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ABSTRACT: 

Crop information and quality are not only fundamental for experts using spatial decision support systems but also have many 

applications in irrigation management, economic analysis for import or export, food safety, and achieving sustainable agriculture. 

Remote sensing is a cheap and fast way of reaching this goal. Full polarimetric SAR unlike optical sensors is an all-weather system 

providing geometrical and physical properties of the earth’s surface events. Due to the dynamic changes in crop properties through 

their phenological stages, crop type mapping has been challenging. As a result, accurate, reliable, and cost-effective crop type 

mapping using minimum data and processing has been the goal of the remote sensing and precision agriculture community. In this 

study, a new method based on time series analysis of full polarimetric SAR data combined with radar indices, polarimetric 

decompositions followed by the three αs extracted from H/A/α decomposition, and unsupervised H/α/Wishart classification bands 

as features generated from only 5 dates of RADARSAT CONSTELLATION MISSION 2 data were used for classification of crops. 

Applying random forest and cat boost algorithm as classifiers an accuracy of 87.4% and 75% was respectively achieved. indicating 

that both algorithms have promising results. Although the random forest algorithm had better results, the cat boost algorithm had 

less noise in each field and more homogenous farms were detected. 

1. INTRODUCTION

Due to the rapidly growing acreage of crops, the abruptly 

increasing population of the world, new global legislations, 

and the necessity of minimizing the environmental footprint 

precision agriculturally based actions through remote 

sensing must be taken to overcome these problems 

(Jafarbiglu and Pourreza, 2022). One of these actions is 

crop-type mapping using Optical, SAR, or a fusion of both 

data sources. Optical data e.g., LIDAR or hyperspectral 

images impose high acquisition and computational costs 

(Moradi et al, 2021). Whereas, SAR observations compared 

to optical sensors are all-weather mapping systems which is 

the main advantage of SAR images (Yekkehkhany et al, 

2014). Making it suitable for Nordic, humid, and mostly  

cloudy countries e.g., Canada and Greenland. Synthetic 

aperture radar (SAR) in its different acquisition modes, 

provides different features regarding the object’s physical, 

geometrical, and structural properties. As a result, it is useful 

in Remote Sensing and Photogrammetric research including 

crop type mapping (Adrian et al., 2021; Saadat et al, 2019; 

Tufail et al, 2022), change detection (Habibollahi, 2022; 

Saha, 2020), flood monitoring (Carreño Conde and De Mata 

Muñoz, 2019), Earthquake damage monitoring (Hasanlou, 

2021), precision agriculture, oceanography (Zheng, 2019), 

etc. based on the number of acquired channels SAR images 

are classified as single, dual, and quad (full) polarizations 

which contain all the VV and HH known as co-polarizations 

and VH and HV known as cross-polarizations. As the 

number of channels rises, so will the number of features and 

resulting properties, therefore increasing the accuracy. Due 

to the difference in dielectric properties and the structure of 

the different crop types, a distinct variation is seen for 
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properties such as the size, shape, and orientation 

distribution of the scatterers (crops) through the growing 

season due to the development of crops making it possible 

to classify different crops in SAR images (Skriver et al, 

1999; Yekkehkhany et al, 2014). Therefore, requiring multi-

temporal image acquisition and time series analysis in 

important or all phenological stages of different crops. One 

of the important products derived from the Full Polarimetric 

SAR observations is called the scattering matrix (T3) which 

contains a very important source of information about the 

terrestrial targets (Van Zyl et al, 1990). Thus, used in many 

physical studies. on the other hand, using the co and cross-

polarized bands different indices can be generated through 

mathematical operations such as Radar Vegetation Index 

(RVI) (Kim et al, 2011), Radar Forest Degradation Index 

(RFDI) (Mitchard et al, 2012), Canopy Structure Index (CSI) 

(Sims and Gamon, 2003), co and cross ratios i.e., HH/VV, 

VV/VH, and HH/HV, etc. In addition to the mentioned 

methods for increasing the number of features, it is possible 

to use different decompositions such as H/ A/ 𝛼 proposed by 

Cloude and Pottier (Cloude and Pottier, 1997), Pauli, 

Freeman- Durden (Freeman and Durden, 1993), and Cloude. 

Adding these features to the scattering matrix increases the 

possibility of more accurate classification of complex 

features like crops.  

Crop type mapping using SAR images has been assessed in 

different studies (Yekkehkhany et al, 2014) used JPL-NASA 

UAVSAR data and SVM with RBF kernel as the classifier, 

archiving an overall accuracy (OA) of 85.52%. 

(Mahdianpari et al, 2019) achieved an OA of 84.30% on 

RADARSAT Constellation Mission (RCM) data on full 

polarimetric images using a random forest classifier. 

(Busquier et al, 2019) used TANDEMX data with coherency 

bands for co and cross-polarized bands at 6 dates achieving 

an OA of 89.01%, (Gella et al, 2021) used twDTW on long-

term Terra SARX data achieving an OA of 80.6%. In this 

research, we proposed a method based on different indices, 

and decompositions and added an unsupervised classified 

map as a new channel to generate reliable features for 

accurate crop type mapping using only 5 dates of RCM data. 

Classification is conducted using Random Forest and Cat 

Boost algorithms. Random Forest is implemented in two 

stages: 1. learners’ creation, and 2. outputs combination 

(Moradi et al, 2021) and has been used in many agricultural 

studies e.g., (Sedaghat et al, 2022) used it for surface soil 

moisture estimation, (Shahrayini and Noroozi 2021) used it 

for soil salinity and alkalinity mapping and (Shahrayini et al, 

2022) used it for multi-depth soil carbon modeling. Cat 

Boost is an algorithm for gradient boosting on decision trees 

that were the winner of the Kenya crop type mapping 

challenge in 2020. Moreover, it has been used in the 

estimation of aboveground biomass (Luo et al, 2021; Zhang 

et al, 2020) and fire prediction (Zhou et al, 2021) but not for 

crop type mapping using polarimetric data. Evaluation is 

carried out in terms of overall accuracy and kappa 

coefficient. The classification was done in python using 

Sklearn, Numpy, Rasterio, and cv2 libraries in python 3.8.8. 

2. MATERIALS AND METHOD 

RADARSAT 2 is a C-band Canadian Space Agency Earth 

observation satellite launched on 14 December 2007. It 

acquires data in full polarimetric mode and different spatial 

resolutions for different products. The data used in this paper 

is for Carman, Manitoba, Canada in 2020 from RADARSAT 

2 in 5 dates as shown in Table 1. All images are in simple 

look complex (SLC) mode with 9 meters ground resolution 

and 20-kilometer swath width. 

 

Table 1. Data acquisition time. 

2020/07/23 2020/08/24 

2020/08/16 2020/09/09 

2020/09/17 

 

To classify crops using the proposed supervised method 

ground truth (GT) data is required, which was acquired from 

Google Earth Engine’s (GEE) AAFC product generated 

from Sentinel-1, 2, and Landsat missions with 30meter 

spatial resolution in 2020. However, due to the difference in 

the resolution of GT and RCM data, resampling was 

conducted using the bilinear resampling method.  

The proposed framework in this paper consists of four main 

steps: (a) data preprocessing, (b) processing, (c) 

classification, and (d) evaluation. Several polarimetric 

features are extracted from preprocessed data i.e., the 

coherency or covariance matrix (T3). Span (total 

backscattered power), decompositions including H/A/α, 

Freeman-Durden, Paulie, and Cloude followed by radar 

indices including RVI, RFDI, CSI, Biomass index (BMI) 

also known as average like-polarized and Volume Scattering 

index (VSI) the is mostly caused by a canopy and defined 

using average cross-polarized and BMI (Pope et al. 1994). 

All these bands are extracted and used as features for each 

time step resulting in 26 features for each time step and 130 

total features. Finally, random forest (RF) and cat boost 

classification algorithms were applied. Their results were 

compared to find the best model for the classification of 

different crops using the generated features and RCM time 

series images. The complete method is shown in Figure 1.  
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Figure 1. Flowchart of the proposed method. 

 

Preprocessing includes 1. Calibration, and 2. Applying a 

Radar speckle filter to reduce noise using a Gamma filter 

with 9×9 kernel on radar indices. Processing steps include 1. 

Polarimetric coherency matrix generation, speckle filter to 

reduce noise using Refined Lee filter 9×9 on T3 matrix, 

decompositions, and features generation, 2. Geometric 

correction using range doppler train correction method and 

SRTM DEM (30m). the complete pre-processing and 

processing were repeated for each time step in SNAP 

software. The formulas for generated indices and Span are 

shown in Table 2.  

 

Table 2. Formulas for generated indices and Span 

Index Formula 

RVI 
8𝜎ℎ𝑣

𝜎𝑣𝑣 +  𝜎ℎℎ + 2𝜎ℎ𝑣
 

RFDI 
𝜎ℎℎ −  𝜎ℎ𝑣

𝜎ℎℎ +  𝜎ℎ𝑣
 

CSI 
𝑉𝑉

𝑉𝑉 + 𝐻𝐻
 

CS 
𝐻𝑉 + 𝑉𝐻 

2
 

LK 
𝑉𝑉 + 𝐻𝐻 

2
 

VSI 
𝐶𝑆

𝐶𝑆 + 𝐿𝐾
 

BMI LK 

Span HH + 2HV + VV 

where 𝜎ℎℎ is the corrected radar backscatter coefficient. 

 

Some of these features are shown in Figures 2 and 3. 

  
Figure 2. Span and RVI 

 

 

  
Figure 3. CSI and BMI 

 

The generated decompositions and the H/ 𝛼  /Wishart 

classified bands are shown in Figures 4, 5, and 6. 

 

 

  
Figure 4. Freeman- Durden and Paulie decompositions 
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Figure 5. H/A/𝛼 and Cloude decompositions 

 

 
Figure 6. H/ 𝛼 /Wishart classified band 

 

Since some of these images have different footprints and 

processing these images is time-consuming, all bands were 

clipped to a smaller area of 1395×765 pixels with 12 classes 

of crops and other land cover classes in Arc Map 10.7. 

furthermore, all bands were projected to UTM Zone 14N so 

all bands are in the same coordinate system. The ground 

truth and its corresponding legend, are shown in Figure 7.  

  
 

Figure 7. Ground truth with Legend 

 

Finally, 60% of these images were divided to train for 

training the classifiers and the remaining 40% were 

considered as test data for evaluating the algorithm. To train 

RF efficiently these settings were applied: 300 trees, 100 

maximum features, and a minimum sample split of 2 at each 

node. As for the cat boost classification algorithm learning 

rate of 0.1, random strength of 0.1, depth of 12, and a multi-

class loss function with 150 iterations were considered. 

3. RESULTS 

 

The proposed method is applied to the extracted multi-

temporal polarimetric bands. Based on the GT (shown in 

Figure 5), several types of crop classes are considered 

including Soybeans, Sunflower, Wheat, Canola, Corn, Rye, 

Oats, Beans, Broadleaf, Potato, and Peas. Also, classes of 

mixed wood, barren land, and shrub land were included in 

the ground truth. Classified maps using RF and cat boost are 

shown in Figure 8. 

 

a 

 

b 

 

c 

Figure 8. (a) Ground truth, (b) RF predicted map, (c) 

Cat Boost predicted map. 

 

Validation was carried out using the accuracy metrics of OA 

and Kappa which are illustrated in Table 3. 

 

Table 3. Accuracy Metrics 

Algorithm OA (%) Kappa 

RF 87.4 0.849 

Cat Boost 74.9 0.698 
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4. CONCLUSION  

 

As shown in Table 3, through the proposed method and the 

mentioned features we were able to achieve reasonable 

accuracy on only 5 dates of images for RCM data in 

discriminating different crops and earth surface features. It 

can be seen that RF had higher accuracy. Although both 

algorithms are pixel-based and trained on vectorized data, 

the map generated from RF has more noise in each field 

compared to the map resulting from the Cat Boost algorithm 

which classified each farm homogenously, in other words, it 

functioned like an object-based classifier even though it is a 

pixel-based classifier. Both classifiers had promising results, 

low processing time, and functioned properly with a low 

amount of data making them time-efficient and reliable.  

In this paper, the use of canopy-related radar features, span, 

and different decompositions derived from a series of 

RADARSAT2 SLC images in summer 2020 was assessed 

for crop type mapping. The reviewed papers either used a 

coarser, longer time series, images with higher spatial 

resolution e.g., TANDEMX spotlight mode with 1m 

resolution, or a combination of all the above-mentioned data 

and reached a maximum accuracy of less than 87%. On the 

other hand, studies on RADARSAT2 reached a maximum 

OA of 84.30% which is less than our proposed method 

which reached an OA of 87%. This method was trained on 

only 60% of the data and only five dates during the summer. 

Also, it is not only sensitive to the crop types but also 

sensitive to other land cover classes such as barren land, 

urban, mixed wood, shrubland, and field boundaries making 

it suitable for future purposes of agricultural cadaster, 

planning, and monitoring. RF is a fast, low memory-

consuming classifier and can be trained on low data unlike 

recent deep learning approaches that are data hungry, slow 

and require station systems making them inefficient for 

Polarimetric studies because these datasets aren’t easily or 

freely available, especially in higher resolutions, longer time 

series or larger scales with their relative ground truths. In 

conclusion, this method is accurate, fast, and reliable. 

Researchers are suggested to test other canopy-related 

features and test their impact on classification accuracy.  
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