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Automatic picking of seismic velocity can be performed using k-means clustering. In
simple k-means clustering, the number of clusters needs to be predetermined, while
the picking result is affected by the initial value of each cluster center. In this study,
we present an unsupervised weighted k-means clustering velocity-picking method
that picks the centers of the energy clusters instead of the geometric centers of the
clusters. This method works on the semblance velocity spectrum and requires an
initial velocity function and three user-defined thresholds to limit the search area.
The number of cluster centers and their initial times are obtained according to a
rectangular signal resulting from the three thresholds, while the initial velocities of
the cluster centers can be subsequently obtained using their initial times and the
initial velocity function. Inaccurate selection of thresholds may merge two clusters
wrongly, in which case only a stronger event is selected. In the weighted k-means
clustering algorithm, weights are calculated by using the amplitudes of the velocity
points. Meanwhile, points far from the center are gradually removed to ensure that
each cluster center coincides with the respective energy cluster center. We also
propose a method for ignoring non-primary velocities, such as multiples, by
removing points that create sudden changes in the slope of the reference
velocity beyond a user-defined limit. The processing of the model and real data
show that the proposed seismic velocity-picking method has high efficiency and
picking accuracy.
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1 Introduction

Velocity analysis and picking of seismic data are very important for conventional seismic
processing, and significantly impact on static, velocity modeling, imaging, and inversions
(Neidell and Taner, 1971; Fomel, 2009; Yuan et al., 2022). However, manual picking is not only
labor-intensive, but also inefficient. To this end, scholars have proposed various automatic
picking methods for seismic velocities. At present, automatic picking methods for seismic
velocities mainly includes two types, namely optimization search methods and artificial
intelligence velocity-picking methods. Optimization search methods determine the position
with the maximum energy in the velocity spectrum according to actual geological conditions,
and the position is identified as the selected velocity. Toldi (1989) proposed a method that takes
the maximum superposition energy of the velocity spectrum as the objective function, used the
conjugate gradient method to search for the maximum value, and finally realized automatic
velocity picking. However, this method assumes that the model is linear and significantly
disturbed by noise (Toldi, 1989). Zhang and coworkers implemented seismic velocity picking
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using a nonlinear optimization algorithm (Zhang, 1997; Zhang and
Claerbout, 1998). Almarzoug and Ahmed. (2012) implemented an
automatic velocity-picking methodology by treating the velocity-
picking process as a variational problem. Lumley (1997) developed
an automatic velocity-picking method using a Monte Carlo nonlinear
fitting technique. Choi et al. (2010) developed an efficient automatic
velocity-analysis algorithm by using bootstrapped differential
semblance and Monte Carlo inversion. Usually, the optimization
algorithm requires a priori constraints, with the initial velocity
values having significant influence on the final calculation accuracy.

Artificial intelligence velocity-picking methods achieve velocity
picking by identifying energy clusters in the velocity spectrum and
include deep learning and cluster analysis methods (Schmidt, 1992).
Fish and Kusuma. (1994) meshed the velocity spectrum, used a neural
network to identify it, and eventually realized intelligent velocity
picking. Zha (1996) combined a neural network with fuzzy
mathematics, used fuzzy mathematics to perform boundary search
and fuzzy clustering preprocessing on the velocity spectrum, and
trained the neural network to automatically pick the velocity. Dong
and He (1996) sorted the velocities of energy peaks according to the
binary tree structure, formed a network input vector to train the neural
network, and eventually realized automatic velocity picking.
Traditional artificial neural networks required a large amount of
calculations and could not achieve satisfactory results owing to the
limitations of early computing resources. The improvement of
computer performance allowed scholars to increase the breadth
and depth of neural networks, thereby improving their learning
ability. Some scholars proposed automatic picking methods based
on convolutional neural networks (Ma et al., 2018; Park and Sacchi,
2020) and recurrent neural networks (Biswas et al., 2018; Fabien-
Ouellet and Sarkar, 2020). However, these methods are only suitable
for velocity picking under simple geological conditions and their
degree of automation is low. To solve these problems, Zhang et al.
(2019) proposed a deep-learning method that uses a long short-term
memory network to achieve velocity picking, thereby having high
picking accuracy and degree of automation. Velocity-picking methods
based on neural networks require sufficient labels for training the
networks. In addition, when velocity picking is performed in different
working areas, these methods require transfer learning, which affects
the computational efficiency of velocity picking.

Cluster analysis is an unsupervised machine learning method, also
known as group analysis (Grigorios and Aristidis, 2014; Kumar and
Reddy, 2017; Marco et al., 2017), that divides research objects into
relatively homogeneous groups for statistical analysis. Compared with
deep learning methods, cluster analysis does not require label-making
and network training, the algorithm is easier to implement, and the
computational efficiency is higher. Cluster analysis algorithms can be
used as independent tools for obtaining the distributions of various
data and are also used in seismic facies analysis and sedimentary facies
research (Thierry et al., 2003), as well as reservoir identification, data
processing, and other geophysical fields (Chen, 2018; Zhou et al.,
2020). The distribution characteristics of seismic velocity spectra can
be regarded as the “birds of a feather flock together” of velocity points,
which can be picked up using cluster analysis. The k-means clustering
method is a type of cluster analysis method. Wei et al. (2018) used an
algorithm with a fixed k value to perform unsupervised learning and
achieve velocity picking of a semblance velocity spectrum. Smith
(2017) developed a new technique using seismic attributes in
conjunction with an unsupervised machine-learning clustering

algorithm. Three problems need to be addressed when using the
k-means algorithm for velocity picking. The first problem is that
the k value needs to be predetermined (Zhang and Lu, 2016), as it
affects the number of picked energy clusters. The second problem is
with regard to the initial value of each cluster center, which has greater
impact on the velocity-picking results. Third, the result of picking is at
the center of the cluster, which may not coincide with the center of the
energy cluster. Chen (2018) solved to some extent the first problem by
adopting a bottom-up iterative method and realizing a k-means
iteration. As the screening of the clustering range is very
important, Wang et al. (2021) determined the candidate area for
velocity picking by setting a threshold, thereby narrowing the picking
range and making the result more accurate. They also compared
adjacent picked velocities, thereby culling anomalous velocities, such
as multiples.

To solve the three problems of the k-means clustering
algorithm, this study adopts and improves the method of Wang
et al. (2021) and proposes an unsupervised weighted k-means
clustering intelligent velocity-picking method using prior
information. The method uses the approximate initial velocities
as prior information to calculate the selected area of the velocity
spectrum. We set an amplitude threshold in the picking area,
eliminate velocities with small amplitudes, and count the
number of velocity points at each sampling point. Subsequently,
the number threshold is set; if the number of sampling points is less
than the threshold, it is set to zero; otherwise, it is set to one,
thereby forming multiple rectangular signals, each corresponding
to a cluster center, and solving the problem of k-value calculation.
For each rectangular signal, the time corresponding to the
midpoint between the rising edge and the next falling edge is
the initial time of the cluster center, and the prior velocity
corresponding to the initial time of the cluster center is selected
as the initial velocity, thereby solving the problem of the initial
value of the cluster center. Compared with the method of assigning
a random value as the initial value, the initial value in this study is
more accurate, thereby improving the final picking result. Each
iteration of the weighted k-means clustering algorithm can move
the cluster center toward the center of the energy cluster, thereby
improving the accuracy of velocity picking. With each iteration, a
small number of points far from the center are eliminated, thereby
reducing the number of points involved in the calculation; this does
not only speed up the calculation, but also reduces the noise
interference and improves the picking accuracy. Finally, non-
primary velocities, such as multiples, are eliminated by
comparing them with the slope of the prior velocities, thereby
making the results more accurate. Overall, the velocities of the
model data and actual seismic data are picked by the weighted
k-means clustering algorithm in a fast and accurate manner.

2 Methods

Each energy group in the velocity spectrum can be regarded as a
set of velocity points and the velocity can be determined using cluster
analysis. The k-means algorithm is a classic algorithm for solving
clustering problems. This method has the advantages of simplicity and
speed; however, it requires the number of cluster centers and the initial
value of each cluster center in advance. Each initial value has a
significant impact on the final result and an effective clustering
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result (in an infinite loop) may not be possible to obtain. At the same
time, serious deviations from the mean, owing to abnormal points,
may occur. To solve these problems, this study uses the rough velocity
as a priori information to obtain the number of cluster centers and
their initial values. Subsequently, the weight of each velocity point is
calculated according to the characteristic that the amplitudes of the
energy clusters in the velocity spectrum are higher than those of other
velocity points. In the iterative process of weighted k-means clustering,
velocity points far from the center are gradually eliminated to ensure
high picking accuracy. Finally, the prior information is used to
eliminate picking inappropriate velocities, such as multiples, and
complete the velocity picking.

2.1 Calculation of the number of cluster
centers and their initial values

In this study, we selected the semblance velocity spectrum to
calculate the number of cluster centers and their initial values. The
equation for the semblance velocity spectrum is as follows (Neidell and
Taner, 1971; Xie et al., 2017):

S �
∑λ/2

j�−λ/2
∑N
i�1
u ti + j, xi( )( )2

N ∑λ/2
j�−λ/2

∑N
i�1
u ti + j, xi( )2 , (1)

where S is the value of the semblance velocity spectrum, ti �
������
t20 + x2i

v2

√
,

t0 is the two-way travel time at zero offset, xi is the offset of the i th
trace, v is the scanning velocity,N is the number of seismic traces, λ is
the width of the time window, and u(ti + j, xi) represents the
amplitude of the seismic data. The amplitude of the semblance
velocity spectrum is between 0 and 1, which is beneficial for setting
the amplitude threshold.

To remove unnecessary velocity points from the calculation, it is
necessary to determine the picking area. The prior velocity was used as
the reference velocity. The reference velocity was obtained using the
following steps: First, we selected velocity functions at several locations
along the survey line. Second, we interpolated between them in the
horizontal direction for all CMPs (comon mid-points). Third, the
interpolated velocity function was smoothed and obtained the prior
velocity vref(t) of all CMPs. For each sampling point in the velocity
spectrum S(v, t), velocity points whose velocity differences with
vref(t) were within a certain range were taken as the picking area
and velocity points outside this range were set to zero using the
following equation:

S v, t( ) � S v, t( ), v1 t( )< v< v2 t( )
0, else

{ , (2)

where v1(t) � vref(t)(1 − ε1), v2(t) � vref(t)(1 + ε2), ε1, and ε2 are
the scaling factors determining the velocity range. Usually, the CMP
velocity is somewhat different from the reference velocity and setting
the velocity point outside the range to zero can reduce potential
interference, such as noise.

To reduce potential interference, such as noise, the amplitude
threshold thre1 is given a value appropriate for optimizing the
velocity points in the picking area. Velocity points whose
amplitudes are lower than this threshold are set to zero and the
equation is as follows:

S v, t( ) � S v, t( ), S v, t( )≥ thre1
0, else

{ . (3)

In actual data processing, selecting the amplitude threshold thre1
is crucial. The amplitude of the edge of each energy cluster in the
velocity spectrum can be chosen to be equal to thre1. For the velocity
spectrum of seismic data, there are more velocity points around the
center of each energy cluster, whereas other regions have fewer
velocity points. In view of this feature, for each sampling point, we
searched along the velocity direction, counted the number of velocity
points whose amplitudes were greater than zero, and obtained the
function num(t) for the number of velocity points. A number
threshold thre2 was set to zero (one) for points below (above or
equal to) the threshold in the function num(t) to obtain the
rectangular signal us(t). The expression of the rectangular signal
us(t) is as follows:

us t( ) � 1 num t( )≥ thre2
0 else

{ . (4)

The signal us(t) consists of multiple rectangles with different time
lengths, each corresponding to a cluster center; thus, the number of
cluster centers can be obtained by counting the number of rectangles.
The number of velocity points near each cluster center is larger than
those in other regions and the function num(t)may have a maximum
value at the cluster center. Because of the noise and the fact that the
initial value does not have to be very precise, we do not need to choose
the time at which num(t) is maximum as the initial time value. Thus,
we chose the time at the midpoint of each rectangle as the initial time
of the corresponding cluster center. The initial velocity of each cluster
center is the reference velocity corresponding to the initial time of the
center. In this way, the calculations of the number of cluster centers
and their initial values are realized using the rectangular signal us(t)
and the reference velocity vref(t).

2.2 Velocity picking method based on
weighted k-means clustering

Usually, k-means cluster analysis is not performed on all velocity
points in a velocity spectrum. For this reason, we selected velocity
points from S(v, t) according to Eqs 2, 3, and obtained a series of
velocity points with amplitudes greater than zero as input data set
X � xi,j{ }, with xi,j representing velocity points in the i th row and j th
column in S(v, t), and their amplitudes Ai,j being used for velocity
picking through weighted k-means clustering.

Assuming that the number of cluster centers is K, the initial value
of the cluster center is m0

k, where the subscript represents the serial
number of the cluster center and the superscript represents the
number of iterations, k � 1, 2,/, K. The conventional k-means
clustering method uses the Euclidean distance to calculate the
distance between each data point and each cluster center. The
equation used is as follows:

dk � xi,j −mk

���� ����2, (5)
wheremk is the cluster center. According to the principle of minimum
distance, k-means clustering classifies the data points that are the
closest to the cluster centers into separate categories and subsequently
recalculates for each cluster the average value of its data points to
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update the value of the cluster center. Therefore, the updated equation
for each cluster center is as follows:

ml
k �

1
Mk

∑
X∈ck

xi,j, (6)

where the superscript l of ml
k represents the number of iterations

l � 1, 2,/, L, Mk represents the number of data points in the k th
cluster center, and ck represents all data points in the k th cluster
center.

Equation 6 shows that the weights of all data points are the same.
Therefore, the cluster centers calculated using the conventional
k-means clustering method are the geometric centers of the
clusters. There may be noise in the velocity spectrum such that the
geometric centers do not coincide with the centers of the energy
clusters. To ensure that the selected centers coincide with the centers
of the energy clusters, we adopted the weighted k-means clustering
method for velocity picking. The weight calculation equation for each
velocity point is as follows:

Wi,j � An
i,j, (7)

where n≥ 1. The weight of each velocity point is proportional to its
amplitude. Applying the weight of Eq. 7 in Eq. 6, the updated equation
for the cluster centers is as follows:

ml
k �

1
Nk

∑
X∈ck

xi,jWi,j, (8)

whereNk � ∑
X∈ck

Wi,j. During the calculation process, the weights and

velocity points were clustered simultaneously. According to the
characteristics of the velocity spectrum, velocity points within a
certain range of each energy cluster center have higher amplitudes
than those in other regions, with their weights being higher than those
of velocity points in other regions. Therefore, cluster centers obtained
by the weighted k-means clustering method of Eq. 8 are closer to the
energy cluster centers and the picking result is more accurate. After the
cluster centers are updated, the sum of the distances between the
velocity points in each category and the cluster centers is calculated as
an objective function. The objective function is used as the basis for
terminating the iteration and its equation is as follows:

Jl � ∑K
k�1

∑
X∈ck

xi,j −ml
k

���� ����2. (9)

For real data, the energy cluster convergence given by Eq. 1 is good
and can be directly used for velocity picking through weighted
k-means clustering. For model data, the energy clusters in the
semblance velocity spectrum are prone to tailing. In this case, the
velocity spectrum SA(v, t), which is calculated using the average
amplitude criterion, can be used for velocity picking through
weighted k-means clustering (Xie et al., 2017). The average
amplitude criterion is defined as follows:

SA � 1
N

∑λ/2
j�−λ/2

∑N
i�1
u ti + j, xi( )∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣, (10)

where SA represents the average amplitude. In general, the average
amplitude SA decreases as the difference between the scanning
velocity and true velocity increases. Therefore, the average
amplitude can be used for calculating the weight.

In the velocity spectrum, owing to the influence of noise, velocity
points outside the energy clusters may also participate in the
calculation; therefore, it is necessary to eliminate any velocity
points far away from the cluster centers to ensure accurate picking.
To prevent incorrect culling of velocity points owing to inaccurate
values of the cluster centers, velocity points far away from the cluster
centers are eliminated after each update of the velocity cluster centers
and only a small number of velocity points, i.e., those with the largest
distances, are eliminated in each iteration. Eliminated velocity points
no longer participate in the clustering calculation; therefore, during
each iteration, the remaining velocity points are closer to the energy
cluster centers. The implementation steps of the weighted k-means
clustering algorithm are as follows.

Step 1: Calculating the initial values of the cluster centers. Obtain the
number of cluster centers and their initial values according to
the method described in Section 1.1.

Step 2: Clustering the velocity points. Eq. 5 is used to calculate the
distance between each velocity point and cluster center, and to
classify each velocity point and its weight into the category of

FIGURE 1
Velocity model and its forward modeling results. (A) Velocity model. (B) CMP gather.
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FIGURE 2
Semblance velocity spectrum and its calculation area. (A) Semblance velocity spectrum. (B) Calculation area of semblance velocity spectrum.

FIGURE 3
Rectangular signal.

TABLE 1 Initial value and picking result of cluster centers.

Cluster centers 1 2 3 4 5 6

Initial time (s) 0.560 0.905 1.162 1.509 1.778 2.325

Initial velocity (m/s) 2,230 2,324.0 2,372.3 2,438.7 2,480 2,480

Time for conventional k-means clustering method (s) 0.557 0.901 1.161 1.503 1.758 2.323

Velocity for conventional k-means clustering method (m/s) 2,160 2,260 2,100 2,200 2,340 2,280

Time for weighted k-means clustering method (s) 0.570 0.915 1.164 1.509 1.755 2.321

Velocity for weighted k-means clustering method: (m/s) 2,100 2,180 2,100 2,160 2,340 2,280
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the closest cluster center, according to the principle of
minimum distance.

Step 3: Calculating the velocity points far from the cluster centers. The
distance threshold thre 3 is set for velocity points whose
distances from the cluster centers are greater than the
threshold, thereby removing the small number of velocity
points that have the largest distances from the cluster
centers. This number can be selected as the proportion of
all velocity points whose distance from the cluster centers are
greater than the threshold thre 3 in the first iteration, such
as 10%.

Step 4: Updating the cluster center. The value of each cluster center is
updated using Eq. 8.

Step 5: Iteration and termination. The computations between steps
(2) to (4) are repeated in each iteration. The objective function

is calculated using Eq. 9 and the iteration is terminated when
the difference between the objective functions Jl and Jl−1 of
two consecutive iterations is less than the given error.

Through the iterative process of the weighted k-means clustering
method, the velocity points that are far away from the cluster centers
are gradually eliminated. At the same time, the weights are used when
the cluster centers are updated, so that the selected cluster centers and
the centers of the energy clusters can be coincident, thereby ensuring
the accuracy of the picking results.

2.3 Screening of the picking results

The velocity spectrum contains multiple energy clusters, which
can be easily confused with the primary energy clusters whose
velocities are reversed. Therefore, it is necessary to screen the
selected results and eliminate multiple energy clusters. Usually,
the stacking velocity increases gradually with time, and even if
velocity reversal occurs, the reversal value will be within a certain
range (Wang et al., 2021). The seismic velocity changes
continuously in the lateral direction and the primary energy
clusters whose velocities are reversed can be identified from
multiples using the reference velocity. If the time and velocity of
the k − 1 th cluster center are tk−1 and vk−1, respectively, and the
time and velocity of the k th cluster center are tk and vk,
respectively, then, the reference velocities corresponding to the k −
1 th and k th cluster centers are vref(tk−1) and vref(tk), respectively.
The slope can be calculated using the times and velocities of the
cluster centers, and the reference slope for the same time period can
be calculated using the reference velocity. The equations are as
follows:

qk,k−1 � vk − vk−1
tk − tk−1

, (11)

qck,k−1 � vref tk( ) − vref tk−1( )
tk − tk−1

. (12)

FIGURE 4
Calculation area of the average amplitude spectrum.

FIGURE 5
Velocity picking and normal move out (NMO) correction results. (A) Velocity picking results, where the red line is the conventional k-means clustering
method and the green is the weighted k-means clustering method. (B) NMO correction results while applying velocity picked by conventional k-means
clustering. (C) NMO correction results while applying velocity picked by weighted k-means clustering.
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According to the slope of the cluster center and the reference slope,
the angle between them can be calculated as follows:

θ � arctan
qck,k−1 − qk,k−1
1 + qck,k−1qk,k−1

( ). (13)

Therefore, if the velocity of the k th cluster center is reversed, the
angle between the picking result and the reference velocity can be
calculated according to Eq. 13. If the angle is too large, the cluster
center is identified as multiple and eliminated. After screening the
selected results, the velocities of all sampling points were obtained by
interpolation.

3 Examples

In the examples of model data and real data, by comparison with
the conventional k-means clustering method, it is proven that the
weighted k-means clustering method proposed in this paper can
accurately perform velocity picking.

3.1 Examples of model data

Figure 1A shows the horizontal layered velocity model. The model
had four formations and three reflection interfaces. The formation
velocities, from top to bottom, were 2,100, 2,300, 2,500, and 2,600 m/s.
The velocity difference between the first two interfaces was 200 m/s
and could form multiples. We could evaluate the ability of the
algorithm to pick up and automatically eliminate multiples. The
CMP gather shown in Figure 1B was obtained using the velocity
model shown in Figure 1A and the finite-difference forward modeling
method of the acoustic wave equation. A small amount of noise (SN =
8) was added to the CMP gathers to mitigate the tailing phenomenon
of the energy clusters in the semblance velocity spectrum. The
semblance velocity spectrum shown in Figure 2A was obtained by

velocity analysis of the CMP gather in Figure 1B using Eq. 1. As shown
in Figure 2A, there were seven energy clusters. Combined with the
velocity model in Figure 1A, it is evident that the first, second, and fifth
energy clusters from top to bottom are primaries, whereas the rest are
multiples. The seismic velocity changes to a certain extent in the lateral
direction. The velocity-picking method in this study involves a certain
velocity difference between the reference and true velocities. To test
the adaptability of the method to the lateral velocity change, the time-
velocity pair at the position of the red circle in Figure 2A was selected
as the reference velocity. The velocities were approximately 80 and
180 m/s higher than the true velocity. According to Eq. 2, the picking
area was obtained after eliminating all points involving velocity
differences from the reference velocity greater than 350 m/s. Points
with small amplitudes in the picking area were eliminated according to
Eq. 3, and finally, we obtained the velocity points involved in the
calculation shown in Figure 2B. For each sampling point, we searched
along the velocity direction, counted the number of points whose
amplitudes were greater than zero, and subsequently obtained the
rectangular signal shown in Figure 3 according to Eq. 4. Each rectangle
in Figure 3 represents an energy cluster; therefore, the number of
cluster centers can be determined by the rectangular signal. This solves
the problem of the k-means clustering method requiring the number
of cluster centers in advance.

If two energy clusters are very close in the time direction, when the
number of cluster centers is calculated using the rectangular signal, the
two energy clusters may correspond to the same rectangle; in other
words, there may be only one cluster center. To test the velocity-
picking capability in this case, the threshold of Eq. 3 was set to a small
value, such that the fifth and sixth adjacent energy clusters were
indistinguishable. In the rectangular signal shown in Figure 3, these
two indistinguishable energy clusters correspond to only one
rectangle, and each of the remaining energy clusters corresponds to
a rectangle. Because these seven energy clusters have only six
rectangles, the number of cluster centers in velocity picking is six.
The center time of each rectangular signal was set as the initial time

FIGURE 6
(A) Calculation area of the semblance velocity spectrum. (B) Calculation area of the average amplitude spectrum.
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of each cluster center and the reference velocity corresponding to
the initial time was used as the initial velocity of each cluster center
to complete the calculation of its initial value. The initial values of
the cluster centers are listed in Table 1. Because each initial value
was calculated using the rectangular signal and reference velocity, it
was relatively close to the true value and the velocity picking could
be completed quickly. Owing to the poor convergence of the
semblance velocity spectrum of the model data, the average
amplitude velocity spectrum calculated by Eq. 10 was used to
determine the velocity. The position of the velocity point culling
in the average amplitude velocity spectrum was the same as that of
the semblance velocity spectrum; hence, the selected area of the
average amplitude velocity spectrum shown in Figure 4 was
obtained. Using the initial values of the cluster centers given in
Table 1 and the velocity spectrum data shown in Figure 4, the
conventional k-means clustering method and the weighted k-means
clustering method proposed in this paper were used for velocity
picking. Table 1 shows the picking results. The picking times were
not significantly different from the initial times, indicating that the
rectangular signal could effectively determine the time of the cluster
center. Because the initial velocities were higher than the true
velocities, the picked velocities were smaller than the initial
velocities and closer to the true velocities. The six cluster centers

listed in Table 1 contained multiples. According to Eq. 13, the angle
between them and the reference velocity was calculated, abnormal
velocities (such as multiples) were automatically eliminated, and the
values of the first, second, and fifth cluster centers were finally
retained. The three remaining centers were all primary energy
clusters, indicating that the proposed method can effectively
eliminate abnormal energy clusters.

To test the picking accuracy of the two methods, the picking
results of the conventional k-means clustering method and the
weighted k-means clustering method proposed in this study are
displayed in the velocity spectrum. Figure 5A shows the results of
this comparison. The picked velocities of the conventional k-means
clustering method are equal to or higher than those of the weighted
k-means clustering method, with the picked velocities of the weighted
k-means clustering method being closer to the true velocities. The
conventional k-means clustering method selects the geometric centers
of the velocity points involved in the calculation. If the geometric
centers do not coincide with the energy cluster centers, the picking
result is biased; therefore, the method is easily affected by the
geometries of the energy clusters. Because the weights of the
centers of the energy clusters are higher than those of other
regions, the weighted k-means clustering method approaches the
centers of the energy clusters in each iteration and finally yields

TABLE 2 Initial values and picking results for the cluster centers.

Cluster centers 1 2 3 4 5 6 7

Initial time (s) 0.561 0.909 1.163 1.507 1.732 1.852 2.325

Initial velocity (m/s) 2,230.3 2,325.5 2,373.8 2,439.3 2,480 2,480 2,480

Time for conventional k-means clustering method (s) 0.557 0.900 1.161 1.505 1.722 1.844 2.323

Velocity for conventional k-means clustering method (m/s) 2,140 2,240 2,100 2,160 2,380 2,200 2,280

Time for weighted k-means clustering method (s) 0.571 0.917 1.164 1.508 1.733 1.853 2.321

Velocity for weighted k-means clustering method: (m/s) 2,100 2,180 2,100 2,160 2,340 2,180 2,280

FIGURE 7
Rectangular signal.
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accurate results. As shown in Figure 5A, compared with the first and
second cluster centers, the velocity difference between the fifth cluster
center picked up by the conventional k-means clustering method and
the primary energy cluster center is smaller, owing to the influence of
multiple energy clusters. However, the fifth cluster center selected by
the weighted k-means clustering method is still very close to the center
of the energy cluster, indicating that the method is relatively robust.
For the velocity spectrum of the actual data, the energy clusters of the
two primaries may be close to each other. If two primary energy

clusters are treated as one cluster center, the weighted k-means
algorithm selects the velocity of the stronger energy cluster. The
velocity usually changes gradually from lower to greater depths.
Although the velocity of the weak energy cluster cannot be
determined, the velocity of the corresponding time can be obtained
by interpolation.

Using the time–velocity pairs picked up by these two methods,
the velocities of all sampling points were obtained by interpolation.
Figures 5B, C show the results of normal move out (NMO)

FIGURE 9
Velocity picking andNMOcorrection results. (A) Velocity picking results, where the red line is the conventional k-means clusteringmethod and the green
is the weighted k-means clustering method. (B) NMO correction results while applying velocity picked by conventional k-means clustering. (C) NMO
correction results while applying velocity picked by weighted k-means clustering.

FIGURE 8
(A) CMP gather of actual data and (B) its semblance velocity spectrum.

Frontiers in Earth Science frontiersin.org09

Xie et al. 10.3389/feart.2022.1076999

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1076999


correction using two types of velocities. Because the velocity
selected by the conventional k-means clustering method was
larger than the true velocity, the first, second, and fifth events in
Figure 5B were insufficiently corrected. In Figure 5C, the three
events are flattened, indicating that the velocity obtained by the
weighted k-means clustering method was accurate. Therefore, the
weighted k-means clustering method proposed in this study is

superior to the conventional k-means clustering method. In terms
of computational speed, the average number of iterations for the
conventional k-means clustering method was seven times
per CMP, whereas that for the weighted k-means clustering
method was four times per CMP. Therefore, the velocity
determined by the weighted k-means clustering method is fast
and accurate.

FIGURE 10
(A) Velocity field picked by the manual method. (B) Velocity field picked by the conventional k-means clustering method. (C) Velocity field picked by
weighted k-means clustering method.
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Setting the threshold of Eq. 3 to a larger value can improve the
discrimination ability of the adjacent energy clusters. Figure 6A shows the
velocity points involved in the calculation of the semblance velocity
spectrum. Compared with that in Figure 2B, the distance between the

fifth and sixth energy clusters in Figure 6A is larger. Figure 6B shows the
velocity points involved in the calculation of the average amplitude velocity
spectrum; their positions are the same as those in Figure 6A. The
rectangular signal shown in Figure 7 can be obtained using Figure 6A

FIGURE 11
Stacked profiles obtained by applying three kinds of velocity fields. (A) Stacked profile obtained by applying the manually picked velocities. (B) Stacked
profile obtained by applying the velocities picked by the conventional k-means clustering method. (C) Stacked profile obtained by applying the velocities
picked by the weighted k-means clustering method.
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and the two energy clusters that cannot be distinguished in Figure 3 are
shown in Figure 7. The rectangular signal in Figure 7 can determine the
seven cluster centers and their initial times. The reference velocities
corresponding to the initial times were used as the initial velocities of
the cluster centers. Each cluster center corresponded to an energy group
and their initial values are listed in Table 2. Using the initial values of the
cluster centers given in Table 2 and the velocity spectrum data shown in
Figure 6B, the conventional k-means clustering method and weighted
k-means clustering method in this study were used for velocity picking.
Table 2 presents the results. Because the conventional k-means clustering
method was affected by the shape of the energy cluster, the selected
velocities were greater than or equal to those of the weighted k-means
clusteringmethod. The first, second, and fifth energy clusters were retained
after removingmultiple energy clusters. Compared with the picking results
in Table 1, the velocities of the first and second energy clusters selected by
the conventional k-means clustering method in Table 2 are more accurate.
The fifth energy cluster had a larger value because it was not affected by the
adjacentmultiple energy clusters, indicating that the conventional k-means
clustering method was significantly affected by the shape of the energy
clusters. The first, second, and fifth energy clusters selected by the weighted
k-means clustering method in Table 2 were consistent with the velocity in
Table 1, with the time values being also very close. A comparison of the
results in Tables 1, 2 shows that the results obtained by the weighted
k-means clustering method are more accurate than those of the
conventional k-means clustering method and are not easily affected by
the shapes of the energy clusters.

3.2 Examples of real data

The data from an actual survey line were selected to test the
velocity-picking effect of the weighted k-means clustering method.

The survey line contained 801 CMP gathers, the data-recording time
length was 6 s, and the sampling interval was 2 ms. Due to the
extremely low signal-to-noise ratio of deep seismic data, we show
only the data between 0.5 and 3.0 s, based on which we analyze the
velocity-picking effect. Figure 8A shows a CMP gather of the survey
line, which had 240 traces in total, with a minimum offset of 360 m,
and a maximum offset of 4,986 m. Figure 8B shows the semblance
velocity spectrum of the CMP gather shown in Figure 8A. The seismic
velocity increases from shallow to deep, and there is a certain amount
of noise outside the energy cluster. The energy clusters in Figure 8B
have good convergence; therefore, the semblance velocity spectrum in
Figure 8B is not only used for the calculation of the number and the
initial value of cluster centers, but also for the calculation of the weight
of the weighted k-means clustering. Considering that there are lateral
velocity changes in the actual seismic data, the velocity points within a
range of 400 m from the reference velocity were used for velocity
picking according to Eq. 2. The velocity-picking area is shown in
Figure 9A. The velocities were picked by the conventional method and
the weighted k-means clustering method proposed in this paper using
the data in the picking area. To verify the accuracy of the picking
results of the two methods, the time-velocity pairs picked by the
conventional k-means clustering method and the weighted k-means
clustering method were linearly interpolated. The interpolation results
are shown in the velocity spectrum of Figure 9A for comparison. It is
evident that the picking result of the conventional k-means clustering
method is close to or deviates from the center of the energy cluster.
The reason for this deviation is that the weights of all velocity points in
the k-means clustering method are the same, and the selected cluster
centers are the geometric centers of the clusters, which are easily
affected by noise outside the energy clusters. Energy clusters have
larger amplitudes in the central areas and smaller amplitudes in other
regions. The weighted k-means clustering method can use the

FIGURE 12
Enlarged display of the anticline. (A) Stacked profile obtained by applying the manually picked velocities. (B) Stacked profile obtained by applying the
velocities picked by the weighted k-means clustering method.
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amplitudes to calculate the weights according to this characteristic
such that the cluster centers in each iteration move quickly to the
centers of the energy clusters. In the iterative process, velocity points
that are far away from their cluster center are gradually eliminated to
ensure that the selected velocity is the correct velocity of each energy
cluster center. Figure 9B shows the NMO correction results of the
velocity obtained using the conventional k-means clustering method.
It is evident that the correction of the event within 1–2 s is insufficient,
resulting from the high picked velocity. Figure 9C shows the NMO
correction result for the velocity selected by the weighted k-means
clustering method. It is evident that the event can be flattened well
owing to accurate velocity picking. In terms of computational speed,
the average number of iterations for the conventional k-means
clustering method was 58, whereas that for the weighted k-means
clustering method was five times for each CMP for velocity picking.
Therefore, the weighted k-means clustering method not only has the
advantage of accurate velocity picking, but also the advantage of higher
computational efficiency.

Figure 10A shows the manually selected velocity field. Owing to
the large picking workload, the seismic velocity-picking interval
was 20 CMPs and the seismic velocities of the remaining traces
were obtained using the interpolation method. Because the
intelligent method can determine the velocity of each CMP, its
velocity field is finer than that of manual picking. To eliminate the
influence of noise and other factors, the selected velocity field was
smoothed in both the spatial and temporal directions. Figure 10B
shows the velocity field selected by the conventional k-means
clustering method; its continuity in the lateral direction was
poor, and there were high-velocity outliers between 0.5 and
2.0 s. Figure 10C shows the velocity field selected by the
weighted k-means clustering method, which is roughly
consistent with the manually selected velocity field shown in
Figure 10A.

To verify the correctness of the velocity picking, the CMP gathers
were NMO corrected using the three types of velocity fields in Figure 10.
The stacked profiles were subsequently obtained by stacking. Owing to the
inaccuracy of the velocities, the stacked profile (Figure 11B) obtained by
applying the velocities selected by the conventional k-means clustering
method showed discontinuities. The stacked profile obtained with the
velocities selected by the weighted k-means clustering method
(Figure 11C) was very close to that obtained by applying the manually
selected velocities (Figure 11A), indicating that the velocities selected by
the weighted k-means clustering method were accurate. Figure 12 shows
the result of magnifying the anticlinal parts of Figures 11A, C. Figures
12A, B have almost the same structure in the box, but the energy of the
events in Figure 12B is stronger, indicating that the velocity picked by the
weighted k-means clustering method was more accurate than that picked
manually. A more precise reason is that the weighted k-means clustering
method can determine the velocity of each CMP, whereas the manual
method usually selects the velocity at a certain CMP interval.

4 Conclusion

In the velocity spectrum, the amplitude is large at the center of the
energy cluster and small in other regions. Based on this feature, this
study proposes an unsupervised weighted k-means clustering
intelligent velocity-picking method based on prior information

constraints. Through processing of model and real data, we prove
that the method is effective and feasible and conclude the following.

Under the constraint of the reference velocity, we can not only
delineate the picking area and reduce the velocity points involved in
the calculation but also use the reference velocity as the initial velocity
of the cluster center. In the velocity spectrum, there were many
velocity points with larger amplitudes near the center of the
primary energy cluster. According to this feature, the number of
cluster centers and the initial time of each cluster center could be
obtained by counting the number of velocity points with larger
amplitudes corresponding to each time-sampling point.

Owing to the effect of the weights, in the iterative weighted
k-means clustering method, the distance between the cluster center
and the energy cluster center is very close. Some of the velocity points
far from the cluster center can be gradually eliminated, which speeds
up the calculation and reduces the interference of noise, so that the
cluster center moves quickly to the center of the energy cluster.
Therefore, compared with the conventional k-means clustering
method, the seismic velocity-picking method of weighted k-means
clustering proposed in this paper is not only fast in calculation, but
also more accurate in picking results.

The method proposed here can only adapt to the velocity
spectrum with a relatively high signal-to-noise ratio. For a velocity
spectrum with a very low signal-to-noise ratio, it may not be possible
to accurately determine the velocity. The proposed method is limited
by the accuracy of the velocity spectrum to a certain extent. If the
velocity interval of the velocity spectrum is too large, the picking
accuracy is low. If the amplitude of the weakly reflected energy cluster
is lower than the amplitude threshold thre1 in Eq. 3, the proposed
method cannot determine its velocity.
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