
Prediction on the relative permittivity of energy storage composite
dielectrics using convolutional neural networks: A fast and accurate
alternative to finite-element method

Shao-Long Zhong, Di-Fan Liu, Lei Huang, Yong-Xin Zhang, Qi Dong and Zhi-Min Dang ✉

 

ABSTRACT
The relative permittivity  is  one of  the essential  parameters determines the physical  polarization behaviors of  the nanocomposite
dielectrics  in  many  applications,  particularly  for  capacitive  energy  storage.  Predicting  the  relative  permittivity  of  particle/polymer
nanocomposites  from  the  microstructure  is  of  great  significance.  However,  the  classical  effective  medium  theory  and  physics-
based numerical  calculation represented by finite  element  method are time-consuming and cumbersome for  complex structures
and nonlinear problem. The work explores a novel architecture combining the convolutional  neural  network (ConvNet) and finite
element method (FEM) to predict the relative permittivity of nanocomposite dielectrics with incorporated barium titanite (BT) particles
in  polyvinylidene fluoride (PVDF)  matrix.  The ConvNet  was trained and evaluated on big  datasets  with 14266  training data  and
3514 testing data generated form a programmatic algorithm. Through numerical experiments, we demonstrate that the trained network
can efficiently provide an accurate agreement between the ConvNet model and FEM by virtue of the significant evaluation metrics
R2, which reaches as high as 0.9783 and 0.9375 on training and testing data, respectively. The strong universality of the presented
method allows for an extension to fast and accurately predict other properties of the nanocomposite dielectrics.
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T he permittivity is an essential parameter to characterize the
tendency  and  ability  of  the  local  migration  of  atomic
charges in the material under an external electric field. The

magnitude of  permittivity  significantly  affects  the  dielectric  per-
formance of the material in many applications, such as capacitive
energy  storage[1,2],  electro-elastomers[3,4],  triboelectric  nanogenera-
tors[5],  piezoelectric sensors[6],  flexible electronics technology[7],  and
insulating packaging[8].  For capacitive energy storage applications,
polymer material with higher permittivity is desirable to improve
the energy storage density of capacitive film, according to the rela-
tionship between permittivity and energy storage density for linear
dielectrics[9],

U=
1
2

ε0εrE2
b (1)

where ε0 = 8.854 × 10−12 F/m is the vacuum permittivity, εr and Eb
are the relative permittivity and breakdown strength of the dielectric
material, respectively. For the current commercially used biaxially
oriented polypropylene material (BOPP), due to its low permittivity
(εr = 2.2), the energy storage density of the dielectric film is limited
[10] in  the  range  of  1–2  J/cm3.  Recently,  poly(vinylidene  fluoride)
(PVDF) and its copolymers[11] have gained a lot of attention, owing
to their high permittivity originates from its ferroelectric molecular
structure. To further improve the permittivity of polymer material,
some  inorganic  ceramic  particles,  such  as  barium  titanite
(BaTiO3)[12–14], boron nitride nanosheets (BNNS)[15], and aluminum
oxide  (Al2O3)[16],  have  been  incorporated,  which  contribute  both
the  inherent  molecular  polarizability  and  interfacial  polarization.
By adjusting the geometry of the inorganic particles and their dis-

tribution  in  the  organic  matrix,  both  the  permittivity  and  the
energy  density  of  the  composites  have  been  dramatically
improved.

Establishing the direct relationship between the microstructure
and properties of composite dielectrics is important to understand
the microscopic  mechanism of  energy storage,  however  the  con-
ventional experimental “trial  and error” research has the obvious
disadvantages  of  low  efficiency  and  aim  blindness.  Effective
medium  theory[17] is  helpful  for  understanding  the  polarization
contribution arises from incorporated particles, but the prediction
accuracy is strongly reduced for irregularly shaped particles[18]. The
finite  element  method  (FEM)[19],  a  representative  physics-based
simulation  method,  can  flexibly  establish  the  arbitrary  geometric
model  of  the  composite  dielectrics  and  accurately  calculate  the
local distribution of electric field and space charge[20]. Through the
bridging  effect  of  these  mesoscopic  parameters,  the  connection
between  the  structure  and  properties  of  composite  materials  can
be well established and analyzed[21]. Nevertheless, it is still very time-
consuming and laborious to model complex composite structures
and  nonlinear  problem  such  as  ferroelectric  hysteresis  pheno-
menon[22].  When the composite contains fiber-shape fillers with a
large  aspect  ratio,  an  extremely  fine  mesh  should  be  adopted  to
accommodate  the  smaller  dimension,  which  will  drastically
increase  the  computational  workload for  the  whole  model[23].  For
nonlinear problems, to ensure the convergence of the calculation,
it is necessary to set a very small-time step, result in a significantly
increase of  the simulation time.  In addition,  physics-based simu-
lations  have  shown  their  limitations  in  solving  inverse  design 
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problems  that  is,  inversely  calculating  the  microstructure  of  the
material according to the target properties[24], although some opti-
mization algorithms,  such  as  genetic  algorithm,  annealing  algo-
rithm that can help to obtain the optimal material structure.

With  the  rapid  development  of  computational  science,  data-
driven  approaches  based  on  machine  learning  (ML)  techniques,
using  a  variety  of  statistical  and  probabilistic  methods  that  allow
computers to learn from the training data and explore the hidden
patterns, have shown great potential in material design[25,26]. It pro-
vides a new means of analyzing the performance of novel materi-
als,  establishing  quantitative  structure-properties  relationships,
predicting the property parameters, and even disclosing the micro-
mechanism  of  the  macro-behaviors  of  the  materials[27].  Lots  of
machine  learning  methods,  including  linear  regression,  support
vector  machines,  decision  trees,  and  artificial  neural  networks
(ANNs),  have demonstrated as effective and efficient methods in
the  research  of  dielectric  properties  of  many  polymer-based
nanocomposites[28,29]. In deep learning, a convolutional neural net-
work  (ConvNet)  is  a  class  of  artificial  neural  network  (ANN),
most commonly applied to analyze image-related datasets[30,31]. In a
convolutional  neural  network,  the  hidden  layers  include  many
layers that perform a dot product of the different convolution kernel
with the layer’s input matrix in each layer. As a result, some hidden
information can be extracted separately. Abueidda et al.[32] and Ye
et al.[33] have proposed ConvNet models to predict the mechanical
properties  of  composites  with  checkerboard  and  real  complex
microstructures,  respectively.  Furthermore,  due  to  fundamental
microstructure  characterization  and  measurement  techniques,
including scanning electron microscopy (SEM), tunneling electron
microscopy  (TEM),  atom  force  microscopy  (AFM),  optical
microscope,  and  so  on,  which  can  provide  a  large  amount  of

image  datasets  for  ConvNet  model  training,  has  great  promoted
its development prospects in future research.

In this work, a method to predict the permittivity of BT/PVDF
composite  dielectrics  based  on  convolutional  neural  network  is
proposed.  Through  the  connection  of  geometrically  generated
codes and finite elements, an adequate number of labeled datasets
have been provided for ConvNet model training. The whole work
is organized as follows. In Section 1, the development of the Con-
vNet  method  is  proposed,  including  dataset  construction,  finite
element  method,  and  convolutional  neural  network  architecture.
In Section 2, the effectiveness of the ConvNet method is verified,
and the  prediction results  are  illustrated and discussed in  details.
In the last section the conclusions are derived and the prospect of
the present method is introduced.

1    Methods
A convolutional neural network model is development to quanti-
tatively predict the permittivity of composite dielectrics composed
of BT spherical nanofillers and PVDF polymer matrix. In order to
provide  significant  amount  of  data  to  improve  the  prediction
accuracy, microstructure image generator code coupled with finite
element method is adopted, and the overall  workflow of the pre-
diction  of  the  relative  permittivity  of  BT/PVDF  composites  is
illustrated  in Figure  1.  Section  1.1  introduces  the  construction
process of training and testing datasets. Section 1.2 talks about the
boundary value problem and calculation of the permittivity of BT/
PVDF composites by finite element methods. Section 1.3 scrutinizes
the architecture of the ConvNet model including both the home-
made  model  with  different  layers  and  model  parameters  and  a
transfer learning from a pre-organized ResNet-50 network,  while
Section 1.4 introduces three evaluation metrics for the model.
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Fig. 1    Schematic of the workflow designed for prediction of the relative permittivity of BT/PVDF composites.
 

1.1    Datasets preparation
In  regression  analysis,  convolutional  neural  networks  usually
require  a  large  number  of  labeled  samples  for  the  training  of
model  parameters  to  improve  the  accuracy  prediction.  For  each
labeled  sample,  the  feature  input  is  a  two-dimensional  cross-sec-
tional  picture  of  the  BT/PVDF  nanocomposites,  while  the  label

value is the relative permittivity of the corresponding composites.
However,  it  is  obviously  time-consuming  and  labor-intensive  to
obtain  adequate  samples  for  ConvNet  model  training  using  the
experiment method  with  respect  to  high-resolution  characteriza-
tion  technique,  including  SEM,  TEM,  and  AFM.  To  solve  the
problem,  a  structural  programming  mainly  includes  composite
microstructure  generation  codes  and  finite  element  method  is
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proposed. The former generates the input required image features,
while  the  latter  obtains  the  label  value  of  the  permittivity  of  the
corresponding feature. The random generation algorithm of sample
is logically described as in Algorithm 1.
 
 

Algorithm 1: The random generation scheme of sample

1: Define the model hyperparameters: length L, width W and height H;

2: Define the particle hyperparameters: radius r, concentration Фc;

3: Initialize an empty maxtrix Mk storing the coordinates of each particle;

4: while (the concentration Фc is not reached) do

5: Genetate a random particle spatial coordinate (x,y,z);

6: if (New particle coordinates interfere with model boundaries) do

7: Go back to step 5 to continue; end if

8: for i= 1: (the number of elements in the maxtrix Mk) N do

9: if (New coordinates interfere with other generated paticles) do

10: Go back to step 5 to continue; end if

11: end for

12: Store the new generated coordinate in matrix Mk;

13: end while

14: Pass the 3Dmodel into Finit element calculation;

15: Cut to obtain three cross-sectional 2D images at random positions;
 

A  representative  cube  model  with  2  μm  side  length  has  been
selected. The radius of the incorporated spherical particles is uni-
formly set as 100 nm, while the filling volume fraction varies from
5  vol.%  to  30  vol.%.  The  particles  are  randomly  generated  and
gradually added into the model, ensuring that every sample has a
random  and  different  internal  structural  configuration.  For  each
generated 3D spherical particles incorporated composites, the rel-
ative permittivity is  calculated as the label of the ConvNet model
samples by FEM, as depicted in Section 1.2. Meanwhile, three 2D
cross-sectional images are obtained as the features of the ConvNet
model  samples  by  truncate  with  three  vertical  planes  at  random
positions, as illustrated in Figure 2. As a result, 14266 samples are
generated as training datasets, while 3514 samples are generated as
testing datasets.

1.2    Finite element methods
The  description  of  the  behaviors  of  dielectric  phenomenon  for
space-dependent and time-dependent problems are usually can be
expressed  in  terms  of  partial  differential  equations  (PDEs).  For
some regular, simple geometries and problems, these PDEs can be
solved  with  analytical  methods,  otherwise  discretization  in  space
or  time  is  necessary,  converting  complex  structures  into  many
simple structural units, and then approximate solutions for PDEs
can  be  calculated  by  numerical  solutions.  The  finite  element
method (FEM) is a popular technique for numerically solving dif-
ferential equations in engineering and mathematics. In the process
of finite element analysis, some mesoscopic parameters giving rise
to the dielectric phenomena can directly compute, such as the dis-
tribution of electric field, electric potential, current density and so
on. It can conveniently contribute to establishing the relationship
between the structure and properties of composite materials,  and
then  realizing  the  numerical  prediction  of  the  corresponding
dielectric parameters.

For the physical environment of electrostatic energy storage, the
electric potential φ satisfies the Laplace’s equation, that is

∇ · (−ε∇φ) = 0 (2)

where ε is  the  permittivity  of  material.  We  can  then  obtain  the
vectors  electric  field E and  electric  displacement D through  the
following equations,

E=−∇φ (3)

D= εrε0E (4)

where ε0 is  the  permittivity  of  vacuum,  andεr is the  relative  per-
mittivity  of  ingredient  in  the  composite  material.  In  terms  of
Maxwell equations, the total electrostatic energy W storage in the
electric field can be obtained by volume integration as

W=
y 1

2
E ·DdV (5)

The relative permittivity εeff of the composites can then be cal-
culated by means of definition of capacitive energy storage, that is

εeff =
2Wd
ε0SU2

(6)

where U is the magnitude of applied voltage, S and d are the surface
area  and  the  thickness  of  the  material,  respectively.  In  this  work
for the spherical  particle  filled BT/PVDF composites,  the applied
voltage is 2 μV, while the relative permittivity of BT and PVDF is
defined to 1700[34] and 10[9],  respectively.  To improve the solution
accuracy,  the  mesh  quality  at  the  surface  of  particles  has  been
refined.  The  grid  structure  and  the  local  distribution  of  electric
potential within the composite material are illustrated in Figure 3.
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Fig. 2    Images for ConvNet network training.
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1.3    Convolutional neural network

1.3.1    Homemade ConvNet model

A convolutional neural network is a class of artificial neural network
(ANN), most commonly applied to analyze visual imagery. It has
achieved  superior  results  across  a  wide  range  of  application
domains  related  to  the  crystal  structure,  SEM/TEM  images  and
numerical simulation geometry configuration of nanocomposites.
Generally, the  ConvNet  consists  of  the  following  parts:  convolu-
tional  layer  (Conv),  pooling  layers,  fully  connected  layers  (FSLs),
and  activation  functions[35].  The  convolution  passes  the  input
images through a set of convolutional filters, each of which activates
certain features form the images and the following pooling layer is
responsible for reducing the spatial size of convolved feature, and

thus helps reduce overfitting,  extract  representative features from
the  input  tensor.  For  regression  or  classification  analysis,  a  fully
connected layer, that is a simple feed forward neural networks, is
often  connects  after  the  final  pooling  or  convolutional  layer,  to
obtain the regression or classification labels respectively. The acti-
vation function enhances the nonlinear characteristics of the net-
work, allowing for faster and more effective training by mapping
negative values to zero and maintaining positive values.

Our convolutional neural network model employs two-dimen-
sional  geometric  configuration  images  for  predicting  the  relative
permittivity of BT/PVDF nanocomposites. The input of the Con-
vNet  is  a  512  ×  512  fixed-sized  pixel  two-dimensional  grayscale
image. The structure of the ConvNet model consists of three con-
volutional  composite  layers  and  three  fully  connected  layers,  as
illustrated  in Figure  4.  Each  individual  convolutional  composite
layer  also  consists  of  sequentially  connected  convolutional  layer,
batch  normalization,  activation  function,  and  max  pooling  layer,
and the output of the last convolutional composite layer is flattened
into  a  one-dimensional  vector  for  subsequent  fully  connection
layers. Both the convolutional layers and the fully connected layers
use  ReLU  as  the  activation,  and  the  output  of  the  network  is  a
continuous  numeric  regression  value  representing  the  predicted
relative  permittivity.  A flexible  and ease-of-use  open-source  deep
learning  framework  PyTorch  is  selected  to  build  and  train  the
model.  It  combines  the  efficient  GPU-accelerated  backend
libraries  from  Torch  with  the  compatibility  with  the  popular
Python  high-level  programming  language,  and  has  become  a
favorite  tool  for  machine  learning  developers  and  data  scientists.
Adam optimizer and MSE (mean squared error) loss function are
selected for training the convolutional neural network.
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Fig. 4    Illustration of the ConvNet model used in the present study.
 

Adam optimization is a stochastic gradient descent method that
is  based  on  adaptive  estimation  of  first-order  and  second-order
moments.

1.3.2    Transfer learning ConvNet model

Transfer learning is reuse of a pre-trained model on a new prob-
lem.  It’s  currently  very  popular  in  deep  learning  because  it  can
train  deep  neural  networks  with  comparatively  little  data  and
enable  us  to  utilize  knowledge  from  previously  learned  tasks[36].
This is very useful in the scientific world, because many problems

existing in different fields are based on similar physical fundamental
laws,  governed  by  many  partial  differential  equations[37].  ResNets
or Residual Networks are a type of convolutional neural network
(ConvNet) architecture introduced by Kaiming He[38] in his paper
“Deep  residual  learning  for  image  recognition” in  2015.  This
architecture shows a way to train networks with as many as 1000
layers.  It  can  successfully  reduce  the  effect  of  banishing  gradient
problem  and  obtain  higher  accuracy  in  network  performance
especially  in  image  classification.  There  are  many  variants  of
ResNet architecture possessing same concept but with a different

 

μV

(b)(a)

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0

Fig. 3    The FEM to predict the relative permittivity of BT/PVDF composite.
(a) Mesh configuration and (b) electric potential distribution within the mate-
rial.

ARTICLE Numerical prediction via ConvNet

 

466 iEnergy | VOL 1 | December 2022 | 463–470



number of layers, among witch, ResNet-50 has been used to predict
the relative permittivity of BT/PVDF nanocomposites in the work.
The batch size and initial learning rate of the model are provided
as 64 and 0.01, respectively.

1.4    Evaluation metrics
To  compare  the  performance  of  the  ConvNet  models  to  predict
the  relative  permittivity  of  BT/PVDF  nanocomposites,  there  are
three metrics in regression have been adopted, that is mean absolute
error (MAE), root mean square error (RMSE), and R square (R2).
They are defined[39] as

MAE(y, ŷ)= 1
N

N

∑
i=1

|yi− ŷi| (7)

RMSE(y, ŷ) =
√

1
N

N

∑
i=1

∥yi − ŷi∥2
2 (8)

R2(y, ŷ) = 1− RSS
TSS = 1−

N

∑
i=1
(yi − ŷi)

2

N

∑
i=1
(yi − ȳ)2

(9)

ŷ
ȳ

where  represents the predicted values from the ConvNet model,
y represents the true values in the FEM dataset, and  is the mean
value of y for total samples. MAE and RMSE evaluate the average
closeness of the prediction result  and the real data in the dataset,
and the smaller the value, the better the prediction effect. R2 mea-
sures the fraction of the variance in the data that can be explained
by the model, which value is between 0 and 1 and a bigger value
indicates a better fit between prediction and actual value.

2    Results and discussion
The loss  variation of  homemade ConvNet model  with epoch for
training and testing data is indicated as Figure 5, and a total of 100
epochs have been executed for both the training and testing data.
The batch size is 64 and the initial leaning rate is set as 0.0001. All
the input pictures have been randomly shuffled before training to
increase the generality of the model.
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The MSEloss in training data sharply decreased up to 12 epoch
and  then  gradually  diminished  to  an  extremely  small  value  of
0.00001,  while  the  MSEloss  in  testing  data  arrives  at  the  stable
value  of  0.01  until  approximately  23  epoch  and  then  fluctuated
slightly around a stable level. The performance of the homemade

ConvNet  model  for  prediction of  the  relative  permittivity  of  BT/
PVDF nanocomposites is illustrated in Figure 6.

The prediction results of the relative permittivity through Con-
vNet model  are  evaluated  with  respect  to  the  corresponding  cal-
culation results by FEM, and the smaller the discrepancy between
the two values, the closer the point distribution to the line y = x as
in Figure  6.  At  training  dataset,  the  homemade  ConvNet  model
manifesting  an  excellent  prediction  performance,  all  points  are
tightly distributed within a very narrow range around the line y =
x.  The  standard  deviation  of  relative  difference  of  the  prediction
relative  permittivity  of  BT/PVDF  nanocomposites  between
homemade ConvNet model and FEM is as small as 0.81% as indi-
cated  in Figure  6(b) and  the  mean  value  is  about  zero  errors.
When  the  filling  concentration  of  BT  particles  in  the  BT/PVDF
nanocomposites are 5 vol.%, 10 vol.%, 15 vol.%, 20 vol.%, and 25
vol.%,  the  relative  permittivity  predicted by homemade ConvNet
model  are  11.66,  13.40,  15.67,  18.21,  21.23,  which  is  rather  in
agreement  with  values  calculated  by  FEM,  that  is  11.68,  13.42,
15.60,  18.22,  21.28,  respectively.  The  evaluation  metrics  of  the
homemade ConvNet model to predict the relative permittivity of
BT/PVDF  in  training  dataset  are  also  illustrated  in Figure  6(a).
The  corresponding  MAE,  RMSE  and R2 in  training  data  are
0.1064, 0.1396 and 0.9983,  respectively.  The  performance  of  the
homemade ConvNet model on the testing dataset shows somewhat
degradation compared to that of training dataset, nonetheless, the
prediction results are still acceptable. The relative errors of ConvNet
and  FEM  satisfy  the  normal  distribution  as  indicated  in Figure
6(d), and most of the relative errors are within the range of 12.5%.
The  prediction  accuracy  at  low  volume  fraction  is  significantly
better than that at high volume fraction as indicated in Figure 6(c).
Take the relative permittivity of BT/PVDF with 5 vol.%, 10 vol.%,
15  vol.%,  20  vol.%,  and  25  vol.%  concentration  as  example,  the
prediction permittivity derived for homemade ConvNet model is
12.488,  13.944,  15.901,  18.001,  20.381,  while  the  related  value
result  from  FEM  are  11.603,  13.437,  15.589,  18.173,  21.234.  The
corresponding  MAE,  RMSE  and R2 in  testing  data  are 1.0435,
1.3842 and 0.8682, respectively.

A  transfer  learning  suing  a  Pre-trained  ResNet-50  model  has
also  been  implemented  and  the  prediction  performance  on  the
training  and  testing  datasets  is  indicated  in Figure  7.  Compared
with homemade ConvNet architecture, the prediction accuracy of
the  ResNet-50  model  is  slightly  weakened,  and  the  MAE  and
RMSE evaluation metrics have increased to 0.3316 and 0.5063, as
shown in Figure 7. Nevertheless, the prediction results of ResNet-
50 model are still in good agreement with the calculation results of
FEM by virtue of the small relative error in the range of ±10% and
high R2 value as 0.9783. What’s more, the distribution the relative
error  curve  is  narrower  with  respect  to  that  of  the  homemade
ConvNet  model  as  illustrated  in Figure  7(b),  indicating  that  a
larger  proportion  of  the  data  possess  extremely  good  prediction
accuracy  with  ResNet-50  model.  The  performance  of  ResNet-50
model to predict the relative permittivity of BT/PVDF nanocom-
posites on the testing data has been significantly improved, espe-
cially  at  high  volume  fraction  of  particles  as  illustrated  in
Figure 7(c). The relative errors between the prediction values arise
from  ResNet-50  model  and  the  calculation  values  by  FEM  are
limited in the range of ±10% and the standard deviation is 5.25%.
Furthermore,  both  the  MAE and RMSE evaluation  metrics  have
reduced to less than 1, which is 0.7345 and 0.9529, respectively, as
shown  in Figure  7(c).  The R2 error  reaches  as  high  as 0.9375,
demonstrating that convolutional neural network is a feasible and
efficient  surrogate  of  finite-element  method  to  prediction  the
dielectric permittivity of BT/PVDF composites.
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3    Conclusions
In  this  work,  a  generic  workflow  combining  the  convolutional
neural  network and finite  element method to predict  the relative
permittivity of BT/PVDF nanocomposites has been presented. An
algorithm  for  random  generation  of  material  microstructure  has
been  proposed,  generating  a  sufficiently  large  amount  of  data
samples  for  ConvNet  model  training.  As  a  result, 14266 samples
and 3514 samples  were  provided  for  model  training  and  testing,
respectively, and each sample constitute of a 2D cross-section pic-
ture of the composite as data feature and the corresponding relative
permittivity  of  the  composites  calculated  by  FEM  as  data  label.
Both  a  homemade  and  a  transfer  learning  convolutional  neural
network  architecture  have  been  implemented,  and  the  former
includes three convolutional  composite  layers and followed three
fully-connected  layers,  and  each  convolutional  composite  layer
compose of convolutional layer, bath normalization, ReLU activa-
tion and max pooling, while the latter are a pre-trained Resnet-50
model. As a result, the homemade ConvNet model shows excellent
prediction performance on the training data with R2 = 0.9983, and
a little weaken on the testing data with R2 = 0.8682. However, the
performance  on  testing  data  was  significantly  improved  with
Resnet-50 architecture and the R2 evaluation metric reaches 0.9375,
while good prediction effect on the training data was maintained
with R2 = 0.9783. The proposed workflow and convolutional neural
network architectures are not restricted to predict the relative per-
mittivity  of  particles/polymer  composites,  but  also  applicable  to
prediction of other characteristic and further of structure-property
mechanism.
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