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ABSTRACT:

Installing targets and measuring them as ground control points (GCPs) are time consuming and cost inefficient tasks in a UAV photo-
grammetry project. This research aims to automatically extract GCPs from 3D LiDAR mobile mapping system (L-MMS) measurements
and UAV imagery to perform aerial triangulation in a UAV photogrammetric network. The L-MMS allows to acquire 3D point clouds
of an urban environment including floors and facades of buildings with an accuracy of a few centimetres. Integration of UAV imagery,
as complementary information enables to reduce the acquisition time of measurement as well as increasing the automation level in a
production line. Therefore, a higher quality measurements and more diverse products are obtained. This research hypothesises that
the spatial accuracy of the L-MMS is higher than that of the UAV photogrammetric point clouds. The tie points are extracted from
the UAV imagery based on the well-known SIFT method, and then matched. The structure from motion (SfM) algorithm is applied to
estimate the 3D object coordinates of the matched tie points. Rigid registration is carried out between the point clouds obtained from
the L-MMS and the SfM. For each tie point extracted from the SfM point clouds, their corresponding neighbouring points are selected
from the L-MMS point clouds, and then a plane is fitted and then a tie point was projected on the plane, and this is how the Lidar-based
control points (LCPs) are calculated. The re-projection error of the analyses carried out on a test data sets of the Glian area in Iran
show a half pixel size accuracy standing for a few centimetres range accuracy. Finally, a significant increasing of speed up in survey
operations besides improving the spatial accuracy of the extracted LCPs are achieved.

1. INTRODUCTION

In recent decades, advances in laser scanning measurement sys-
tems have improved the quality, resolution, and data acquisi-
tion speed for acquiring 3D spatial information. Besides, satel-
lite, aerial, and close-range imagery have been widely employed
to obtain spectral and spatial information. Unmanned aerial
vehicles (UAVs) or drones are alternative solutions for relatively
large-scale mapping and monitoring tasks (Kume et al., 2015).
The reason for the popularity of UAVs are regarded as: 1) cost-
effective measurement techniques, 2) high-speed data transform-
ation, 3) ease of use, 4) flexibility, 5) high quality, and 6) high-
density products (Colomina and Molina, 2014). A digital metric
camera mounted in UAVs allows for a reliable 3D reconstruc-
tion based on structure from motion (SfM) workflows (Nex and
Remondino, 2014). However, the use of non-metric cameras in
UAV platforms has become common due to the improvements of
the calibration procedure and their relatively low-cost values.

Among point clouds production technologies such as optical and
laser scanning systems, laser scanners directly provide 3D spatial
data together with intensity/reflectivity values. Such measure-
ment system emerges in terrestrial laser scanners (TLS), airborne
laser scanners (ALS), handheld or backpack laser scanners, or
LiDAR mounted , e.g., in UAV or mobile mapping system (Chen
et al., 2019).

UAV imagery and LiDAR point clouds data are complement-
ary to each other, and the weakness of the one is overcome by
the strength of the another one. Therefore, their combination
improves the accuracy, completeness, and efficiency of 3D re-
construction and modelling. Many studies have confirmed the
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importance of this data fusion for numerous applications such
as 3D modelling (Remondino and El-Hakim, 2006), change de-
tection (Islam et al., 2018), building extraction (Dornaika et al.,
2016), object identification (Kent et al., 2015), 3D object model-
ling (Prieto et al., 2020), and 3D tree crown analysis (Leckie et
al. 2003), and so on.

The registration/co-registration technique is an important step in
integration of multi sensor data and/or multi temporal data. The
registration of imagery and laser scanning point clouds have been
carried out by numerous researchers, e.g., Omidalizarandi and
Neumann (2015); Eslami and Saadatseresht (2021). Such data
fusion enables to relate the spatial information. It is typically
carried out using different features such as, e.g., points, lines,
and surfaces obtained from both aforementioned data sets. For
instance, it is possible to reconstruct 3D building models, e.g.,
LOD2 building model, from the 3D point clouds as proposed by
Partovi et al. (2019) and register the aforementioned data sets.
Pandey et al. (2012) applied mutual information (MI)-based re-
gistration methods to register close-range photogrammetric im-
ages and TLS data. Nonetheless, it has been demonstrated that
the MI-based approach has less efficiency in natural areas com-
pared to urban areas (Mastin et al., 2009). MI-based approaches,
typically minimise a cost function consists of, e.g., statistical cor-
relation function, grayscale similarity, or the sum of squared dif-
ferences (Parmehr et al., 2014). Omidalizarandi and Neumann
(2015) performed target-based registration of TLS and digital
camera based on the space resection bundle adjustment and vari-
ance component estimation. In addition, they have compared the
target-based and MI-based approaches which has been shown the
lower accuracy of the latter than the former one. Omidalizarandi
et al. (2019) developed three different robust adjustment proced-
ures to obtain precise, reliable, accurate and robust estimation of
the exterior orientation parameters (EOPs) between the TLS and
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camera.

To derive accurate 3D geospatial information from imagery, it is
a vital step to estimates the camera’s interior and exterior ori-
entation parameters. Interior orientation parameters (IOPs) con-
sist of principal distance (i.e. focal length), principal point co-
ordinates, and lens tangential and radial distortions which are
specified through a camera calibration procedure. EOPs define
the translations and orientations of the camera at the point of ex-
posure in a mapping frame, which can be estimated using Ground
Control Points (GCPs) through an Aerial Triangulation (AT) pro-
cess (Zhou et al., 2020).

AT is one of the most critical steps in aerial photogrammetry to
estimate the tie object points coordinates (OPC), EOPs, and IOP
which is performed through the bundle Adjustment (BA) proced-
ure (Chen et al., 2019). BA plays a vital role in 3D reconstruction
(SLAM and SfM). Observed 2D points cannot be directly com-
pared with the projected 3D points on the cameras so BA prob-
lems can be modelled as a sum of squares. This kind of problem
is called a non-linear least-square problem (Angla et al., 2020).

The GCPs are essential for the task of AT. Traditionally, they
are obtained from field surveying (e.g. GPS (Global Position-
ing System), orthoimages, or topographic maps (Liu and Zhang,
2008). Although the former method may achieve higher accuracy
for GCPs, but it is time-consuming and labour intensive. Simil-
arly, generating DEMs by field surveying or topographical maps
is not cost-effective. In a photogrammetric project, it is deman-
ded to have a high-quality GCPs for AT processing (Liu et al.,
2007). For this purpose, researchers use indirect georeferencing
to estimate IOP, EOP, and OPC. Indirect georeferencing has tra-
ditionally been used to integrate photogrammetric and LiDAR
data sets. In case of LiDAR data, geometric primitives such as
points, lines, and/or surface are required to be extracted in ad-
ditional post-processing step. This is due to reason that LiDAR
data does not directly show such primitives (Costa et al., 2017).

Delara et al. (2004) used a low-cost digital camera for AT to ex-
tract LiDAR-based Control Points (LCPs) from LiDAR intensity
images. She used the term LCP instead of GCP for the first time
in this article. In fact, LCP is the same as GCP, which were ex-
tracted from lidar and are used in aerial triangulation. With the
difference that LCP can be on walls or buildings or anywhere and
not just on the ground, that’s why it is a better term. Jaw (1999)
and Jaw and Wu (2006) extended the photogrammetric model by
establishing a new relationship with planar surfaces. Habib et al.
(2004) and Habib et al. (2005) presented an approach for align-
ing photogrammetric models to LiDAR reference frames by using
linear features derived from LiDAR data. A 3D similarity trans-
formation and linear features were used to register LiDAR with
photogrammetric data. James et al. (2006) extracted reference
ground control points manually for a photogrammetric model us-
ing high-resolution shaded liDAR DEMs. The quality of DEMs
plays a vital role in successfully implementing the overhead re-
search projects. Liu et al. (2007) presented a method to extract
Lidar-base control Points from intensity images from LiDAR and
use DEM for image orthorectification. Mitishita et al. (2008)
proposed a method of detecting roof centroid from LiDAR point
clouds, which was used in a bundle adjustment to find the exact
position of the roof centroid. In Wildan et al. (2011), LCPs were
used to execute the AT of a large photogrammetric block of ana-
logue aerial photographs. Ju (2013) used features, intensity, and
frequency-based methods to develop a hybrid method for robust
LiDAR and optical imagery registration. Gneeniss (2014) ex-
amined how much and where LCPs should be distributed when
performing AT for large photogrammetry blocks. This approach

focused on point-feature extraction by the intersection of three
building roof planes. Also, it presented a comprehensive review
of different methods of extracting features. Li et al. (2015)
presented a method for solving the problem of linking LiDAR
and photogrammetric data in deserted areas without GCP using
sand ridges as primitives. Costa et al. (2017), the method entails
four main steps: filtering LiDAR points on the rooftops, determ-
ining the roof building planes, modelling the roof building planes,
and intersecting the roof building planes. It begins with the iden-
tification of the residential areas, which must contain a minimum
of three-plane roofs. Afterwards, LiDAR points on building roofs
are categorised and mapped. As a final step, three roof planes of
the same building intersect to calculate the 3D coordinates of the
LCP. We used least-squares adjustment to model the building roof
planes.

A primarily based method for registering objects is to identify
and extract standard spatial features, such as points, lines, and
planar patches. Control points were manually extracted from aer-
ial liDAR point clouds by all authors. This is followed by de-
termining the transformation parameters required to align the two
data sets, usually based on a 3D conformal or 3D similarity trans-
formation. Registration is normally done by using straight lines
drawn by intersecting two planes or directly observing the liDAR
surface to identify reference targets Wang and Tseng (2011). It
is necessary to have many linear features with good spatial dis-
tribution in the photogrammetric block to achieve equivalent ac-
curacy to standard control point patterns Mitishita et al. (2008).
Other methods have used planes as standard features Brenner et
al. (2008). Registering regular or irregular surfaces is also pos-
sible by interpolating both data sets, with registration performed
by minimising vertical or Euclidean distances between the two
planes (Akca, 2007). Registration quality highly depends on
the process adopted, which can be classified as manual, semi-
automatic, or automatic.

This paper proposes an approach to automatically extract LCPs
from the LiDAR mobile mapping system (L-MMS) and UAV im-
agery used in the AT. The proposed strategy consists of three main
steps as follows:

1. Generate image-based sparse point clouds via a SfM
strategy,

2. Iterative plane fitting approach for extraction of LCPs from
L-MMS,

3. Refine IOPs of a camera, EOPs of block images, and estim-
ating OPCs of tie points through a BA procedure.

Here, it is assumed that L-MMS data as a reference spatial in-
formation. In one hand, it is supposed that all EOPs and IOPs
of image sensors are inaccurate and should be reliably estimated.
These inaccurate EOPs and IOPs values are related to approxim-
ate sensor positions and non-metric camera parameters. On the
other hand, not much attention has been paid to a handheld laser
scanners used in L-MMS. In this study due to the above necessit-
ies, we investigate the benefits of extracting control points from
L-MMS data for being used in a photogrammetric UAV network.

This paper is organised as follows. In Section 2, data acquisition
is explained. Section 3 describes the methodology. Section 4
explains experiments and results in two different case studies. In
the end, conclusions and outlook are presented.
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2. DATA ACQUISITION

2.1 UAV Imagery

Images of this study were taken by DJI Phantom 4pro with the
aim of producing a two-dimensional (2D) cadastral map with a
scale of 1/500 during flight operations. According to the required
accuracy, the flight altitude is approximately 88 m to achieve a
spatial resolution of 2.4 cm (DJI, 2017).

2.2 LiDAR Mobile Mapping

In addition to UAV aerial images, mobile mapping point clouds
are captured using a laser scanner. The mobile mapping system is
georeferenced by using GNSS and IMU. In areas with inaccurate
GNSS signal, the georeferencing is carried out based on the Sim-
ultaneous localisation and mapping (SLAM) algorithm. Large-
scale crossroads were generated using Velodyne Puck SBG
Ellipse-D (Velodyne, 2019; SBG, 2021). Velodyne sensor can
capture 300,000 points with a rotation rate of 5 to 20 revolutions
per second with horizontal angles of 0.1 to 0.4 minutes and 16
lines with a vertical angle difference of two degrees.

Sensor Camera
Sensor Type DJI Phantom 4 Pro
Distance to Object (m) 90
Focal length (mm) 8.8
GCD (cm) 2.4

Table 1. Camera specialisation

Sensor Laser Scanner
Sensor Type Velodyne Puck & SBG

Ellipse-D
Scan speed (points/second) Up to 0.3 million
Rotation rate (Hz) 5 – 20
Accuracy (cm) 3
Density (point/m2) 570

Table 2. Laser scanner specifications

3. METHODOLOGY

The proposed approach for extracting the control point from the
mobile mapping data used in the AT of photogrammetric image
blocks is presented in the following. A general flowchart of our
proposed method is shown in Figure 1. This section is organised
as following. In section 3.1, rigid registration are discussed. Sec-
tion 3.2 explains about find neighbourhood and calculate control
points. Section 3.3 contains blunder detection. Section 3.4 sparse
bundle adjustment are discussed. Finally, section 3.5 presents the
stop condition.

3.1 Rigid Registration

Registration algorithms is classified into the rigid and non-rigid
approaches. As long as the environment is fixed and rigid, rig-
orous approaches can model a homogeneous transformation with
only six degrees of freedom (DOF). One of the rigid registration
methods is the high-speed Principal component analysis (PCA)
Huizinga et al. (2016) method, which works without the need
for any features and achieves satisfactory results. Two data sets
are analyzed using PCA, which calculates three eigenvectors and
identifies four complementary pairs of feature points based on
their centers of gravity. Following that, the initial registration
matrix is derived from the corresponding point set using the pre-
viously mentioned registration method. Finally, the PCA method
brought the Point clouds from the UAV images and the L-MMS
data close to each other.

3.2 Find Neighbourhood and Calculate LiDAR Control
Points

LCPs are obtained for those tie points that are located close to
the L-MMS Point Clouds through the neighbourhood analysis.
In this study, LCPs are used as ground references for aligning
LiDAR and photogrammetric data sets. They are also used as
control points to perform in-situ camera calibration and to estim-
ate IOP and EOPs. Image point features can be extracted from
LiDAR point clouds or LiDAR intensity images using a variety
of approaches. Geometric shapes like corner angles of buildings
or ridge roof corners are commonly used to extract point features.

In this study, the neighbourhood of each tie point is searched us-
ing the KD-tree method according to the two criteria of a neigh-
bourhood radius and a minimum number of points. A KD-tree
consists of nodes representing rectangles in d-dimensional space.
A rectangle is formed by d closed intervals on the coordinate
axes. A hyperplane aligned with the axis of each internal node
divides the rectangle into two sub-rectangles associated with each
child node. Throughout a point cloud, points are located in rect-
angles that contain rectangles. The KD-tree is capable of accel-
erating searches for k-nearest neighbours by using ball-rectangle
intersection tests. Given a query point p and k candidate neigh-
bours, we can be sure that the true k-neighbourhood will be found
inside a ball centred on p and passing through the current kth-
nearest candidate. Next, the distribution of points is checked
using the analysis of individual values by Equation (1), and the
neighbourhood that forms the page is identified. For this pur-
pose, a ratio was defined experimentally. If in a neighbourhood,
the scatter of points in two directions are more than the another
direction, it indicates the presence of a plane in that neighbour-
hood.

A = UΣV (1)

A =

X1 X2 X3

...
...

...
Xn Xn Xn

 Σ =

Σ1 0 0
0 Σ2 0
0 0 Σ3

 (2)

In Equation (1), A contains the 3D coordinates of all neighbour-
ing points in a predefined neighbourhood, U is left singular vec-
tors, Σ is singular values and V is right singular values.

After identifying the neighbouring points from the L-MMS data,
the plane is fitted to them based on the robust plane fitting
method, and the plane parameters are calculated. Then, with
Equation (3), the tie point is projected to the plane, and the new
coordinates of the projected point are calculated. Given a straight
line defined by tie (X,Y, Z) and direction Normal (nx, ny, nz)
that shown in Figure 2.

XY
Z


LCP

=

XY
Z


Tie

+ t.

nx

ny

nz

 (3)

and a plane defined by point M(Xm, Ym, Zm) that exist on plane
and Normal (nx, ny, nz)

nx(X −Xm) + ny(Y − Ym) + nz(Z − Zm) = 0 (4)

Substituting in Equation (4) for the variable point from Equation
(3) the solution for parameter t is:
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Figure 1. Flowchart of our proposed approach.

t =
nx(X −Xm) + ny(Y − Ym) + nz(Z − Zm)

n2
x + n2

y + n2
z

(5)

In the case of a line parallel to the plane, the denominator be-
comes zero. The coordinates of the point of intersection are ob-
tained if the solution for t is substituted in Equation (3). Here that
neighbourhood and its corresponding node are excluded from the
calculations. Finally, the project of the node points on the plane
play the role of our control points in Bundle Adjustment.

Figure 2. Representation of the tie point and its projection on
the plane.

3.3 Blunder LCP Detection

Some estimated LCPs obtained from the previous step might have
poor quality or be a gross error as a result of the inappropriate
plane fitting to the neighbourhood or inefficiency in the SfM al-
gorithm used to calculate the object coordinates of the tie point.
It is then necessary to identify blunders to exclude them from the
calculations. High probability errors are used to find large errors.
Because large errors rarely occur in the data set. At this stage,
the estimated LCPs are re-projected to the image and compared

with the image observation values. In typical blunder detection
approaches, any data that differs from the mean by more than 3σ
is considered as outliers and should remove from the data set or
down-weighted. These residuals are checked at 99% confidence
interval, and the blunders are removed.

3.4 Sparse Bundle Adjustment

The basic photogrammetric principal geometry consists of three
geometric entities: object space points (3D points), correspond-
ing image points (2D points), and perspective centres. Such
a geometry can be formalised with collinearity equations from
the Brown–Conrady model Duane (1971) such as Equations (6)
and (7). The additional parameters related to lens distortions,
coordinates of the principal point (i.e., the point closest to the
projection centre), and sensor distortions, in practice, be used to
develop the theoretical collinearity condition equations between
image points, camera position, and object points. To estimate
the 6 EOPs, the image coordinates are first rectified using the
calculated IOPs of the digital camera, consisting of the principal
point (xp, yp), the focal length f , the coefficients of radial dis-
tortions (K1,K2,K3), and the coefficients of decentering distor-
tions (P1,P2). According to the Brown’s equation Luhmann et
al. (2019), the image measurements (x, y) are rectified to (x′, y′)
according to

fx = x′ − f.
p

q
(6)

fy = y′ − f.
s

q
(7)

x′ = x+x̄(K1r
2+K2r

4+K3r
6+. . .)+(P1(r

2+2x̄2)+2P2x̄ȳ)
(8)

y′ = y+ȳ(K1r
2+K2r

4+K3r
6+. . .)+(P2(r

2+2ȳ2)+2P1x̄ȳ)
(9)

Where

x̄ = x− x0 (10)

ȳ = y − y0 (11)
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r =
√

x̄2 + ȳ2 (12)

Therewith, Rij(i = 1, 2, 3, ..., j = 1, 2, 3, ...) stands for the nine
elements of the rotation matrix Equation (13), which can be mod-
elled by three rotation Euler angles ω, φ and κ Luhmann et al.
(2006)

R =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 (13)

ps
q

 = R.

x
Y
Z

−

X0

Y0

Z0

 (14)

X0, Y0 and Z0 are the translation parameters of the camera pose.
Meanwhile, X,Y and Z are the object point coordinates usu-
ally given in meters in the mapping reference system (i.e., Earth-
fixed coordinate system; UTM). Finally, the IOPs, EOPs, and
OPC are updated. In this research, the Sparse Bundle Adjust-
ment (SBA) method is employed to solve linear condition equa-
tions. Since the number of observation equations and the num-
ber of unknowns is large, the dimensions of matrix A is so
large that they cannot be solved in the usual way (Lourakis
and Argyros, 2009). The open-source code of the presented
method is available at https://github.com/naiem-reza/

Sparse-Bundle-Adjustments-with-GCPs.

Bundle adjustment is commonly used in SfM and SLAM ap-
proaches. It minimises the sum of errors between 2D observa-
tions and their corresponding estimates. In addition to the 2D
observations, there are also 3D LCPs which are defined as con-
straints. In addition, the residual vector dl is defined in such a
way that the sum of squares errors minimise based on a robust
cost function rather than just using a simple cost function. With a
Weight as robuster, Equation (15) through the bundle adjustment
procedure minimises the Φ. dl is the image and object residuals,
w is weight matrix and df is a degree of freedom.

Φ =
dlTWdl

df
(15)

3.5 Stop Condition

Image and object residuals are calculated in each iteration of the
SBA. The convergence criterion is satisfied in such a way that
the residuals of each iteration are compared with the previous
iteration. Ideally, it is expected that a stop condition will be issued
when this value reaches zero. d is the maximum of the absolute
differences of the residuals in Equation (16).

d = (max|dls − dls+1|) <= 10−6 (16)

After executing the bundle adjustment, the camera IOPs, EOPs
and OCP parameters are updated. Then the posterior standard
deviation of the unit weight σ2

0 is calculated, where σ2
0 is the

unknown theoretical variance of unit weight. Its a-priori value
here is considered to be 1. Weight matrix is updated based on
the variance component estimation applied in Omidalizarandi et
al. (2019), and input to next SBA iteration. The algorithm runs
with an updated weight matrix and searches for more reliable and
optimal LCPs. In each iteration, the position of the tie points is
updated, and they get closer to the L-MMS point clouds. This
trend affects the number of control points and their regional dis-
tribution.

4. EXPERIMENTS AND RESULTS

The UAV images and L-MMS data of this research are captured
from the Glian village located in Fars province, Iran. The geo-
graphical location of Glian village is 53°52’52”E, 28°52’38”N
(Figure 3).

Figure 3. Location and boundary of villages of Glian in Fars
province, Iran.

A scale-invariant feature transform (SIFT) Lowe (2004) method
extracts and matches corresponding tie points on the photogram-
metric images. The SIFT descriptor estimates 40,171 initial cor-
responding tie points. The tie points are reduced to 23,580 points
by removing corresponding tie points that are matched in only
two images. Also, following the generation of tie points, a dense
cloud is also produced, which is used in the rigid registration
step. The PCA method that was explained in 3.1 brought the
point clouds from the UAV images and the L-MMS data to each
other. After that the algorithm find the LCPs in L-MMS Data.
Based on the results of the SFM and EXIF of the images, the
SBA is executed with the approximate values of the OCP and the
IOPs of cameras.

First, the search algorithm, it extracted 478 LCPs according to
the thresholds of the neighbourhood radius, the minimum point,
and the ratio of singular values. According to the obtained ex-
perimental results, the minimum number of neighbouring points
was 1/10 of the LiDAR mobile mapping density, so the neigh-
bourhoods with a number of points less than 57 points of the cal-
culation cycle were discarded. By reducing the singular value ra-
tio, the strictness of the plane selection in the LiDAR point cloud
space is reduced, resulting in a greater number of LCPs. In the
Figure 4, the results of changes in thresholds are shown.

A red point represents the whole set of tie points. In contrast, a
green point represents the points that pass the radius threshold of
a neighbourhood and the minimum number of points. In contrast,
a blue point represents the LCPs obtained after fitting the plane
in the defined neighbourhood and exceeding the threshold.

As explained above, in the first iteration, 478 LCPs were extrac-
ted and the bundle was run and initially reduced the root mean
square error (RMSE) of image residuals from 127 pixels to less
half pixel during bundle loop as shown in Figure 5. In addition,
the RMSE of object residuals increased at first and then decreased
and reached the value of 5 cm as shown in Figure 6. In the be-
ginning, the increase of the RMSE of object residuals can be that
the tie points were produced with the approximate values of the
camera parameters in the SFM method. It seems that in the initial
iterations, the bundle tries to improve the parameters of the cam-
era and then the improvement is made on the parameters of the
OPC.
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Figure 4. Displaying LCPs in two modes with different
thresholds.

In addition to displaying the graph of minimise of object and im-
age RMSE, the histogram of residual before and after SBA was
shown in Figures 7. Before the SBA implementation, the disper-
sion of the residuals has a normal distribution, and the parameters
of the normal distribution have a mean of -30.53 and a standard
deviation of 123.9, respectively. Due to the instabilities of the
non-metric camera and the insufficient accuracy of the camera
parameters, these parameters are high. A camera uses inaccur-
ate parameters to re-project 2D points from 3D structures, caus-
ing errors between 2D observations and predicted 2D points. It
measures the accuracy of the computed 3D structures and cam-
era parameters. After the SBA implementation, the dispersion
of the residuals has a t-student distribution, and the distribution
parameters have a scale of 4.48, a mean of 0.01 and a standard de-
viation of 0.31, respectively. The mean value and STD obtained
from this distribution represent that the camera parameters and
OPC were optimised during the SBA.

Figure 5. Displaying RMSE of image residuals in Bundle
adjustment loop.

Figure 6. Displaying RMSE of object residuals in Bundle
adjustment loop.

After first iteration, the SBA runs again with updated IOPs, EOPs
and OCP and weight matrix that tried to find more reliable and
better LCPs. In the second iteration, the algorithm find new LCPs
and the number of LCPs reached 470 points. This means that
8 points were outlier and not reliable for LCPs. In the current
iteration, the bundle ban has only performed one iteration, and the
remaining histograms have provided results similar to the Figure
7-(down). The results of IOPs, EOPs and OPC were similar to
the previous iteration.

5. CONCLUSION

This research aims to automatically extract control points from
the 3D L-MMS measurements and UAV imagery to perform aer-
ial triangulation in a UAV photogrammetric network. For this
purpose, first, tie points are extracted from the UAV imagery and
their corresponding neighbouring point clouds are selected from
the L-MMS data. A robust plane fitting is applied to the selec-
ted neighbouring points and the projected tie points on the fitted
plane are defined as LCPs. SBA procedure is employed to estim-
ate IOPs, EOPs, and OCP. This approach allows a dense network
of LCPs to be extracted.

As a result, the need for conventional control points may be re-
duced if these are used in more significant numbers. Transform-
ation parameters will shift or rotate if the camera parameters are
changed, or the GNSS data is inaccurate. It is clear that the de-
veloped research approach provides an alternative to SBA that is
reasonable and affordable. However, some technical challenges
involve identifying the corresponding points within the L-MMS

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-581-2023 | © Author(s) 2023. CC BY 4.0 License.

 
586



Figure 7. (up) image residuals before SBA. (down) image
residuals after SBA.

data and establishing a tie point as a control point. Huge differ-
ences in point density, different coverage, and the discrete nature
of points. Further research is also recommended to improve the
robust estimation and reweighting the LCPs. Also, using the
voxel technique so that the control points are evenly distributed
throughout the area.
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