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ABSTRACT: 

Nowadays, the synthetic aperture radar (SAR) tomography (TomoSAR) technique plays a notable role in the 3D reconstruction of 

urban buildings through several SAR acquisitions with slightly different positions. Nonparametric-based TomoSAR spectral 

estimation algorithms usually work well when a large number of SAR observations. In this study, with a limited number of SAR 

images, we have assessed the efficiency of the nonparametric spectral estimation methods, including maximum entropy (ME), 

singular value decomposition (SVD), linear prediction (LP), Capon, minimum norm (MN), and beamforming (BF) in the 

reconstruction of the third dimension of urban buildings. The experiments are conducted on both simulated and TerraSAR-X 

stripmap images to indicate the effectiveness of the LP proposed estimation algorithm. The analysis of the results proves that by 

minimizing the average output signal power over the antenna array elements, the LP spectral estimation achieves the discrimination 

of distinct scatterers inside an image pixel. In addition, this low computational estimator improves the sidelobe suppression and the 

height estimates of the scatterers in the complex multiple-scattering urban environment. Compared to SVD, maximum entropy, 

Capon, minimum norm, and beamforming, the height of the Eskan tower in Tehran, Iran, obtained with the LP technique, is 

considerably near to field-based measurement. 

* Corresponding author 

1. INTRODUCTION

Synthetic aperture radar (SAR) employs the coherent nature of 

the radiation to earn considerable discrimination capabilities in 

the azimuth and range direction (Franceschetti and Lanari, 

1999). High resolution in the range is typically acquired by 

focusing on a transmitted long-duration (large bandwidth) linear 

frequency modulated pulse. In contrast, high resolution in the 

azimuth direction is attained by synthesizing a large azimuth 

aperture starting from the data amassed along the acquisition 

track by a limited-size real antenna that coherently radiates the 

scene at regular intervals. 

SAR forms 2D images of the terrain in both the range and 

azimuth direction. But, the obtained image is only a projection 

of the area, which yields several problems. One case is that it is 

impossible to access the third dimension using a single image. 

Another problem is the difference between the values of each 

point and the authentic values (Baselice et al. 2009). 

The synthetic aperture radar interferometry (InSAR) approach, 

which relies on the signal phase differences between two image 

passes (Bamler and Hartl, 1998), expresses a valuable case of 

multiple acquisitions and can build a three-dimensional (3D) 

terrain surface construction. Nonetheless, the InSAR method 

considers that scatterers only have been spread on the surface of 

the expected object. Also, InSAR needs nonlinear processing, 

specifically when dealing with layover and foreshortening areas, 

to the phase unwrapping of the calculable wrapped phase 

distinctions. SAR tomography (TomoSAR), tempting 

significant attention in urban scenarios, has been proposed to 

surmount this constraint (Omati et al. 2021). 

Parallel and circular are two primary classes of tomography. In 

parallel tomography, the dispatched beams are nearly parallel, 

meaning the dissimilarity in the acquisition angles is extremely 

slight. TomoSAR is known as a class of parallel tomography. 

Nevertheless, circular tomography acquires images from 

various angles around the target. In the projection-slice theorem, 

if the number of projections of the desired object at an infinite 

number of angles is limitless, the reconstruction of the 3D 

model of the original object is possible. 

Because of the difference in the range direction for each pixel, 

the height cannot be assessed using a linear function. To find 

the non-linear function, some parameters, such as the precise 

acquisition angle, the swath width, and the resolution in each 

direction, is essential. TomoSAR, as an evolved form of InSAR, 

is a multi-track approach that utilizes several SAR images from 

the same region to discover the number of scatterers and assess 

the reflectivity profile along the elevation direction for each 

image pixel. 

With the release of high-resolution space-based SAR satellites, 

such as TanDEM-X and TerraSAR-X, the efficient use of very 

high-resolution SAR images has attracted the attention of many 

researchers in urban mapping. Many scholars have also 

proposed many algorithms for TomoSAR imaging, such as 

Fourier transform methods and spectral estimation methods 
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(Reigber and Moreira, 2000) and (Fornaro et al. 2003). 

However, due to the limitation of the acquisitions and the 

irregular baselines of the spaceborne SAR system, the 3D 

reflectivity profile reconstructed by the algorithms above is 

usually inefficient. 

Standard spectral estimation algorithms are divided into three 

categories: compressive sensing (CS) (Zhu and Bamler, 2010), 

parametric, and nonparametric methods (Wei et al. 2014). The 

nonparametric benefit over the other two techniques is that it 

usually produces a dense spectrum whose positions of peaks are 

clarified as locations of scatterers in the direction of elevation 

(Gini et al. 2002). Also, the number and the indefinite 

parameters of scatterers are directly assessed using the SAR 

images (Wei et al. 2014). Well-known nonparametric Direction-

of-Arrival (DOA) estimation approaches such as the Capon 

method, Beamforming, and so forth can be executable. 

Nevertheless, due to the small number of observations, 

tomographic inversion in nonparametric spectral estimators is 

often challenging.  

This paper attempts to assess the capability of nonparametric 

spectral estimation algorithms in a case study with complex 

geometry, based on a small number of SAR tracks. Considering 

that, three nonparametric spectral estimators in TomoSAR 

application, i.e., minimum norm (MN), linear prediction (LP), 

and maximum entropy (MP) in the placement position of the 

three buildings with equal height adjacent to each other, are 

evaluated. This study aims to improve the TomoSAR 

reconstruction quality and the building height estimation for the 

limited amount of images. In this used complex case study, the 

obtained results indicate the capability of the proposed LP 

spectral estimation algorithm to distinguish different scatterers 

in an image pixel, reduce the sidelobe effect, and the low 

difference between the estimated height and the ground-truth 

value. 

2. METHODOLOGY 

2.1 Basic TomoSAR Theory  

As a multi-baseline extension of conventional cross-track SAR 

interferometry, TomoSAR provides complete 3D imaging by 

organizing a synthetic aperture principle along the 

perpendicular direction to both slant range and azimuth 

directions. This arrangement can be consecutive, with a single 

SAR sensor acquiring data at different times. 

If the SAR sensor observes the same area by N times, the 

received signal
ng from all of the scatterers of the n th  image 

for the pixel ( , )x r  of the azimuth range cell is formulated as 

follows: 

 

   ( ) ( ), ( ) ( 2 ) ,n n ng jx r s exp s ds x r  = − +                       (1) 

 

where   ( )s = complex received reflectivity of the scatterer                                  

               
2 n

n

b

r



⊥= = spatial frequency along the elevation  

              r = distance between pixel and the reference antenna  

                = wavelength parameter 

             
nb⊥

= vertical component of the spatial baseline  

              ( ),n x r = noise term  

Due to the existence of the limited number of scatterers in each 

pixel, we can discretize s  to the L backscattered positions 

uniformly with a step equal to s : 
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1
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s s
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The equation (2), in the form of a matrix, changes to: 
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g = Aγ + ε  

 

where  1 2( ) ( ) ( )Ls s s=A a a a  = N L matrix related to 

the SAR acquisition geometry 

            ( )isa  = its i th  column vector 

To estimate the 3D reflectivity function γ , first, a stack of 

collected range-azimuth images is pre-processed to remove the 

flat-earth phase component and the phase errors introduced by 

atmospheric propagation. Then, DOA-based estimation methods 

can be applied to the processed SAR images. In the following, 

we inset three nonparametric spectral estimation methods with 

TomoSAR application for the robust height reconstruction of 

buildings.  

2.2 Spectral Estimation methods in TomoSAR 

2.2.1 Linear Prediction Estimation Algorithm: The DOA 

estimation technique based on spectral LP is widely applied in 

fields like time series, spectrum estimation, and array signal 

processing models (Makhoul, 1975). The proposed LP approach 

is based on minimizing the output average power of signal over 

the antenna array (Gamba, 2020). Thus, in the stack of SAR 

images, the proposed method is considered robust in improving 

building height retrieval and TomoSAR reconstruction.  
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2.2.2 Linear Prediction Estimation Algorithm: The DOA 

estimation technique based on spectral LP is widely applied in 

fields like time series, spectrum estimation, and array signal 

processing models (Makhoul, 1975). The proposed LP approach 

is based on minimizing the output average power of signal over 

the antenna array (Gamba, 2020). Thus, in the stack of SAR 

images, the proposed method is considered robust in improving 

building height retrieval and TomoSAR reconstruction.  

The predictive coefficients, ( )ls , in a weighted linear 

combination of exp[ 2π ]nj ξ s− , are the basis of the modulation 

of the received signal. The value of 
ng  for each pixel in the 

SAR image can be written as:  

 

1

( )exp[ 2π ]   =1,2,...,    =1,2,...,
L

n l n l n

l

g s j s n N  l L  
=

= − +   (4) 

 

where ( )ls = reflectivity power for the position of ls  

 

This estimator minimizing the criterion of  
H 2 H H 2 HE{| ( ) | } E{| ( ) ( ) | } ( ) ( )s s s s s= = gγ g γ gg γ γ C γ  finds the vector 

of predictive coefficients 
1 2( )=[ ( ), ( ),..., ( )]Ls γ s γ s γ sγ . The LP 

technique minimizes the criterion subject to the constraint of 

unity of the the weight vector for the chosen position in the 

elevation direction. This restriction can be expressed as: 

 

            
H( ) = 1sγ u                                                                   (5) 

 

where u  = column vector in the identity matrix 
N NI  

The covariance matrix of each pixel in the LP spectral 

estimation method is calculated using the averaging of 

neighborhood pixels in both azimuth and range directions: 

 

         H H

1

1
E{ }

K

kK =

=  = g gC gg C gg                                     (6) 

 

where E[.]  = Expectation operator 

          
H(.)  = Hermitian operator 

          K  = total number of adjacent pixels for the averaging  

The Lagrange multiplier technique in the LP estimator is 

employed to find the optimal LP weight vector and the power 

spectrum by equations (7), (8). 
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2.2.3 Maximum Entropy Estimation Algorithm: The 

maximum entropy estimator is equivalent to the least-squares 

fitting of the autoregressive time series model to the input data. 

The covariance matrix extrapolation as the basis of this 

technique is carried out to achieve signal entropy maximization. 

The ME estimator aims to search the autoregressive coefficients 

such that the expected prediction error of the optimization 

problem is minimized subject to the 
1ωe condition, where 

1 2[ , ,..., ]N  =ω and [1,0,...,0]=1e  are the autoregressive 

coefficients vector and first column in the identity matrix, 

respectively. This estimator uses the Lagrange multiplier 

algorithm to solve the AR coefficients in the optimization 

problem. The AR coefficients and power spectrum in the ME 

estimator can be given by equations (9) and (10): 

 
1

T 1

−

−
=

g 1

1 g 1

C e
ω

e C e
                                                                     (9) 

 

ME 2
T

1
P ( )

j

s =
A C

                                                              (10) 

 

where jC  = j th vector in the inverse covariance matrix 

2.2.4 Minimum Norm Estimation Algorithm: This 

estimator as a subspace algorithm is known in DOA estimation. 

In this method, SVD is used to decompose the covariance 

matrix into three component matrices, such as T=gC USV . The 

noise subspace is excluded from the signal by eigenvectors 

corresponding to small eigenvalues of the U  so that 

Noise (:, 1: )q N= +U U . The number of the largest eigenvalues in 

the covariance matrix is defined with q . In this method, the 

finding of the optimal weight vector T

1 2[ , ,..., ]Nd d d=d can be 

determined as a linear combination of noise eigenvectors.  For 

the assignment problem, the optimal solution can be expressed: 

 
H H H

Signalmin ,     =0,     1=1d d U d d e                                       (11) 

In column vector of 
1e , the components are all zeros, except 

one that equals 1. Signal 1 2[ , ,..., ]q=U u u u in equation (11), is 

constructed using the eigenvectors corresponding to the largest 

eigenvalues of the estimated covariance matrix. The first 

column of the N N  identity matrix satisfies this necessary 

condition. In the MN method, the solution to the optimization 

problem yields the equation's power spectrum: 

 

    MN T H 2

Noise Noise

1
P ( )

| |
s =

1A U U e
                                   (12) 

 

3. STUDY AREA AND DATASET 

For the present research, the selected study area is Eskan towers 

at the intersection of these two main streets, Mirdamad and 

Vali-e-Asr, in the north of Tehran, Iran. Eskan project 

comprised three buildings with latitude and longitude of 

35°45'50.16"N and 51°24'39.85"E, respectively. Due to 
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different scatters interfering from these three buildings, the 

selected building is known as a complicated study area. In this 

paper, the test building with a height of 72 m covers a subset of 

the image with pixels. Figure 1 shows the location of the Eskan 

towers on Google Earth and the corresponding mean amplitude 

of TerraSAR-X images. 

To evaluate the performance of the proposed TomoSAR 

algorithms based on the nonparametric spectral estimators, we 

have acquired a stack of 19 stripmap images from a descending 

orbit over the city of Tehran, Iran. TerraSAR-X took the SAR 

images between 2012 and 2013, with a 1.2 m range resolution 

and 3.3 m azimuth resolution. The employed spaceborne 

satellite provides data from a HH polarization in this paper. The 

value of the total spatial baseline distribution span for 19 SAR 

observations is 414 m, resulting in a Rayleigh elevation 

resolution of about 21 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study area over Eskan towers. (a) The average 

amplitude of 19 SAR images. (b) The position of the towers. 

 

4. EXPERIMENTS AND RESULTS 

This section attempts to analyze the impact of the number of 

SAR image observations in tomographic reconstruction. Robust 

detection of scatterers at elevation differences lower than the 

Rayleigh resolution and estimation of their heights are evaluated 

in the simulation of TerraSAR-X data stacks. To this aim, 

several numbers of SAR images are simulated, N = 19, N = 31, 

and N = 65, with the same total baseline in each scenario. 

Figure 2 illustrates the reconstructed reflectivity profiles 

obtained by six nonparametric spectral estimation techniques, 

LP, ME, MN, SVD, Capon, and BF. It can be found that 

increasing the number of SAR acquisitions, ME, MN, SVD, 

Capon, and BF can resolve the scatterers interfering in the same 

pixel. The proposed nonparametric LP estimator provides the 

super-resolution capability and allows the detection of the two 

scatters located at distances lower than Rayleigh resolution 

while using a small number of SAR observations. The presented 

results show that this proposed method is robust to the number 

of employed images, while other algorithms, such as SVD, ME, 

Capon, MN, and BF, depend on the number of looks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. reflectivity profile with the different number of 

simulated data. (a) 19 observations. (b) 31 observations. (c) 65 

observations. 

As shown in Figure 1, the side-looking imaging geometry 

makes interpreting the buildings from urban SAR images highly 

challenging. The top of Eskan tower appears near range, 

whereas the response from the bottom of the building study is at 

the far range. In SAR images, more than one scatterer is 

mapped onto one pixel due to the interaction between the 

building facades and the ground. Figure 3 illustrates the results 
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of the tomographic reconstruction using the nonparametric 

estimators such as the LP, ME, MN, SVD, Capon, and BF along 

the vertical red marked within the mean amplitude SAR image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Tomographic reconstruction using nonparametric 

spectral estimation method. (a) LP. (b) ME. (c) MN. (d) SVD. 

(e) Capon. (f) BF. 

The obtained results indicate the nonparametric LP estimation 

algorithm's ability to reduce noise levels, reconstruct continuous 

reflectivity profiles, separate the overlaid scatterers inside an 

image pixel, and improve the Eskan height estimation. As 

depicted in this figure, the reconstructed tomographic profiles 

by SVD, MN, Capon, ME, and BF methods suffer from severe 

sidelobe interference, the inability to discriminate the 

contribution of the possible layover scatterers at different 

heights, the jumping at different heights in the tomograms and 

the considerable differences between the building height 

estimation and ground-based measurement of the Eskan case 

study building. However, the height estimated with the 

proposed LP estimator from the difference between the top and 

bottom sections of the Eskan building is 75 m, 3 m height 

difference with reference data. Table 1 presents the estimated 

heights using the employed nonparametric spectral estimation 

methods and their differences with the actual value of the Eskan 

building height. 

 

 

Method LP ME MN SVD Capon BF 

Estimated 

Height (m) 
75 60 -11 -39 -14 -11 

Difference 

(m) 
-3 12 83 111 86 83 

 

Table 1. Estimated building heights and their differences 

 

5. CONCLUSION 

In this paper, we presented nonparametric spectral estimation 

techniques to improve the urban area's building reconstruction 

and height estimation using a stack of 19 TerraSAR-X stripmap 

images. To analyze the effectiveness of the proposed TomoSAR 

techniques, the Eskan building at the intersection of Mirdamad 

and Vali-e-Asr streets in Tehran, Iran, was selected. In the 

Eskan project, this building is known as a case study with 

complex geometry due to the placement of the three buildings 

with equal height adjacent to each other and the high probability 

of multiple scattering interference. Compared to the other 

employed spectral estimation algorithms, such as SVD, MN, 

Capon, and BF, the obtained results verify the capability of the 

LP estimator method to resolve different scattering 

contributions in a SAR image, suppress the sidelobe level and 

height discontinuity in the tomogram, and improve the accuracy 

of building height estimation. The estimated height of the test 

building is near field-based measurement. Also, the results of 

simulated data indicate the ability of the proposed LP to 

separate two scatterers below the Rayleigh resolution while 

using the small number of SAR acquisitions. 
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