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ABSTRACT: 

 

Pan-sharpening (PS) fuses low-resolution multispectral (LR MS) images with high-resolution panchromatic (HR PAN) bands to 

produce HR MS data. Current PS methods either better maintain the spectral information of MS images, or better transfer the PAN 

spatial details to the MS bands. In this study, we propose a decision-based fusion method that integrates two basic pan-sharpened very-

high-resolution (VHR) satellite imageries taking advantage of both images simultaneously. It uses two-level rolling self-guidance 

filtering (RSGF) and Canny edge detection. The method is tested on Worldview (WV)-2 and WV-4 VHR satellite images on the San 

Fransisco and New York areas, using four PS algorithms. Results indicate that the proposed method increased the overall spectral-

spatial quality of the base pan-sharpened images by 7.2% and 9.8% for the San Fransisco and New York areas, respectively. Our 

method therefore effectively addresses decision-level fusion of different base pan-sharpened images. 

 

 

1. INTRODUCTION 

Earth observation (EO) satellites such as WorldView, QuickBird 

and Gaofen, provide a low-spatial-resolution multispectral (MS) 

image of rich spectral content and a single-band high-spatial-

resolution panchromatic (PAN) image without considerable 

spectral information. Fusing the MS and PAN images produces a 

high-resolution MS (called pan-sharpened) image of a relatively 

high spectral information content. 

       Several image fusion methods (also called pan-sharpening 

algorithms) have been proposed to integrate the above-mentioned 

images (Snehmani et al., 2017; Javan et al., 2021; Peijuan et al., 

2021). Generally, every PS process can be performed on three 

levels: at the pixel level, the feature level, or the decision level 

(Belgiu and Stein, 2019). PS methods can be classified into five 

major categories of component substitutions (CS)-based 

methods, multi-resolution analysis (MRA)-based methods, 

variational optimization (VO)-based methods, hybrid methods 

and deep learning (DL)-based methods (Javan et al., 2021). 

Methods from each category have their strengths and 

weaknesses: some are good at preserving the spectral information 

of the MS image, while others focus more on transferring the 

spatial information of the PAN band to the MS image. In the first 

case, the pan-sharpened image largely has the spectral and color 

characteristics of the MS image, while in the latter case it may be 

more similar to the PAN image in terms of spatial features, for 

instance, sharpness of edges and spatial patterns. 

       Fusion of two or more pan-sharpened images being produced 

using different PS methods can be a good solution to enable us to 

take advantage of each base method, i.e. to enjoy the strength of 

each algorithm and on the other hand avoid their weaknesses. In 

this regard, Lou et al. (2013) purposed a decision-based method 

for the fusion of two pan-sharpened remotely sensing images. 

Their method was based on image segmentation and then locally 

selecting the best pan-sharpened image. Due to the segmentation 

 
*  Corresponding author 

 

errors, their algorithms cannot always produce high-quality pan-

sharpened images. Based on the object-based spectral quality 

assessment (Samadzadegan and Javan, 2011; Rodríguez-

Esparragón et al., 2017; Toosi et al., 2020a) we proposed a 

decision-based fusion of multiple pan-sharpened images based 

on image multi-resolution segmentation and classification and 

showed that our new combined fusion strategy can increase the 

spectral quality of the initial pan-sharpened images by about 

37%, without image spatial distortions and spectral artifacts 

(Toosi et al., 2020b).      

       Nowadays this kind of very-high-resolution (VHR) pan-

sharpened images are widely used in applications where both 

spatial resolution and spectral information are required 

simultaneously (Mehravar et al., 2022). Urban mapping and land 

use/land cover (LULC) classification are two topics that require 

“high spatiality” and “high spectrality” information for these data 

(Javan et al., 2019; Gaur et al., 2015). Due to the wide range of 

applications more endeavors are needed to be conducted to take 

the advantage of two or more pan-sharpened images as much as 

possible. To do this, inspired by the guided filtering-based 

common pan-sharpening method developed by Meng et al. 

(2016), we propose a new method for decision-level fusion of 

two pan-sharpened images (produced by the means of two 

different basic PS algorithms) based on the edge-preserving 

rolling self-guidance filtering (RSGF) paradigm and edge 

detection. 

       The remainder of this paper is organized as follows: Section 

2 is devoted to describing the proposed methodology, describing 

the concepts of RSGF, and the dataset. The results of the 

implementation phase and some discussions related to the 

obtained results are presented in Section 3. Finally, some 

concluding remarks are drawn in Section 4. 
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2. MATERIALS AND METHODS 

2.1 Methodology 

A diagram of the proposed method for decision-based fusion of 

two pan-sharpened images is presented in Figure 1. According to 

this flowchart, the initial PAN and MS images are fused using 

two different PS methods, called “Method 1” and “Method 2”, 

while the output of the two PS methods are known as “PS 1” and 

“PS 2”, respectively.  

       Next, the spectral and spatial qualities of the obtained pan-

sharpened images are assessed compared to the initial MS and 

PAN images. The standard form of Wald’s protocol (Wald et al., 

1997) is commonly used to assess the spectral quality (Figure 2-

a). Based upon the mentioned standard scheme the initial MS and 

PAN data are downscaled (with a scale factor of 1/4) and 

resampled and then fused and the fused product is compared to 

the downscaled images. In our study, we modify Wald’s protocol 

(Figure 2-b), due to our specific decision-fusion paradigm. In this 

scheme, the MS image is sharpened using the PAN band and the 

obtained pan-sharpened image is rescaled and resampled to the 

4×4 downer scale. Finally, it is compared with the initial MS and 

PAN data (Ghassemian, 2016). 

       After the spectral and spatial quality assessment, the pan-

sharpened output with a relatively better spectral quality is 

denoted as PSSpc while that with a relatively better spatial quality 

is denoted as PSSpt. Then the histogram of the target PSSpt image 

is matched to that of the reference PSSpc image, and the output is 

named PSSpt-HM. We chose this alternative in order to have more 

compatible outputs in the subsequent processing chain. We then 

minimize the objective function according to Eq. 1. 

Θ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑀 ∑ 𝑑(𝑀(𝑃𝑗), 𝑄𝑗)𝑗                         (1) 

where M(Pj) is the optimal color mapping function that aims to 

minimize the distance (d) between the histogram sets of PSSpc and 

PSSpt, named 𝑃 = {𝑝𝑖}𝑖=1
𝑘  and 𝑄 = {𝑞}𝑖=1

𝑘 , simultaneously. 

Thus, minimization of Θ leads to matching the histogram of PSSpt 

to that of PSSpc. 

       At the next step the obtained PSSpt-HM is decomposed into its 

principal component as PC1, PC2, …, PCn. In this way, a single-

band image, i.e. PC1, is obtained by reducing the data 

dimensionality that contains the majority of spatial information 

of the PSSpt-HM image, with the lowest possible noise level. As an 

equation, the PCs are obtained as Eq. 2. 

𝑃𝐶𝑛 = ∑ 𝑔𝑛𝑘 × 𝑃𝑆𝑆𝑝𝑡−𝐻𝑀𝑘

𝑚
𝑘=1                           (2) 

where gnk is the kth element of the ith eigenvector  
 𝑔𝑛

𝑡 = (𝑔11 , 𝑔12 , … , 𝑔1𝑘 , … , 𝑔1𝑚) (Liu and Mason, 2016). 

 

       The Canny edge detector (Canny, 1986) is used to extract 

edges from the PC1 resulting into the extracted edge map E. In 

addition, the edge-preserving rolling self-guidance filter (RSGF) 

(Zhang et al., 2014) is applied to PC1. The obtained result is a 

base layer (B) that contains both low frequency and strong edge 

information (Meng et al., 2016). The base layer may contain a 

low variety of slight edges. By subtracting the PC1 and B, 

smoothed by a Gaussian low-pass filter (GLF), the detail layer 

(D) is obtained (Eq. 3). 

𝐷 = 𝑃𝐶1 − 𝐺𝐿𝐹 ∗ 𝐵                                   (3) 

where 𝐺𝐿𝐹 ∗ 𝐵 is referred to as the filtered base layer. 

       By applying multi-level thresholding (MLT) (Otsu, 1979) D 

is segmented into a desired detail mask (Dm) and an area 

containing no considerable details. Eq. 4 shows how this method 

looks for the optimum threshold to minimize the intra-class 

variance of image pixels. 

δw
2 (t) = w0 × δ0

2(T) + w1 × δ1
2(T)                (4) 

𝐷𝑚 = 𝐷 | 𝐷 > 𝑇                                (5) 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of the proposed decision-fusion method 
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where 𝛿0
2(𝑇) and 𝛿1

2(𝑇) are variances of the two segments, and 

𝑤0 = ∑ 𝑝(𝑖)𝑇−1
𝑖=0  and 𝑤1 = ∑ 𝑝(𝑖)𝐿−1

𝑖=0  are the probabilities of the 

two segments separated by an optimum threshold (T). The 

vertical bar | indicates conditional equality, i.e. conditional on 

those pixels of D where the D>T. 

Figure 2. Wald’s protocol: (a) the first (standard) algorithm, (b) 

the second algorithm 

          The overall spatial features of PC1 are extracted by 

integrating the edge map E with the detailed map Dm using the 

OR logical operation as Eq. 6. 

𝑆𝐹 = 𝐸||𝐷𝑚                                      (6) 

where || denotes the OR logical operator. Pixels that were 

recognized as edges in E or as details in Dm, will be present in 

the final SF image. 

       As in the VHR satellite image due to the high diversity of 

pixel values and high heterogeneousness of pixels around the 

edges and spatial details we dilate the obtained primary SF by 

morphological operations (Eq. 7) to obtain neighbor pixels 

around the edge and details pixels: 

𝑆𝐹𝑓𝑖𝑛𝑎𝑙 = 𝑆𝐹𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ⊕ SE                         (7) 

where  and SE denote the morphological dilation operation and 

the desired structural element, respectively, 𝑆𝐹𝑝𝑟𝑖𝑚𝑎𝑟𝑦 is the 

primary spatial features map and 𝑆𝐹𝑓𝑖𝑛𝑎𝑙 the dilated map. For 

brevity, 𝑆𝐹𝑓𝑖𝑛𝑎𝑙 is called the m1 mask and its complement 

representing the flat area the m2 mask (𝑚2 = 1 − 𝑚1). 

       The m1 and m2 masks can be exerted to the PSSpt-HM and 

PSSpc, respectively according to the linear composition equation 

of Eq. 8, providing us the final pan-sharpened image, denoted as 

PSfinal.  

𝑃𝑆𝑓𝑖𝑛𝑎𝑙 = 𝑚1 × 𝑃𝑆𝑆𝑝𝑡𝐻𝑀
+ 𝑚2 × 𝑃𝑆𝑆𝑝𝑐              (8) 

Based upon the decision-based fusion paradigm of Eq. 8, PSfinal 

takes the pixels related to spatial features from all spectral bands 

of PSSpt-HM. This is because we consider the spatial characteristics 

of objects in these areas to be important and PSSpt-HM better 

performs from the spatial quality point of view. Similarly, the 

reminder pixels which are related to the flat area with no 

noticeable spatial features are captured from the PSSpc image and 

are assigned to PSfinal. 

       During the final phase of the proposed method, the quality 

of the obtained PSfinal is evaluated both subjectively and 

objectively. The subjective evaluation is done by the human 

(expert) visual system (HVS) while the latter is done using the 

quality assessment metric and according to the second form of 

Wald’s protocol. 

 

2.2 Rolling guidance filtering (RGF) 

VHR satellite images contain a variety of spatial features 

including structures and object edges. Guidance filters as edge-

preserving filters are utilized to perform edge-preserving 

smoothing on these kinds of images. This is usually conducted 

using the content of another image, called a guidance image, to 

influence the filtering process. Sometimes the target image can 

jointly be considered as the guidance image; in such a case the 

guidance filtering is called self-guidance filtering (Meng et al., 

2016). 

       The edge-preserving guidance filtering involves an input 

image I, a guidance image G, and an output image IGF (which is 

assumed to be a linear transformation of G in a local kernel wk 

centered at pixel k (Eq. 9). 

𝐼𝐺𝐹𝑖
= 𝑎𝑘𝐺𝑖 + 𝑏𝑘 , ∀𝑖 ∈ 𝑤𝑘                          (9) 

where Gi and IGFi stand for the ith pixel of the guidance image 

and output images in kernel wk. Also, wk is a square kernel of 

size (2R+1)×(2R+1), where R is the radius of the kernel. 

Furthermore, as and bk are constant linear coefficients in wk and 

can be estimated by minimizing the squared difference between 

the input and output images (He et al., 2012; Gao et al., 2016). 

From a practical point of view, the guidance filtered images are 

usually estimated as Eq. 10. 

𝐼𝐺𝐹𝑖
= �̅�𝑖𝐺𝑖 + �̅�𝑖                                   (10) 

where �̅�𝑖 =
1

|𝑤|
∑ 𝑎𝑘𝑘∈𝑤𝑖

 and �̅�𝑖 =
1

|𝑤|
∑ 𝑏𝑘𝑘∈𝑤𝑖

. 

       Different types of guidance filters have been proposed so far 

which are used for PS tasks as well (Gao et al., 2016). One of the 

most effective methods was proposed by Zhang et al. (2014). 

They developed an iterative edge-preserving image guidance 

filtering method called rolling guidance filtering (RGF) that 

converges rapidly. This fast method is extensible to 

accommodate various types of image operations and achieves 

real-time performance and produces artifact-free results. 

 

2.3 Data description 

In this study, two VHR satellite imageries are used. Each dataset 

includes one PAN band and its corresponding MS images. The 

first dataset is a Worldview (WV)-2 image from the San 

Francisco-United States of America (USA) and the second one is 

a WV-4 from the New York (NY)-USA. The mentioned dataset 

are shown in Figure 3 in true color composite (TCC), i.e. RGB, 

and some pieces of information are provided in Table 1 related to 

them. 

 

Data Sat.* Bands 
GSD 

(MS/PAN) 

Org. size** 

(PAN/MS) 

San. 
WV-

2 

8 (coastal, blue, 

green, yellow, 

red, red edge, 

NIR1, NIR2) 

1.84/0.46 

m 

1000×1000 / 

4000×4000 

pixels 

NY 
WV-

4 

4 (red, green, 

blue, NIR) 

1.24/ 0.31 

m 

16384×16164 

/ 4096×4041 

pixels 

* Sat.: Satellite, San.: San Francisco, NIR: near infra-red, GSD: 

Ground sampling distance, Org.: Original 

** This is the initial size of the datasets. This study is conducted 

on the resized form of the original data, i.e. PAN: 1024×1024 

and MS: 256×256 for both case studies 

 

Table 1. Data descriptions 
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Figure 3. Presentation of datasets: (a) Resized PAN and MS 

image from San Francisco, (b) Resized PAN and MS image 

from NY 

 

2.4 State-of-the-art PS methods 

In this study, four PS methods are used: the Ehlers (Klonus and 

Ehlers, 2009), Gram-Schmidt (GS) (Laben and Brower, 2000), 

Smoothing Filter-based Intensity Modulation (SFIM) (Liu, 

2000), and Brovey (Gillespie et al., 1987) methods. A brief 

description of these methods is provided in Table 2. It is to some 

degree irrelevant which PS methods is used in this study because 

it does not make much of a difference when implementing our 

method. We tried as much as possible to choose methods that 

behave differently in terms of performance based on the results 

of our former meta-analysis study (Javan et al., 2021). 

 

Method  Description / Formula 

Ehlers 
In this method (which is also known as Fast Fourier-

Transform IHS-Transform) image fusion is conducted 

in the Fourier space of the PAN and MS images. 

Brovey 𝑃𝑆𝑖 = (
𝑀𝑆𝑖

1

𝑛
∑ 𝑀𝑆𝑖

𝑛
𝑖=1

) × 𝑃𝐴𝑁                (11) 

GS 
It is based on component substitution of the first GS 

component (GS1) of the MS image and the PAN band. 

SFIM 𝑃𝑆𝑖 =
𝑃𝐴𝑁

𝑀𝑆𝑀𝑒𝑎𝑛
∗ × 𝑀𝑆𝑖                     (12) 

*MSMean: a mean image that is produced by an average filter. 

 

Table 2. Information on PS methods 

 

3. RESULTS AND DISCUSSIONS 

Ehlers and SFIM PS methods are applied to the San Francisco 

dataset and Brovy-GS pairs are used for PS of the NY images. It 

is noteworthy that as usually there is a ratio of 1:4 between the 

MS and PAN images so the MS data is first upsampled to the 

resolution of the initial PAN band (↑ 𝑀�̃�𝑛, 4×4) and then 𝑀�̃�𝑛 

fused with the PAN information. Figure 4 presents the results of 

all PS methods in two case studies. Based on the second form of 

Wald’s protocol the spectral and spatial quality assessment is 

conducted based on the multi-modal Spectral Angle Mapper 

(SAM) (Alparone et al., 2007) and the Spatial Correlation 

Coefficient (SCC) (Pushparaj and Hegde, 2017), respectively. 

These metrics as two of the most commonly used measures for 

spectral and spatial quality assessment are defined according to 

Eq. 13 and Eq. 14, respectively. 

 

Figure 4. PS results: (a) San Francisco dataset, (b) NY dataset 

 

𝑆𝐴𝑀(𝐼𝑟 , 𝐼𝑓) = arccos [
∑ (𝐼𝑟(𝑖)−𝐼𝑓(𝑖))𝑛

𝑖=1

√∑ 𝐼𝑟(𝑖)𝑛
𝑖=1 √∑ 𝐼𝑓(𝑖)𝑛

𝑗=1

]           (13) 

 

𝑆𝐶𝐶(𝐼𝑓 , 𝑃𝐴𝑁) =
∑ ∑ (𝐼𝑓𝑖

−𝐼�̅�)(𝑃𝐴𝑁𝑖−𝑃𝐴𝑁̅̅ ̅̅ ̅̅ )𝑁
𝑖=1

𝑀
𝑗=1

√∑ ∑ (𝐼𝑓𝑖
−𝐼�̅�)𝑁

𝑖=1
𝑀
𝑗=1

2
∑ ∑ (𝑃𝐴𝑁𝑖−𝑃𝐴𝑁̅̅ ̅̅ ̅̅ )𝑁

𝑖=1
𝑀
𝑗=1

2
    (14) 

 

Where If and Ir referred to the fused and MS images, respectively. 

The bar symbol above some elements is related to the mean value 

of that element. Furthermore, M and N define the image 

dimensions. SAM values vary between 0 to 90 degrees where the 

SAM=0, as the ideal value, means that there is no spectral 

difference between the reference MS and pan-sharpened images. 

On the other hand, SCC measures the spatial similarity between 

the pan-sharpened image and the reference PAN band. The ideal 

SCC value is +1 where the spatial similarity is maximum and the 

value -1 refers to the minimum possible spatial similarity. 

       In the NY case, the Ehlers method has relatively better SCC 

while SFIM has a relatively better spectral performance so Ehlers 

and SFIM are known as PSSpt and PSSpc, respectively. In the case 

of the San Francisco dataset, GS produced a pan-sharpened 

image with relatively better SCC, and on the other hand, SAM 

for the Brovey method was closer to the ideal value, so here GS 

and Brovey are labeled as PSSpt and PSSpc, respectively. The 

results of the quality assessment are provided in Table 3, in which 

the superior methods are discriminated by bold font and the 

others are shown by the standard font. 

 

Dataset PS method 
Quality metric 

SAM SCC 

NY 
Ehlers 1.3428 0.9970 

SFIM 0.6485 0.9584 

San. 
GS 3.6528 0.9842 

Brovey 2.9791  0.9667 

 

Table 3. The results of spectral and spatial quality assessment 
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During the next step, the histogram of Ehlers and GS pan-

sharpened images are matched to that of SFIM and Brovey, 

respectively. Then they are decomposed to their principal 

components using the PCA that their first principal components 

(PC1) containing the maximum spatial information and the least 

possible noise are shown in Figure 5. The obtained PC1s are now 

ready for extraction of some important spatial information. First, 

the edges are extracted from both PC1s using the Canny operator 

(Figure 6). 

 

Figure 5. The first principal components (PC1): (a) San 

Francisco dataset, (b) NY dataset 

Figure 6. Edge maps (the white pixels denote the edges and the 

black background is related to non-edges pixels): (a) San 

Francisco dataset, (b) NY dataset 

 

       Rolling guided filter is applied to the PC1s, where in both 

cases the PCs themselves played the role of guidance images, i.e. 

the filtering was in the form of self-guidance. The parameters of 

RGF were set as default of the Zhang et al. (2014) paper as 

follows: 𝜎𝑠 = 4, 𝜎𝑟 = 0.1, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 4, 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.05. This led to the production of base 

layers (B) that contain both low-frequency information and 

strong edges (Figure 7). 

Figure 7. Base layers: (a) San Francisco dataset, (b) NY dataset 

 

       A Gaussian filter (with 𝜎 = 5) was applied to the obtained 

base layer (B) and the filtered output is subtracted from the PC1s. 

This operation leads to the extraction of detail layers (D). Figure 

8 presents the obtained detail layers for both case studies. MLT 

provides us with the optimum thresholds for segmenting the 

significant features. For the San Francisco and NY cases, the 

thresholds were estimated as 22.04 and 3.95, respectively. Figure 

9 presents the mentioned thresholds (T) on the histograms of 

detail layers and also the obtained masks which are produced by 

applying T to the detail layers. 

 

Figure 8. Detail layers: (a) San Francisco dataset, (b) NY 

dataset 

Figure 9. The results of MLT and the produced Dm: (a) San 

Francisco dataset, (b) NY dataset 

 

       The primary edge map (E) is integrated with the obtained 

detail mask (Dm) using the OR logical operation and then using a 

structural element with the size of 2, the results are dilated to 

contain the neighboring pixels around the edge, and details pixels 

as well. The final results which are called SFfinal-mask (or for 

brevity we call it m1) and its complement (m2) are shown in 

Figure 10. Note that m1 and m2 are masks that are related to the 

high-details and flat areas, respectively. 

       The linear combination of m1, m2, PSSpt-HM, and PSSpt (Eq. 8) 

produces the final PS image in a decision-based fusion scheme. 

The obtained decision-fused PS image for both case studies are 

shown in Figure 11. Here the concept of our decision-based 

fusion is better found. The “decision-based fusion” term indicates 

that the pixels of two base pan-sharpened images are transferred 
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to the final image with a decision that is made based on whether 

the pixels are part of the detailed class or part of the flat class. 

 

Figure 10. Masks of details area (m1) and flat area (m2): (a) San 

Francisco dataset, (b) NY dataset 

 

Figure 11. The final pan-sharpened images obtained by our 

decision-based fusion method: (a) San Francisco dataset, (b) 

NY dataset 

 

       As the subjective (visual) spectral and spatial quality 

assessment of the results, Figure 12 provides a comparison 

between the initial pan-sharpened images and the final decision-

based fused images. By scrutinizing the results it can be seen that 

in the flat areas the final pan-sharpened outputs are similar to the 

PSSpc images while in the details area they inherit the 

characteristics of the PSSpt-HM. 

       Here the objective quality assessment is done using SAM 

and SCC metrics. For spatial quality assessment, according to the 

second scheme of the Wads’ protocol, the obtained results are 

compared to the initial PAN images while for the spectral quality 

evaluation they are first downsampled to the resolution of initial 

MS bands, and then the evaluation is conducted between PSfinal 

and MS. By calculating the above-mentioned metrics it is seen 

that for the San Francisco case study the evaluation results are as 

follows: SAM=3.0201 and SCC=0.9700. Furthermore, for the 

NY case, the results are as: SAM=0.7770 and SCC=0.9641. By  

Figure 12. Subjective evaluation of final pan-sharpened images 

obtained by the decision-fusion method: (a) San Francisco 

dataset, (b) NY dataset 

 

considering the results of Table 3 which declare SAMmax, 

SAMmin, SCCmax, and SCCmin, and also considering that the SAM 

ideal value is zero and the SCC ideal value is +1, we propose 

some indices as Eq. 15-17 which calculate the overall (pure) 

amount of spectral and spatial quality improvement of the final 

pan-sharpened imaged compared to the initial pan-sharpened 

images in percent (%) unit. The results indicate that for the San 

Fransico case the overall spectral-spatial quality of final pan-

sharpened images improved by about 7.2 % compared to the 

initial Brovey and GS images. Also, for the NY case study, the 

overall spectral-spatial quality of the final decision-based fused 

image increased by about 9.8% in comparison to its base pan-

sharpened images, i.e. Ehlers and SFIM. 

𝑄𝐼𝑃𝑆𝑝𝑐 = (|
𝑆𝐴𝑀𝑚𝑎𝑥−𝑆𝐴�̃�

𝑆𝐴𝑀𝑚𝑎𝑥
| × 100) − (|

𝑆𝐴𝑀𝑚𝑖𝑛−𝑆𝐴�̃�

𝑆𝐴𝑀𝑚𝑖𝑛
| × 100) (15) 

 

𝑄𝐼𝑃𝑆𝑝𝑡 = (|
𝑆𝐶�̃�−𝑆𝐶𝐶𝑚𝑖𝑛

𝑆𝐶𝐶𝑚𝑖𝑛
| × 100) − (|

𝑆𝐶𝐶𝑚𝑎𝑥−𝑆𝐶�̃�

𝑆𝐶𝐶𝑚𝑎𝑥
| × 100)   (16) 

 

𝑂𝑄𝐼𝑃 = 0.5 × (𝑄𝐼𝑃𝑆𝑝𝑐 + 𝑄𝐼𝑃𝑆𝑝𝑡)                    (17) 
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Where QIPSpc, 𝑄𝐼𝑃𝑆𝑝𝑡, and 𝑂𝑄𝐼𝑃 stands for the improvement of 

spectral quality,  the improvement of spatial quality,  and the 

overall improvement of joint spectral-spatial quality (all in 

percent unit) of the final pan-sharpened image in comparison to 

the initial pan-sharpened images, respectively. the tilts symbol 

(~) denotes the metric value for the final pan-sharpened image 

while the min and max are referred to as the minimum and 

maximum value of SAM or SCC for the primary pan-sharpened 

images, respectively. 

       Since the performance of no two PS methods is the same, 

therefore our proposed method is applicable for fusing them at a 

decision level. The significant role of our proposed decision-

fusion method is grasped when the two base PS methods have 

completely different performances in terms of preserving spectral 

information of the MS image and transmitting spatial information 

of the PAN band to the MS image. For better understanding, we 

consider the results of our meta-analysis on the performance of a 

variety of state-of-the-art PS methods (Javan et al., 2021). In the 

mentioned study a scatter plot has been produced in which the 

relative strength of different methods is illustrated in Figure 13. 

Our decision-level fusion method is so effective for the fusion of 

two pan-sharpened images that are located on the diagonal of this 

scatter plot (shown in yellow directions). As far as the methods 

located in these directions, our proposed method can produce 

more interesting results, as it can create new pan-sharpened data 

with both characteristics of the base images. 

 

Figure 13. Comparison between a variety of PS methods (Javan 

et al., 2021) 

 

 

4. CONCLUSIONS 

In the current study, we proposed a new decision-based fusion 

method for the integration of two pan-sharpened VHR satellite 

imageries. The developed method is based on the extraction of 

significant spatial features using edge-preserving rolling self-

guidance filtering and the edge information of images. 

       The performance of the proposed algorithm was tested using 

four state-of-the-art PS methods and two VHR satellite images. 

The results indicate that this decision-level fusion of pan-

sharpened images can take the advantage of the base pan-

sharpened images. It can effectively make a trade-off between the 

spectral and spatial quality of the base pan-sharpened images, i.e. 

it tries to reach the overall spectral-spatial quality of the final pan-

sharpened image somewhere between the least and the most prior 

quality of the initial pan-sharpened images. 

       Future research can implement a decision-based fusion 

merging our method with the results of the object-level analysis 

of image spectral quality to propose a method that can decide 

both based on the spatial fidelity and the local spectral quality of 

the image. 

       The result of our method can effectively be used in basic 

remote sensing research as it can create new data that could not 

be produced by any single PS method. At the end of this paper, 

we hope that the proposed method will open a new horizon in 

remote sensing image fusion. 
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