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Abstract: An integrated observer framework based mechanical parameters identification approach for adaptive

control  of  permanent  magnet  synchronous  motors  is  proposed  in  this  paper.  Firstly,  an  integrated  observer

framework is  established for  mechanical  parameters’ estimation,  which consists  of  an extended sliding mode

observer (ESMO) and a Luenberger observer. Aiming at minimizing the influence of parameters coupling, the

viscous  friction  and  the  moment  of  inertia  are  obtained  by  ESMO  and  the  load  torque  is  identified  by

Luenberger  observer  separately.  After  obtaining  estimates  of  the  mechanical  parameters,  the  optimal

proportional  integral  (PI)  parameters  of  the  speed-loop  are  determined  according  to  third-order  best  design

method.  As  a  result,  the  controller  can  adjust  the  PI  parameters  in  real  time  according  to  the  parameter

changes to realize the adaptive control of the system. Meanwhile, the disturbance is compensated according to

the estimates.  Finally,  the  experiments  were  carried  out  on simulation  platform,  and the experimental  results

validated the reliability of parameter identification and the efficiency of the adaptive control strategy presented

in this paper.

Key words: parameter identification;  permanent magnet synchronous motor;  adaptive control;  extended sliding mode

observer; Luenberger observer

1    Introduction

The permanent magnet synchronous motor (PMSM) is

becoming  increasingly  used  in  aerospace,  national
defense,  electric  vehicle  drive,  robotics,  and  other
sectors  due  to  its  advantages  of  compact  size,  simple
construction, high power density, strong stability, high
power factor, stable and reliable operation, etc.[1−4] The
precision  and  dependability  of  motor  control  systems
are  becoming  increasingly  important  in  numerous
sectors  with  the  development  of  scientific,  technical,
and  social  level.  The  PMSM  has  good  control
performance  when  using  the  traditional  vector
proportional  integral  (PI)  control  method,  but  the
parameters of the motor may change when the motor is
operating  under  long  time  running,  temperatures
variation,  loads  change,  or  other  variable  application
scenarios,  which  will  give  rise  to  the  deterioration  of
controller’s  performance[5].  Therefore,  precise
identification  of  the  system’s  mechanical  parameters
allows the controller gains to be modified immediately
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according  to  the  identification  results,  thereby
improving  control  performance  and  increasing  system
robustness[6].

Some  researchers  have  investigated  a  number  of
parameter  identification  approaches  to  address  the
problem  of  suboptimal  controller  impact  and  poor
robustness  caused  by  PMSM  parameter  changes.
Model  reference  adaptation  system  (MRAS)  and
recursive least  squares (RLS) are the most  extensively
utilized  identifying  approaches.  Additionally,
approaches such as  the extended Kalman filter  (EKF),
observer method, and artificial intelligence method also
have been used to identify PMSM parameters.

The  MRAS  method  offers  the  benefits  of  simple
design,  unambiguous  physical  meaning,  and  high
identification  accuracy[7],  whose  core  content  is  the
design  of  the  adaptive  law.  The  most  prevalent
adaptive  law  design  approaches  are  the  MIT  rule,
Lyapunov  stability  theory,  and  Popov  hyperstability
theory.  MIT  rule  method  is  simple,  but  it  ignores  the
issue  of  stability[8].  Lyapunov  method  considers  the
system  stability  problem[9],  but  the  construction  of
Lyapunov  function  is  difficult.  On  the  contrary,  the
Popov  hyperstability  theorem,  which  not  only
considers system stability but also has a simpler design,
is  commonly  utilized  in  parameter  identification.  In
Ref.  [10],  Popov’s  criterion  based  MRAS  adaptive
strategy has been used for speed estimation.

RLS  method  has  become  a  very  widespread
parameter estimation algorithm today, particularly RLS
with  forgetting  factors,  which  is  frequently  employed
to  overcome  the  problems  of  asymptotic  parameters
and  data  saturation[11−14].  EKF  method  is  a  relatively
optimal  state  parameter  estimation  method,  which  has
good identification results in practical applications, but
it  requires  additional  computations,  including  the
inverse  calculation  of  high-order  matrices[15−18].
Besides,  both  RLS  and  EKF  take  longer  to  perform
parameter estimation and their convergence depends on
the initial state of the system.

Artificial  intelligence  methods  mainly  include  fuzzy
control  methods,  neural  networks,  particle  swarm
algorithms, genetic algorithms[19−21], etc. In Ref. [22], a
parameter  identification  method  combining  fuzzy
functions  with  MRAS  is  proposed.  Considering  the
deficiency of  the parameter  identification algorithm of
PMSM,  Ref.  [23]  proposed  a  method  merging  Elman
neural network with modified EKF to identify multiple
parameters.  Artificial  intelligence  methods  have  high
recognition  accuracy  and  speed  under  certain

conditions,  but  they  necessitate  a  great  deal  of
computation and are therefore more demanding for the
processor and user.

The observer method is divided into two main types:
disturbance  observers  (DOB)  and  sliding  mode
observers  (SMO).  The  DOB  detects  disturbances
rapidly  and  allows  the  system  to  respond  to  variable
loads more quickly[24]. The SMO has the advantages of
poor  parameter  sensitivity  and  strong  system
robustness[25, 26].  In  Ref.  [27],  an  improved  SMO was
proposed to realize high precision identification of load
torque  under  different  speed  ranges.  However,
traditional  low-order  SMO  has  problems  such  as
chattering and slow response which requires additional
filters  in  the  system  to  obtain  more  accurate
identification results[28],  which may lead to delays and
amplitude  degradation  of  the  identification  results.
When  using  the  SMO  for  multi-parameter
identification,  there  is  a  coupling  effect  between  the
parameters according to the motor equation of motion,
as  a  result,  inaccurate  identification  of  one  parameter
affects the other parameters directly.

After  obtaining  the  needed  mechanical  parameter
values,  they  are  commonly  applied  to  the  control
system to enable the system to adapt or compensate the
controller  gains  in  response  to  external  parameter
changes[29, 30],  so  as  to  improve  the  anti-interference
ability and response speed of the system. However, the
effect  of  the  viscous  coefficient  is  ignored  in  most
papers about adaptive control[31].

This  paper  presents  a  method  for  mechanical
parameters  identification  based  on  an  integrated
observer  framework.  The  error  values  of  the
mechanical  parameters  are  utilized  to  establish  an
extended state equation that will be used to develop an
extended  sliding  mode  observer  (ESMO).  A  simple
algorithm  for  the  identification  of  mechanical
parameters  is  designed  based  on  this  observer,  whose
structure  is  comparable  to  a  filter  and  thus  avoids  the
effect of using additional filters. After the values of the
friction  coefficient  and  the  moment  of  inertia  are
obtained  by  the  ESMO,  the  load  torque  can  be
calculated  directly  according  to  the  equations  of
motion, but in order to decrease the impact of coupling
between the parameters and ensure the reliability of the
parameter  identification  results,  a  separate
identification  of  the  load  torque  is  carried  out  by
Luenberger  observer.  Finally,  the  control  system  is
calibrated based on the third-order best design method
according  to  the  obtained  parameter  values,  and  an
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optimal  algorithm  for  parameter  self-tuning  and
compensation of disturbances is designed.

Simulation  experiments  have  been  carried  out  on
MATLAB/Simulink  platform  to  validate  the  accuracy
of  the  mechanical  parameter  identification  and  the
effectiveness  of  the  self-tuning  and  compensation
system.

The contributions of this paper are as follows:
(1)  An  ESMO  is  proposed  to  achieve  the

identification of the viscous friction coefficient and the
moment  of  inertia,  whose  equivalent  low  pass  filter
(LPF)  may  avoid  the  chattering,  phase  lag,  and
amplitude  decay  generated  by  the  usage  of  additional
filter,  and  the  identification  results  possess  poor
parameter sensitivity and high accuracy.

(2)  A  separate  identification  of  the  load  torque  is
carried  out  by  the  Luenberger  observer,  which  is
helpful  for  achieving  parameter  decoupling  and  high-
precision identification.

(3) The identified three mechanical parameter values
are used in the adaptive control of the system to make
it have better control performance.

The rest of this paper is organized as follows. Section
2  discusses  the  mechanical  parameters  identification
methods.  Section  3  introduces  the  adaptive  gains
adjustment  and  disturbance  compensation  method.
Section  4  shows  the  simulation  verification.  Finally,
Section 5 brings the conclusion of this paper.

2    Mechanical Parameters Identification

Due  to  the  strong  coupling  and  complexity  of  the
control  system  of  PMSM,  an  accurate  mathematical
model  must  be  established  to  guarantee  the  control
effect,  neglecting  the  impact  of  magnetic  field
saturation,  iron  losses,  eddy  current  losses,  and  other

factors.  In  the  rotating d-q coordinate  system,  the
mathematical model of PMSM can be expressed as
 

ud = Rsid +Ld
did
dt
−ωeLqiq (1)

 

uq = Rsiq+Ld
diq
dt
+ωe (Ldid +ψ) (2)

 

Te =
3
2

P
[
ψiq+

(
Ld −Lq

)
idiq
]

(3)
 

Te−TL = Jω̇+Bω (4)

ωe ω

ψ

Te = 1.5Pψiq
ψ

where ud and uq denote the stator voltages of d-q axis;
id and iq denote the stator currents of d-q axis; Ld and Lq
denote the inductances of d-q axis; and Rs, P, , , J,
B, Te, TL, and  denote the stator resistance, number of
pole  pairs,  electrical  angular  velocities,  mechanical
angular  velocities,  moment  of  inertia,  viscous  friction
coefficient,  electromagnetic  torque,  load  torque,  and
flux linkage, respectively. Equations (1) and (2) are the
electrical  model  of  the  PMSM.  Equation  (3)  is  the
electromagnetic  torque  equation  of  the  PMSM,  and
since  the  cross-axis  has  the  same  inductance  as  the
straight-axis,  its  electromagnetic  torque  equation  is
simplified to .  And Eq. (4) is  the equation
of motion. In Eqs. (1) and (2), Rs, Ld, Lq, and  are the
electrical  parameters.  In  Eq.  (4), B, J,  and TL are  the
mechanical  parameters.  Generally,  the  speed  loop  is
influenced  by  the  mechanical  parameters  but  the
mechanical  parameters  cannot  be  measured  directly.
Considering  the  coupling  between  the  mechanical
parameters, the load torque is identified separately.

The  framework  of  mechanical  parameter
identification  under  typical  vector  control  is  shown  in
Fig.  1. Figure  2 shows  the  integrated  observer
framework.
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Fig. 1    Framework of mechanical parameter identification.
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2.1    ESMO-based  viscous  friction  coefficient  and
moment of inertia identification

Taking the  effect  of  system disturbances  into  account,
the dynamics equations of the motor are as follows:
 

J0ω̇ = Te−B0ω+d (5)

J = J0+∆J B = B0+∆B

∆J ∆B

where , ,  and J0 and B0 are  the
rough estimates of the actual values of motor’s J and B,
respectively,  which  can  usually  be  obtained
empirically;  and  denote  the  parameter  errors
between  the  actual  value  and  rough  estimates,
respectively;  and d represents  the  disturbance,  which
consists  of  motor  parameter  errors  and  external  load
condition, expressed as
 

d = −∆Jω̇−∆Bω−TL (6)

At  this  point,  the  extended  state  equations  are
established as stated in Eq. (7),
 {

J0ω̇ = Te−B0ω+d,
ḋ = −∆Jω̈−∆Bω̇− ṪL = r (7)

where d is  selected as the extended system state and r
denotes the derivative of d.

To  obtain  the  motor  mechanical  parameters,  the
ESMO is designed as
  J0 ˙̂ω = Te−B0ω̂+ d̂+usmo,

˙̂d = nusmo
(8)

d̂ ω̂ usmo

usmo

where , , n,  and  denote  the  estimated value  of
the  disturbance,  the  estimated  value  of  mechanical
angular velocities, the sliding mode parameter, and the
sliding mode observer signal,  respectively,  and  is
expressed as
 

usmo = η · sgn(S ) (9)

η

S = ω̂−ω

where  denotes  the  sliding  mode  gain  and S denotes
the  sliding  mode  surface,  that  can  be  stated  to  be

.
The  following  error  equation  can  be  derived  from

Eqs. (7) and (8):
 {

J0ė1 = −B0e1+ e2+usmo,
ė2 = nusmo− r (10)

e1 = ω̂−ω e2 = d̂−dwhere  and .

V = 0.5s2

To ensure that the sliding mode can be achieved, the
observer  parameters  are  chosen  according  to  the
Lyapunov  function .  The  derivation  leads  to
the following relation:
 

V̇ = s · ṡ = e1 · ė1 (11)
According  to  Eqs.  (10)  and  (11),  it  can  be  obtained

that
 

V̇ =
1
J0

e1 (−B0e1+ e2+usmo) =

1
J0

e1
[
(e2−B0e1)+η · sgn(e1)

]
=

1
J0

e1
[
(e2−B0e1)+η

]
, e1 > 0;

1
J0

e1
[
(e2−B0e1)−η] , e1 < 0

(12)

V̇ = s · ṡ = e1 · ė1 < 0
The  Lyapunov  function’s  stability  requirement

condition requires: , that is
 

V̇ =


1
J0

e1
[
(e2−B0e1)+η

]
, e1 > 0;

1
J0

e1
[
(e2−B0e1)−η] , e1 < 0

(13)

It can therefore be obtained that
 

η < −|e2−B0e1| (14)

η

Equation  (13)  and  Formula  (14)  show  that  the
stability of the system is satisfied when  is negative.

e1

ė1

e1 = ė1 = 0

The above analysis of the stability conditions for the
Lyapunov function  leads  to  the  conclusion  that  and

 also  will  converge  to  zero  when  the  sliding  mode
occurs, that is, , rewriting Eq. (10) as
 {

e2 = −usmo,
ė2 = nusmo− r (15)

 

ė2+ne2+ r = 0 (16)

e2Calculating Eq. (16) gives the value of  as
 

e2 = e−nt
[
C+

w
r · entdt

]
(17)

e2where C is  a  constant.  In  order  to  make  sure  can
converge  to  zero,  the  following  condition  needs  to  be
met
 

n > 0 (18)

e2 n
n > 0

n

Meanwhile,  in  order  to  ensure  reliable  convergence
of ,  it  is  necessary  to  ensure  that  the  value  of  is
large enough on the basis of , where the length of
convergence time depends on the value of  as well.

It  is  obvious  that  the  selection  of  the  parameters  of
ESMO  is  governed  by  Formulas  (14)  and  (18).
Following  the  foregoing  analysis,  a  structural  block
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Fig. 2    Integrated observer framework.
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diagram is generated as illustrated in Fig. 3.

w = ŵ
When  the  sliding  mode  occurs,  the  velocity  can  be

expressed  as .  Combining  Eqs.  (7)  and  (8),  we
can get
 

˙̂d+nd̂ = nd
(
d̂ =

n
s+n

·d
)

(19)

It  is  clear  that  Eq.  (19)  is  equivalent  to  a  low-pass
filter’s  transfer  function  whose  cut-off  frequency  is
specified  by n.  Therefore,  the  output  of  this  observer
will  not  include  the  chattering  signals  generated  by
additional filters.

As  a  result,  the  mechanical  parameters  contained  in
the  disturbance  estimates  can  be  extracted.  The
structural  block  diagram  of  the  ESMO  is  built  as
presented  in Fig.  3.  Taking  Eq.  (19)  into  account,
Fig. 3 can be simplified to Fig. 4.

τ t t+τ
t0

t0+τ

In  order  to  extract B,  two  steady  speeds  with  time
interval  (  and )  are  required,  as  is  shown  in
Fig. 5a, where the acceleration of the velocity is 0 at 
and ,  two  disturbance  estimates  can  be  obtained
according to Eq. (6) as
 

d̂(t0) = −∆Ĵω̇(t0)−∆B̂ω(t0)−TL (20)
 

d̂(t0+τ) = −∆Ĵω̇(t0+τ)−∆B̂ω(t0+τ)−TL (21)

The subtraction of Eqs. (20) and (21) gives
 

∆B̂ = − d̂(t0+τ)− d̂(t0)
ω(t0+τ)−ω(t0)

(22)

B̂Then, the estimated value of  is described as
 

B̂ = B0+∆B̂ = B0−
d̂(t0+τ)− d̂(t0)
ω(t0+τ)−ω(t0)

(23)

B̂ B0After obtaining  and updating the value of  in Eq.
(7), the disturbance estimate is rewritten as
 

d̂ = −∆Ĵω̇−TL (24)

α1

α2 τ t t+τ
When the motor is  operated at  two accelerations (

and )  with  time  interval  (  and ),  as  shown in
Fig. 5b, the two disturbance estimates can be obtained
according to Eq. (24) as
 

d̂(t0) = −∆Ĵ ·α1−TL (25)
 

d̂(t0+τ) = −∆Ĵ ·α2−TL (26)

The subtraction of Eqs. (25) and (26) gives
 

∆Ĵ = − d̂(t0+τ)− d̂(t0)
α2−α1

(27)

ĴThe estimated value of  is described as
 

Ĵ = J0+∆Ĵ = J0−
d̂(t0+τ)− d̂(t0)

α2−α1
(28)

B JAfter  the  estimated  values  of  and  have  been
obtained,  the  value  of  the  load  torque  can  be  derived
directly  according to  Eq.  (4),  but  the  accuracy of  load
torque  will  completely  depend  on  the  accuracy  of  the
above  two  values.  As  a  result,  the  load  torque  is
identified  separately  aiming  at  minimizing  the  impact
of  coupling  between  the  parameters  and  ensuring  the
reliability of the parameter identification results.

2.2    Load  torque  identification  based  on
Luenberger observer

The load torque is  identified by using a  state  observer
since  the  load  torque  cannot  be  obtained  by  direct
measurement  and  the  state  observer  is  simple  in
structure  and has  a  strong real-time capability,  but  the
conventional open-loop state observer does not have an
output  feedback  correction  link,  and  the  accuracy  and
convergence  speed  of  the  final  identification  results
will  have  some  errors  with  the  expected  value[32, 33].
Therefore, the Luenberger observer is designed for the
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identification of load torque. ∑
0 (A,B,C)In a linear constant system :

 {ẋ = Ax+Bu,
y = Cx (29)

x u ywhere , ,  and  denote  the  system’s  state  variable,
input,  and  output,  respectively;  and A, B,  and C
represent  the  system  matrix,  input  matrix,  and  output
matrix, respectively. Refactor the system to get
 {

˙̂x = Ax̂+Bu,
ŷ = Cx̂

(30)

x̂ ŷwhere  and  represent  two  estimated  values  of  the
state variable and system output, respectively.

x̂ x ŷ
y

y− ŷ

x̂ x̂
x

As for observation systems, when the observed state
 is inconsistent with the practical value , its output 

is  also  inconsistent  with  the  practical  value ,
ultimately an output error signal  will be generated.
If the signal is feedback to the front of the integrator to
correct ,  can  be  asymptotically  approximated  to
actual  value .  The  output  feedback  error  matrix G is
introduced  to  correct  the  errors  by  feedback.  To
summarize,  a  closed-loop  Luenberger  observer  with
feedback  error  analysis  is  established  as  indicated  in
Eq. (31).
 {

˙̂x = Ax̂+Bu+G(y− ŷ),
ŷ = Cx̂

(31)

Bringing the output  equation into the state equation,
the Luenberger observer becomes
 { ˙̂x = (A−GC)x̂+Bu+Gy,

ŷ = Cx̂ (32)

Te

ω

TL

ω

ω TL

According to Eq. (5), when electromagnetic torque 
is  defined  as  the  input,  mechanical  angular  velocity 
and  load  torque  are  defined  as  the  state  variables,
and the mechanical angular velocity  is defined as the
system  output,  the  observed  objects  are  and .
Assuming that the load torque remains constant during
the measurement time, the state space expression of the
observed system is listed according to Eq. (29) as
 [

ω̇
ṪL

]
= A
[
ω
TL

]
+BTe,

[
ω
0

]
= C
[
ω
TL

]
(33)

A=
[
−BJ−1 −J−1

0 0

]
, B=

[
J−1 0

]T
, C=

[
1 0

]
where .

For  a  state  observation  system,  the  necessary  and
sufficient condition for the existence of the observer is
that  the  system  must  be  completely  observable,  or  its
non-observable  subsystems  are  asymptotically  stable.
The  observable  system’s  observability  matrix N is
constructed as

 

N =
[

C
CA

]
=

[
1 0

−BJ−1 −J−1

]
(34)

It  is clear that the system has a full  rank of 2 for N.
Therefore,  the  constructed  observed  system  is  fully
observable. According to Eq. (33), the Luenberger load
torque  observer  is  obtained  according  to  design
principle as
 

[ ˙̂ω
˙̂T L

]
= A
[
ω̂

T̂L

]
+BTe+G (ω− ω̂),

ω̂ = C
[
ω̂

T̂L

] (35)

T̂L

G = [g1 g2]T g1 g2

where  is the observed values of load torque and G is
the feedback matrix and  , where  and 
are constants.

According  to  Eq.  (35), Fig.  6 depicts  a  block
schematic  of  the  construction  of  the  Luenberger  load
torque  observer.  For  applicability  to  numerical
calculation  systems,  the  above  load  torque  observer  is
discretized by Euler method and described as
 

ω̂(k) = ω̂(k−1)+Ts[J−1
(
Te(k−1)− T̂L(k−1)

)
+

g1ω̃(k−1)−BJ−1ω̃(k−1)],
T̂L(k) = T̂L(k−1)+Tsg2ω̃(k−1)

(36)
Ts ω̃(k−1) = ω(k−1)−

ω̂(k−1)
k−1

where  is the sampling time, and 
 is  the  observed  mechanical  angular  velocity

error with time at .
Subtracting  Eq.  (36)  from  Eq.  (33)  gives  the  state

error equation as [ ˙̃ω
˙̃T L

]
= (A−GC)

[
ω̃
T̃L

]
=

[
−BJ−1−g1 −J−1

−g2 0

] [
ω̃
T̃L

]
(37)

ω̃ T̃L

A−GC

where  and  are  the  observation  errors  for  the
angular  velocity  and load torque,  respectively.  For  the
observer’s  convergence,  it  should  be  ensured  that

 has  a  negative  real  part,  as  can  be  seen  from
Eq. (38):
 

(A−GC) =
[
−BJ−1−g1 −J−1

−g2 0

]
(38)

 

ω
g2

g1

s

s

1

1Te

TL

J−1

BJ−1

ω~ ^
·

TL
^

^
·

ω^ω

 
Fig. 6    Structure of the Luenberger load torque observer.
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Establishing  the  characteristic  equation  and
organizing it give
 

s2+
(
BJ−1+g1

)
s−g2J−1 = 0 (39)

r1 r2 r1 r2

To  simplify  the  problem,  we  assume  that  there  are
two equal negative roots,  and  (  = < 0),  which
are brought into Eq. (39), and we can get
 

s2−2r1s+ r2
1 = 0 (40)

Comparing the coefficients of Eqs. (39) and (40), we
can get
 {

g1 = −2r1−BJ−1,
g2 = −Jr2

1
(41)

BJ−1

A−GC

g1 g2

B J

From Eq.  (41),  is  small  enough  to  be  ignored,
and  it  can  be  seen  that  as  long  as g1>0  and g2<0,  the
characteristic  roots  of  are  guaranteed to  locate
in the left half plane of the complex frequency domain,
indicating  that  the  state  observer’s  output  will
eventually  converge  to  the  actual  state  variables.  Due
to  the  fact  that  the  values  of  and  affect  the
stability  and  response  speed  of  the  system,  it  also  can
be  seen  from  Eq.  (41)  that  and  do  not  affect  the
convergence  of  the  load  torque  observation,  but  only
the speed of convergence.

Besides,  considering  whether  the  two observers  will
affect  each  other  and  thus  affect  the  whole  parameter
identification  result,  we  conducted  the  following
analysis.

ω

η

Firstly,  it  can  be  seen  from  the  overall  structure
diagram  of  the  observer  shown  in Fig.  2 that  the  two
observers  establish  the  state  equations  according  to iq
and  of  the  PMSM,  and  extract  the  required
parameters  information from them.  Therefore,  the  two
observers  are  independent  of  each  other  in  the  source
of  information  acquisition.  Secondly,  as  we  have
discussed in  Section 2.1,  the  effectiveness  of  ESMO’s
parameter identification is only related to the choice of
 and n,  which  affect  the  stability  and  convergence

speed  of  the  observer,  respectively.  Thirdly,  as  we
discussed  before,  the  identification  effect  of
Luenberger  observer  is  influenced by g1, g2, B,  and J,
while B and J only affect the rate of convergence. As a
result,  the  identification  of  the  parameters  by  the  two
observers  is  carried  out  independently,  and  the
identification results of TL are not affected by B and J,
which is also the embodiment of the decoupling of the
parameter  identification.  In  consequence,  the  stability
analysis of the two observers is  carried out separately,
in this case the required parameters can be decoupled.

3    Adaptive  Gains  Adjustment  and
Disturbance Compensation

ω∗

Kp Ki

Ti = L/Rs

Kτ = 1.5P2ψ

When the system parameters are static or vary slightly
in  the  PMSM  double  closed-loop  control  system,  the
controller  gains  adjusted  according  to  the  traditional
approach  or  work  experience  can  artificially  acquire
good enough performance. However, the parameters of
the  controller  will  inevitably  vary  throughout  system
operation,  and  if  the  controller  gains  cannot  be
modified  effectively  in  time,  the  control  performance
of  the  system  may  be  affected  and  instability  may
occur. As a result, it is critical to develop a method for
fulfilling the controller gains self-tuning to heighten the
robustness  and  anti-interference  capability  of  the
controller  so  that  it  is  suitable  for  a  wide  range  of
operating  situations.  Choosing  the  third-order  best
design method[34] to correct the controller in series for
the  PI  controller  may  give  the  transfer  function  the
highest phase angle margin and make the stability and
dynamics  of  the  system  reach  the  optimum  condition.
The  current  loop  in  the  PMSM  control  system  has  a
significantly smaller time constant than the speed loop,
where the current  loop can be simplified and regarded
as  a  component  of  the  speed  loop.  Therefor  the  entire
system  is  equivalent  to  a  second-order  system  with  a
zero  point. Figure  7 shows  a  simplified  comparable
block diagram, where  is the motor’s provided speed,

 is the speed loop’s proportionality coefficient,  is
the speed loop’s integration coefficient,  is the
current  loop’s  closed  loop  time  constant,  and

 is the motor’s torque coefficient. Figure 7
shows the open-loop transfer function as
 

G(s) =
Kτ

(
Kps+Ki

)
s(Js+B) (Tis+1)

(42)

K =
KτKi

B
, T1 =

Kp

Ki
, and T2=

J
B

Let ,  then  Eq.  (42)
becomes
 

G(s) =
K (T1s+1)

s(T2s+1)(Tis+1)
(43)

Gi(s) = (Tis+1)/s
T2≫ Ti

According  to  the  third-order  optimal  method,  the
series  correction of  Eq.  (43)  is  carried  out.  We design
the  correction  function  as .  Since

, the corrected transfer function is obtained as
 

 

ω* ω
Kp+ Kτ

TeiqKi
Tis+1 Js+B

1 1

s

 
Fig. 7    Simplified equivalent speed-loop block diagram.
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G′(s) =
K (T1s+1)
s2 (T2s+1)

(44)

h =
T1

T2
= 5 and K =

1
8T 2

2

The  design  parameter  selection  equations  are

. Thus, the parameters of the PI

regulator are obtained as
 

Kp =
hJ

8T2Kτ
(45)

 

Ki =
B

8T2
2Kτ

(46)

where h is the intermediate frequency bandwidth of the
open-loop Bode plot of the corrected transfer function.

B J
The  speed  loop’s  adaptive  gain  value  may  be

obtained through plugging identified values of  and 
into Eqs. (45) and (46), and then the PI parameter self-
tuning  function  of  the  PMSM  control  system  can  be
accomplished.

Considering  the  current  loop’s  tracking  speed  is
significantly  faster  than  that  of  the  speed  loop,  when
the load torque changes, the speed loop will take longer
to respond, resulting in a higher influence on the motor
speed.  The  load  torque  observed  by  the  Luenberger
observer  is  feedforward  compensated  to  the  current
loop  of  the  motor  based  on  the  rapidity  of  the  current
loop  response,  so  that  the  disturbance  acts  directly  on
the  given  current,  where  the  feedforward  effect  is
introduced  to  the  feedback  system  without  impacting
its  stability,  and  the  system  becomes  more  responsive
to  disturbances.  When  the  load  changes  suddenly,  it
will  directly  lead  to  the  change  of  the  given  current,
thus  leading  to  the  change  of  the  error  current.  The
error current passes through the circuit PI regulator and
causes  the  output  to  change,  allowing  the  motor  to
immediately  adjust  the  output  torque  and  balance  the

load disturbance quickly, so that the speed will be less
affected.

According  to  the  speed  loop  control  block  diagram
shown in Fig. 8, it is considered that the response of the
current loop is fast enough to ignore the time delay of
the  current  loop.  Feedforward  compensation  is
implemented according to load torque.

KcIn Fig.  8,  is  the load torque compensation factor.
According  to  the  full  compensation  condition  for
feedforward compensation, we can get
 

Kc =
2

3Pψ
(47)

Figure  9 shows  the  system’s  final  vector  control
block diagram.

4    Simulation Verification

4.1    Parameter identification verification

η = −2 n = 100 τ = 0.5 s g1 = 6 g2 = −0.0043
B0 = 0 J0 = 0

B J

In  this  part,  simulations  are  conducted  by  employing
MATLAB/Simulink  with  the  parameters  listed  in
Table 1 to evaluate the reliability of proffered methods.
Besides,  the  relevant  parameters  are  designed  as
follows: , , , , ,
and assuming  N·m·s·rad−1,  kg·m2. Due to
the  different  identification  conditions  for  and ,  the
two parameters are identified individually.

In  the  identification  of B,  a  rectangular  varying
 

ω* ω1
Kp+ Kτ

Kc

Te

TL

Js+B

Ki
s

TL
^

 
Fig. 8    Block  diagram  of  speed  loop  control  with  feed-
forward compensation.
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Fig. 9    System’s vector control block diagram.
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speed  is  given,  as  shown  in Fig.  10a.  Experiments
were  conducted  with B=0.004  N·m·s·rad−1 and B=
0.008  N·m·s·rad−1,  respectively. Figures  10b and 10c
depict  the  simulation  results,  and Bsim represents  the
value of simulation result.

The simulation results reveal that after a brief delay,
all of the estimation curves converge to the set value of
4 N·m·s·rad−1 or 8 N·m·s·rad−1, demonstrating that the
suggested  approach  is  capable  of  properly  estimating

parameter B.
Furthermore,  the  identification  of J needs  to  be

carried out at a variable speed, given a sawtooth wave-
like  variation  speed,  as  shown in Fig.  11a,  to  validate
the  identification  effect  at J=0.003 kg·m2 and J=
0.009  kg·m2,  respectively.  Simulation  results  are
revealed  in Figs.  11b and 11c,  and Jsim represents  the
value of simulation result.

J

As demonstrated by the simulation outcomes, after a
short  delay  all  the  estimation  curves  converge  to  the
system  configuration  of  0.003  kg·m2 or  0.009  kg·m2,
proving  the  proposed  method  is  capable  of  properly
estimating the parameter .

Moreover,  the  load  torque  was  determined  in  two
situations  as  the  given  load  increase  suddenly  from
2 N·m to 4 N·m and decrease suddenly from 4 N·m to
2 N·m at 2 s, and Fig. 12 illustrates the outcomes of the

 

Table 1    PMSM parameters specification.

Parameter Value
Inductance Ld = Lq = 0.009 H

Number of pole pairs P = 4

Moment of inertia J = 0.003 kg ·m2

Flux linkage ψ = 0.175 Wb

Stator resistance R = 2.6Ω

Viscous friction coefficient B = 0.004 N ·m · s · rad−1
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Fig. 10    Viscous  friction  identification  results.  (a)
Rectangular  varying  speed.  (b) B=0.004  N·m·s·rad−1

simulation result. (c) B=0.008 N·m·s·rad−1 simulation result.
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Fig. 11    Moment  of  inertia  identification  results.  (a)
Sawtooth  wave-like  varying  speed.  (b) J=0.003  kg·m2

simulation result. (c) J=0.009 kg·m2 simulation result.
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identification process.
From the experimental outcomes, it  can be seen that

the  proposed  parameter  identification  method  has
strong  dynamic  tracking  capabilities  and  high
precision.

d

In addition, to verify the effect of noise on the ESMO
observer,  we  added  electrical  torque  noise  to
disturbance  signal .  According  to  Eq.  (6),  we  can
get
 

d′ = −∆Jω̇−∆Bω−TL +T
′
e (48)

T
′
e

At this point with a given speed as shown in Fig. 13,
we  added  noise  to Te and  the  result  is  shown  in
Fig. 14.

d′
After  the  noise  was  added,  the  disturbance

information  before  and  after  being  filtered  by
ESMO’s equivalent LPF are shown in Fig. 15. It can be
seen  that  the  equivalent  LPF  of  ESMO  has  a  good

filtering effect.

4.2    Verification  of  the  effect  of  self-tuning  and
loads compensation

A  speed  that  fluctuates  in  a  sawtooth  waveform  is
presented  to  validate  the  self-tuning  effect  of  the
proposed  approach,  and  a  load  is  added  at  2  s  to
compare  the  speed control  effect  with  conventional  PI
control.

Firstly, the experimental outcomes were compared in
pairs  utilizing  the  control  variable  approach  in  three
cases to get a sharper contrast effect.

When B is  constant,  the  speed  waveforms  at J=
0.003  kg·m2 and J=0.009  kg·m2 are  depicted  in
Figs.  16a and 16b.  When J changes,  it  can  be  noticed
that the speed after self-tuning has a faster convergence
speed  and  a  reduced  overshoot  when  compared  to
conventional PI control.

When J is  constant,  the  speed  waveforms  at B=
0.004  N·m·s·rad−1 and B=0.008  N·m·s·rad−1 are
depicted in Figs.  16b and 16c.  It  can be observed that
when B changes, the speed self-tuned can still converge
quickly,  as  well  as  the  loads  compensation  condition.
In  comparison,  although  the  speed  waveform  under
conventional  PI  control  method  possesses  a  quicker
responding speed, an obvious overshoot exists still, and
the  speed  cannot  eventually  converge  to  the  regulated
speed.
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Fig. 12     Load torque identification results. (a) Identification results of load surging from 2 N·m to 4 N·m. (b) Identification
results of load dropping from 4 N·m 2 N·m.
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Fig. 13    Waveform  of  the  given  speed  changing  from
400 r·min−1 to 800 r·min−1.
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Fig. 14    Waveform of Te before and after noise being added.
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after being filtered.
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The  results  show  that  the  adaptive  gain  adjustment
and  disturbance  compensation  method  based  on
parameter  identification  proposed  in  this  paper  has
good robustness, effectiveness, and reliability.

Secondly,  in  order  to  verify  the  effectiveness  of  the
proposed  Luenberger  observer  in  compensating  for
load disturbances, experiment combining traditional PI
control  with  the  Luenberger  observer  was  carried  out.
There were three sets of control methods established to
obtain  a  clearer  comparison  effects.  They  were  the
aforementioned adaptive control method, the traditional
PI  method,  and  the  combination  of  traditional  PI  and
the Luenberger observer.

When B=0.004  N·m·s·rad−1, J=0.003  kg·m2,
assuming  that  the  motor  parameters  are  nameplate
values, it can be seen from Fig. 17a that the speed has a
faster convergence rate after the adaptive PI parameter
adjustment  during  the  speed  rise  period.  After

encountering  a  load  disturbance  at  2  s,  the  speed  can
converge  to  the  given  value  after  compensation  based
on  the  load  torque  observed  by  the  Luenberger
observer. In contrary, there is a large deviation in speed
under  traditional  PI  control  as  a  consequence  of  no
disturbance compensation.

When the parameter is changed (J varies from 0.003
to 0.009 kg·m2),  it  can be seen from Fig.  17b that  the
speed  self-tuned  can  still  converge  quickly,  as  well  as
the  loads  compensation  condition.  On  the  other  hand,
method  combining  traditional  PI  control  with  the
Luenberger  observer  is  still  able  to  accurately  identify
and  compensate  for  disturbances  to  some  extent,
although  the  speed  has  already  overshot.  At  this
moment,  compared  with  traditional  PI  control,  the
speed compensated based on the  load torque observed
by  the  Luenberger  observer  is  much  less  affected  by
load disturbance in some extent.

The  above  analysis  indicates  that  the  Luenberger
observer is able to identify load torque independent of
ESMO and can compensate for it accurately.

Thirdly,  in  order  to  further  verify  the  effect  of
designing  the  Luenberger  observer  alone  on  the
decoupling  of  parameter  identification  results,
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Fig. 16    Speed  waveforms.  (a) B=0.004  N·m·s·rad−1, J=
0.003  kg·m2.  (b) B=0.004  N·m·s·rad−1, J=0.009  kg·m2.  (c)
B=0.008 N·m·s·rad−1, J=0.009 kg·m2.
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Fig. 17    Adaptive  control  effects  of  the  combination
of  traditional  PI  and  Luenberger  observer.  (a) B=
0.004 N·m·s·rad−1, J=0.003 kg·m2.  (b) B=0.004 N·m·s·rad−1,
J=0.009 kg·m2.
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experiments  to  identify TL by  ESMO  and  the
Luenberger observer were conducted separately.

From  the  discussion  in  Section  2.1,  it  is  clear  that
after  the  estimated  values  of B and J have  been
obtained,  the  value  of  the  load  torque  can  be  derived
directly according to Eq. (4).

ω

Suppose that the effect of self-tuning of ESMO fails
due  to  some  uncontrollable  factor  (e.g.,  mechanical
ageing). Under this condition, substituting the values of
Te and  of the motor into Eq. (4), when J varied from
0.003  to  0.009  kg·m2,  the  results  of  the  speed  control
effect  at TL identified  by  ESMO  and  the  Luenberger
observer  are  shown  in Fig.  18 in  red  and  green
separately.

It can be seen from Fig. 18 that when the parameters
were changed,  the speed is  slightly overshot  by the PI
control  which  loses  its  self-tuning  effect.  When  a
disturbance  is  encountered,  the  ESMO-identified TL
has  a  large  error  with  the  given  value  after
compensation,  while  the  Luenberger  observer-
identified TL still has a slight error but can significantly
reduce the effect of the disturbance after compensation,
showing that  designing the  Luenberger  observer  alone
possesses  a  positive  impact  on  the  decoupling  of
parameter identification results.

5    Conclusion

This  paper  proposed  a  mechanical  parameter
identification approach based on an integrated observer
framework  and  the  identification  results  are  employed
for adaptive control and disturbance compensation in a
PMSM  vector  control  system.  In  the  parameter
identification  part,  the  viscous  friction  coefficient  and
the  moment  of  inertia  are  identified  by  ESMO,  where
the equivalent LPF may avoid the chattering, phase lag,
and amplitude  decay generated  by the  additional  LPF,
and the cutoff frequency of the equivalent LPF can be

customized as  required.  Then,  by designing a  separate
Luenberger observer for load torque identification,  the
influence  of  parameter  coupling  may  be  reduced,  and
high  precision  and  real-time  performance  can  be
achieved.
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