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ABSTRACT Information systems in organizations traditionally require users to remember their secret
pins or (passwords), token, card number, or both to confirm their identities. However, the technological
trend has been moving towards personal identification based on individual behavioural attributes (such as
gaits, signature, and voice) or physiological attributes (such as palmprint, fingerprint, face, iris, or ear).
These attributes (biometrics) offer many advantages over knowledge and possession-based approaches. For
example, palmprint images have rich, unique features for reliable human identification, and it has received
significant attention due to their stability, reliability, uniqueness, and non-intrusiveness. This paper provides
an overview and evaluation of contactless palmprint recognition system, the state-of-the-art performance of
existing studies, different types of ‘‘Region of Interest’’ (ROI) extraction algorithms, feature extraction, and
matching algorithms. Finally, the findings obtained are presented and discussed.

INDEX TERMS Biometrics, information system, palmprint images, region of interest.

I. INTRODUCTION
A biometric authentication effectively recognizes a per-
son’s identification with high confidence [1]–[3]. Recent
study interest has been required by palmprint recognition,
an emerging technique in biometrics systems. Researchers
have been looking at constructing such systems in a con-
tactless approach to make the palmprint. Thus, there are
two categories of palmprint capture techniques: contact-
based and contactless-based. However, human users have
expressedmuch justifiable opposition to contact-based acqui-
sition strategies. However, this has had a detrimental effect
on the advancement of palmprint recognition. As a result
of these failures, contactless palmprint recognition has
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been developed to increase user-friendly and hygienic and
safeguard user privacy [4]–[7]. Thus, this paper provides an
overview and evaluation of the contactless palmprint recog-
nition system, the state-of-the-art performance of existing
works, different types of ‘‘Region of Interest’’ (ROI) extrac-
tion algorithms, feature extraction, and matching algorithms.

This work discusses the theoretical background of bio-
metric recognition, contactless palmprint as a biometric, and
the concept of on-device intelligence. Several related works
are also discussed to highlight the state-of-the-art techniques
related to these research areas. The following are some of the
significant challenges in respect of palmprint biometrics in
the literature: its pose and Illumination affect the layouts and
visibility of palm lines; detecting the contactless palmprint
region of interest (ROI) due to the different orientations of the
presented palm is challenging; current palmprint processing
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is off the device; and due to costs, most of the devices are
equipped with limited memory [8]–[11].

By the eighteenth century, pin-making was already a popu-
lar topic of conversation. TheWealth of Nations is unique as it
connects pin-making to the division of labour. Adams Smith
finds that the pin-unusual maker’s trade has been split into
various strange trades [12]. The Wealth of Nations pin fac-
tory has a straightforward internal structure. The labourers,
similar to their jobs, are replaceable. As the study progresses,
a well-researched conclusion emerges [13]. Figure 1 shows a
pinhole camera imaging a distant point. This tale led to the
invention of the plane mirror several millenniums ago, at the
start of the bronze era. The Greeks later invented a mecha-
nism for gazing through a mirror, convex mirrors, and glass
burning [12], [14].

About 1500 years later, the pinhole camera was devised
and invented by Alhazen (Ibn Al-Haytham) [14]; nobody
could explain why the image was inverted, as shown in
Figure 1. Della Porta [15] re-invented the pinhole camera
around 1600 [14]. Della Porta’s camera consisted of a big
dark room with a large hole in one of the walls, as shown in
figure 2. He also used optics to expand the hole and produce a
brighter image. The pinhole camera has advantages over lens
optics [14].

FIGURE 1. Pinhole camera imaging a distant point (a) Large pinhole
geometrical optics (b) Small pinhole, far-field diffraction [14].

The pinhole camera was initially made using photographic
film, but with the decline of film photography and the advent
of digital cameras, the activity was converted for use with a
digital camera, producing satisfactory excellent results [13].
Figure 3 shows the different devices used after the advent
of digital cameras. With the widespread use of palmprint
recognition and the extensive availability of cameras, a per-
son’s palmprint images are highly likely to be captured by
various devices [16]. Technology is constantly evolving, and
there is an increasing demand for improved security and
privacy in our daily lives. Biometric approaches are a current
and effective solution to achieve these technological security
aims [17]. Today, people use various online services related

FIGURE 2. Ray diagram for a pinhole camera [13].

FIGURE 3. Different devices (a) Digital Camera (b) Smartphone [16].

to telecommunications advancements, social media, smart
devices, and small IoT devices [18]. Thus, behavioural and
physiological data can be employed for biometric recognition
validation. Signatures, keystrokes, and gait are examples of
behavioural features. Face, iris, ear, fingerprint, and palm-
print are physiological qualities. Because of their uniqueness,
behavioural and physiological biometrics are used in biomet-
ric applications [19].

Biometric scanning is a method of verifying identity by
exploiting humans’ unique physical or biological traits. The
demand for information is increasing, and we need it now.
Mobile and digital devices have become a lifeline for many
people. Computers, tablets, smartphones, and other comput-
ing devices are no longer merely for communication; they
have evolved into mobile workplaces with access to many
resources. We must continue to secure ourselves and protect
personal documents such as passports and driver’s licenses
and actions such as cash withdrawals and acquiring easier and
safer access to facilities.

Traditional authentication solutions based on a username
and password are no longer adequate for today’s identity
needs. As a result, more straightforward, dependable, and
secure authentication techniques are required [20]. On the
other hand, Biometric systems are vulnerable to various
attacks, including image-level attacks. Here, the attackers

132484 VOLUME 10, 2022



D. W. S. Alausa et al.: Contactless Palmprint Recognition System: A Survey

TABLE 1. Performance of the various biometric sensing system.

devise a method of fabricating phoney biometric photos that
can easily fool the systems, which are then utilized to imper-
sonate legitimate users [18]. As a result, there are two sorts
of attacks: reconstruction attack (RA) and presentation attack
(PA) [21]. The ‘‘similarity’’ of RA and PA is considered,
but ‘‘naturalness’’ is often ignored. ‘‘Similarity’’ refers to
the distance metric between two biometric templates. A real
user’s biometric image and a forged biometric image generate
two biometric templates in image-level attacks. Once the
‘‘similarity’’ is fulfilled, i.e. successful impersonation of the
authentic user, the image-level assault is successful. However,
‘‘naturalness’’ refers to a state in which a counterfeited image
appears natural, implying that there should be no strong noise
or unnatural appearance in the image. As a result, when an
image appears natural rather than counterfeited, it is coun-
terfeited; for example, if the image has strong noise or a
noise-like appearance, it is counterfeited. As a result, any
image lacking in naturalness can be immediately spotted and
countered [22]. Biometrics can be safe guarded against all
these types of assaults. Biometrics is a method of automat-
ically identifying an individual based on their physical or
behavioural characteristics. Fingerprints, palm prints, face,
hand, and iris are a few examples. Security of computer sys-
tems, access to doors (entry), government IDs, banking and
other financial transactions, online banking, policing, health,
retail sales, and support services are only a few biometrics
applications [11]. Because a person’s inherent traits cannot
be taken away, neglected, fashioned, or stolen, biometric
recognition has shown to be a viable and widely accepted
method of authenticating their identity [23].

Biometric-based systems provide the following advan-
tages over knowledge-based or token-based authentication
systems [24]:

a) Uniqueness: the characteristics of biometrics are
unique and peculiar to an individual, making it distinc-
tive in identifying a person in a unique form.

b) Convenient: Biometric use is more convenient since the
user will not carry any token for authentication or have
any secret information in his/her memory. Therefore,
users cannot lose, misplace or forget their physiological
or behavioural traits.

c) Hard to forge: The biometrics characteristics are hard
to forge, but the spoofing technique can be used to
attack it. Hence, more than one biometric trait is used
to reduce the forgery chances massively.

d) Requires Physical Presence: Live biometric sample
is captured during authentication by the biometric
system.

Table 1 shows the performance of the various biometric sens-
ing systems.

Palmprint has received much interest in studies because
of its appealing properties, including high accuracy, stability,
reliability, distinctiveness, non-intrusiveness, ease of ‘‘use,’’
and privacy. As a result, various imaging technologies are
needed to acquire evidence-based biometric traits. Each bio-
metric system is made up of the following.

i. Image acquisition module: The biometric image trait
is obtained and transmitted to the system for further
processing.

ii. The preprocessing module removes unwanted noise
and blur and performs smoothing and segmentation.

iii. Feature attraction module: this does image process-
ing by extracting the key elements from the captured
image.

iv. Matching module: to obtain a match score, the image
of the extracted features is compared to the images
contained in the template.

v. Decision module: this is where the decision to validate
or reject the identification claimed on the match score
is made [25]. A biometric system functions in one of
two modes: verification or identification.

Biometric sensors and processing systems are potent instru-
ments for verifying and identifying individuals. The biomet-
ric feature, which cannot be shared or fabricated, exhibits
a strong relationship to an individual based on their iden-
tification [26]. As security concerns become more preva-
lent, demand for biometric capacity also grows. Services
that demand high degrees of data security and authentication
rely on convenient biometric security. However, biometric
security to identify and authenticate an individual based on
their physical or behavioural characteristics is expanding
rapidly [27]. Biometric data is collected from a person, a fea-
ture set is extracted from the data, and the feature set is com-
pared to the database’s template set. Biometric technology
can be used in two modes: verification and identification.

Figure 4 a typical biometric system’s generic design at
the end of the procedure, the person is identified using the
extracted feature.

Images are visible line features in contact-based palm-
prints. The principal lines, also known as the heart line,
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headline, and lifeline, are an individual’s largest and longest
permanent lines. The wrinkles are the other lines that are
shorter and thinner. The texture-based images, which are low-
resolution images, are also important features of the contact-
based palmprint. The images in contact-based biometrics are
captured using scanners and pegs, which has the following
drawbacks:

i) Users’ palms are constantly in contact with the sen-
sor, which is unsanitary, especially with the present
COVID-19 pandemic and other health concerns.

ii) Acquisition flexibility and convenience are harmed by
user acceptance and repair procedures.

In some nations, placing hands on devices touched by the
opposite sex is frowned upon.

FIGURE 4. A generic architecture of typical biometric systems [26].

Images in contactless palmprint biometrics, on the other
hand, are frequently distorted by translations, scaling, rota-
tions, and illuminations and are prone to noise. Also, because
the lines and textures are the most important aspects of
contactless-based palmprints, they are low-resolution images.
Therefore, additional features are derived from the images to
improve palmprint recognition accuracy [28]. We can also
use a collaborative representative and a subspace learning
approach [29], [30]. Furthermore, due to the influence of rota-
tion, scale, luminance, and variances in the translation of the
images, features with high resilience are useful for contactless
palmprint recognition [28]. As a result, images are acquired
using several sensors in an uncontrolled environment with
variations in scales, illuminations, rotations, and translations
due to hand movement.

II. LITERATURE REVIEW
In image processing, biometrics technology has become an
important application and is getting more popular daily.
Today researchers dwell more on improving this area
because, in security, biometrics is very important. It then
became helpful in analyzing many security cases, which gave
many researchers the strong will to do more in developing
the field. Also, biometric technology plays a very impor-
tant role in security and commercial, civil, and industrial
project designs by incorporating recognition and identifica-
tion of human beings in their designs. This work discusses the
theoretical background of biometric recognition, contactless

FIGURE 5. Palmprint images (a) Palmprint [19] (b) Palmprint image;
principal lines, ridges, and palm valley [31].

palmprint as a biometric, and the concept of on-device intel-
ligence. Several related works are also discussed to highlight
the state-of-the-art techniques related to these research areas.

The human palm is the flat region of the hand below the
fingers visibly marked by principal lines similar to finger-
prints. As presented in Figure 5, its unique features include
ridges and valleys patterns, minutiae, and pores visible in
high resolution [32]. Palm print information is another widely
used method of identifying individuals. According to studies,
the hand groove pattern and arteries can be used to iden-
tify individuals accurately. Different features of a person’s
palmprint, including geometric features, principal lines, and
wrinkles, produce distinct and unique patterns. These tech-
niques are employed in biometrics and the identification of
individuals. In terms of vascular location, palmprints have
numerous features and a set of distinguishing features that
can be used for identification [33]. The palmprint features are
considered reliable for personal recognition systems desiring
high usability, execution speed, user acceptance, and reduced
acquisition cost. Palmprint recognition systems have been
deployed for access control, law enforcement and forensic
analysis systems, to mention a few [34].

Hitherto, biometrics usage has been accepted as an
authentication system due to its unique identification based
on physiological or behavioural traits. The physiological
traits include Palmprint, Fingerprint, Face or Eye, while
behavioural traits include Voice, Signature, or Gait. There-
fore, the biometric authentication system’s robustness can be
judged by how variations due to physiological or pathological
conditions are caused. Thus, we need to consider the perma-
nence trait factor; hence ageing is a parameter causingmuscle
atrophy, reduced ability or loss of elasticity in the biometric
system [35].

Many reviews work on different modalities as it affects
ageing on different characteristics of biometrics has been
done, authors rated the biometric templates in accordance
with the variance caused due to ageing over time. Their
review was centred on how ageing affects the face, finger-
print, voice, and iris used to develop robust biometric authen-
tication systems.
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FIGURE 6. Face images displaying ageing which have been caused due to
variations [35].

a) Face Ageing: Recently, face trait has been investigated
for biometric reasons. Even though ageing affects the
facial features directly between childhood and adult-
hood, other factors such as external environmental fac-
tors affect the face texture. However, themajor problem
is for the claimed user to be recognized by the biometric
system [36], proposes a generative statistical model
that simulates the ageing effects to recognize faces at
any time. However, . . . .(Biswast et al.,2008) propose a
coherence feature which is a discriminative approach
by using second-order polynomial and model refining
considering the individual lifestyle. As age progresses,
there is a drift of feature vectors due to the ageing of
the face, as shown in Figure 6.

b) Fingerprint Ageing: Fingerprints as biometrics has
been widely accepted for biometric verification. Stud-
ies have shown that the error rate increases for older
people in analyzing the impact of ageing on fingerprint
biometrics. According to the experimental evaluation
by [38], the biometric recognition efficiency is affected
as age progresses due to fingerprint deterioration. Two
reasons that affect fingerprints were cited in their
study:

i. There is elasticity loss of the skin due to ageing,
which makes poor contact with the scanner.

ii. When there are injuries on the fingers, this causes
direct damage to the fingers. Figure 7 shows the
variations in the fingerprints due to ageing.

c) Iris Ageing: The dataset was divided into four short
to long-duration sets. They then reported a 50% FRR
using the veriEye method. Figure 8 shows the changes
in Iris due to ageing. Iris ageing is regarded as part
of the body less affected by within-person variation.
In their work, Bowyer et al., 2008) revealed that some
eye diseases affect the iris part of the eyes, decreas-
ing the authentication system’s accuracy. In their
work, [39], investigated the impact of ageing on Iris
using a 644 Iris images dataset.

d) Voice Ageing: Ageing is a major cause of the non-
recognition of an individual in a biometric sys-
tem. Physiological changes, environmental factors and

FIGURE 7. Variation can be seen in the fingerprint due to the impact of
ageing [35].

FIGURE 8. Sample shows the changes caused due to ageing in the
iris [35].

emotional variations are some of the challenges an
individual faces as age progresses. The rate of speech,
pitch etc., are also affected by ageing. The longitudinal
analysis of the voice data was carried out for about
30-40 years [40]. But [41], in their work, proposed
using relevant parameters to report 90% accuracy when
classifying the voice of three different age groups.
Figures 9(a) and (b) show the variations in the voice
due to ageing and ageing as it affects speech pitch rate,
respectively.

e) Signature: The characteristics of the signature as it
concerns individuals show a likelihood of an individ-
ual’s signature changing with age. Data were collected
frommiddle to elderly individuals to analyse and check
the effect of ageing on their handwriting. The data set
consists of 51 individuals, of which 25 subjects have
the same writing style. Since ageing is a continuous
changing process, inter or intra variations were brought
into the technique used to characterize the individ-
ual. Figure 10 shows the changes in signature due to
ageing.

III. PALMPRINT RECOGNITION SYSTEM
As shown in Figure 11, Palmprint recognition systems usually
consist of six different processing stages or modules: image
acquisition, image preprocessing, region of interest (ROI)
extraction, feature extraction, matching/classification palm-
print, and decision making. Details of each module are pro-
vided in the following sections.
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FIGURE 9. Variation in the voice due to ageing (a)Variation in the voice of
two subjects due to ageing [35] (b) Ageing affects the pitch rate of
speech [42].

FIGURE 10. Variation in the signature speed [35].

There are two types of palmprint recognition systems -
Contact-Based Palmprint and Contactless palmprint; based
on contact with the acquisition device.

A. CONTACT-BASED PALMPRINT RECOGNITION SYSTEMS
Thismethod usually requires a fixed palm position on the sen-
sor screen to acquire stable images. The images are acquired
using scanners with pegs for hand placement. The constrained
acquisition mode enhances the accurate extraction of the
region of interest (ROI) and, consequently, the system’s over-
all performance [19]. However, contact-based systems have
the following disadvantages: [18], [43], [44].

i. Hygiene: Direct contact with the sensor makes the user
susceptible to infectious diseases.

ii. User Convenience: The acquisition process is not flex-
ible and can reduce wide acceptance.

iii. Image Quality: The sensors’ surface can be easily
contaminated by harsh or dirty outdoor environments.
Thus, the acquired palmprint images’ quality is likely
to be degraded.

FIGURE 11. Stages involved in palmprint recognition system [45].

iv. Surface Contamination: Some acquisition systems’
contact sensors’ surface is easily contaminated due
to harsh, dirty, and outdoor environments. Thus, the
acquired palmprint images’ quality is likely to be
degraded.

v. Cultural Resistance: In some countries, there is resis-
tance to placing hands-on devices touched by the oppo-
site sex users [46].

B. CONTACTLESS PALMPRINT RECOGNITION SYSTEMS
This method acquires images in a less-constrained manner.
Image acquisition can be achieved with four different types of
sensors: Colour Charge Couple based (CCD-based), digital
camera, digital scanner, and video camera. The CCD-based
palmprint scanner usually captures high-quality palmprint
images, enhancing the development of a robust recognition
algorithm. Furthermore, image acquisition based on digital
scanners and video cameras does not use pegs for hand
placement. Also, the images are collected in an uncontrolled
environment with a variant on rotations, scales, illuminations,
and translations due to the hand movement [47]. A summary
of the various capturing devices for contact-based and con-
tactless palmprint images is provided in Figure 12.

FIGURE 12. Palmprint acquisition methods and devices.
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TABLE 2. Publicly available palmprint image database.

TABLE 3. Palmprint acquisition devices and properties.

IV. CONTACTLESS PALMPRINT IMAGE ACQUISITION
DEVICES AND DATABASES
Numerous publicly available database has been released to
facilitate the development and deployment of contactless
palmprint recognition technology, as detailed in Table 2. The
data acquisition method determines the algorithm/techniques
that will be applied in the subsequent stages of the palmprint
recognition system and, consequently, the system’s perfor-
mance [28]. Table 3 presents some contactless palmprint
acquisition devices, highlighting device types, sensor prop-
erties, and image quality.

A. PALMPRINT IMAGE PREPROCESSING METHOD
Image preprocessing is accomplished by removing the noise
and smoothing the boundary region in the required image
before extracting salient features from the palm print images.
Figure13 illustrates the preprocessing module of the palm-
print recognition system involving three necessary steps:
palm images binarisation, hand and or fingers contour extrac-
tion, and key points detection.

The steps available in preprocessing contactless palmprint
are as follows

i) Palm images binarization/hand and or fingers contour
extraction: Palm Images binarization and hand/or fin-
gers contour extraction and hand and or fingers contour
extraction. There is a similarity in all preprocessing
algorithms [9], [25], [28], [32], [48], [59], [67], [68]

ii) Key point detection: It has several various implemen-
tation approaches, which include:

(a) Tangent-based approach: It is reliant on a very short
boundary around the finger’s bottom edge. It is robust
to inadequate fingering and ring presence: All intersec-
tions represent the two focal points for the coordination
framework [45], [58], [60], [69]–[72].

(b) Bisector-based approach: It builds lines using two
points finger boundaries of gravity, and the mid-
point of its starting point and endpoints with intersec-
tion considered a critical point [2], [22], [46], [51],
[72], [73].

(c) Finger-based approach: The edge points can be found
from the inputted pegs coordinates, and Line profiles
were extracted and decomposed. Then the edge points
were found from the transformed signal [48], [57],
[74], [75].
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FIGURE 13. Preprocessing Illustration (a) Key points based on the
boundary (b) Central parts for feature extraction [55].

B. REGION OF INTEREST (ROI) EXTRACTION METHOD
ROI extraction is carried out before the feature extraction
stage. It is the process that can either be a square or circular
shape, and the points that match the palm’s internal structure
and contain enough information to represent the palmprint are
presented. The region extracted across all palmprint images
is either a portion of the palm cropped at a fixed size or the
entire palm. Besides, different ROI methods depend on the
database of choice. ROI Techniques can be divided into four
practical approaches, as shown in Figure 14:

The various ROI approaches are briefly described here:
i. Bottom-up-feature-based: This method target features

wherein lighting, or pose, have varying conditions and
are used in detection procedures [18], [48], [68], [76].

ii. Top-down knowledge-based: This approach controls
the false positive situations since it deals with the object
of interest [44], [56], [61], [77].

iii. Template Matching Approach: This approach repre-
sents the global object image by using parts and the
possibility for detection. [21], [60], [78], [79].

iv. Appearance-based Approach: This method undertakes
learning models from the training collection of images
which are then used for detection [18], [80]–[82].

FIGURE 14. Methods of region of interest (ROI) extraction.

C. PALMPRINT FEATURE EXTRACTION METHOD
Feature extraction is extracting the biometrical values that
uniquely describe an individual. It is also a crucial phase in
the biometric system recognition process. The extraction step

of features helps identify the most critical characteristics in
the input images that can be used for classification [83].

Palmprint feature extraction methods are broadly divided
into three, namely: holistic-based, local feature-based, and
hybrid methods [25], [84]. In the holistic-based method,
palmprint images are treated as an image with a vector of
high dimension and used as the feature vector for palm-
print classification or matching. In feature-based extraction,
salient features such as lines, texture features, and edges
are extracted from palm print images. To boost recogni-
tion accuracy, the hybrid technique integrates holistic and
local feature-based features. [46], [76]. Numerous palmprint
approaches for extracting and matching features have been
proposed due to the increased interest in low-resolution palm-
print recognition. Figure 15 highlights the palmprint feature
extraction methods.

1) HOLISTIC-BASED FEATURE EXTRACTION
The holistic feature-extractor or matcher uses the real palm
print image as input, creating two main issues: the holistic
representation of palmprint images and the design classi-
fiers. The holistic palm print feature is divided into subspace
methods, spectral representation, and invariant moment. The
algorithm related to the holistic approach is summarised
in Table 4

a) Subspace method: The palm print images usually have
a higher dimension than the training samples, which
can be classified as a small sample size (SSS) prob-
lem. In the unattended/supervised area, many ideas
have been given for mapping a palm print image
from original data space to lower-dimensional fea-
ture space, including vector/tensor and linear/nonlinear
subspace approaches [85]. An ab-initio linear non-
supervised approach called principal component anal-
ysis (PCA) was applied to extract the holistic vectors.
[76], [86], [87], while various unsupervised approaches,
such as independent component analysis ICA) and
locality preserving projection (LPP), have been used
to recognize palmprints [10], [24], [53]. However,
supervised methods are generally more efficient when
resolving issues with recognition. Hence, the need to
find a collection of discriminating vectors transforming
the original data into a low-dimensional feature space
has attracted research interest. Using supervised sub-
space approaches to solve the SSS problem consists
of algorithm-based and transform-based strategies.
An alternative formalization of LDA in an algorithm-
based strategy is to solve the SSS problem [64], [71],
[80], [88], [89]. Hence, in a transform-based method
like PCA+LDA, the original picture data is first con-
verted into a lower-dimensional subspace, and then
LDA is used to extract the feature. [90].

Nonlinear subspace approaches for palmprint recognition
have been used in the recent decade. Palmprint fea-
tures have also been extracted using kernel subspace
methods such as kernel PCA (KPCA) and kernel Fisher
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FIGURE 15. Palmprint feature extraction methods.

TABLE 4. Holistic-based palmprint recognition approach.

discriminant (KFD) [91], [92]. Multiple learning, a class of
nonlinear dimensionality reduction algorithms with similar
linear and kernel formalizations, has recently showed a good
prospect in palmprint recognition [49], [57], [93].

The subspace method’s performance can be enhanced fur-
ther by using the image transform. After this, the transform
coefficients may be effectively used to recognize palmprint

and robust variability within the class. Again, the function
transforms coefficients that may be omitted from subsequent
processing operations, thus effectively reducing overall data
dimensionality. Therefore, in the transform domains, the sub-
space methods techniques such as Fourier transforms are
applied [95]. Gabor [92]; discrete cosine [66] and wavelet
transform [74].
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a) Invariant Moment-Based Feature Extraction: General
information of images can be captured by image
moments where rotation, scale-invariant properties,
and translation are found in image recognition applica-
tions. With Zernike and Hu invariant moments, palm-
print feature representation has witnessed a few feature
descriptors being developed for it [20], [92], [97]

b) Spectral Representation Feature Extraction: Using
image transformation and a set of frequency fea-
tures, the Palmprint image can be transformed into its
Fourier frequency transformation domain. This can be
extracted, or palmprint discriminative features can be
designed and characterized in the frequency domain
by a correlation classifier [6], [57], [89]. These refer-
ences proposed angular radial energy information for
palmprint image into wavelet domain, then extract to
characterize the directional context characteristics of
palmprint are set of global statistical signatures [66] in
their work proposed training advanced correlation filter
each palm. In addition, multiple correlation filters per
class have been proposed to improve the accuracy of
palmprint recognition [6]. Another form of the correla-
tion process, other than the correlation filter, is known
as phase-only matching [75].

c) Classification-based Feature Extraction: In palmprint
recognition, it is common that the number of valu-
able samples of each class is lower than the number
of classes’ characteristics. Hence, each palm has only
one training age. Where these parameters are consid-
ered, the hyper-parameters of sophisticated classifiers
are challenging to estimate; therefore, adopted widely
is the nearest neighbour classifier [58], [72], [76],
[98], [99].

Classification methods such as neural networks and support
vector machines (SVM) were used in palmprint recognition
in a similar way [25], adopted SVMwithGaussianKernel and
dual-tree complex wavelet features for the palmprint classifi-
cation. In [93], recognition of backpropagation is a challeng-
ing multiclass problem for neural networks on a large scale
with backpropagation. In [18], [79], the palmprint recognition
task is decomposed using the modular neural network into
a succession of two-class subproblems of varying sizes and
similarities. Other neural networks have been proposed to
authentic the palmprint; hierarchical neural networks and
probabilistic neural networks are two examples of neural
network bases [17], [56].

2) LOCAL FEATURE-BASED APPROACH
Palmprint recognition has two local characteristics: ridges
and creases- which can be extracted from both low and high-
resolution palmprint images. Each type of local palmprint
feature has its own strengths and limitations, which are briefly
introduced, while Table 5 summarises the local feature-based
approach algorithm

i. Principal lines: have good governance and are usually
the product of excellent permanence genetic effects

TABLE 5. Local feature based palmprint recognition approach.

TABLE 6. Comparison of palmprint template matching methods based on
complexity and template size.

essential in palmprint images. Nonetheless, because the
principal lines of twins are identical, the distinguisha-
bility of the principal lines is minimal.

ii. Wrinkles: Only for a few months or years is it stable.
As a result, wrinkles do not have the same level of
permanence as minutiae. Principal lines and wrinkles
are difficult to recover from a crime scene, and no latent
full matching procedures have been devised for them,
making them less effective in latent recognition. Still,
the low-resolution palmprint image is rich in details
about the wrinkles. High performance online palmprint
recognition system can be developed Combing princi-
pal line and wrinkle features [24], [72], [100]–[102].

iii. 3D structure: 3D information on palm surface acqui-
sition is more challenging than a representation of a
2D palmprint. Although 3D palmprint recognition is
resistant to false palmprint attacks, it can be used with
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FIGURE 16. Palmprint biometric trait matching methods.

2D features to render robust palmprint recognition and
a highly accurate system [47], [69].

iv. Multispectral features: Features obtained with var-
ious wavelength/resolution/sensors spectrum utilize
multispectral palmprint recognition for authentication
personally [18], [46], [56].

v. Minutiae: Detailed research into minutiae’s distinctive
and enduring essence has been conducted in palmprint
and fingerprint recognition. Palmprint images with
500dpi minutiae feature essential for latent palmprint
recognition can be extracted.

vi. Level 3 features: all dimensional permanent ridge
attributes are included here. Examples include pores,
edge contour line shape, incipient ridges, warts, scars,
and ride path deviation [103]. Level 3 traits are impor-
tant in latent recognition, as just 20 to 40 pores are
required to determine a person’s identity [44], [74].
Currently, most level 3 feature acquisition, extrac-
tion, and matching techniques are aimed at identifying
fingerprints.

The local feature-based approach can be described as
follows.

a) Linear-Based Method: A Gaussian second-order
derivative to describe line magnitude was used by [74],
and the Gaussian first-order derivatives to determine

the line’s location. The output is obtained by merging
all directional line detection results, with camp code
being utilized for encoding. Extracting palm lines’
position and width information [61] suggested a large
line detector using a nonlinear isotropic filter. Two-
stage filtering also applies to the detection of palm
lines [48]. Local linematching is a different focus in the
line-based system, where two-line images are matched
and produce a score. Thus, the number of line pixels in
the same place as two-line images is calculated using
the standard matching methodology. The performance
of the system is due to many unavoidable factors, e.g.
translation, rotation, and deformation of the palmprint
images, which is unsatisfactory [86] proposed dilation
of template line image before matching and [6] used
line segment Hausdorff distance to indicate the match-
ing score of two-line image value.

b) Coding-Based Method: The coding-based method
encodes a bank of filters that responds to a bitwise
code. With the representation of the bitwise function
properties, motivated by Daugman’s [48] iris code has
a coding-based method with a lower memory require-
ment, and quick matching speed was effective in the
representation and matching of palmprints. It should
be noted that a palm code method which encodes
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TABLE 7. Selected contactless palmprint recognition systems.
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TABLE 7. (Continued.) Selected contactless palmprint recognition systems.
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TABLE 7. (Continued.) Selected contactless palmprint recognition systems.
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TABLE 7. (Continued.) Selected contactless palmprint recognition systems.
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TABLE 7. (Continued.) Selected contactless palmprint recognition systems.
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TABLE 7. (Continued.) Selected contactless palmprint recognition systems.
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TABLE 7. (Continued.) Selected contactless palmprint recognition systems.

as bitwise functions the filter response phase and
convolved palmprint image with a 2D Gabor filter
[25], [72]. Thus, there are correlations between differ-
ent palm codes, which might cause the palm code’s
performance degradation. Reference [48] introduced
a fusion code method convolving palmprint image of a

bank of Gabor filters with different orientations encod-
ing the maximum magnitude of the filter response
process. A recent development in coding-based meth-
ods suggests that palm line orientation information
is one of the most important features for personal
identification [58], [105]; the three key topics in
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orientation coding are; coding scheme, filter design,
and matching approaches. A bitwise feature repre-
sentation was generated using the competitive coding
scheme and matching two competitive codes using the
angular distance [91].

c) Local Texture Descriptor: A palmprint image is divided
into several small blocks by a typical local palm-
print texture descriptor, and the mean, variance, power,
or histogram of each block are then calculated as
local characteristics [19], [66]. Local Binary Pattern
(LBP) [76], a strong method of texture analysis, was
successfully applied to face recognition through inte-
gration with AdaBoost [69], [95] performed palmprint
image division into overlapped blocks to carry out
calculations of the DCT coefficients of each block and
formed a vector using its standard deviation. In addi-
tion, many texture descriptors have been adopted in
palmprint recognition, such as local direction his-
togram and directional feature [28], [62].

3) HYBRID APPROACHES
The object of interest has been argued to have a human vision
system using both holistic and promising hybrid approaches
that are expected for palmprint recognition. Two main appli-
cations for hybrid approaches are palmprint recognition with
good accuracy and rapid palmprint matching. For example,
many feature-level, score-level and decision-level fusions are
performed using holistic and local feature-based approaches
to produce a multiple palmprint representation [51], [96].
Another highly significant application of hybrid approaches
is quickly matching palmprints using a hierarchical method
for coarse-to-fine matching [8]. Table 4 shows the hybrid
palmprint recognition approach.

D. PALMPRINT TEMPLATE MATCHING METHODS
Matching shows the resemblance between data sets created
by comparing the unfamiliar person’s feature codes and those
held in the system. Moreover, for a specific person’s features,
the score will be high and low for those who are differ-
ent [90]. As earlier mentioned, feature extraction and match-
ing are the most critical problems in palm print technology,
which is equally grouped into holistic-based, feature-based
and hybrid methods. Table 6 shows the various palmprint
comparison methods, while Figure 16 shows the palm print
matching/classification method.

V. EVALUATION AND SUMMARY OF CONTACTLESS
PALMPRINT RECOGNITION AND EXISTING WORKS
Several palmprint recognition with extensive review of this
work is presented in Table 7, highlighting the extraction area,
preprocessing methods, feature extraction method,matching
methods, and best accuracy. In addition, research works have
been explored in contactless approach and the literatures
are grouped as follows: (i) Holistic Based: [19], [29], [32],
[46], [48], [59], [89], [92], [96], [106], [107], [111], [114],
[119], [120]

(ii) Local feature Based: [3], [6], [25], [27], [58], [62], [63],
[69], [71], [82], [108], [110], [113], [115], [118]

(iii) Hybrid Based: [5]–[7], [18], [22], [49], [54], [64], [72],
[79], [86], [90], [95], [97], [101], [109]

(iv) Machine/Deep Learning: [1], [2], [8], [21], [33], [44],
[53], [56], [60], [61], [68], [77], [91], [93], [100], [104],
[112], [117]

VI. CONCLUSION
The key applications of palmprint recognition system include
security; protecting personal information and documents
such as identity documents, contracts and financial transac-
tions), quick identification and unique recognition, access
control; gaining access to premises made more accessible
and safer, law enforcement and security profiling, forensic
analysis

This survey presented identification technologies for tra-
ditional (knowledge or token-based) and state-of-the-art
(biometric-based) authentication solutions with comparative
advantages, drawbacks and restrictions. The vulnerability
of these solutions to a variety of attacks is presented. The
characteristics (similarity and natural) of RA and PA types of
attacks. Various biometric sensing systems and their perfor-
mances under different parameters are presented with palm-
print identified as the most reliable. This work also showed
the various imaging technologies needed to acquire evidence-
based biometric traits while biometric sensors and process-
ing systems are powerful tools. The theoretical foundation
of biometric recognition, contactless palmprint biometrics,
and the idea of on-device intelligence are all covered in
this article. To illustrate the cutting-edge approaches used
in these study fields, some related publications are also
reviewed.

Compared to cloud computing, recent developments in
edge computing have necessitated a paradigm shift in contact-
less palmprint biometrics. For example, the gadget collects
data in the cloud and sends it to the cloud for knowledge
and inference. Conversely, Inference processes are conducted
locally on edge devices (which give ready use cases for con-
tactless palmprint biometrics) (such as smartphones and other
IoT gadgets). Furthermore, knowledge and inference at the
edge could provide advantages such as faster reaction times
due to fewer server trips, higher reliability, increased privacy
and security, and better network capacity use. However, due
to form factors or cost considerations, memory and energy
resources are limited on edge devices and cannot be easily
augmented. Thus, As a result, current and future research
directions in this area will include increasing resources on the
restricted edge device form-factor, developingmore resource-
efficient architecture, improving model training/inference on
edge through novel software approaches, and a slew of other
initiatives that will necessitate cross-cutting collaborations.
A balanced palmprint dataset that goes across racial lines will
also need to be curated, stored, and made available to the
scientific community to reduce demographic bias.
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