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ABSTRACT: 

 

The generation of air quality concentration data is imperative for the health and environment of highly urbanized regions.  Through 

remote sensing, air pollutant concentrations can be obtained over large areas for a long time. In this study, particulate matter (PM2.5 

and PM10) concentrations were estimated using satellite-derived Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-

Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Optical Depth (AOD) values observed in the National Capital 

Region (NCR), Philippines. Models were generated using multiple linear regression (MLR) and gradient boosting regression to 

determine the best models for the whole data from 2017 to 2020, dry season, and wet season with a 70-30 split for the train-test sets. 

Initial models resulted with the best coefficient of determination R2 values of 2.6% and 1.2% using MLR and 2.0% using gradient 

boosting regression. The results for PM2.5 and PM10 showed the lowest Root Mean Square Error (RMSE) values of 8.79 μg/m3 and 

18.99 μg/m3 using MLR and 8.08 μg/m3 and 16.85 μg/m3 using gradient boosting, respectively. The preliminary results indicate the 

relatively poor performance of models in estimating particulate matter using satellite-derived AOD images. Improvements in the 

models will include the integration of more in-situ data from air quality monitoring stations and the addition of additional variables 

and features such as meteorological parameters and geographical layers.  

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Air quality monitoring in the Philippines is conducted through 

ground monitoring station data regulated by the Department of 

Environment and Natural Resources (DENR). Through air 

quality monitoring, air pollutant concentration data are gathered 

to assess if concentration levels are good, unhealthy for 

sensitive groups, or at emergency levels. However, this 

assessment solely depends on the position of the monitoring 

stations placed by the regulatory department; therefore, limiting 

the scale of assessment based on the location of the air quality 

monitoring stations (Krunpick et al., 2003; Aniceto et al., 

2021). Moreover, the generation of regulatory-grade air quality 

monitoring stations is costly and would take a huge amount of 

time for planning and budgeting before being operational. 

Additionally, there are times when insufficient data were 

recorded for specific stations. In this sense, air quality sensors 

were developed by researchers and groups to generate more 

data, however, the coverage is still limited depending on the 

target area of the respective owners (Galarpe, 2017; Cruz et al., 

2019). On the other hand, air quality monitoring is also 

conducted nowadays by utilizing geospatial and remote sensing 

techniques to gather air quality data over large areas. Air quality 

data are either directly obtained from sensors in various satellite 

platforms or derived from satellite images using regression 

analysis or dispersion models. Engel-Cox et al. (2012) provided 

recommendations on the use of satellite remote sensing data for 

urban air quality assessment. The researchers showed the 

integration of ground-based and satellite data for air quality 

monitoring and the difficulties encountered in terms of 

collaboration, access, resources, and scope of analysis. Landsat, 

Multi-angle Imaging Spectroradiometer (MISR), Moderate 

Resolution Imaging Spectroradiometer (MODIS), TOMS, 

SeaWiFS, and SPOT were a few of the satellite systems 

discussed that are ready to be used for air quality applications. 

Duncan et al. (2014) of NASA Goddard Space Flight Center 

reviewed and discussed the use of satellite data for air quality 

applications. Satellite data was determined to be useful in 

tracking pollutant plumes, air quality forecasting, exceptional 

events demonstration, and data for air quality models. Li et al. 

(2020) proposed the integration of estimated particulate matter 

(PM) concentrations from satellite Aerosol Optical Depth 

(AOD) products and ground-based data from a network of low-

cost PM sensors. Specifically, 75 monitoring stations and 2,363 

AirBox low-cost sensor data together with MODIS Terra 

remote sensing data were used to generate surface PM 

estimates. Moreover, Allen et al. (1997), Chung et al. (2001), 

Hauck et al. (2004), and Takahashi et al.  (2008) determined 

that traditional methods for PM measuring such as the 

gravimetric method, β-ray attenuation monitoring, or the use of 

tapered element oscillating microbalance (TEOM) were costly 

and require regular maintenance. Therefore, other methods of 

measuring PM measurements were introduced, especially low-
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Figure 1. PM modelling workflow using MLR and gradient boosting algorithm. 

 
cost PM sensors and satellite-derived PM concentrations. 

Satellite-derived AOD is used in several studies for the 

estimation of ground-based particulate matter with particles of 

less than 2.5 µm in diameter (PM2.5). Various models such as 

linear regression, multiple linear regression (MLR), artificial 

neural networks, and geographically weighted regression were 

tested out by studies as a means of improving the relationship 

between AOD and PM2.5. One of the fundamental requirements 

in conducting the said models is the availability of satellite data. 

Gogikar, et al. (2020) conducted a study for the estimation of 

PM2.5 values from satellite-derived AOD using different kinds 

of regression models, namely, simple linear regression, MLR, 

log-linear regression, and conditional-based MLR. The study 

area is in Agra and Rourkela region, India with inclusive years 

ranging from 2009 to 2015. It was found that the coefficient of 

determination (R) was statistically significant from the use of 

Model II or MLR.    Moreover, Othman et al. (2010) generated 

PM10 estimates using Landsat 7 ETM+ satellite images and in-

situ measurements from the DustTrak aerosol monitor 8520. 

Multiple linear regression analysis was used to generate the 

PM10 estimation model from the RGB bands of Landsat 7 

ETM+. The coefficient of determination resulted in 0.888 and 

validation with in-situ data gave an accuracy greater than 0.8 for 

the R coefficient.  Machine learning algorithms, specifically 

gradient boosting, were also used by several researchers in 

estimating air quality concentration from satellite-derived 

images. Gradient boosting is a machine learning algorithm used 

to produce prediction models from an ensemble of weak 

predictive models for regression and classification. Gradient 

boosting optimizes a loss function depending on the type of 

problem needed to be solved, with squared error for regression 

as an example. The algorithm uses weak learners in the form of 

decision trees to make predictions. The output of the final 

model is improved and corrected by adding the output of the 

new tree to the existing sequence of trees until the loss reaches 

an acceptable level where no improvement can be observed 

(Natekin and Knoll, 2013). Gradient boosting is similar to 

random forests in terms of combining decision trees in the 

algorithm, however, random forests combine them at the end 

while gradient boosting combines the trees along the way In 

general, gradient boosting results in better performance than 

random forests if parameters were tuned. It would even work 

with unbalanced data, and reduce the chances of overfitting (Cai 

et al., 2020). Extreme Gradient Boosting (XGBoost) is an 

optimized gradient boosting algorithm that applies level-wise 

tree growth designed to be highly efficient, flexible, and 

portable. Chen et al. (2019) improved the estimation of ground 

PM2.5 estimation using satellite-derived AOD and extreme 

gradient boosting (XGBoost) to reduce limits and biases in 

estimating PM2.5.  Additionally, a two-step method was used to 

interpolate missing values in AOD, reducing the missing value 

rate of daily AOD data to 13.83% from 87.91%. Using 

XGBoost regression with a non-linear exposure-lag-response 

model (NELRM) resulted in a cross-validation coefficient of 

determination of 0.86, a Root Mean Square Error (RMSE) of 

14.98, and a Mean Absolute Percentage Error (MAPE) of 

23.72%. Another study by Fan et al. (2020) introduced a 

development in estimating PM2.5 using satellite-derived AOD 

using spatially local extreme gradient boosting (SL-XGB) to 

obtain accurate results in unsampled spatial areas while also 

filling gaps in satellite-derived AOD. This study shows the 

initial models generated for PM2.5 and PM10 estimation for 

seasonal and yearly models using MODIS MAIAC AOD and 

ground monitoring station PM as training-test data for the 

regression analysis.  

 

2. METHODOLOGY 

The study is divided into three major components as shown in 

Figure 1: (1) Gathering of input parameters, (2) pre-processing 

of satellite images and monitoring station data, and (3) 

regression modeling. 

 

2.1 Study Area 

  
 

Figure 2. The National Capital Region of the Philippines. 

 

Figure 2 shows the National Capital Region, a metropolitan area 

composed of four districts divided into 16 cities and 1 

municipality with a total land area of 619.57 km2, which serves 

as the seat of the government, population, and economy of the 

Philippines (Chua, et al., 2021). The region is affected by two 

seasons based on temperature and rainfall, specifically the wet 

season from June to November and the dry season from 
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December to May. Tomacruz (2018) determined that the 

Southeast Asian region averages 21 μg/m3 annually in PM2.5 

concentrations which is over twice the recommended value. 

With the region being the center of population and economy 

where 2.5 million annual average daily traffic was recorded, 

several risk factors that may cause hazardous effects are present 

in the region due to significant air pollution, especially in urban 

areas (Villas-Alvaren, 2016). Specifically, in terms of PM2.5, 

the World Health Organization (WHO) discovered the region’s 

average concentration of 30.44 μg/m3 from 2016 to 2018 far 

exceeded the annual PM2.5 standard recommended value of 20 

μg/m3. Particularly, the WHO report for 2016 showed that the 

Philippines' PM2.5 concentration value of 18.4 μg/m3 is 

approximately 80% higher than the indicated safe levels, with 

Metro Manila registering a value of 55 μg/m3 (Ambag, 2019). 

These high levels of ambient PM2.5 cause prolonged outdoor 

exposure to be hazardous, especially for those with occupations 

that are required to do so (Estoque, 2020). 

 

2.2 Input Parameters for Regression Analysis 

In this study, MODIS MAIAC satellite-derived AOD was used 

as the independent parameter for the regression analysis. 

MODIS is an instrument carried by NASA’s Terra and Aqua 

satellites launched on December 18, 1999, and May 4, 2002, 

respectively. One of the algorithms used to retrieve AOD from 

the MODIS spectral reflectance is the Multi-angle 

Implementation of Atmospheric Correction (MAIAC). . Two 

bands are available for analysis namely: Optical_Depth_47 

(AODB) and Optical Depth 55 (AODG). MAIAC AOD data 

(MCD19A2.006) which reports daily AOD in 1-km spatial 

resolution were directly downloaded using Google Earth Engine 

from 2017 to 2020. Datasets were clipped using the regional 

boundary shapefile and images with very high cloud cover were 

removed. In-situ PM data that were used as predicted variable 

data were obtained from the 15 ground monitoring stations of 

DENR placed all over NCR as shown in Figure 3. From these 

ground monitoring stations, PM observations every hour were 

extracted from 2017 to 2020. Hourly in-situ PM data were then 

aggregated to daily averages to match the temporal frequency of 

the satellite-derived AOD images.  

 

 
 

Figure 3. Air quality monitoring stations in the NCR. 

 

2.3 Pre-processing of satellite images and monitoring 

station data  

In-situ PM data were converted to point shapefiles to combine 

them with the respective AOD concentration data from the 

satellite images. Concentration values were extracted to comma-

separated values files using point sampling. Obtained data from 

point sampling were combined into one datasheet containing all 

the data from 2017 to 2020 (yearly), all data for the dry season, 

and all data for the wet season. Datasets were then converted to 

a two-dimensional data structure composed of rows and 

columns called dataframes using a script to prepare them as 

machine-ready datasets for regression modeling. Negative 

values and null data values, including random string values, 

were removed from the data frame. Moreover, outliers were 

removed through outlier detection techniques. Lastly, data were 

split into train-test data with 70-30 split percentages. 

 

2.4 Regression Analysis 

Models were generated using MLR and Extreme Gradient 

Boosting (XGBoost). MLR is a regression model that involves 

two or more independent variables in estimating its relationship 

with a dependent variable using a straight line (Tranmer et al., 

2020). On the other hand, XGBoost is an optimized gradient 

boosting algorithm that applies level-wise tree growth designed 

to be highly efficient, flexible, and portable (Wade, 2020). 

Hyperparameters were tuned using Randomized Search Cross 

Validation with 10 k-folds, iterating different combinations of 

hyperparameters to determine the best models, yearly and each 

season, to avoid overfitting and optimize processing time. The 

best-performing model was then saved using Joblib. Generated 

model was then tested using the test data, and the feature 

importance was determined to evaluate which features affected 

the models the most.  

 

3. RESULTS AND DISCUSSION 

3.1 Data Distribution Plots 

Data distribution was observed by checking the histogram and 

box plots of the input parameters for the PM modeling shown in 

Figure 4, Figure 5, Figure 6, and Figure 7, respectively. PM2.5 

values range from 0 to 50 µg/m3 with the first quantile value of 

15 and 3rd quantile value of 30, while 0 to 110 µg/m3 with the 

first quantile value of 38 and 3rd quantile value of 62 for PM10. 

On the other hand, AODB values range from 0 to 500 while 

AODB ranges from 0 to 350. These observations imply that the 

values concentrate more in areas below the average value of the 

respective input parameters. 

 

  

 
Figure 4. Histogram of the input parameters for PM2.5 models. 
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Figure 5. Box plots of the input parameters for PM2.5 models. 

 

  

 
Figure 6. Histogram of the input parameters for PM10 models. 

 

  

 
Figure 7. Box plots of the input parameters for PM10 models. 

 

3.2 Correlation Analysis 

Correlation between variables was first determined before 

regression modeling. Correlation analysis was performed to 

determine the strength of the relationship between the defined 

variables. However, it is necessary to remember that correlation 

analysis does not define causation between the variables. A 

positive correlation only denotes a direct relationship between 

the variables. If there is an increase/decrease in one variable, an 

increase/decrease can also be observed in the other variable. On 

the other hand, a negative correlation signifies an increase in 

one variable while the other variable decreases, and vice versa. 

Table 1 shows the correlation coefficient between AOD and 

PM. PM2.5 in general shows a greater correlation to AODB and 

AODG than PM10 to the independent variables.  

Correlation 
PM2.5 PM10 

Yearly Dry Wet Yearly Dry Wet 

AODB 0.15 0.12 0.14 0.086 0.11 0.05 

AODG 0.15 0.12 0.14 0.086 0.11 0.05 
 

Table 1. Correlation coefficient (Pearson) of AODB and 

AODG with PM2.5 and PM10. 

 

Models containing all the data from 2017 to 2020 (Yearly 

model) resulted in the highest correlation to PM2.5 while the dry 

season model showed the highest correlation between the 

variables for PM10. Correlation coefficients for all the models 

between AODB and AODG were very similar and almost equal. 

This indicates that AODB and AODG were highly correlated 

with each other and might be showing the same observations 

over the target areas. The similarity between AODB and AODG 

might be due to their nature of being AOD with the only 

difference being one was derived from 0.47 μm and 0.55 μm, 

respectively, having minute differences for most areas over 

land. With this result, future models can remove one of the said 

parameters for a more optimal modeling process and avoidance 

of multicollinearity between variables. 

 

3.3 Multiple Linear Regression Analysis 

After correlation analysis, models were generated using 

multiple linear regression both for all of 2017 to 2020 and dry 

and wet seasons. Table 2 shows the coefficient values of the 

resulting linear regression models for the yearly, dry, and wet 

seasons.  

 

Coefficient 
PM2.5 PM10 

Yearly Dry Wet Yearly Dry Wet 

Intercept 20.86 19.74 22.5 48.67 48.83 52.33 

AODB -0.21 -0.11 -0.12 -0.39 -0.92 -0.17 

AODG 0.32 0.16 0.18 0.58 1.32 0.25 
 

Table 2. Coefficient values of the generated PM models using 

multiple linear regression. 

 

The intercept value in a regression model represents the mean 

value of PM when the AOD is zero, though, a rare occasion for 

this parameter. On the other hand, the coefficient values for 

AOD showed negative values for AODB across all the models 

while positive values for AODG. This denotes that an increase 

in AODB causes a decrease in the mean PM and vice versa, 

while an increase/decrease in AODG causes an 

increase/decrease in the mean PM. Moreover, AODG resulted 

in higher magnitudes than AODB, implying that AODG affects 

the values of the PM more than AODB in the generated models. 

Model parameters including error measurements were also 

checked to determine the performance of the models. Table 3 

shows error measurements of the generated models, specifically 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

RMSE. The lower the error values for all these model 

parameters implies a better performance of the models.  

 

Model 
PM2.5 PM10 

Yearly Dry Wet Yearly Dry Wet 

MAE 7.76 7.05 7.91 16.51 15.68 18.54 

MSE 90.62 77.29 92.18 409.97 360.68 515.31 

RMSE 9.52 8.79 9.61 20.25 18.99 22.7 
 

Table 3. Model error measurements of the generated PM 

models using MLR. 
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Specifically for RMSE, the resulting models showed relatively 

low error values with the dependent variable, PM, with 

minimum and maximum values of 0 to 50 for PM2.5 and 0 to 

100 for PM10. The coefficient of determination (R2) for almost 

all models resulted in positive values significant from zero with 

the highest percentage of around 2.6%. PM2.5 models showed a 

better fit than PM10 to AOD, however, underfitting was present 

for both models of PM2.5 and PM10. This might imply that the 

variability of PM was not fully taken into account by the 

independent variables, AOD. Therefore, for the improvement of 

the model, other variables were added to the modeling process 

such as meteorological parameters. Moreover, the number of 

observations used to model PM might not be enough to 

properly calculate its variability as also seen later on with the 

gradient boosting models. 

 

Figure 8 and Figure 9 display the scatter plot of in-situ PM vs 

predicted PM from MLR. Scatter plots showed the 

concentration of values below the average values which is more 

predominant in the PM10 models. The clustering of values over 

specific predicted values or an unbalance in the y-axis can also 

be seen as a result of the underfitting of the models.  

 

Figure 10 and Figure 11 show the residual distribution plots of 

the best models for PM2.5 and PM10. Plots showed near-normal 

distribution curves with a slight skew to the right. Specifically, 

plots showed residuals having a higher density in the negative 

area from 0 to -10. This could mean that the model is biased for 

lower values resulting in a lower fit across all the models.   

 

  

 
 

Figure 8. In-situ PM2.5 vs. Predicted PM2.5 plots for the yearly 

model (top left), dry model (top right) and wet model (bottom). 

 

  

 
 

Figure 9. In-situ PM10 vs. Predicted PM10 plots for the yearly 

model (top left), dry model (top right) and wet model (bottom). 

 

  

 
 

Figure 10. In-situ PM2.5 residual plots for the yearly model (top 

left), dry model (top right) and wet model (bottom). 

 

  

 
 

Figure 11. In-situ PM10 residual plots for the yearly model (top 

left), dry model (top right) and wet model (bottom). 

 

3.4 Gradient Boosting Regression 

Table 4 summarizes the train and test RMSE of the generated 

models using gradient boosting regression. Similar to the results 

from MLR, the resulting RMSE using gradient boosting 

regression was relatively low in comparison to the dependent 

variable’s range.  Moreover, computed RMSE between the train 

and test sets showed a minute difference between each other, 

indicating no case of overfitting for all the generated models. R2 

resulted in the highest training value of 2% but low test scores. 

Although gradient boosting in general results in better accuracy 

in modeling than MLR in most cases, machine learning 

algorithms require an ample amount of training data to properly 

produce models that were cross-validated with optimized 

hyperparameters, especially, when there are only two 

independent variables with 15 observation points. 

 

Model 
PM2.5 PM10 

Yearly Dry Wet Yearly Dry Wet 

Train RMSE 9.01 8.39 8.08 19.13 16.85 20.82 

Test RMSE 9.62 8.82 9.64 20.58 20.02 22.79 
 

Table 4. Model error measurements of the generated PM 

models using gradient boosting regression. 

 

In a similar way of checking the influence of the independent 

variables in affecting the dependent variable values through the 

coefficient values, feature importance plots were generated to 

determine which parameter between AODB and AODG affected 

the model building the most using gradient boosting regression. 

Feature importance computes F-scores that represent the 

importance of each input feature for a given model. The larger 
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the F-score means the higher the effect of that specific input 

feature in building the model in predicting a variable or PM in 

this case. 

 

Figure 12 shows the F-scores of each input feature for all the 

generated models using gradient boosting regression. Overall, 

AODG resulted in higher F-score values than AODB, even 

though the difference between these input features was low. 

From these results and the ones from MLR, dropping AODB for 

future modeling processes can be considered for a more optimal 

modeling process and smaller chances for multicollinearity. 

 

 
 

Figure 12. Feature importance of the generated gradient 

boosting models for PM estimation.  

 

Falk and Miller (1992) recommended coefficient of 

determination values greater than 0.10 to adequately determine 

the variability of the endogenous variable. On the other hand, 

Cohen (1988) recommended endogenous variables with R2 

values of 0.26 to be assessed as substantial, while 0.13 for 

moderate, and 0.02 for weak.  

 

Some of the models resulted in a weak correlation coefficient 

significant from zero. This implies that the input variables might 

not be sufficient to properly take into account the variability of 

PM, however, this does not mean that the other resulting 

variables from the correlation analysis and feature importance 

plots are insignificant. On the other hand, it is imperative that to 

improve the models, additional input parameters or more in-situ 

monitoring station data are needed to gather more significant 

results.  

 

3.5 PM2.5 and PM10 Maps 

Maps were generated using a python script to apply the saved 

best models with JobLib to the satellite-derived AOD images 

shown in Figure 13, Figure 14, Figure 15, and Figure 16, 

respectively.  

 

    
 

Figure 13. Sample PM2.5 estimation maps using the best dry 

model for March 2017 to 2020. 

    
 

Figure 14. Sample PM2.5 estimation maps using the best wet 

model for July 2017 to 2020. 

 

    
 

Figure 15. Sample PM10 estimation maps using the best dry 

model for March 2017 to 2020. 

 

    
 

Figure 16. Sample PM10 estimation maps using the best wet 

model for July 2017 to 2020. 

 

         
 

Figure 17. Map legends in µg/m3 for PM2.5 for March, PM2.5 for 

July, PM10 for March, and PM10 for July (left to right). 

 

Map gradient of Blue-Yellow-Red was used to show the low to 

high concentrated areas of PM as shown in Figure 17. White 

spaces are null values due to cloud cover. Even though it is 

difficult to determine clusters of PM from the maps alone, 

PM2.5 maps for March 2017 to 2020 show a high concentration 

of particulate matter in the Northwest – West region of the 

image with a lower concentration near the central area of NCR. 

 

4. CONCLUSION AND RECOMMENDATIONS 

Regression models were generated for the estimation of PM2.5 

and PM10 using MODIS MAIAC AOD satellite images. Models 

were generated by integrating in-situ monitoring station data 

with satellite-derived data using MLR and XGBoost.  

 

Results showed low coefficient of determination values and 

significantly low RMSE values. Cases of underfitting for the 
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models might be the result of the insufficient number of data 

points, specifically for machine learning algorithms such as 

gradient boosting regression due to its integrated cross-

validation process when generating the model. This results in 

models with a coefficient of determination value less than zero. 

However, PM and AOD showed a correlation, especially for 

PM2.5 across all the models. Variability and fit may be improved 

when AOD is combined with other input parameters in 

estimating PM.   

 

PM2.5 and PM10 concentration estimation maps were generated 

by applying the best models to the MODIS MAIAC AOD 

satellite images.  

 

Undergoing improvement of the models is the addition of 

several input parameters such as meteorological parameters. 

Specifically, parameters such as wind speed and direction, mean 

temperature, minimum temperature, maximum temperature, 

pressure, precipitation, land use/land cover, and other geospatial 

layers are added to encapsulate the variability of PM2.5 and 

PM10. Additional years of analysis might also be helpful if air 

quality monitoring station data are available.  

 

 

ACKNOWLEDGEMENTS 

This research was done as part of the Ambient Air Remote 

Sensing, Modeling, and Visualization Environment (Project 

AiRMoVE). The Project was implemented by the University of 

the Philippines Training Center for Applied Geodesy and 

Photogrammetry (TCAGP), through the support of the 

Department of Science and Technology (DOST) of the 

Republic of the Philippines and the Philippine Council for 

Industry, Energy, and Emerging Research and Development 

(PCCIERD). 

 

REFERENCES 

Allen, T.D., Rush, M.C., 1998. The effects of Organizational 

Citizenship Behavior on performance judgments: A Field Study 

and a laboratory experiment. Journal of Applied Psychology, 

83(2), 247–260. doi.org/10.1037/0021-9010.83.2.247. 

 

Ambag, R., 2019. How bad is air pollution in the Philippines? 

FlipScience. Retrieved May 12, 2022, from 

flipscience.ph/health/how-bad-air-pollution-philippines/. 

 

Aniceto, K.R., Macam, J.J., Salmorin, E.I., Sison, Z.K., 

Mission, M.P., Camacho, I.K., Poso, F.D., 2021. Seasonal 

mapping and air quality evaluation of total suspended 

particulate concentration using arcgis-based spatial analysis in 

Metro Manila, Philippines. 2021 IEEE 13th International 

Conference on Humanoid, Nanotechnology, Information 

Technology, Communication and Control, Environment, and 

Management. doi.org/10.1109/hnicem54116.2021.9732031. 

 

Cai, J., Xu, K., Zhu, Y., Hu, F., Li, L., 2020. Prediction and 

analysis of Net Ecosystem Carbon Exchange based on gradient 

boosting regression and random forest. Applied Energy, 262, 

114566. doi.org/10.1016/j.apenergy.2020.114566. 

 

Chen, Z.Y., Zhang, T.H., Zhang, R., Zhu, Z.M., Yang, J., Chen, 

P.Y., Ou, C.Q., Guo, Y., 2019. Extreme gradient boosting 

model to estimate PM2.5 concentrations with missing-filled 

satellite data in China. Atmospheric Environment, 202, 180–

189. doi.org/10.1016/j.atmosenv.2019.01.027. 

Chua, P.L., Ng, C.F., Rivera, A.S., Salva, E.P., Salazar, M.A., 

Huber, V., Hashizume, M., 2021. Association between ambient 

temperature and severe diarrhea in the National Capital Region, 

Philippines. International Journal of Environmental Research 

and Public Health, 18(15), 8191. 

doi.org/10.3390/ijerph18158191. 

 

Chung, A., Chang, D.P.Y., Kleeman, M.J., Perry, K.D., Cahill, 

T.A., Dutcher, D., McDougall, E.M., Stroud, K., 2001. 

Comparison of real-time instruments used to monitor Airborne 

Particulate Matter. Journal of the Air & Waste Management 

Association, 51(1), 109–120. 

doi.org/10.1080/10473289.2001.10464254.  

 

Cohen, J., 1988: Statistical power analysis for the behavioral 

sciences (2nd ed.). Lawrence Erlbaum Associate. 

 

Cruz, L.A.A., Griño, M.T.T., Tungol, T.M.V., Bautista, J.T., 

2019. Development of a low-cost air quality data acquisition 

IOT-based system using Arduino Leonardo. International 

Journal of Engineering and Manufacturing, 9(3), 1–18. 

doi.org/10.5815/ijem.2019.03.01. 

 

Duncan, B.N., Prados, A.I., Lamsal, L.N., Liu, Y., Streets, 

D.G., Gupta, P., Hilsenrath, E., Kahn, R.A., Nielsen, J.E., 

Beyersdorf, A.J., Burton, S.P., Fiore, A.M., Fishman, J., Henze, 

D.K., Hostetler, C.A., Krotkov, N.A., Lee, P., Lin, M., Pawson, 

S., Ziemba, L.D., 2014. Satellite data of atmospheric pollution 

for U.S. air quality applications: Examples of applications, 

summary of data end-user resources, answers to faqs, and 

common mistakes to avoid. Atmospheric Environment, 94, 647–

662. doi.org/10.1016/j.atmosenv.2014.05.061.  

 

Engel-Cox, J.A., Hoff, R.M., Haymet, A.D.J., 2004. 

Recommendations on the use of satellite remote-sensing data 

for Urban Air Quality. Journal of the Air & Waste Management 

Association, 54(11), 1360–1371. 

doi.org/10.1080/10473289.2004.10471005. 

 

Estoque, R.C., Ooba, M., Seposo, X.T., Togawa, T., Hijioka, 

Y., Takahashi, K., Nakamura, S., 2020. Heat health risk 

assessment in Philippine cities using remotely sensed data and 

social-ecological indicators. Nature Communications, 11(1). 

doi.org/10.1038/s41467-020-15218-8. 

 

Falk, R.F., Miller, N.B., 1992: A primer for Soft Modeling. 

University of Akron Press. 

 

Fan, Z., Zhan, Q., Yang, C., Liu, H., Bilal, M., 2020. 

Estimating PM2.5 concentrations using spatially local Xgboost 

based on full-covered Sara AOD at the Urban Scale. Remote 

Sensing, 12(20), 3368. doi.org/10.3390/rs12203368.   

 

Gogikar, P., Tripathy, M.R., Rajagopal, M., Paul, K.K., Tyagi, 

B., 2020. PM2.5 estimation using multiple linear regression 

approach over industrial and non-industrial Stations of India. 

Journal of Ambient Intelligence and Humanized Computing, 

12(2), 2975–2991. doi.org/10.1007/s12652-020-02457-2. 

 

Hauck, H., Berner, A., Gomiscek, B., Stopper, S., Puxbaum, H., 

Kundi, M., Preining, O., 2004. On the equivalence of 

gravimetric PM data with TEOM and beta-attenuation 

measurements. Journal of Aerosol Science, 35(9), 1135–1149. 

doi.org/10.1016/j.jaerosci.2004.04.004. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-729-2023 | © Author(s) 2023. CC BY 4.0 License.

 
735



 

Heyasa, B.B., Galarpe, V.R., 2017. Preliminary development 

and testing of microcontroller-MQ2 GAS SENSORFOR 

University Air Quality Monitoring. IOSR Journal of Electrical 

and Electronics Engineering, 12(03), 47–53. 

doi.org/10.9790/1676-1203024753. 

 

Krupnick, A.J., Morgenstern, R.D., Fischer, C., Rolfe, K., 

Logarta, J., Rufo, B., 2003. Air Pollution Control Policy 

Options for Metro Manila. Discussion Papers 10612, Resources 

for the Future.  

Li, J., Zhang, H., Chao, C.Y., Chien, C.H., Wu, C.Y., Luo, 

C.H., Chen, L.J., Biswas, P., 2020. Integrating low-cost air 

quality sensor networks with fixed and satellite monitoring 

systems to study ground-level PM2.5. Atmospheric 

Environment, 223, 117293. 

doi.org/10.1016/j.atmosenv.2020.117293. 

 

Natekin, A., Knoll, A., 2013. Gradient Boosting Machines, a 

tutorial. Frontiers in Neurorobotics. Front. Neurorobot. 7. 

doi.org/10.3389/fnbot.2013.00021. 

 

Othman, N., Mat Jafri, M.Z., San, L.H., 2010. Estimating 

particulate matter concentration over arid region using satellite 

remote sensing: A case study in Makkah, Saudi Arabia. Modern 

Applied Science, 4(11). doi.org/10.5539/mas.v4n11p131. 

 

Takahashi, K., Sugi, Y., Hosono, A., Kaminogawa, S., 2009. 

Epigenetic regulation of TLR4 gene expression in intestinal 

epithelial cells for the maintenance of intestinal homeostasis. 

The Journal of Immunology, 183(10), 6522–6529. 

doi.org/10.4049/jimmunol.0901271.  

 

Tomacruz, S., 2018. Air Pollution Deaths 3rd highest in ph. 

RAPPLER. Retrieved May 12, 2022, from 

rappler.com/nation/208192-air-pollution-deaths-3rd-highest-

philippines/. 

 

Tranmer, M., Murphy, J., Elliot, M., Pampaka, M., 2020. 

Multiple Linear Regression (2nd Edition); Cathie Marsh 

Institute Working Paper 2020-01. 

hummedia.manchester.ac.uk/institutes/cmist/archive-

publications/working-papers/2020/2020-1-multiple-linear-

regression.pdf. 

 

Villas-Alvaren, A.L., 2016. MMDA faces greatest challenge: 

managing 2.5M vehicles in MM. PressReader.com - Digital 

Newspaper & Magazine subscriptions. Retrieved May 12, 2022, 

from pressreader.com/philippines/manila-

bulletin/20161225/282016146985660. 

 

Wade, C., 2020: Hands-on gradient boosting with XGBoost and 

scikit-learn: Perform accessible machine learning and extreme 

gradient boosting with python. Packt Publishing. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-729-2023 | © Author(s) 2023. CC BY 4.0 License.

 
736




