 1.7 at δ = 1.0 (cf. the phase diagram in Chapter 3.2). At T/m0 = 0.1, we observed

pre-transitional phenomena because of the finite temperature effect.
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Fig. 4.11: Particle number density fixed to µ = 0.7 as a function of δ (above) and L (below)

in two dimensions. The green and yellow curve denotes T/m0 = 0.005 and T/m0 = 0.1

respectively.

As is shown in Fig. 4.12 (D = 3), the continuous momentum for the additional dimension
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enhances the pre-transitional phenomena at a finite temperature and induces a finite number

density near the phase boundary. Through the analysis of the particle number density and

the comparison with the generated fermion mass, the complex behavior in the phase diagrams

is caused by a balance between the particle production and the mass generation.
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Fig. 4.12: Particle number density fixed to µ = 1.0 as a function of δ (above) and L (below)

in three dimensions. The green and yellow curve denotes T/m0 = 0.005 and T/m0 = 0.2

respectively.

Pressure

We have analyzed the particle number density and mentioned the correspondence between

this quantity and the generated fermion mass in the preceding section. In order to find a

stable size, we evaluated pressure. The pressure is defined by the derivative of the grand

potential with respect to L,

P (L, δ, T, µ) = − 1

V
∂Ω (L, δ, T, µ)

∂L
, (4.12)
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and explicitly expressed as

P (L, δ, T, µ)

mD
0

= −
tr I · Γ

(
1− D

2

)
(4π)

D
2

[
1

2

((
m

m0

)2

− 1

)
− 1

D

((
m

m0

)2·D
2

− 1

)]

− tr I

CD

∫ ∞

0

dq

m0

(
q

m0

)D−2
√
q2 +m2

m0

exp
(
−L
√
q2 +m2

)
− cosπδ

coshL
√
q2 +m2 − cosπδ

+
tr I

C̃D

1

Lm0

∞∑
n=−∞

∫ ∞

0

dq

m0

(
q

m0

)D−3

×
k2δ,n

m0

√
k2δ,n + q2 +m2

exp
(
−
√
k2δ,n + q2 +m2/T

)
+ coshµ/T

cosh
√
k2δ,n + q2 +m2/T + coshµ/T

.

In particular, the expression in two dimensions reads

P (L, δ, T, µ)

m2
0

=− 1

4π

[
1−

(
1− ln

(
m

m0

)2
)(

m

m0

)2
]

− 1

π

∫ ∞

0

dq

m0

√
q2 +m2

m0

exp
(
−L
√
q2 +m2

)
− cosπδ

coshL
√
q2 +m2 − cosπδ

+
1

Lm0

∞∑
n=−∞

k2δ,n

m0

√
k2δ,n +m2

exp
(
−
√
k2δ,n +m2/T

)
+ coshµ/T

cosh
√
k2δ,n +m2/T + coshµ/T

.

Behavior of the pressure as a function of the boundary conditions, δ, and the length of S1, L,
is shown in Figs. 4.13 (D = 2) and 4.14 (D = 3). It is observed that, for a finite chemical

potential, the jumps of the pressure are located at the same points where the generated fermion

mass and the particle number density jump. As seen in Fig. 4.14 (D = 3), one can finds

the critical length, L, and U(1) phase, δ, for a second-order phase transition by observing the

sharp bends of the pressure line.

With increasing the length, L, the finite-size effects are suppressed and the absolute value

of the pressure tends to be smaller. At the same time, in particular D = 3, it becomes

apparent that the pressure is positively pushed up by thermal effects (the yellow lines on the

below).
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Fig. 4.13: Pressure as a function of δ (above) and L (below) in two dimensions.

(T/m0, µ/m0; color) = (0.005, 0.0; purple), (0.005, 0.7; green), (0.1, 0.7; yellow).
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Fig. 4.14: Pressure as a function of δ (above) and L (below) in three dimensions.

(T/m0, µ/m0; color) = (0.005, 0.0; purple), (0.005, 1.0; green), (0.2, 1.0; yellow).

We call a size a stable size where the sign of the pressure flips from negative to positive

as the size decreases. The sign-flip points of the pressure coincides with the local and global

minima of the grand potential as a function of the length of S1, L. Figures 4.15 (D = 2)

and 4.16 (D = 3) show behavior of the sigh-flip boundaries on a δ-L plane. A value of the

chemical potential is distinguished by line colors: the purple line corresponds µ/m0 = 0.0 and

the green lines correspond µ/m0 = 0.7 (D = 2) and µ/m0 = 1.0 (D = 3).

At a low temperature and zero chemical potential, denoted by the purple line on the left,

the pressure is repulsive (attractive) near the (anti-)periodic boundary condition. Moreover,

the sigh-flip boundary approaches δ = 0.5, just the middle of the periodic and anti-periodic

boundary conditions, with increasing the size. The finite-size effects are suppressed for a large

size, L, and the thermal fluctuations induce a repulsive pressure. Thus, the repulsive pressure

becomes favored for a large length, L, at higher temperatures, T/m0 = 0.1 (D = 2; the right)

and T/m0 = 0.2 (D = 3; the right). The stable size at µ = 0 can be found only for Lm0 ≲ 1.0

and 0.4 < δ < 0.5 in both the dimensions.

For a finite chemical potential denoted by green lines, one observes the complex behavior

of the sign-flip boundaries on the δ-L plane. The stable size is found for a wider range of δ

than at zero chemical potential. The size, for instance on the left in Fig. 4.15, exists on the
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green lines at Lm0 ∼ 4.0 and 0 ≤ δ ≲ 0.5 and a metastable size at Lm0 ∼ 7.0 and 0.5 ≲ δ ≤ 1.

The second line of the effective potential (4.6) remains even at zero temperature and zero

chemical potential, and thus describes the pure finite-size effect. For a small L, a dominant

contribution to the potential energy comes from this term. For 1/2 < δ ≤ 1, this term equiv-

alent to the finite-size effect is negative and decreases the energy. As a result, an attractive

pressure is induced. Whereas, the term is positive for 0 ≤ δ ≤ 1/3 and a repulsive pressure

is induced. Thus, the sign of the pressure flips between 1/3 < δ < 1/2. As is read in the

second line of the effective potential (4.6), Re
[
ln
(
1 + e−L

√
q2+σ2+iπδ

)]
is understood as an

ansatz of the Bose–Einstein (δ = 0) and Fermi–Dirac (δ = 1) distributions in finite temper-

ature systems. An opposite contribution to the thermodynamic potential is caused by this

difference of the distributions. The U(1) phase, δ, is also regarded as an imaginary chemical

potential [112,113].
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Fig. 4.15: Sign-flip boundaries of the pressure on the δ-L plane in two dimensions. The

purple and green lines are µ/m0 = 0.0 and µ/m0 = 1.0, respectively. Xxx./Xxx. (Xxx. is

Rep. or Att.) denotes whether the pressure is repulsive or attractive in the area at µ/m0 = 0.0

(left; purple) and µ/m0 = 0.7 (right; green).
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Fig. 4.16: Sign-flip boundaries of the pressure on the δ-L plane in three dimensions. The
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Rep. or Att.) denotes whether the pressure is repulsive or attractive in the area at µ/m0 = 0.0
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Chapter 5

Summary and Discussions

Symmetry is a central concept in particle physics and the chiral symmetry is particularly

important, albeit an approximate symmetry. Regardless of research fields, because the analysis

from ab initio is often difficult in principle, investigation of the phase structure by using

effective models is still significant, where the analysis with a wide range of parameters is

necessary. In this thesis, employing the four-fermion interaction model called the Gross–Neveu

model, we have evaluated the effective potential in the leading order of the 1/N expansion

in order to investigate the phase structure in terms of the chiral symmetry. The effective

potential is derived with supposing a homogeneous chiral condensate. To study the finite-

size effect in addition to the thermal effect with chemical potential, we have compactified

a spacial direction to a one-dimensional sphere, S1, and besides imposed the U(1)-valued

boundary condition to the fermion.

In Chapter 3, we have considered the finite-size effect at zero temperature. We have

derived the improved effective potential compared with [50] paying attention to the finite part

of the subtraction of the divergence. The subtraction before our improvement includes the

parameters of the finite-size effect, L and δ, and hence prevents the correspondence between

the effective potential and the phase of the grand state. The chiral symmetry breaking tends

to be enhanced at the periodic boundary condition, δ = 0. On the contrary, the anti-periodic

boundary condition, δ = 1, shows opposite results for the chiral symmetry. This behavior

becomes clear with decreasing the size of S1. The system with the anti-periodic boundary

condition can be regarded to mimic the finite temperature system filled with the fermions.

The phase transitions can be detected by the sharp bends on the lines of the dynamically

generated fermion mass and string tension. We have found sign-flip boundaries of the string

tension in the restricted region, 0.4 < δ < 0.5, for any finite size. At zero temperature, it

seems difficult to keep the system at a finite size.

In Chapter 4, we have extended the study on Chapter 3 and considered the finite-size effect

with a finite temperature and a finite chemical potential. In order to investigate the phase

structure more precisely, we have evaluated the effective potential by observing not only the

minimum but also the extrema. We have found the boundaries at which the number of the
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extrema and the position of the minimum change on the µ-T and L-T planes. The finite-size

effect induces the complex structure at a low temperature and a high chemical potential on

the µ-T plane. Observing the L-T plane, the broken and the symmetric phases alternate with

increasing the size of S1. We also have shown this behavior of the generated fermion mass as

a function of L and δ. By using the grand potential defined as the zero-point is located at

L → ∞, T → 0 and µ = 0, we have found the stable size for a finite chemical potential near

the periodic boundary condition. Through the analysis of the particle number density, the

trade-off relationship between the generated fermion mass and the particle number density is

shown. The jumps of the mass and density take place at the same L and δ. Based on the

analysis of the thermodynamic quantities, it is considered that the complex behavior of the

boundaries on the phase diagrams is caused by the competition among the generated fermion

mass, the inverse of the size, 2π/L, and the chemical potential. Alternatively, the sign-flip

boundaries gives us information about the stable and metastable sizes. It is found that the

sizes additionally appear caused by the contribution of a finite chemical potential.

We have discussed the finite-size effect in the Gross–Neveu model and shown this effect

on the phase structure along with thermodynamic quantities in terms of the chiral symmetry.

However, we have analyzed only the one-dimensional sphere S1. There are many shapes of

systems with various topologies. On the other hand, to consider more realistic situations,

it is necessary to introduce fermion mass, fermion flavors, and an electromagnetic field. Re-

cently, the inhomogeneous chiral condensate are theoretically discussed. The works relatively

close to our study, as is already mentioned in Chapter 1 and Chapter 4.2, the Fulde–Ferrell–

Larkin–Ovchinnikov states are discussed in a superconducting ring with magnetic flux [54].

Furthermore, it is also pointed out that the possibility of the inhomogeneous chiral conden-

sate can not be ignored in a finite-size system [56]. In Ref. [114], the inhomogeneous chiral

condensate are investigated by using lattice simulations.
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Appendix A

Notation

In this thesis, we adopt Planck units,

ℏ = c = kB = 1, (A.1)

and diag(+,−,−,−) as a metric signature on a Minkowski spacetime, M4. Extending the

metric signature, we also use diag(+,−, . . . ,−) on a D-dimensional Minkowski spacetime,

MD. The metric is denoted by ηµν and ηµν . The sign of the zeroth component, the temporal

component, is positive and the others, the spatial components, are negative.

Greek indices, such as µ, ν, ρ, . . . , run from 0 to D−1, and Latin indices, such as i, j, k, . . . ,

from 1 to D. When an index variable appears as upper and lower indices in a term, it

implies a summation over all a range of index variables: xµpµ = x0p0 + · · ·+ xD−1pD−1 and

kjkj = k1k1 + · · · + kDkD. We use a bold font to describe a quantity without a zeroth (or

temporal) component, such as k2 = k21 + · · ·+ k23 and p2 = p21 + · · ·+ p24.

A set of gamma matrices, γµ (µ = 0, 1, . . . , D − 1), is a basis of the Clifford algebra, a

space of spinors, that satisfies

{γµ, γν} = γµγν + γνγµ = 2ηµνI, (A.2)

with I denoting an identity matrix in the spinor space. γ5 is a chiral operator that satisfies

{γ5, γµ} = 0. (A.3)
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