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Abstract: Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and
severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies,
including genome-wide association studies (GWAS). To develop an accurate test to help identify those
at risk for at least alcohol use disorder (AUD), a subset of reward deficiency syndrome (RDS), Blum’s
group developed the genetic addiction risk severity (GARS) test, consisting of ten genes and eleven
associated risk alleles. In order to statistically validate the selection of these risk alleles measured by
GARS, we applied strict analysis to studies that investigated the association of each polymorphism
with AUD or AUD-related conditions, including pain and even bariatric surgery, as a predictor of
severe vulnerability to unwanted addictive behaviors, published since 1990 until now. This analysis
calculated the Hardy–Weinberg Equilibrium of each polymorphism in cases and controls. Pearson’s
χ2 test or Fisher’s exact test was applied to compare the gender, genotype, and allele distribution if
available. The statistical analyses found the OR, 95% CI for OR, and the post risk for 8% estimation
of the population’s alcoholism prevalence revealed a significant detection. Prior to these results,
the United States and European patents on a ten gene panel and eleven risk alleles have been issued.
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In the face of the new construct of the “preaddiction” model, similar to “prediabetes”, the genetic
addiction risk analysis might provide one solution missing in the treatment and prevention of the
neurological disorder known as RDS.

Keywords: genetic addiction risk analysis; reward deficiency syndrome (RDS); behavioral octopus;
neurobiology; epigenetics; dopamine homeostasis; preaddiction

1. Background

The purpose of this article is to provide the scientific basis for the potential incorpo-
ration of genetic addiction risk (DNA polymorphic alleles) and psychological profiling
analyses for an emerging novel concept referred to as the “preaddiction” severity index,
as encouraged by both the National Institute on Drug Abuse (NIDA) and the National
Institute on Alcohol Abuse and Alcoholism (NIAAA).

Addiction scientists and clinicians face an incredible challenge in combatting the
current opioid and alcohol use disorder (OUD/AUD) pandemic worldwide. Despite signif-
icant progress, the death toll from narcotic overdoses managed to reach over 100,000 fa-
talities in the United States in 2021 and could reach 165,000 in 2022. NIDA and NIAAA
continue to struggle with the generation of novel approaches to combat the severity of the
current substance abuse epidemic. FDA-approved medication-assisted treatments (MAT)
work primarily by blocking dopamine release and function at the pre-neuron in the nu-
cleus accumbens [1,2]. Although MAT has reduced overdose deaths, costs, and healthcare
events, a long-term strategy to return MAT patients to premorbid functioning is necessary.
Medication-assisted treatments routinely fail [3], and when discontinued, relapse and
overdose occur at rates similar to those of untreated patients. Neurologically, MAT may
induce persistent changes that compromise endorphin, dopamine, and multiple brain
systems. Chronic use of agonist therapies may be necessary for lack of other options;
however, we caution that data on chronic vs. acute use harm reduction is lacking [4,5].
However, there is evidence that treatments themselves, such as long-term agonist treat-
ments for OUD, may also cause reward deficiency syndrome (RDS) [5], causing harm and
fatal consequences that eclipse the size of the current viral epidemic.

While the highest in the United States, drug overdose deaths are a problem interna-
tionally, and extraordinary solutions are needed. Short-term opioid substitution therapy
can reduce harm. However, long-term patients can be locked into a lifetime of substance
use disorders (SUD) [5]. Alternatively, inducing “psychological extinction” by weaken-
ing a conditioned response over time using the narcotic antagonist, Naltrexone, which
blocks delta and Mu opioid receptors [6]. However, one difficulty encountered when
using narcotic antagonism is compliance, which is moderated by the individual’s genetic
antecedents [7]. The other approaches approved by the FDA for alcoholism block dopamin-
ergic signaling [8,9].

There is increasing movement to opt for the non-addicting narcotic antagonist Nal-
trexone to treat Alcohol Use Disorder (AUD). Recent studies have shown that Naltrex-
one is beneficial by attenuating craving via “psychological extinction” and reducing re-
lapse. Buprenorphine is currently the MAT of choice, but injectable Naltrexone plus
an agent to improve dopaminergic function and tone may renew interest amongst ad-
diction physicians and patients. Even with the extended injectable option, there is still
poor compliance. As such, our group described an open-label investigation in humans
showing improvement in naltrexone compliance and outcomes with dopamine augmen-
tation with the pro-dopamine regulator KB220 (262 days) compared to naltrexone alone
(37 days) [6]. This well-studied complex consists of amino-acid neurotransmitter precursors
and enkephalinase-inhibitor therapy compared to treatment as usual. The consideration of
this novel paradigm shift may assist in addressing not only the current opioid and alcohol
epidemics but also the broader question of reward deficiency in general.
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Understanding the above presupposition and emerging acceptance of the underlying
concept of reward deficiency syndrome (RDS), now in ENCLYCLOPEDIA.COM, which
Blum first conceived in 1995, facilitates the common mechanism hypothesis for chemical
and behavioral addictions [10]. The typical neuromodulating aspects of neurotransmission
and its disruption from chronic exposure to drugs and behavioral addictions necessitate an
approach that involves attaining “dopamine homeostasis,” especially for AUD [11].

Subsequent large-scale genomics studies have had limited success in identifying
the alleles implicated in addiction and RDS. Although genome-wide association studies
(GWAS) and next-generation sequencing are valuable genetic tools, some fundamental
issues exist. Certainly, GWAS, for example, helps to identify novel clusters of genes that
may relate to an etiological component as a genetic antecedent to specific RDS behaviors,
such as AUD. The next critical step following GWAS results is subsequent convergence
to individual candidate genes. Thus, if there is indeed a clue or blueprint as to a specific
known gene and associated polymorphic risk allele linked to specific phenotypes such
as AUD, although the contribution of each gene may be small, it is indeed a worthwhile
pursuit.

Several neurotransmitters are involved in the processing of reward and punishment.
These pathways involve at least seven quintessential neurotransmitters and many sec-
ond messengers linked to the mesolimbic and pre-frontal cortex (PFC). One function
is to regulate the final pathway of “wanting,” causing net neuronal dopamine release.
Figure 1 provides a schematic representation of the brain reward cascade (BRC), showing
the interaction of serotonergic, cannabinoidergic, opioidergic, GABAergic, glutaminergic,
acetylcholinergic, and dopaminergic systems related to net dopamine release at the nu-
cleus accumbens (NAc). We highlight dopamine based on the understanding that healthy
processing of an initial action potential in the brain requires the integrity of the entire neu-
rotransmitter complex of the brain reward circuitry. The cascading interactions result in the
balanced release of dopamine at the NAc and across many brain regions. These regions are
involved in motivation, cognition (memory), pleasure, stress reduction, decision-making,
recall, drug reinstatement, cravings, and well-being.
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Figure 1. Illustrates the interaction of at least six major neurotransmitter pathways involved in the
brain reward cascade (BRC). In the hypothalamus, environmental stimulation causes the release
of serotonin, which in turn, via, for example, 5HT-2a receptors, activates (the green, equal sign),
the subsequent release of opioid peptides into the hypothalamus. Then, the opioid peptides have two
distinct effects, possibly via two different opioid receptors. (A) inhibits (the red hash sign) through the
mu-opioid receptor (possibly via enkephalin) and projects to the substantia nigra to GABAA neurons.
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(B) stimulates (the green, equal sign) cannabinoid neurons (e.g., anandamide and 2-archydonoglcerol)
through beta-endorphin linked delta receptors, which in turn inhibit GABAA neurons at the substantia
nigra. cannabinoids, primarily 2-archydonoglcerol, when activated, can also indirectly disinhibit
(the red hash sign) GABAA neurons in the substantia nigra through activation of G1/0 coupled to
CB1 receptors. Similarly, glutamate neurons located in the dorsal raphe nuclei (DRN) can indirectly
disinhibit GABAA neurons in the substantia nigra by activating GLU M3 receptors (the red hash
sign). GABAA neurons, when stimulated, will, in turn, powerfully (the red hash signs) inhibit
ventral tegmental area (VTA) glutaminergic drive via GABAB3 neurons. Finally, glutamate neurons
in the VTA will project to dopamine neurons through NMDA receptors (the green, equal sign)
to preferentially release dopamine at the NAc shown as a bullseye indicating well-being (with
permission Blum et al. [2]).

2. Reward Deficiency Syndrome Index (RDSI) and Genetics

Co-occurrences, similarities in the phenomenological and behavioral appearance,
and empirical studies of some shared psychological and molecular mechanisms of addic-
tive behaviors indicate a more integrative approach to the concept of addictive behaviors.
The point of a number of studies was to scrutinize the possible genetic overlaps between
different types of substance use, behavioral addictions, and other compulsive behaviors.
A genetic association analysis was carried out as a part of the PGA study [12,13], assessing
various kinds of addictions in a sample of 3003 adolescent participants. The genetic associ-
ation analyses targeted 32 single-nucleotide polymorphisms (SNPs) and four substances
of abuse (alcohol, tobacco, marijuana, and other drugs), and seven potentially addictive
behaviors: internet addiction, gaming, social networking sites addiction, gambling disorder,
exercise addiction, trichotillomania, and eating disorders. The association analysis revealed
29 nominally significant associations, of which nine survived the FDRbl correction for
multiple testing. Four out of these nine significant associations were observed between a
FOXN3 SNP and various addictions: rs759364 showed an association with the frequency
of alcohol consumption and the mean scores of internet use, gaming, and exercise addic-
tion questionnaires. In addition, significant associations have been found between glial
cell derived neurotrophic factor (GDNF) rs1549250, rs2973033, Cannabinoid Receptor-1 (CNR1)
rs806380, and Dopamine receptor D2 (DRD2)/ankyrin repeat and kinase domain containing 1
(ANKK1) rs1800497 variants and the “lifetime other drugs” variable.

In recent years, increasing quantities of scientific research have emphasized over-
lapping factors between the symptomatology of different types of addiction. Theoretical
models of addictive disorders handling ‘addictions’ as a common disorder instead of
distinct conditions have already been proposed in the 1980s [14]. More recent research
also encourages considering addiction not as a collection of [15] different disorders but
as a symbolic umbrella under which all addiction types can be classified. Additionally,
Hollander’s obsessive-compulsive spectrum disorder (OCSD) model suggests a shared
obsessive–compulsive spectrum in the background of psychiatric diseases of different diag-
nostic categories [15,16]. Furthermore, Blum, Cull, Braverman, and Comings in 1996 [17]
proposed in the Reward Deficiency Syndrome that the development of impulsive and ad-
dictive behaviors shares some common psychological and molecular pathways. Focusing
on the phenomenological aspects, the Component Model of Addictions by Griffiths [17]
argues that all addictions share six essential characteristics. Empirical studies underlie the
concept of shared psychological and molecular mechanisms proposed in these models.
For example, tolerance is one of the critical criteria for many types of addiction. It takes
a higher dose of the substance or behavior to achieve the same effect as earlier. Even a
gambler can experience physical symptoms similar to opioid, stimulant, or polysubstance
withdrawal [18–20]. Additionally, impaired social, occupational, or recreational ability,
along with withdrawal symptoms, cravings, and unsuccessful quitting attempts, are critical
elements in many addictions [21].

The classification and diagnostic criteria of addictive behaviors in the DSM-5 (APA,
2013) and the ICD-11 (WHO, 2018) also reflect these behaviors’ phenomenological sim-
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ilarities. The revised DSM-5 includes the updated category of “substance-related and
addictive disorders,” replacing the former “substance-related disorders” category from
the DSM-IV-TR. Although only gambling disorder is included in the DSM-V (under the
non-substance related disorders category of substance-related and addictive disorders),
the new “substance-related and addictive disorders” terminology in the DSM-V is much
more permissive in regard to behavioral addictions. The same trend can be seen in ICD-11,
in which gambling and gaming disorders were both included under the classification of
psychiatric disorders [22].

The results of family, twin, and adoption studies estimate that the heritability (i.e.,
the overall genetic contribution) of addictions varies across the continent. Specifically,
analyses revealed a significant single-nucleotide polymorphism-based heritability of 17 per-
cent (SE = 5) in European ancestry (EAs) and 24 percent (SE = 15) in African ancestry
(AAAs). Further, a significant genetic correlation of 0.77 (SE = 0.46) suggests that the allelic
architecture influencing the alcohol dependence (AD) factor for Europeans and Africans is
largely similar across the two populations. Analyses indicated that investigating the genetic
underpinnings of alcohol dependence in different ethnic groups may serve to highlight the
core etiological factors common to both groups as well as unique etiological factors specific
to each ethnic group [23].

The brain’s reward system has a significant impact on behavioral control and plays a
vital role in the pathophysiology of addictive behaviors. Dopaminergic and serotonergic
neurotransmitter systems involved in these reward pathways are at the center of attention
in candidate gene studies of substance abuse, non-substance addictions, and various risk-
behavior-related traits, such as novelty seeking, impulsivity, or aggressive behavior (see
reviews from our group [24,25] and others [26,27]).

In an attempt to resolve the controversy regarding the causal contributions of mesolim-
bic dopamine (DA) systems to reward, we evaluate the three main competing explanatory
categories: “liking,” “learning,” and “wanting” [28]. That is, DA may mediate (a) the hedo-
nic impact of rewards (liking), (b) learned predictions about rewarding effects (learning),
or (c) the pursuit of rewards by attributing incentive salience to reward-related stimuli
(wanting). We evaluate these hypotheses, especially as they relate to the RDS, and we find
that the incentive salience, or “wanting” hypothesis of the DA function is supported by a
majority of the evidence. Neuroimaging studies have shown that drugs of abuse, palatable
foods, and anticipated behaviors such as sex and gaming affect brain regions involving
reward circuitry and may not be unidirectional. Drugs of abuse enhance DA signaling and
sensitize mesolimbic mechanisms that evolved to attribute incentive salience to rewards.
Addictive drugs have in common that they are voluntarily self-administered, they enhance
(directly or indirectly) dopaminergic synaptic function in the nucleus accumbens (NAc),
and they stimulate the functioning of brain reward circuitry (producing the “high” that
drug users seek). Although originally believed simply to encode the set point of hedo-
nic tone, these circuits are now believed to be functionally more complex, also encoding
attention, reward expectancy, disconfirmation of reward expectancy, and incentive moti-
vation. Elevated stress levels, together with polymorphisms of dopaminergic genes and
other neurotransmitter genetic variants, may have a cumulative effect on vulnerability to
addiction.

The RDS model of etiology holds very well for a variety of chemical and behavioral
addictions. Interestingly, these concepts have been put to the test by Demetrovics and
colleagues [29]. The aim of their investigation was to examine the dissociation between
“wanting” and “liking” as a function of usage frequency, intensity, and subjective severity
in individuals across four substances (alcohol, nicotine, cannabis, and other drugs) and ten
behaviors (gambling, overeating, gaming, pornography use, sex, social media use, Internet
use, TV-series watching, shopping, and work). Additionally, the potential roles of impulsiv-
ity and reward deficiency were investigated in “wanting,” “liking,” and well-being. The sex
differences between “wanting” and “liking” were also examined. Based on our findings
using structural equation modeling with 749 participants (503 women, Mage = 35.7 years,
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SD = 11.84) who completed self-report questionnaires, “wanting” increased with the sever-
ity, frequency, and intensity of potentially problematic use, while “liking” did not change.
Impulsivity positively predicted “wanting,” and “wanting” positively predicted problem
uses/behaviors. Reward deficiency positively predicted problem uses/behaviors, and both
impulsivity and problem uses/behaviors negatively predicted well-being. Finally, women
showed higher levels of “wanting” compared to men. These findings demonstrate the
potential role of incentive sensitization in both potentially problematic substance use and
behaviors.

Functional neuroimaging studies have shown that cocaine, money, and beauty simi-
larly energize the reward circuitry of the brain [30,31]. This suggests that, regardless of the
object of the addiction, similar neurobiological pathways are stimulated in the brain [32].
Dopamine is released in the nucleus accumbens during rewarding experiences and re-
inforces the motivation for such activities. In addition, serotonin modulates the reward
pathway and is involved in emotion and behavior regulation as well as consciousness [33].
Genetic factors may also influence how and when individuals develop addictive behaviors
by affecting the sensitivity to drug effects at first use, reinforcing or inhibiting subsequent
experimentation, and not just DSM diagnosis [34,35]. One of the universally accepted
hypotheses in the development of addiction is RDS [36], which postulates that decreased
dopamine receptor density or sensitivity in the brain causes a weaker reward sensation,
and to compensate for it, individuals develop various types of behaviors to increase their
dopamine levels. The syndrome consists of compulsive, addictive, and impulsive behaviors
(e.g., drug addiction, compulsive eating, smoking, gambling, sex addiction, and internet
gaming).

Although the dopamine system has been implicated as one of the most potent force
influencers in the development and maintenance of addiction, dopamine itself does not
function in isolation. The effects and net neuronal release of dopamine are influenced
by several factors, involving a cascade of events (Figure 1), including the brain receptor
system variability and other neurotransmitter systems (norepinephrine, GABA, gluta-
mate, serotonin), which can be affected by various psychoactive substances and behaviors,
e.g., opiates act through the endogenous opioid system, while alcohol through the GABA
system, and RDS is indeed the actual phenotype [37]. Overall, neurobiological research indi-
cates that different substances and behaviors stimulate remarkably similar neurobiological
pathways [38].

The genetic and environmental overlap between different types of substance and
behavioral addictions has been investigated [39]. Additionally, twin and other studies
also concluded that the majority of the shared genetic and environmental factors are not
substance-specific [40–42]. Identified genetic variants in addiction-related genes, e.g., alde-
hyde dehydrogenases (ALDHs), gamma-aminobutyric acid receptor subunit alpha-2 (GABRA2),
and DRD2/ANKK1, were strongly associated with dependence to various substances [43].
Gene network analysis showed immune signaling and extracellular signal-regulated protein
kinases 1 and 2 (ERK1/2) as novel genetic markers for multiple addiction phenotypes, in-
cluding alcohol, smoking, and opioid addiction [44]. Cocaine and alcohol addition, as well
as compulsive running, share common molecular pathways of substance and behavioral
addictions [45,46]. The shared genetic vulnerability of pathological gambling and SUDs,
primarily alcohol dependence, is another widely known example [47]. Twin research ob-
served genetic overlap between substance use and gambling frequency [48]. Genome-wide
studies indicated further evidence for a genetic association between pathological gambling
and alcohol dependence [49]. These common genetic risk factors are also implicated in
personality traits such as risk-taking, which are genetically associated with alcohol and
drug use [50]. All these research results suggest that specific genetic markers generally
increase the likelihood of addiction, regardless of the type of addiction.

In addition, pharmacological studies proved that even treatment non-specificity occurs
between different substances, suggesting the same common neurobiological pathways in
the background. Among these studies, naltrexone, an opioid antagonist used in opioid
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replacement therapy, was approved by the FDA to treat ethanol dependence [51–53]. Nal-
trexone has also proven to be efficient in the treatment of pathological gambling [54,55].
A partial nicotine agonist or even nicotine used for nicotine dependence has been used
successfully in AUD [56], and methadone (an opioid agonist) has shown efficacy in reduc-
ing cocaine abuse among opioid-dependent patients [57]. The theory of addiction as a
substance-independent disease is further supported by the perception that people recov-
ering from a given substance commonly tend to change to another substance (e.g., from
opiates to cocaine, alcohol, gambling) before successfully recovering from addiction [58].
Similar examples have been found for illicit drugs and nicotine, alcohol abuse and eating
disorders, substance abuse, and pathological gambling. In fact, a systematic review synthe-
sized the literature examining addiction substitution during recovery from substance use
or behavioral addictions. A total of 96 studies were included, with sample sizes ranging
from 6 to 14,885. The most common recovery addictions were opioids (30.21%), followed
by cannabis (20.83%), unspecified use (17.71%), nicotine (12.50%), alcohol (12.50%), cocaine
(4.17%), and gambling (2.08%). Statistical results were provided by 70.83% of the studies.
Of these, 17.65% found support for addiction substitution, whereas 52.94% found support
for concurrent recovery. A total of 19.12% found no statistical changes, and 10.29% found
both significant increases and decreases. The remaining 29.17% of studies provided de-
scriptive data without statistical tests. Predictors of addiction substitution were provided
by 22.92% of the studies, and 11.46% included information on the impact of addiction
substitution on treatment outcomes [59].

Growing evidence indicates overlaps between addictions: regardless of the nature
of a specific activity, whether someone plays video games, gambles, uses the internet,
or uses social networking sites, the extensive, repetitive, and problematic engagement in
the above-mentioned activities might share similarities with SUDs. Co-occurrences and
comorbidities are well-known in specific phenotypes, as many people with an addiction-
related diagnosis have more than one psychiatric diagnosis [39,60]. The co-occurrence of
chemical and behavioral addictions is well documented [61–63].

The co-occurrences of different types of addictive behaviors, similarities in their phe-
nomenological and behavioral appearance, and empirical studies of some shared psycho-
logical and molecular mechanisms indicate a more integrative approach to the theoretical
and nosological concept of addictive behaviors. This Hungarian study aimed to investigate
the possible genetic overlaps between different types of substance use, behavioral addic-
tions, and other compulsive behaviors, using a large sample from the psychological and
genetic factors of addictions (PGA) study. The present genetic association analysis was
carried out between 32 addiction-related candidate SNP and a wide range of substance
use (nicotine, alcohol, marijuana, and other drugs) and potentially addictive behaviors
(internet use, gaming, social networking site use, gambling, exercising, trichotillomania,
and eating disorders).

Analysis showed a significant association between DRD2/ANKK1 rs1800497 and mari-
juana consumption at least four times during the past 30 days (Chi-square = 6.424; df = 1;
p = 0.0113, OR = 0.613). The association showed that the minor allele (A) is more frequent
among the users (27.1%) as compared to the never users (18.6%). It was also found a
significant association between eating problems and DRD4 rs1800955 [F(1, 4972) = 9.184,
p = 0.0025, η2 = 0.002, power = 0.858, Cohen’s d = 0.09], where the minor allele was in
association with lower mean scores on the EAI questionnaire (0.67 ± 0.92) as compared to
the major (T) allele (0.76 ± 0.98) [39].

Previous genetic association studies of addictions have mainly focused on one specific
type of SUD. The Hungarian study [39] aimed to investigate a broad spectrum of substance
and non-substance addictions in a large sample consisting of high school and university
students to find possible associations. The analyzed genes and polymorphisms were
selected in part based on earlier literature results (e.g., nicotinic acetylcholine receptor
gene clusters implicated by earlier GWAS studies [64,65] and partly because novel genetic
targets have also been considered, including the GARS test [66].
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In addition, the presented genetic association analysis was carried out as a part of the
PGA study assessing several types of addictions in a sample of 3003 adolescent participants.
As previously stated, the association analyses of 32 SNPs and four substance use and
seven potentially addictive behaviors revealed 29 nominally significant associations, nine
of which survived the FDRbl correction for multiple testing. Polymorphisms in the CNR1
gene (rs806380) and the DRD2/ANKK1 gene (rs1800497) also showed association with the
“lifetime other drugs” variable. CNR1 codes for cannabinoid 1 receptors that offer high
expression in regions with proven involvement in reward, addiction, and cognitive func-
tion [67]. The rs806380 SNP in intron 2 of CNR1 is associated with cannabis dependence.
However, the majority of the participants also met the criteria for alcohol dependence.
The rs806380 SNP has also been linked to the development of cannabis dependence symp-
toms [68]. A microsatellite polymorphism of CNR1 has also been positively associated with
intravenous drug use and cocaine, amphetamine, and cannabis dependence [69].

The rs1800497 SNP of ANKK1, also known as the Taq1A polymorphism, has been
widely studied in psychiatric disorders. Numerous studies have linked Taq1A to reduced
DRD2 densities and binding affinity [70,71], implying a direct or indirect influence on the
dopamine concentration in the synaptic clefts. In addition, the Taq1A polymorphism has
been significantly associated with nicotine dependence [72,73], smoking cessation [74],
alcohol dependence [75,76], heroin dependence [77,78], and cocaine dependence [79,80].

Finally, the results revealed an association between rs1800955 of the DRD4 gene and
the mean scores on the SCOFF questionnaire assessing eating disorders. This SNP, also
known as -521C/T, is a variant in the promoter region upstream of the DRD4 gene and
has a putative role in regulating transcriptional activity [81]. Furthermore, in another
study, additional haplotype analysis showed a significant association with a four-locus
haplotype, including rs1800955 [82]. Previous associations have been reported between
alleles at -521C/T and novelty seeking, extraversion, and drug abuse [83,84]. The rs1800955
polymorphism of DRD4 has also been proposed in the GARS test by Blum et al. [85], which
identifies alleles known to convey vulnerability to addiction and creates an assessment of
the degree of vulnerability of an individual to develop addictive behavior [85]. This SNP
and the DRD2 A1 allele (rs1800497) have been associated with heroin addiction [86] and
contribute to a “risk-taking phenotype” [87].

These alleles were proposed for a GARS panel in case–control studies, specifically for
alcoholism (Table 1) [see ref. [88] for further explanation].

Table 1. Gene polymorphisms under consideration and the literature summary.

Gene/Polymorphism Number of Studies Overall Summary

Dopamine D1 Receptor (DRD1):
rs4532—risk allele G 3

Several studies supported that genetic variation in DRD1 may
influence genetic predisposition to alcoholism. A statistically
significant association of DRD1 rs4532 polymorphism with alcohol
dependence was found among Indian males (90 cases vs. 122 controls).
Other studies also demonstrated that this could be associated with the
impulsivity and aggression of AUD patients.

Dopamine D2 Receptor (DRD2):
rs1800497—risk allele A1 118

The DRD2 rs1800497 was found to be associated with the risk of AUD
and several AUD-related conditions in a meta-analysis of numerous
case–control studies (total of 18,290 cases vs. 19,809 controls, including
US Caucasian, native and African American, British, French, Italian,
Swedish, Finnish, Spanish, Mexican, Brazilian, Scandinavian,
and Japanese) pooled with the random effect models.

Dopamine D3 Receptor (DRD3):
rs6280—risk allele C (Ser9Gly) 3

Several case–control studies investigated the association between the
DRD3 rs6280 polymorphism and alcohol dependence. In a Korean
study (243 cases vs. 130 controls), the DRD3 rs6280 polymorphism was
significantly associated with AUD development.
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Table 1. Cont.

Gene/Polymorphism Number of Studies Overall Summary

Dopamine D4 Receptor (DRD4):
rs1800955—risk allele C (48bp
repeat VNTR)

35

The DRD4 rs1800955 polymorphism was found to be associated with
the risk of developing AUD and AUD-related conditions in a
meta-analysis of various case–control studies (total of 2997 cases vs.
2588 controls, including US Caucasian, Mexican American, and Indian)
pooled with the random effect models.

Dopamine Transporter Receptor
(DAT1): SLC6A3 3’-UTR—risk
allele A9 (40bp repeat VNTR)

43

The central dopaminergic reward pathway is likely involved in alcohol
intake and the progression of alcohol dependence. DAT1 is a principal
regulator of dopaminergic neurotransmission. From the meta-analysis
of numerous case–control studies (total of 3790 cases vs. 3446 controls)
pooled with the random effect models, the DAT1 SLC6A3 3’-UTR risk
allele was found to be marginally associated with the risk of AUD and
AUD-related conditions.

Catechol-O-Methyltransferase
(COMT): rs4680—risk allele G
(Val158Met)

13

COMT is a strong candidate gene that contributes to SUD and
schizophrenia. A meta-analysis of several case–control studies (total of
1212 cases vs. 933 controls, including US Caucasian, Finnish, Croatian,
and Taiwanese) pooled with a random effect model, the association of
COMPT rs4680 polymorphism with the risk of developing AUD and
AUD-related conditions was found with marginal statistical
significance.

µ-Opioid Receptor (OPRM1):
rs1799971—risk allele G (A118G) 28

Opioid receptors play an essential role in ethanol reinforcement and
alcohol dependence risk. Polymorphisms in the OPRM1 gene
expressing µ-opioid receptors could be significantly associated with
some features of alcohol dependence. From the meta-analysis of
case–control studies (total of 3096 cases vs. 2896 controls, including US
Caucasian, Spanish, Turkish, and Asian), pooled with the random
effect model, the results indicated that a functional OPRM variant is
associated with the risk of alcohol dependence with marginal statistical
significance.

γ-Aminobutyric Acid (GABA) A
Receptor, β-3 Subunit (GABRB3):
CA repeat—risk allele 181

6

The GABAergic system has been implicated in alcohol-related
behaviors. From case–control studies (171 cases vs. 45 controls),
the association of variants of the GABRB3 gene with alcohol
dependence is, however, inconclusive. A more extensive controlled
study is required for improved results.

Monoamine Oxidase A (MAO-A):
3’ 30bp VNTR -risk allele 4R
DNRP

6

The function of monoamine oxidase (MAO) in alcoholism was
determined using several case–control studies (170 cases vs. 177
controls). Although genetic heterogeneity is suspected of underlying
alcoholism and MAO-A mutations may play a role in susceptibility to
alcoholism, the overall results were not found to be statistically
significant. A more extensive controlled study is required to obtain
conclusive results.

Serotonin Transporter Receptor
(5HTT) Linked Promoter Region
(5HTTLPR) in SLC6A4:
rs25531—risk allele S’

20

Serotonin (5-HT) has been demonstrated to regulate alcohol
consumption. Since the activity of the 5-HT transporter protein (5-HTT)
regulates 5-HT levels, it may contribute to the risk of alcohol
dependence. A meta-analysis of case–control studies (total 9996 cases
vs. 9950 controls) pooled with the random effect models showed a
significant association between alcohol dependence and the
serotonin-transporter-linked promoter region (5-HTTLPR), which is a
polymorphic region in the SLC6A4 gene.

To develop this patented GARS test, the ten reward candidate genes selected included
the dopamine receptors (DRD1, 2, 3, 4), DAT1, SLC6A4, COMT, MAO-A, GABRB3, OPRM1,
and some SNPs and point mutations chosen to reflect a hypo dopaminergic trait. The genes
determined to negatively influence the net release of dopamine at the brain reward site
were chosen from thousands of association studies providing clear evidence of the specific
risks for all addictions [89].
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3. Understanding GARS

The BRC involves the interaction of genes and neurotransmitters and their control
of the release of dopamine (Figure 1). Functional differences within the BRC, which
could be genetic or epigenetic, may predispose individuals to addictive behaviors and
altered pain tolerance [90,91]. The GARS test is the first United States/European patented
test clinically proven to predict vulnerability to pain and various other addictive and
compulsive behaviors identified as RDS.

Strategies to combat the opioid epidemic of prescription drug misuse and death
and the implication of dopaminergic tone in pain pathways have been proposed pre-
viously [92,93]. The site of a predisposition to pain sensitivity may be the mesolimbic
projection system, where genetic variations are associated with pain vulnerability or toler-
ance [93]. These variations may provide specific targets to assist in the treatment of pain
and identify risks for subsequent addiction. For example. many known gene variants
are involved in opioid pharmacology. Therefore, genetic testing of candidate genes such
as DRD1, 2, 3, 4, MOA-A, COMT, DAT1, SLC6A4, OPRM1, and GABRB3 might result in
pharmacogenomics, personalized solutions, and improved clinical outcomes. Identifying
those within compromised populations at genetic risk for RDS behaviors may be a frontline
tool for better resource allocation in municipalities [17,66,94,95], especially in the criminal
justice system.

There is a natural sequence of neurotransmission that produces feelings of well-being
(Figure 1). The cascade events, including the synthesis, vesicle storage, metabolism, release,
and other neurotransmitter functions, are regulated by gene expression. Genetic testing
of relevant variants can provide a window into an individual’s neurochemistry, assisting
providers in formulating optimal treatment options.

The release of dopamine, the neurotransmitter responsible for motivation and stress
reduction, is the neurological reward cascade’s functional endpoint. As a result, individuals
who are genetically predisposed hypodopaminergia seek out substances and behaviors
that will help them overcome this trait by activating mesolimbic brain dopaminergic
centers [96,97]. Lacking balanced dopamine function, an individual may have anhedonia,
lack a sense of well-being, and may have difficulty with craving pleasure, lack of motivation,
and coping with stress. Psychoactive substances and risky behaviors [98] induce DA release
into the mesolimbic nucleus accumbens synapses to compensate for that individual’s hypo-
dopaminergic trait/state [99].

Temporary relief from discomfort and a sense of well-being are the products of this
self-medication, even in schizophrenia [100]. Pathological substance-seeking behaviors
are employed to provide a pleasurable response and to decrease uncontrollable cravings.
The chronic misuse of substances often leads to the inactivation, downregulation, and inhi-
bition of neurotransmitter synthesis and neurotransmitter depletion, as observed in reward
dysregulation [101]. Those individuals with risk-reward gene polymorphisms/variations,
who experience environmental insults, will be at high risk for compulsive, impulsive,
and addictive behaviors that are collectively referred to as RDS, a spectrum that includes
and characterizes genetically induced behaviors, including anhedonia [102]. These patho-
logical behaviors include addiction, tolerance, and dependence to chronic opioid use, licit
or illicit. The behavior or drug chosen by the individual is a function of both genetic and
environmental factors, such as the availability of the substance and peer pressure.

Initially, eleven polymorphisms in ten genes selected for the development of GARS
test are alleles that contributed most to the hypodopaminergic trait RDS and were chosen
following an extensive literature review. The selection involved thousands of studies
associated with alleles with significant risk for addictive behaviors, both drug and non-drug
RDS (Figure 2). In previous research from Blum et al. [103] evaluating 273 mixed-gender
patients attending seven treatment centers who completed the addiction severity index-
media version V (ASI-MV), GARS significantly predicted drug severity (equal or >four
alleles) and alcohol severity (equal or >seven alleles).
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4. Initial DNA Customized Studies

Previously, our laboratory started with the mindset of designing a study with which
to evaluate DNA customization with nutritional solutions for both wellness and especially
weight management, as one RDS example. In terms of nutrigenomics, a number of studies
should be mentioned to serve as the rationale for developing customized DNS-guided
pro-dopamine regulation utilizing KB220 as a basis [104–109]. In a series of experiments,
Blum’s laboratory genotyped 1058 subjects and administered KB220 (formerly LG8839,
Recomposize, and Genotrim). KB220 is a neuroadaptogen nutraceutical that includes
specific calibrated amounts of dl-phenylalanine, chromium, l-tyrosine, and other select
amino acids and adaptogens based on polymorphic outcomes. The resultant customized
formulae involved a minimum of 175 SNPs covering 16 genes relevant to the BRC in an
attempt to induce “dopamine homeostasis.” Specifically, in this small cohort, using simple
t-tests comparing many parameters before and after 80 days of consumption of KB220Z,
we found significant positive changes in many vital parameters, including reduced weight
and lower body mass index (BMI). It is noteworthy that only the DRD2 gene polymorphism
(Al allele) had a significant Pearson correlation using days on treatment (r = 0.42, p = 0.045).
Importantly, this twofold increase is significant for compliance with treatment. Blum’s
research team methodically assessed the impact of polymorphisms from five possible genes
and their potential as targets for the development of a DNA-customized nutraceutical
KB220Z to combat obesity, with particular emphasis on body re-composition as measured
by BMI. Blum’s group developed an early version of the GARS specifically directed towards
glucose craving and, as such, included specific alleles: DRD2 Al; MTHFR C 677T; 5HT2a
1438G/A; PPAR-γProl2Ala and Leptin Ob1875 < 208 bp. Pre- and post-hoc analyses revealed
a significant difference between the starting BMI and the BMI following an average of
41 days (28–70 days) of KB220Z intake in the 21 individuals. Additionally, the average
pretreatment weight in pounds was 183.52 compared to the post-treatment weight of 179,
a statistically significant (p < 0.047) change. In this particular group, 53% lost, on average,
over 2.5% of their starting weight. These studies in obesity are presented to provide some
idea of the potential success of utilizing customized nutrigenomic-based solutions, which
may pave the way to treating and preventing RDS-like behaviors in the future [104–109].

5. Can Early Genetic Risk Assessment of “Preaddiction” like “Prediabetes” Provide
the Missing Piece to Help Overcome Substance Use Disorder?

Unfortunately, despite the enormous efforts of the federal government to help fund
and develop and deliver certain treatments (MAT) for victims of SUD, albeit not a magic
bullet or “cure,” treatment penetration rates are less than 20% [110]. In an article by
McLellan et al. [111], they correctly point out that the diabetes field faces a similar dilemma
and were able to increase treatment penetration through early-stage diabetes identification,
termed “prediabetic.” In fact, in 2001, the American Diabetes Association suggested that the
term “prediabetic” could operationally be defined by augmented scores on two laboratory
tests: impaired glucose tolerance and impaired fasting glucose [112]. This strategy led
to a wide range of campaigns and partnerships with third-party payors and, over time,
has shown increased risk detection rates, shortened delays between symptom onset and
treatment entry, and success in halting progression to diabetes [113].

It is noteworthy that Volkow (Director of NIDA) and Koob (Director of NIAAA) are
encouraging the psychiatric field to include the concept of “preaddiction” as a plausible
new inclusion for the DSM. Relevant to this suggestion is the possibility of developing
a test to help categorize mild, moderate, or high risk for future addictive-like behaviors.
With this in mind, based on our initial work and now with many other global scientists,
the preaddiction classification is best captured with the construct of dopamine dysregu-
lation (net attenuation of function due to the inappropriate or dysregulation involving
at least seven major neurotransmitter systems—serotonergic, cannabinergic, opioidergic,
GABAergic, glutaminergic, acethylcholinergic, and dopaminergic) or specifically in reward
deficiency or net hypodopaminergia at the meso–limbic brain reward circuitry [114]. Cur-
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rently, there are 1449 articles listed in PUBMED (7/20/22), of which approximately 47%
are independent of our laboratory, and 221 articles listed in PUBMED using the search
term “Reward Deficiency Syndrome”. Our point here is that while the term “preaddiction”
resonates well with the historical advances in the diabetic field, scientifically, the real evi-
dence resides in concepts related to brain neurotransmitter deficits or even, in some cases,
surfeit (especially in adolescence as a neurodevelopmental event) referred to as “reward
dysregulation” [115]. It is noteworthy, as pointed out by McLellan et al. [111], that while
the DSM-5 uses 11 equally weighted symptoms of impaired control to define SUDs along a
three-stage severity continuum. The common name “addiction” is reserved for severe SUD,
defined by six or more symptoms and found in approximately 4% to 5% of adults. Those
with mild to moderate SUD (i.e., two to five symptoms) comprise a much larger proportion
of the adult population (13%), and thus account for far more substance use–related harm to
society than those with severe SUD (i.e., addiction). However, treatment efforts and public
health policies have focused almost exclusively on those with serious, usually chronic
addictions, virtually ignoring the much larger population with early-stage SUDs. Although
harmful substance misuse and early-stage SUDs can be identified and severity progression
monitored, little has been conducted, especially where it is most common, in mainstream
healthcare settings. Indeed, neither clinicians nor the public even have a commonly un-
derstood name for early-stage SUD. In this regard, we are proposing “reward deficiency“
(meaning lack of normal function) or “reward dysregulation” as a general term that does
encompass the nosology of “preaddiction.” In stating this suggestion, we are cognizant
that for public awareness, the latter terminology would be more understood. However,
for the DSM, psychiatrists, and other clinicians, the former seems more parsimonious [116].

Independent of the appropriate name, similar to the idea of “prediabetes,” we want to
develop a reliable method that allows for the early identification of people at risk for future
serious issues with substance and non-substance behavioral addictions (preaddiction).
Therefore, we are hereby proposing the GARS test along with the RDSQ29 [117] pencil
and paper test to capture the psychological correlates of RDS. In terms of GARS, albeit
requiring additional research, there are 58 listed articles in PUBMED. Unfortunately, they
are predominately from Blum’s laboratory and mostly narrative in content, but still encour-
aging. Importantly, there have been a number of studies published showing real utility and
scientific benefit in terms of identifying both drug and alcohol risk by utilizing objective
DNA polymorphic identification rather than just subjective (but still useful) diagnostic
surveys that include family history [118]. To point out a few examples, there have been
published works on a number of important clinical issues.

The GARS test was utilized to assess the potential risk of preaddiction in patients who,
following an injury, for example, received powerful opioids to relieve pain and continued
to be prescribed an analgesic for more than a year. In this study, Moran et al. [94] utilized
RT-PCR for SNP genotyping and multiplex PCR/capillary electrophoresis for fragment
analysis of the role of eleven alleles in a ten-reward gene panel, reflecting the activity
of brain reward circuitry in 121 chronic opioid users. The study consisted of 55 males
and 66 females, averaging 54 and 53 years of age, respectively. The patients included
Caucasians, African Americans, Hispanics, and Asians. The inclusion criteria mandated
that the morphine milligram equivalent (MME) be 30–600 mg/day (males) and 20 to 180
mg/day (females) for the treatment of chronic pain over 12 months. Ninety-six percent
carried four or more risk alleles, and 73% carried seven or more risk alleles, suggesting a
high predictive risk for opioid and alcohol dependence, respectively.

In addition, an estimation based on these previous literature results provided herein,
while not representative of all association studies known to date, this sampling of case-
control studies displays significant associations between alcohol and drug risk. In fact,
Blum et al. [119] presented a total of 110,241 cases and 122,525 controls derived from the
current literature. While we may take argument concerning many of these so-called controls
(e.g., blood donors), it is quite remarkable that there are a plethora of case–control studies
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indicating the selective association of these risk alleles (measured in GARS) for the most
part, indicating hypodopaminergia.

In another investigation, Fried et al. [120] utilized GARS on an entire family. Specif-
ically, the proband was a female with a history of drug abuse and alcoholism. She ex-
perienced a car accident while under the influence and voluntarily entered treatment.
Following an assessment, she was genotyped using the GARS and started a neuronutrient
with a KB220 base indicated by the identified polymorphisms. She began taking it in April
2018 and continues. She had success in recovery from SUD and improvement in social-
ization, family, economic status, well-being, and attenuation of major depression disorder.
She tested negative over the first two months of treatment and in a recent screening. After
approximately two months, her parents also decided to take the GARS and started taking
the recommended variants. The proband’s father (a binge drinker) and mother (no SUD)
both showed improvement in various behavioral issues. Finally, the proband’s biologi-
cal children were also GARS tested, showing a high risk for SUD. This three-generation
case series represents an example of the impact of genetic information coupled with an
appropriate DNA-guided “pro-dopamine regulator” in the recovery and enhancement
of life.

The risk of all addictive drug and non-drug behaviors, especially in the unmyelinated
PFC of adolescents, is important and complex. Many animal and human studies show
the epigenetic impact on the developing brain in adolescents compared to adults. Some
reveal an underlying hyperdopaminergia that seems to set our youth up for risky behav-
iors by inducing high quantities of pre-synaptic dopamine release at reward site neurons.
In addition, altered reward gene expression in adolescents caused epigenetically by social
defeat, like bullying, can continue into adulthood. In contrast, there is also evidence that
epigenetic events can elicit adolescent hypodopaminergia. This complexity suggests that
neuroscience cannot make a definitive claim that all adolescents carry a hyperdopaminergic
trait. The primary issue involves the question of whether there exists a mixed hypo- or
hyper-dopaminergia in this population. One investigation by Blum et al. [88] utilized GARS
testing in 24 Caucasians ages 12–19 derived from families with RDS. It was found that
adolescents from this cohort, derived from RDS parents, displayed a high risk for any ad-
dictive behavior (a hypodopaminergia), especially drug-seeking (95%) and alcohol-seeking
(64%). The adolescents in our study, although more work is required, show a hypodopamin-
ergic trait derived from a family with RDS. Certainly, in future studies, our laboratory
will analyze GARS in non-RDS Caucasians between the ages of 12–19. The suggestion
is first to identify risk alleles with the GARS test and then use well-researched precision
pro-dopamine neutraceutical regulation. This “two-hit” approach might prevent tragic
fatalities among adolescents, potentially with preaddiction, in the face of the American
opioid/psychostimulant epidemic.

Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele
and severe alcoholism in JAMA, there has been an explosion of genetic candidate association
studies, including GWAS. To develop an accurate test to help identify those at risk for at least
AUD, Blum’s group [88] applied strict analysis to studies that investigated the association
of each polymorphism with AUD or AUD-related conditions published from 1990 until
2021. This analysis calculated the Hardy–Weinberg Equilibrium of each polymorphism
in cases and controls. Pearson’s χ2 test or Fisher’s exact test was applied to compare the
gender, genotype, and allele distribution if available. The statistical analyses found the OR,
95% CI for OR, and the post risk for 8% estimation the population’s alcoholism prevalence
revealed a significant detection. The OR results showed significance for DRD2, DRD3,
DRD4, DAT1, COMT, OPRM1, and 5HTT at 5%. While most of the research related to GARS
is derived from our laboratory, we are encouraging more independent research to confirm
our findings.

Inquiry into the neurobiology of addictive disorders has consistently pointed to the
altered brain mesolimbic dopaminergic and other neurotransmitter circuits subserving
reward and motivation. Even in the era of GWAS, the SUD field remains uniform. However,
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given the uncertain genetic- vs. acquired nature of the observed alterations. To that end,
a multi-center study utilized GARS criterion validity against the backdrop of the ASI-
MV in 393 polydrug abusers. Blum and associates [121] found a significant relationship
between GARS and the ASI-MV alcohol severity score. While those with high drug severity
likewise had heightened GARS, this association was not linear. Sequence variation in
multiple genes regulating dopaminergic signaling influenced risk in an additive manner;
age was a significant covariate. Higher numbers (≥7) of reward-gene-polymorphisms that
moderate reduced dopamine signaling were significantly associated with higher ASI-MV
alcohol severity scores. Whereas higher numbers (≥4) reward-gene-polymorphisms that
moderate reduced dopamine signaling were significantly associated with higher ASI-MV
drug severity scores. Our results replicate those of prior reports implicating dopamine in
the course of alcoholism and drug abuse and extend these prior findings by suggesting
a preexisting GARS-defined polygenic risk factor that may be modulated by age-related
pathophysiological and environmental variables. Further studies are needed to investigate
the corresponding endophenotypes, particularly the involvement of the RDS stemming
from the hypofunctional dopaminergic system [121].

Finally, to reiterate our understanding of the daunting polygenicity of mental illness,
Hyman [122] discussed this perplexing issue. A momentous opportunity to elucidate the
pathogenic mechanisms of psychiatric disorders has emerged from advances in genomic
technology, new computational tools, and the growth of international consortia committed
to data sharing. Moreover, as espoused by Hyman [81], the resulting large-scale, unbiased
genetic studies have yielded new biological insights and, with them, the hope that a half-
century of stasis in psychiatric therapeutics will come to an end. However, we agree
that “a sobering picture is coming into view; it reveals daunting genetic and phenotypic
complexity, portending enormous challenges for neurobiology.”

Additionally, the successful exploitation of results from genetics will require past
avoidance of long-successful reductionist approaches to the investigation of gene function,
a commitment to supplanting much research now conducted in model organisms with
human biology, and the development of new experimental systems and computational
models to analyze polygenic causal influences. In this regard, our laboratory has already
started the process by developing behavioral addiction risk assessment (BARS/GARS)
testing in psychiatry [73–80]. Furthermore, psychiatric neuroscience must develop a new
scientific map to guide investigation through a polygenic “terra incognita” [122] and a
reconsideration of what constitutes the real brain map. In our view, while finding new
and novel GWAS discovered clusters of genes are incredibly important to determining
the genetic risk for RDS, it is also prudent to consider finite candidate genes involved in
the dynamic systems biological approach of at least the major neurotransmitter pathways,
as portrayed in the well-known BRC (Figure 1).

The idea of preaddiction, which was first introduced in 1971 and thus not a new
term [123], while a potentially smart idea, the concept espoused by McLellan et al. [111]
is fraught with some misjudgments. Most recently, Yatan Pal Singh Balhara, from the
National Drug Dependence Treatment Center and Department of Psychiatry, All India
Institute of Medical Sciences (AIIMS), New Delhi, India, commented. The authors, McLellan
et al. [111], make an argument for the introduction of the concept of preaddiction. They also
propose that the existing categories of mild and moderate SUDs in DSM-5 can be used to
operationalize “preaddiction” in the interim. Two points that highlight the limitation and
challenges of this approach to operationalization. First, there was a significant shift in the
way disorders, were due to the use of psychoactive substances, were being diagnosed by
the introduction of the diagnostic category of “SUDs” in the DSM-5.2. The terms “abuse,”
“dependence,” and “addiction” were not used in the DSM-5. Additionally, the severity
of the SUD was assessed based on the number of diagnostic criteria (out of a total of 11)
that were met. The DSM-5 continuum of the severity of SUD does not demarcate those
‘without addiction’ (commonly equated with “mild” and “moderate” severity categories)
from those with “addiction” (commonly equated with “severe” category). Some of the core
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features of the concept of “addiction” can be present even in those with mild and moderate
severity of SUD. For example, in the case where a person uses a substance in a pattern that
is characterized by “substance being taken in larger amounts over a longer period than was
intended; a persistent desire or unsuccessful efforts to cut down or control substance use;
recurrent substance use resulting in a failure to fulfill major job obligations; tolerance; and
withdrawal,” the severity rating in such a case shall be moderate. This presentation would
fit into the conceptualization of “addiction,” and using the term ‘preaddiction’ in such a
case would fail to capture the clinical presentation accurately.

In fact, there can be clinical presentations where a lesser number of criteria are present,
but these criteria are indicative of the presence of “addiction.” Second, the clinical presenta-
tions that are captured by mild and moderate severity are given a valid medical diagnosis
as per the DSM-5. This should warrant appropriate clinical interventions (brief intervention,
laboratory investigations, promotion of health and well-being, prevention of progression,
treatment, disability limitation, rehabilitation-focused, recovery-oriented, etc.). If the aim
of the introduction of the concept of “preaddiction” is to offer appropriate interventions
to those at risk of developing “addiction” later in life, then these individuals need to be
identified using criteria that do not overlap with an existing diagnostic category [124].

To be clear, in fact, RDS occurs at birth due to DNA genetic antecedent risk, which
could set up individuals to be at high risk, which is actually equivalent to preaddiction.
Of course, via epigenetic insults due to subsequent SUD, the polymorphic DNA antecedents
could compound the risk.

To assist the readership, we developed Figure 2 as a schematic linking the current
drug abuse crisis and preaddiction.

6. Conclusions

Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele
and severe alcoholism in JAMA, there has been an explosion of genetic candidate association
studies, including GWAS. To develop an accurate test to help identify those at risk for at
least AUD, a subset of RDS, Blum’s group developed the GARS test, consisting of ten genes
and eleven associated risk alleles. In order to statistically validate the selection of these
risk alleles measured by GARS, we applied strict analysis to studies that investigated the
association of each polymorphism with AUD or AUD-related conditions, including pain
and even bariatric surgery, as a predictor of severe vulnerability to unwanted addictive
behaviors, published since 1990 until now. This analysis calculated the Hardy–Weinberg
Equilibrium of each polymorphism in cases and controls. Pearson’s χ2 test or Fisher’s
exact test was applied to compare the gender, genotype, and allele distribution if available.
The statistical analyses found the OR, 95% CI for OR, and the post risk for 8% estimation of
the population’s alcoholism prevalence revealed a significant detection [88]. It is relevant
that while the GARS test does not actually stratify low, median, or high preaddiction
status, the newly developed RDSQ29, which has been validated [117], could be utilized in
combination with the GARS.

Prior to these results, the United States and European patents on a ten-gene panel and
eleven risk alleles have been issued. In the face of the new construct of the “preaddiction”
model, similar to “prediabetes”, the genetic addiction risk analysis might provide one
solution missing in the treatment and prevention of the neurological disorder known
as RDS.
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29. File, D.; Bőthe, B.; File, B.; Demetrovics, Z. The Role of Impulsivity and Reward Deficiency in “Liking” and “Wanting” of
Potentially Problematic Behaviors and Substance Uses. Front. Psychiatry 2022, 13, 820836. [CrossRef]

30. Cox, D.J.; Dolan, S.B.; Johnson, P.; Johnson, M.W. Delay and probability discounting in cocaine use disorder: Comprehensive
examination of money, cocaine, and health outcomes using gains and losses at multiple magnitudes. Exp. Clin. Psychopharmacol.
2020, 28, 724–738. [CrossRef]

31. Ferrari, C.; Lega, C.; Tamietto, M.; Nadal, M.; Cattaneo, Z. I find you more attractive . . . after (prefrontal cortex) stimulation.
Neuropsychologia 2015, 72, 87–93. [CrossRef]

32. Lindgren, E.; Gray, K.; Miller, G.; Tyler, R.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Food addiction: A common neurobiological
mechanism with drug abuse. Front. Biosci. 2018, 23, 811–836. [CrossRef]

33. Müller, C.P. Serotonin and consciousness—A reappraisal. Behav. Brain Res. 2022, 432, 113970. [CrossRef]
34. Vanyukov, M.M.; Tarter, R.E.; Kirillova, G.P.; Kirisci, L.; Reynolds, M.D.; Kreek, M.J.; Conway, K.P.; Maher, B.S.; Iacono, W.G.;

Bierut, L.; et al. Common liability to addiction and “gateway hypothesis”: Theoretical, empirical and evolutionary perspective.
Drug Alcohol Depend. 2012, 123 (Suppl. S1), S3–S17. [CrossRef]

35. Barnett, E.J.; Biederman, J.; Doyle, A.E.; Hess, J.; DiSalvo, M.; Faraone, S.V. Identifying Pediatric Mood Disorders From
Transdiagnostic Polygenic Risk Scores: A Study of Children and Adolescents. J. Clin. Psychiatry 2022, 83, 21m14180. [CrossRef]

36. Ferland, J.N.; Hynes, T.J.; Hounjet, C.D.; Lindenbach, D.; Vonder Haar, C.; Adams, W.K.; Phillips, A.G.; Winstanley, C.A. Prior
Exposure to Salient Win-Paired Cues in a Rat Gambling Task Increases Sensitivity to Cocaine Self-Administration and Suppresses
Dopamine Efflux in Nucleus Accumbens: Support for the Reward Deficiency Hypothesis of Addiction. J. Neurosci. 2019, 39,
1842–1854. [CrossRef]

37. Blum, K.; Bowirrat, A.; Braverman, E.R.; Baron, D.; Cadet, J.L.; Kazmi, S.; Elman, I.; Thanos, P.K.; Badgaiyan, R.D.; Downs, W.B.;
et al. Reward Deficiency Syndrome (RDS): A Cytoarchitectural Common Neurobiological Trait of All Addictions. Int. J. Environ.
Res. Public Health 2021, 18, 11529. [CrossRef]

38. Gardner, E.L. Addiction and brain reward and antireward pathways. Adv. Psychosom. Med. 2011, 30, 22–60. [CrossRef]
39. Kotyuk, E.; Magi, A.; Eisinger, A.; Király, O.; Vereczkei, A.; Barta, C.; Griffiths, M.D.; Székely, A.; Kökönyei, G.; Farkas, J.; et al.

Co-occurrences of substance use and other potentially addictive behaviors: Epidemiological results from the Psychological and
Genetic Factors of the Addictive Behaviors (PGA) Study. J. Behav. Addict. 2020, 9, 272–288. [CrossRef]

40. Karlsson Linnér, R.; Mallard, T.T.; Barr, P.B.; Sanchez-Roige, S.; Madole, J.W.; Driver, M.N.; Poore, H.E.; de Vlaming, R.;
Grotzinger, A.D.; Tielbeek, J.J.; et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to
self-regulation and addiction. Nat. Neurosci. 2021, 24, 1367–1376. [CrossRef]

41. Uhl, G.R.; Drgon, T.; Johnson, C.; Liu, Q.R. Addiction genetics and pleiotropic effects of common haplotypes that make polygenic
contributions to vulnerability to substance dependence. J. Neurogenet. 2009, 23, 272–282. [CrossRef] [PubMed]

42. Sheerin, C.M.; Bountress, K.E.; Meyers, J.L.; Saenz de Viteri, S.S.; Shen, H.; Maihofer, A.X.; Duncan, L.E.; Amstadter, A.B. Shared
molecular genetic risk of alcohol dependence and posttraumatic stress disorder (PTSD). Psychol. Addict. Behav. 2020, 34, 613–619.
[CrossRef] [PubMed]

43. Wetherill, L.; Lai, D.; Johnson, E.C.; Anokhin, A.; Bauer, L.; Bucholz, K.K.; Dick, D.M.; Hariri, A.R.; Hesselbrock, V.;
Kamarajan, C.; et al. Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that
is associated with variability in reward-related ventral striatum activity in African- and European-Americans. Genes Brain Behav.
2019, 18, e12580. [CrossRef] [PubMed]

44. Reyes-Gibby, C.C.; Yuan, C.; Wang, J.; Yeung, S.C.; Shete, S. Gene network analysis shows immune-signaling and ERK1/2 as
novel genetic markers for multiple addiction phenotypes: Alcohol, smoking and opioid addiction. BMC Syst. Biol. 2015, 9, 25.
[CrossRef] [PubMed]

45. Weinstein, A.; Weinstein, Y. Exercise addiction- diagnosis, bio-psychological mechanisms and treatment issues. Curr. Pharm. Des.
2014, 20, 4062–4069. [CrossRef]

46. Müller, A.; Loeber, S.; Söchtig, J.; Te Wildt, B.; De Zwaan, M. Risk for exercise dependence, eating disorder pathology, alcohol use
disorder and addictive behaviors among clients of fitness centers. J. Behav. Addict. 2015, 4, 273–280. [CrossRef]

47. Yau, Y.H.; Potenza, M.N. Gambling disorder and other behavioral addictions: Recognition and treatment. Harv. Rev. Psychiatry
2015, 23, 134–146. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/7649500
http://doi.org/10.3390/jpm12020321
http://doi.org/10.1037/amp0000059
http://doi.org/10.1007/s10571-020-01013-y
http://doi.org/10.2174/138161212798919110
http://doi.org/10.3389/fpsyt.2022.820836
http://doi.org/10.1037/pha0000341
http://doi.org/10.1016/j.neuropsychologia.2015.04.024
http://doi.org/10.2741/4618
http://doi.org/10.1016/j.bbr.2022.113970
http://doi.org/10.1016/j.drugalcdep.2011.12.018
http://doi.org/10.4088/JCP.21m14180
http://doi.org/10.1523/JNEUROSCI.3477-17.2018
http://doi.org/10.3390/ijerph182111529
http://doi.org/10.1159/000324065
http://doi.org/10.1556/2006.2020.00033
http://doi.org/10.1038/s41593-021-00908-3
http://doi.org/10.1080/01677060802572929
http://www.ncbi.nlm.nih.gov/pubmed/19152208
http://doi.org/10.1037/adb0000568
http://www.ncbi.nlm.nih.gov/pubmed/32191043
http://doi.org/10.1111/gbb.12580
http://www.ncbi.nlm.nih.gov/pubmed/31099175
http://doi.org/10.1186/s12918-015-0167-x
http://www.ncbi.nlm.nih.gov/pubmed/26044620
http://doi.org/10.2174/13816128113199990614
http://doi.org/10.1556/2006.4.2015.044
http://doi.org/10.1097/HRP.0000000000000051


J. Pers. Med. 2022, 12, 1772 19 of 22

48. Caldeira, K.M.; Arria, A.M.; O’Grady, K.E.; Vincent, K.B.; Robertson, C.; Welsh, C.J. Risk factors for gambling and substance use
among recent college students. Drug Alcohol Depend. 2017, 179, 280–290. [CrossRef]

49. Lang, M.; Leménager, T.; Streit, F.; Fauth-Bühler, M.; Frank, J.; Juraeva, D.; Witt, S.H.; Degenhardt, F.; Hofmann, A.; Heilmann-
Heimbach, S.; et al. Genome-wide association study of pathological gambling. Eur. Psychiatry 2016, 36, 38–46. [CrossRef]

50. Risner, V.A.; Benca-Bachman, C.E.; Bertin, L.; Smith, A.K.; Kaprio, J.; McGeary, J.E.; Chesler, E.; Knopik, V.S.; Friedman, N.P.;
Palmer, R.H.C. Multi-Polygenic Analysis of Nicotine Dependence in Individuals of European Ancestry. Nicotine Tob. Res. 2021, 23,
2102–2109. [CrossRef]

51. Muvvala, S.B.; O’Malley, S.S.; Rosenheck, R. Multiple Psychiatric Morbidity and Continued Use of Naltrexone for Alcohol Use
Disorder. Am. J. Addict. 2021, 30, 55–64. [CrossRef]

52. Singh, D.; Saadabadi, A. Naltrexone. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.
53. Theriot, J.; Sabir, S.; Azadfard, M. Opioid Antagonists. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.
54. Ward, S.; Smith, N.; Bowden-Jones, H. The use of naltrexone in pathological and problem gambling: A UK case series. J. Behav.

Addict. 2018, 7, 827–833. [CrossRef]
55. Grant, J.E.; Potenza, M.N.; Kraus, S.W.; Petrakis, I.L. Naltrexone and Disulfiram Treatment Response in Veterans With Alcohol

Dependence and Co-Occurring Problem-Gambling Features. J. Clin. Psychiatry 2017, 78, e1299–e1306. [CrossRef]
56. Weera, M.M.; Fields, M.A.; Tapp, D.N.; Grahame, N.J.; Chester, J.A. Effects of Nicotine on Alcohol Drinking in Female Mice

Selectively Bred for High or Low Alcohol Preference. Alcohol Clin. Exp. Res. 2018, 42, 432–443. [CrossRef]
57. Ginley, M.K.; Rash, C.J.; Olmstead, T.A.; Petry, N.M. Contingency management treatment in cocaine using methadone maintained

patients with and without legal problems. Drug Alcohol Depend. 2017, 180, 208–214. [CrossRef]
58. Blum, K.; Bailey, J.; Gonzalez, A.M.; Oscar-Berman, M.; Liu, Y.; Giordano, J.; Braverman, E.; Gold, M. Neuro-Genetics of Reward

Deficiency Syndrome (RDS) as the Root Cause of “Addiction Transfer”: A New Phenomenon Common after Bariatric Surgery. J.
Genet. Syndr. Gene Ther. 2011, 2012, S2-001. [CrossRef]

59. Kim, H.S.; Hodgins, D.C.; Garcia, X.; Ritchie, E.V.; Musani, I.; McGrath, D.S.; von Ranson, K.M. A systematic review of addiction
substitution in recovery: Clinical lore or empirically based? Clin. Psychol. Rev. 2021, 89, 102083. [CrossRef]

60. Khokhar, J.Y.; Dwiel, L.L.; Henricks, A.M.; Doucette, W.T.; Green, A.I. The link between schizophrenia and substance use disorder:
A unifying hypothesis. Schizophr. Res. 2018, 194, 78–85. [CrossRef]

61. Shaw, M.; Black, D.W. Internet addiction: Definition, assessment, epidemiology and clinical management. CNS Drugs 2008, 22,
353–365. [CrossRef]

62. Brakoulias, V.; Starcevic, V.; Albert, U.; Arumugham, S.S.; Bailey, B.E.; Belloch, A.; Borda, T.; Dell’Osso, L.; Elias, J.A.; Falkenstein,
M.J.; et al. The rates of co-occurring behavioural addictions in treatment-seeking individuals with obsessive-compulsive disorder:
A preliminary report. Int. J. Psychiatry Clin. Pract. 2020, 24, 173–175. [CrossRef]

63. Di Nicola, M.; Tedeschi, D.; De Risio, L.; Pettorruso, M.; Martinotti, G.; Ruggeri, F.; Swierkosz-Lenart, K.; Guglielmo, R.; Callea,
A.; Ruggeri, G.; et al. Co-occurrence of alcohol use disorder and behavioral addictions: Relevance of impulsivity and craving.
Drug Alcohol Depend. 2015, 148, 118–125. [CrossRef]

64. Nguyen, C.; Mondoloni, S.; Le Borgne, T.; Centeno, I.; Come, M.; Jehl, J.; Solié, C.; Reynolds, L.M.; Durand-de Cuttoli, R.;
Tolu, S.; et al. Nicotine inhibits the VTA-to-amygdala dopamine pathway to promote anxiety. Neuron 2021, 109, 2604–2615.e9.
[CrossRef] [PubMed]

65. Hogg, R.C.; Raggenbass, M.; Bertrand, D. Nicotinic acetylcholine receptors: From structure to brain function. Rev. Physiol. Biochem.
Pharmacol. 2003, 147, 73–120. [CrossRef]

66. Blum, K.; Modestino, E.J.; Gondre-Lewis, M.; Chapman, E.J.; Neary, J.; Siwicki, D.; Baron, D.; Hauser, M.; Smith, D.E.;
Roy, A.K.; et al. The Benefits of Genetic Addiction Risk Score (GARS™) Testing in Substance Use Disorder (SUD). Int. J. Genom.
Data Min. 2018, 2018, 115. [CrossRef] [PubMed]

67. Cosker, E.; Schwitzer, T.; Ramoz, N.; Ligier, F.; Lalanne, L.; Gorwood, P.; Schwan, R.; Laprévote, V. The effect of interactions
between genetics and cannabis use on neurocognition. A review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 82, 95–106.
[CrossRef]

68. Hartman, C.A.; Hopfer, C.J.; Haberstick, B.; Rhee, S.H.; Crowley, T.J.; Corley, R.P.; Hewitt, J.K.; Ehringer, M.A. The association
between cannabinoid receptor 1 gene (CNR1) and cannabis dependence symptoms in adolescents and young adults. Drug Alcohol
Depend. 2009, 104, 11–16. [CrossRef]

69. Comings, D.E.; Muhleman, D.; Gade, R.; Johnson, P.; Verde, R.; Saucier, G.; MacMurray, J. Cannabinoid receptor gene (CNR1):
Association with i.v. drug use. Mol. Psychiatry 1997, 2, 161–168. [CrossRef]

70. Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. Allelic association of the D2 dopamine receptor gene with
receptor-binding characteristics in alcoholism. Arch. Gen. Psychiatry 1991, 48, 648–654. [CrossRef]

71. Hirvonen, M.M.; Laakso, A.; Någren, K.; Rinne, J.O.; Pohjalainen, T.; Hietala, J. C957T polymorphism of dopamine D2 receptor
gene affects striatal DRD2 in vivo availability by changing the receptor affinity. Synapse 2009, 63, 907–912. [CrossRef]

72. Voisey, J.; Swagell, C.D.; Hughes, I.P.; van Daal, A.; Noble, E.P.; Lawford, B.R.; Young, R.M.; Morris, C.P. A DRD2 and ANKK1
haplotype is associated with nicotine dependence. Psychiatry Res. 2012, 196, 285–289. [CrossRef]

73. Connor, J.P.; Young, R.M.; Lawford, B.R.; Saunders, J.B.; Ritchie, T.L.; Noble, E.P. Heavy nicotine and alcohol use in alcohol
dependence is associated with D2 dopamine receptor (DRD2) polymorphism. Addict. Behav. 2007, 32, 310–319. [CrossRef]

http://doi.org/10.1016/j.drugalcdep.2017.06.024
http://doi.org/10.1016/j.eurpsy.2016.04.001
http://doi.org/10.1093/ntr/ntab105
http://doi.org/10.1111/ajad.13089
http://doi.org/10.1556/2006.7.2018.89
http://doi.org/10.4088/JCP.16m11220
http://doi.org/10.1111/acer.13555
http://doi.org/10.1016/j.drugalcdep.2017.08.014
http://doi.org/10.4172/2157-7412.S2-001
http://doi.org/10.1016/j.cpr.2021.102083
http://doi.org/10.1016/j.schres.2017.04.016
http://doi.org/10.2165/00023210-200822050-00001
http://doi.org/10.1080/13651501.2019.1711424
http://doi.org/10.1016/j.drugalcdep.2014.12.028
http://doi.org/10.1016/j.neuron.2021.06.013
http://www.ncbi.nlm.nih.gov/pubmed/34242565
http://doi.org/10.1007/s10254-003-0005-1
http://doi.org/10.29011/2577-0616.000115
http://www.ncbi.nlm.nih.gov/pubmed/30198022
http://doi.org/10.1016/j.pnpbp.2017.11.024
http://doi.org/10.1016/j.drugalcdep.2009.01.022
http://doi.org/10.1038/sj.mp.4000247
http://doi.org/10.1001/archpsyc.1991.01810310066012
http://doi.org/10.1002/syn.20672
http://doi.org/10.1016/j.psychres.2011.09.024
http://doi.org/10.1016/j.addbeh.2006.04.006


J. Pers. Med. 2022, 12, 1772 20 of 22

74. Gilbert, D.; McClernon, J.; Rabinovich, N.; Sugai, C.; Plath, L.; Asgaard, G.; Zuo, Y.; Huggenvik, J.; Botros, N. Effects of quitting
smoking on EEG activation and attention last for more than 31 days and are more severe with stress, dependence, DRD2 A1
allele, and depressive traits. Nicotine Tob. Res. 2004, 6, 249–267. [CrossRef]

75. Ponce, G.; Jimenez-Arriero, M.A.; Rubio, G.; Hoenicka, J.; Ampuero, I.; Ramos, J.A.; Palomo, T. The A1 allele of the DRD2 gene
(TaqI A polymorphisms) is associated with antisocial personality in a sample of alcohol-dependent patients. Eur. Psychiatry 2003,
18, 356–360. [CrossRef]

76. Balldin, J.; Berglund, K.J.; Berggren, U.; Wennberg, P.; Fahlke, C. TAQ1A1 Allele of the DRD2 Gene Region Contribute to Shorter
Survival Time in Alcohol Dependent Individuals When Controlling for the Influence of Age and Gender. A Follow-up Study of
18 Years. Alcohol Alcohol. 2018, 53, 216–220. [CrossRef]

77. Lawford, B.R.; Young, R.M.; Noble, E.P.; Sargent, J.; Rowell, J.; Shadforth, S.; Zhang, X.; Ritchie, T. The D(2) dopamine receptor
A(1) allele and opioid dependence: Association with heroin use and response to methadone treatment. Am. J. Med. Genet. 2000,
96, 592–598. [CrossRef]

78. Perez de los Cobos, J.; Baiget, M.; Trujols, J.; Sinol, N.; Volpini, V.; Banuls, E.; Calafell, F.; Luquero, E.; del Rio, E.; Alvarez, E.
Allelic and genotypic associations of DRD2 TaqI A polymorphism with heroin dependence in Spanish subjects: A case control
study. Behav. Brain Funct. 2007, 3, 25. [CrossRef]

79. Noble, E.P.; Blum, K.; Khalsa, M.E.; Ritchie, T.; Montgomery, A.; Wood, R.C.; Fitch, R.J.; Ozkaragoz, T.; Sheridan, P.J.; Anglin, M.D.;
et al. Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend. 1993, 33, 271–285.
[CrossRef]

80. Blum, K.; Baron, D.; Badgaiyan, R.D.; Gold, M.S. Can Chronic Consumption of Caffeine by Increasing D2/D3 Receptors Offer
Benefit to Carriers of the DRD2 A1 Allele in Cocaine Abuse? EC Psychol. Psychiatry 2019, 8, 318–321.

81. D’Souza, U.M.; Russ, C.; Tahir, E.; Mill, J.; McGuffin, P.; Asherson, P.J.; Craig, I.W. Functional effects of a tandem duplication
polymorphism in the 5′flanking region of the DRD4 gene. Biol. Psychiatry 2004, 56, 691–697. [CrossRef]

82. Gervasini, G.; Gordillo, I.; García-Herráiz, A.; Flores, I.; Jiménez, M.; Monge, M.; Carrillo, J.A. Influence of dopamine polymor-
phisms on the risk for anorexia nervosa and associated psychopathological features. J. Clin. Psychopharmacol. 2013, 33, 551–555.
[CrossRef]

83. Thomson, C.J.; Hanna, C.W.; Carlson, S.R.; Rupert, J.L. The -521 C/T variant in the dopamine-4-receptor gene (DRD4) is associated
with skiing and snowboarding behavior. Scand. J. Med. Sci. Sport. 2013, 23, e108–e113. [CrossRef] [PubMed]

84. Villalba, K.; Devieux, J.G.; Rosenberg, R.; Cadet, J.L. DRD2 and DRD4 genes related to cognitive deficits in HIV-infected adults
who abuse alcohol. Behav. Brain Funct. 2015, 11, 25. [CrossRef] [PubMed]

85. Blum, K.; Kazmi, S.; Modestino, E.J.; Downs, B.W.; Bagchi, D.; Baron, D.; McLaughlin, T.; Green, R.; Jalali, R.; Thanos, P.K.; et al.
A Novel Precision Approach to Overcome the “Addiction Pandemic” by Incorporating Genetic Addiction Risk Severity (GARS)
and Dopamine Homeostasis Restoration. J. Pers. Med. 2021, 11, 212. [CrossRef] [PubMed]

86. Lachowicz, M.; Chmielowiec, J.; Chmielowiec, K.; Suchanecka, A.; Masiak, J.; Michałowska-Sawczyn, M.; Mroczek, B.; Mierzecki,
A.; Ciechanowicz, I.; Grzywacz, A. Significant association of DRD2 and ANKK1 genes with rural heroin dependence and relapse
in men. Ann. Agric. Environ. Med. 2020, 27, 269–273. [CrossRef] [PubMed]

87. Freels, T.G.; Gabriel, D.B.K.; Lester, D.B.; Simon, N.W. Risky decision-making predicts dopamine release dynamics in nucleus
accumbens shell. Neuropsychopharmacology 2020, 45, 266–275. [CrossRef] [PubMed]

88. Blum, K. Statistical Validation of Risk Alleles in Genetic Addiction Risk Severity (GARS) Test: Early Identification of Risk for
Alcohol Use Disorder (AUD) in 74,566 case-control subjects. In Proceedings of the 19 th Annual World Congress for Brain
Mapping and Therapeutics of SMBT, Los Angeles, CA, USA, 10–13 March 2022.

89. Blum, K.; Oscar-Berman, M.; Demetrovics, Z.; Barh, D.; Gold, M.S. Genetic Addiction Risk Score (GARS): Molecular neurogenetic
evidence for predisposition to Reward Deficiency Syndrome (RDS). Mol. Neurobiol. 2014, 50, 765–796. [CrossRef]

90. Treister, R.; Pud, D.; Ebstein, R.P.; Laiba, E.; Raz, Y.; Gershon, E.; Haddad, M.; Eisenberg, E. Association between polymorphisms
in serotonin and dopamine-related genes and endogenous pain modulation. J. Pain 2011, 12, 875–883. [CrossRef]

91. Alijanpour, S.; Zarrindast, M.R. Potentiation of morphine-induced antinociception by harmaline: Involvement of µ-opioid and
ventral tegmental area NMDA receptors. Psychopharmacology 2020, 237, 557–570. [CrossRef]

92. Blum, K.; Hauser, M.; Fratantonio, J.; Badgaiyan, R.D. Molecular Genetic Testing in Pain and Addiction: Facts, Fiction and Clinical
Utility. Addict. Genet. 2015, 2, 1–5. [CrossRef]

93. Chen, A.L.; Chen, T.J.; Waite, R.L.; Reinking, J.; Tung, H.L.; Rhoades, P.; Downs, B.W.; Braverman, E.; Braverman, D.; Kerner,
M.; et al. Hypothesizing that brain reward circuitry genes are genetic antecedents of pain sensitivity and critical diagnostic and
pharmacogenomic treatment targets for chronic pain conditions. Med. Hypotheses 2009, 72, 14–22. [CrossRef]

94. Moran, M.; Blum, K.; Ponce, J.V.; Lott, L.; Gondré-Lewis, M.C.; Badgaiyan, S.; Brewer, R.; Downs, B.W.; Fynman, P.; Weingarten,
A.; et al. High Genetic Addiction Risk Score (GARS) in Chronically Prescribed Severe Chronic Opioid Probands Attending
Multi-pain Clinics: An Open Clinical Pilot Trial. Mol. Neurobiol. 2021, 58, 3335–3346. [CrossRef]

95. Downs, B.W.; Blum, K.; Bagchi, D.; Kushner, S.; Bagchi, M.; Galvin, J.M.; Lewis, M.; Siwicki, D.; Brewer, R.; Boyett, B.; et al.
Molecular neuro-biological and systemic health benefits of achieving dopamine homeostasis in the face of a catastrophic pandemic
(COVID-19): A mechanistic exploration. J. Syst. Integr. Neurosci. 2020, 7. [CrossRef]

http://doi.org/10.1080/14622200410001676305
http://doi.org/10.1016/j.eurpsy.2003.06.006
http://doi.org/10.1093/alcalc/agx089
http://doi.org/10.1002/1096-8628(20001009)96:5&lt;592::AID-AJMG3&gt;3.0.CO;2-Y
http://doi.org/10.1186/1744-9081-3-25
http://doi.org/10.1016/0376-8716(93)90113-5
http://doi.org/10.1016/j.biopsych.2004.08.008
http://doi.org/10.1097/JCP.0b013e3182970469
http://doi.org/10.1111/sms.12031
http://www.ncbi.nlm.nih.gov/pubmed/23252368
http://doi.org/10.1186/s12993-015-0072-x
http://www.ncbi.nlm.nih.gov/pubmed/26307064
http://doi.org/10.3390/jpm11030212
http://www.ncbi.nlm.nih.gov/pubmed/33809702
http://doi.org/10.26444/aaem/119940
http://www.ncbi.nlm.nih.gov/pubmed/32588604
http://doi.org/10.1038/s41386-019-0527-0
http://www.ncbi.nlm.nih.gov/pubmed/31546248
http://doi.org/10.1007/s12035-014-8726-5
http://doi.org/10.1016/j.jpain.2011.02.348
http://doi.org/10.1007/s00213-019-05389-8
http://doi.org/10.1515/addge-2015-0001
http://doi.org/10.1016/j.mehy.2008.07.059
http://doi.org/10.1007/s12035-021-02312-1
http://doi.org/10.15761/JSIN.1000228


J. Pers. Med. 2022, 12, 1772 21 of 22

96. Bills, K.B.; Obray, J.D.; Clarke, T.; Parsons, M.; Brundage, J.; Yang, C.H.; Kim, H.Y.; Yorgason, J.T.; Blotter, J.D.; Steffensen, S.C.
Mechanical stimulation of cervical vertebrae modulates the discharge activity of ventral tegmental area neurons and dopamine
release in the nucleus accumbens. Brain Stimul. 2020, 13, 403–411. [CrossRef]

97. di Volo, M.; Morozova, E.O.; Lapish, C.C.; Kuznetsov, A.; Gutkin, B. Dynamical ventral tegmental area circuit mechanisms of
alcohol-dependent dopamine release. Eur. J. Neurosci. 2019, 50, 2282–2296. [CrossRef]

98. Tye, K.M.; Mirzabekov, J.J.; Warden, M.; Ferenczi, E.A.; Tsai, H.-C.; Finkelstein, J.; Kim, S.-Y.; Adhikari, A.; Thompson, K.R.;
Andalman, A.S.; et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature
2012, 493, 537–541. [CrossRef]

99. Liu, C.; Kaeser, P.S. Mechanisms and regulation of dopamine release. Curr. Opin. Neurobiol. 2019, 57, 46–53. [CrossRef]
100. Green, A.I.; Zimmet, S.V.; Strous, R.D.; Schildkraut, J.J. Clozapine for comorbid substance use disorder and schizophrenia: Do

patients with schizophrenia have reward-deficiency syndrome that can be ameliorated by clozapine? Harv. Rev. Psychiatry 1999,
6, 287–296. [CrossRef]

101. Cervinski, M.A.; Foster, J.D.; Vaughan, R.A. Psychoactive substrates stimulate dopamine transporter phosphorylation and
down-regulation by cocaine-sensitive and protein kinase C-dependent mechanisms. J. Biol. Chem. 2005, 280, 40442–40449.
[CrossRef]

102. Archer, T.; Oscar-Berman, M.; Blum, K.; Gold, M. Epigenetic Modulation of Mood Disorders. J. Genet. Syndr. Gene Ther. 2013, 4,
1000120. [CrossRef]

103. Blum, K. Genetic Addiction Risk Severity Test and its Clinical Applications. In Proceedings of the Society Brain Mapping
Therapeutics 19 th Annual Meeting, Los Angeles, CA, USA, 10–13 March 2022.

104. Blum, K.; Chen, T.J.; Meshkin, B.; Downs, B.W.; Gordon, C.A.; Blum, S.; Mangucci, J.F.; Braverman, E.R.; Arcuri, V.;
Deutsch, R.; et al. Genotrim, a DNA-customized nutrigenomic product, targets genetic factors of obesity: Hypothesizing a
dopamine-glucose correlation demonstrating reward deficiency syndrome (RDS). Med. Hypotheses 2007, 68, 844–852. [CrossRef]

105. Blum, K.; Chen, T.J.; Meshkin, B.; Downs, B.W.; Gordon, C.A.; Blum, S.; Mengucci, J.F.; Braverman, E.R.; Arcuri, V.; Varshavskiy,
M.; et al. Reward deficiency syndrome in obesity: A preliminary cross-sectional trial with a Genotrim variant. Adv. Ther. 2006, 23,
1040–1051. [CrossRef] [PubMed]

106. Blum, K.; Chen, T.J.; Williams, L.; Chen, A.L.; Downs, W.B.; Waite, R.L.; Huntington, T.; Braverman, E.R. A short term pilot
open label study to evaluate efficacy and safety of LG839, a customized DNA directed nutraceutical in obesity: Exploring
Nutrigenomics. Gene Ther. Mol. Biol. 2008, 12, 371–382.

107. Blum, K.; Downs, B.W.; Dushaj, K.; Li, M.; Braverman, E.R.; Fried, L.; Waite, R.; Demotrovics, Z.; Badgaiyan, R.D. The Benefits of
Customized DNA Directed Nutrition to Balance the Brain Reward Circuitry and Reduce Addictive Behaviors. Precis. Med. 2016,
1, 18–33.

108. Blum, K.; Oscar-Berman, M.; Giordano, J.; Downs, B.W.; Simpatico, T.; Han, D.; Femino, J. Neurogenetic Impairments of Brain
Reward Circuitry Links to Reward Deficiency Syndrome (RDS): Potential Nutrigenomic Induced Dopaminergic Activation. J.
Genet. Syndr. Gene Ther. 2012, 3, 1000e115. [CrossRef] [PubMed]

109. Blum, K.; Chen, T.J.; Chen, A.L.; Rhoades, P.; Prihoda, T.J.; Downs, B.W.; Bagchi, D.; Bagchi, M.; Blum, S.H.; Williams, L.; et al.
Dopamine D2 Receptor Taq A1 allele predicts treatment compliance of LG839 in a subset analysis of pilot study in the Netherlands.
Gene Ther. Mol. Biol. 2008, 12, 129–140.

110. Substance Abuse and Mental Health Services Administration (US); Office of the Surgeon General (US). Facing Addiction in America:
The Surgeon General’s Report on Alcohol, Drugs, and Health; US Department of Health and Human Services: Washington, DC, USA,
2016.

111. McLellan, A.T.; Koob, G.F.; Volkow, N.D. Preaddiction-A Missing Concept for Treating Substance Use Disorders. JAMA Psychiatry
2022, ahead of print. [CrossRef]

112. Diabetes Prevention Program Research Group; Knowler, W.C.; Fowler, S.E.; Hamman, R.F.; Christophi, C.A.; Hoffman, H.J.;
Brenneman, A.T.; Brown-Friday, J.O.; Goldberg, R.; Venditti, E.; et al. 10-Year follow-up of diabetes incidence and weight loss in
the Diabetes Prevention Program Outcomes Study. Lancet 2009, 374, 1677–1686. [CrossRef]

113. Glechner, A.; Keuchel, L.; Affengruber, L.; Titscher, V.; Sommer, I.; Matyas, N.; Wagner, G.; Kien, C.; Klerings, I.; Gartlehner,
G. Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2018, 12,
393–408. [CrossRef]

114. Blum, K.; Soni, D.; Badgaiyan, R.D.; Baron, D. Overcoming reward deficiency syndrome by the induction of “dopamine
homeostasis” instead of opioids for addiction: Illusion or reality? J. Osteopath. Med. 2022, 122, 333–337. [CrossRef]

115. Blum, K.; Bowirrat, A.; Gondre Lewis, M.C.; Simpatico, T.A.; Ceccanti, M.; Steinberg, B.; Modestino, E.J.; Thanos, P.K.; Baron, D.;
McLaughlin, T.; et al. Exploration of Epigenetic State Hyperdopaminergia (Surfeit) and Genetic Trait Hypodopaminergia(Deficit)
During Adolescent Brain Development. Curr. Psychopharmacol. 2021, 10. [CrossRef]

116. Edwards, D.; Roy, A.K., III; Boyett, B.; Badgaiyan, R.D.; Thanos, P.K.; Baron, D.; Hauser, M.; Badgaiyan, S.; Brewer, R.; Siwicki,
D.B.; et al. Addiction by Any Other Name is Still Addiction: Embracing Molecular Neurogenetic/Epigenetic Basis of Reward
Deficiency. J. Addict. Sci. 2020, 6, 1–4. [CrossRef]

117. Kótyuk, E.; Urbán, R.; Hende, B.; Richman, M.; Magi, A.; Király, O.; Barta, C.; Griffiths, M.D.; Potenza, M.N.; Badgaiyan, R.D.; et al.
Development and validation of the Reward Deficiency Syndrome Questionnaire (RDSQ-29). J. Psychopharmacol. 2022, 36, 409–422.
[CrossRef]

http://doi.org/10.1016/j.brs.2019.11.012
http://doi.org/10.1111/ejn.14147
http://doi.org/10.1038/nature11740
http://doi.org/10.1016/j.conb.2019.01.001
http://doi.org/10.3109/10673229909017206
http://doi.org/10.1074/jbc.M501969200
http://doi.org/10.4172/2157-7412.1000120
http://doi.org/10.1016/j.mehy.2006.08.041
http://doi.org/10.1007/BF02850224
http://www.ncbi.nlm.nih.gov/pubmed/17276971
http://doi.org/10.4172/2157-7412.1000e115
http://www.ncbi.nlm.nih.gov/pubmed/23264886
http://doi.org/10.1001/jamapsychiatry.2022.1652
http://doi.org/10.1016/S0140-6736(09)61457-4
http://doi.org/10.1016/j.pcd.2018.07.003
http://doi.org/10.1515/jom-2021-0026
http://doi.org/10.2174/2211556010666210215155509
http://doi.org/10.17756/jas.2020-043
http://doi.org/10.1177/02698811211069102


J. Pers. Med. 2022, 12, 1772 22 of 22

118. Novi, M.; Paraskevopoulou, M.; Van Rooij, D.; Schene, A.H.; Buitelaar, J.K.; Schellekens, A.F.A. Effects of substance mis-
use and current family history of substance use disorder on brain structure in adolescents and young adults with attention-
deficit/hyperactivity disorder. Drug Alcohol Depend. 2021, 228, 109032. [CrossRef]

119. Blum, K.; Bowirrat, A.; Baron, D.; Lott, L.; Ponce, J.V.; Brewer, R.; Siwicki, D.; Boyett, B.; Gondre-Lewis, M.C.; Smith, D.E.; et al.
Biotechnical development of genetic addiction risk score (GARS) and selective evidence for inclusion of polymorphic allelic risk
in substance use disorder (SUD). J. Syst. Integr. Neurosci. 2020, 6. [CrossRef]

120. Fried, L.; Modestino, E.J.; Siwicki, D.; Lott, L.; Thanos, P.K.; Baron, D.; Badgaiyan, R.D.; Ponce, J.V.; Giordano, J.; Downs, W.B.; et al.
Hypodopaminergia and Precision Behavioral Management (PBM): It is a Generational Family Affair. Curr. Pharm. Biotechnol.
2020, 21, 528–541. [CrossRef]

121. Blum, K. Criterion Validity of the Genetic Addiction Risk Severity (GARS) as a Marker of Reward Deficiency in Chemical
Substances’ Addiction: A Multi-Center Study, Kenneth Blum. In Proceedings of the 7 th Neurological Disorders Summit,
San Francisco, CA, USA, 18–21 July 2022.

122. Hyman, S.E. The daunting polygenicity of mental illness: Making a new map. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170031.
[CrossRef]

123. Nahum, L.H. Addiction and preaddiction. Conn. Med. 1971, 35, 560.
124. Available online: https://www.google.com/search?sxsrf=ALiCzsY4_yGbAAPZN8xupN3x1sBXyRyuoA:165940497397

2&q=Operationalizing+%E2%80%98prediction%E2%80%99+using+the+DSM-+5+criteria+for+substance+use+disorder:
+Challenges+and+limitations&spell=1&sa=X&ved=2ahUKEwj2-oughaf5AhW-omoFHT3JAmEQBSgAegQIARAz&biw=1904
&bih=927&dpr=1 (accessed on 1 June 2022).

http://doi.org/10.1016/j.drugalcdep.2021.109032
http://doi.org/10.15761/JSIN.1000221
http://doi.org/10.2174/1389201021666191210112108
http://doi.org/10.1098/rstb.2017.0031
https://www.google.com/search?sxsrf=ALiCzsY4_yGbAAPZN8xupN3x1sBXyRyuoA:1659404973972&q=Operationalizing+%E2%80%98prediction%E2%80%99+using+the+DSM-+5+criteria+for+substance+use+disorder:+Challenges+and+limitations&spell=1&sa=X&ved=2ahUKEwj2-oughaf5AhW-omoFHT3JAmEQBSgAegQIARAz&biw=1904&bih=927&dpr=1
https://www.google.com/search?sxsrf=ALiCzsY4_yGbAAPZN8xupN3x1sBXyRyuoA:1659404973972&q=Operationalizing+%E2%80%98prediction%E2%80%99+using+the+DSM-+5+criteria+for+substance+use+disorder:+Challenges+and+limitations&spell=1&sa=X&ved=2ahUKEwj2-oughaf5AhW-omoFHT3JAmEQBSgAegQIARAz&biw=1904&bih=927&dpr=1
https://www.google.com/search?sxsrf=ALiCzsY4_yGbAAPZN8xupN3x1sBXyRyuoA:1659404973972&q=Operationalizing+%E2%80%98prediction%E2%80%99+using+the+DSM-+5+criteria+for+substance+use+disorder:+Challenges+and+limitations&spell=1&sa=X&ved=2ahUKEwj2-oughaf5AhW-omoFHT3JAmEQBSgAegQIARAz&biw=1904&bih=927&dpr=1
https://www.google.com/search?sxsrf=ALiCzsY4_yGbAAPZN8xupN3x1sBXyRyuoA:1659404973972&q=Operationalizing+%E2%80%98prediction%E2%80%99+using+the+DSM-+5+criteria+for+substance+use+disorder:+Challenges+and+limitations&spell=1&sa=X&ved=2ahUKEwj2-oughaf5AhW-omoFHT3JAmEQBSgAegQIARAz&biw=1904&bih=927&dpr=1

	Genetic addiction risk and psychological profiling analyses for "preaddiction" severity index
	Background 
	Reward Deficiency Syndrome Index (RDSI) and Genetics 
	Understanding GARS 
	Initial DNA Customized Studies 
	Can Early Genetic Risk Assessment of “Preaddiction” like “Prediabetes” Provide the Missing Piece to Help Overcome Substance Use Disorder? 
	Conclusions 
	References

