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Deciding when to plant is critical for smallholders in Africa. If they plant too

early, farmers risk seedling death if the rains are not established; if they plant

too late, there will not be enough rain to sustain the crop through critical

development periods. In this study, we present a new decision support tool

(DST) that accounts for the trade-o� in the risks of early and late planting

through advisories based on both short- and long-range forecasts of crop

water availability. Unlike most existing operational systems, which are based

solely on rainfall, the DST presented here uses ensemble forecasts of soil

moisture to estimate the optimal planting date at a local scale. Evaluations

using >30,000 observations of planting date and yield in Kenya, Rwanda,

Uganda, Zambia and Malawi demonstrate that that planting at the optimal time

would increase yield by 7–10% overall, and up to 20% for late planting farmers.

The DST has been piloted by One Acre Fund for the 2019–2020, 2020–2021,

and 2021–2022 seasons and there is strong demand for the service to be

extended further.We conclude from the evaluations and pilots that the planting

date DST has the potential to strengthen farmer decision making and hence

their resilience to climate variability and change.
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1. Introduction

Global agriculture is highly vulnerable to climate variability and hence to the impacts

of climate change (for example, Shi and Tao, 2014; Serdeczny et al., 2017; Bedeke, 2022).

Farmers have several adaptation options open to them, including using different seed

varieties, irrigation, crop diversification and adjusting the timing of cropping. All of these

strategies require effective delivery of agricultural climate services (Naab et al., 2019).

Farmer surveys suggest that, in rainfed tropical annual cropping systems, adjusting

cropping periods by modifying planting time is a frequently adopted strategy (Kidane

et al., 2022). In part, this is because, unlike other strategies such as changing crop variety,

planting at optimal time incurs minimal cost for farmers. In this context, the optimal
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date is the planting date that maximizes yield. Several

authors have, moreover, proposed modification of planting

date as a means of adapting to climate change (for example,

Dharmarathna et al., 2014; Waongo et al., 2015; Dobor et al.,

2016).

The impact of modifying planting date stems from the

strong link between the timing of planting and yield, for a wide

range of crops, including soybean (Egli and Bruening, 1992;

Lee et al., 2008; Egli and Cornelius, 2009), sweet corn (Garcia

et al., 2009), maize (Kombiok and Clottey, 2003), and chick

pea (López-Bellido et al., 2008). Excessively early planting may

result in seedling death if the rainy season is not yet established.

A field survey conducted in Niger demonstrated, for example,

that adhering to the local “rule of thumb” of planting after

2 days of rain places crops at risk of failure due to extended

dry spells in the early stages of the monsoon season (Stern

et al., 1982; Marteau et al., 2011). Excessively late planting, on

the other hand, may shorten the growing season and reduce

yield (Laux et al., 2008). In Burkina Faso, for example, a crop

modeling study suggested that well-established rainfall-based

methods of optimizing planting date result in late planting,

and a reduction in yield of ∼20% (Waongo et al., 2014). In

general, the timing of season onset, is strongly correlated to

the length of the rainy season and to total rainfall, both in

West Africa and more widely (Sivakumar, 1988; Dunning et al.,

2016). Therefore, sensitivity to planting date is expected to

be greatest for lower rainfall years, when farmers are already

highly vulnerable.

In semi-arid regions with strongly seasonal rainfall and

relatively short growing seasons, the optimal planting date

is broadly equivalent to the onset of the rainy season.

Identification of the season onset may be considered equivalent

to identification of optimal planting date. Onset may be

identified in a number of ways. In Nigeria, for example,

one study defined onset to have occurred when cumulative

rainfall reached a spatially varying threshold (Benoit, 1977).

Cumulative rainfall metrics may also distinguish between false

and true rainy season onsets (Jolliffe and Sarria-dodd, 1994;

Dodd and Jolliffe, 2001; Camberlin and Diop, 2003). Advanced

statistical techniques (fuzzy logic) may improve the practical

applicability of rainfall based criteria by ensuring that an onset

date is estimated every year. Principal component analysis,

moreover, allows criteria to be varied spatially (Laux et al.,

2008). Practically speaking, there is clear value in being able

to anticipate the rainy season, over relying on retrospective

observations. Empirical forecasting models based on metrics of

the African easterly jet or synoptic surface observations may

provide useful information up to 2 months ahead of the onset of

the rainy season in the Sahel (Omotosho, 1992; Omotosho et al.,

2000).

The dependence of optimal planting date on rainfall

variability has motivated the development of a number of

decision support tools (DSTs), aiming to provide farmers

with the climate information they require to make robust

decisions on when to sow. Most of these are aimed at non-

tropical regions. Reichenbach et al. (2003), for example, have

developed a GIS-based crop modeling system that enables

farmers in the US corn belt to relate historical climate

data to growing seasons, and hence to analyze the risk of

planting on a given date. Optimal planting advisories have

also been shown in modeling studies to have the potential

to improve crop yield in Africa. For example, integration of

the aforementioned fuzzy logic algorithm (Laux et al., 2008)

into the physically based crop model CropSyst (Stöckle et al.,

2003) results in significant potential improvement in yield when

implemented for groundnut and maize in West Africa (Laux

et al., 2010).

Practical implementation of DSTs in the global south,

however, presents significant challenges. In particular, the

difficulty that farmers in developing countries face when

accessing computer-based systems is widely recognized. An

SMS-based interface to the DSSAT crop modeling system

(Jones et al., 2003) has been developed for a region of the

Philippines (Trogo et al., 2015). Churi et al. (2013) propose

a similar technological framework but incorporating a wider

range of climate and market data. The system was piloted

in Tanzania, with broadly positive feedback from farmers.

Both of the systems described above were developed using a

participatory approach.

None of the operational systems described above advise

whether farmers should or should not plant at a particular

location and date. Instead, farmers are assisted in their

decision making through access to multiple streams of

information on biophysical and socio-economic factors. Amajor

limitation of this approach is in assuming that farmers are

able to appropriately interpret this information and translate

it into action (i.e., to plant or wait). Often this is not

the case, either because farmers distrust the information

received or don’t know how to interpret it for action. An

alternative approach is to use expert judgement to collate

available information into an advisory on when planting

should occur. Regional and national hydrometeorological

services, for instance, prepare bulletins on the onset of

the rainy season, which can be used by farmers to plan

planting. The example in Figure 1 is extracted from a

bulletin issued by the Ghana Meteorological Agency based on

seasonal forecasts.

In this study, we extend previous approaches to planting

date decision support using a seamless system for forecasting

soil moisture on both seasonal and sub-seasonal time scales.

The paper is structured as follows: Section 2 details the data

used and the methodology for identifying optimal planting date

in an operational setting. Section 3 describes the evaluation

of the system against historical data and during a series

of operational pilots. Section 4 discusses and contextualizes

the results.
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FIGURE 1

Example NHMS plot of predicted rainfall season onset. The left plot maps the predicted start to the rainy season from March week 2 (MARWK2)

to May week 1 (MAYWK1). The right plot displays the probability of early or late onset, compared to the climatological norm. The bulletin was

issued on 9th March 2022 by the Ghana Meteorological Agency (https://www.meteo.gov.gh/gmet/download/10773/?wpdmdl=10773&refresh=

62a74034638d11655128116, retrieved 13th June 2022).

2. Methods and data

2.1. Conceptual overview of the DST

For successful planting in regions affected by seasonal

rainfall, there must be:

• Sufficient soil moisture in the upper layer of soil to support

crop establishment.

• Sufficient time remaining in the rainy season to support

crop development.

The general methodological approach adopted for the

planting date decision support tool (DST) is to combine short

term soil moisture forecasts with probabilistic assessment of

local seasonal water resource satisfaction index (WRSI) (see

Figure 2). The decision of when to plant is a trade-off between

the risk of soil moisture deficit during the germination period,

resulting in seedling death and the risk of planting too late and

risking water stress at later times during the season. To reflect

this trade-off the planting date DST incorporates two criteria:

Seasonal WRSI criterion: Probability that the WRSI

exceeds a predefined fraction of the climatological maximum

achievable WRSI is greater than a predefined value. The

WRSI is calculated climatologically rather than predicted

using the TAMSAT-ALERT approach because previous

studies indicate that the predictability of interannual

variability in WRSI on seasonal time scales is far lower

than the short time scale predictability of the upper-level soil

moisture (Brown et al., 2017; Boult et al., 2020). The WRSI

probability criteria are fixed to 0.75 of maximum WRSI with

a probability threshold of 0.5. In other words, planting may

be recommended if there is a >50% probability that seasonal

WRSI exceeds 75% of the climatological maximum value for the

particular location/season.

Short-term upper level soil moisture criterion: Probability of

the predicted upper level (top 10 cm) soil moisture exceeding a

predefined threshold over a two-week period is greater than a

predefined value. In this study, upper level is the top level in the

soil moisture model and soil moisture is expressed as percent

field capacity (PFC1). Following previous pilots of the planting

date DST, the probability criteria for the soil moisture is set

to 0.8.

1 PFC = θ

θfc

Where θ is the soil moisture, θfc is the soil moisture at field capacity, where

field capacity is 80% of soil saturation.
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FIGURE 2

The conceptual design of the planting date DST.

These criteria are balanced to ensure that during the early

stages of the calendar planting window, the primary decision-

making criteria is upper level soil moisture, with the WRSI

criteria defining the latest possible day that planting may be

recommended. This is especially important during dry years,

when the PFC criteria may not be met. In these cases, if the

end of the WRSI window is approaching and the soil moisture

criteria have not been met, farmers are advised to plant as soon

as they can, bearing in mind that there is a higher than usual risk

of germination failure.

The soil moisture forecasting model adopts the established

TAMSAT-ALERT2 ensemble forecasting framework (Brown

et al., 2017; Asfaw et al., 2018; Boult et al., 2020). TAMSAT-

ALERT is a computationally light-weight system that

accounts for the local historical climatology and recent

variation in weather (rainfall, temperature, shortwave

and longwave radiation, humidity, wind speed and

pressure), local variation in soil texture and optionally the

precipitation forecast.

In order to accommodate the possibility of two rainy

seasons, the DST is constrained to run within predetermined

large time windows for each region and season:

2 Tropical Applications of Meteorology using SATellite-based data

(TAMSAT) AgricuLtural Early waRning system (ALERT).

• Kenya and Uganda long rains: December – May.

• Malawi and Zambia rainy seasons: September – April.

• Rwanda A: August – February.

• Rwanda B: February – May.

Further details of the growing seasons can be found in

Supplementary Table 2.

2.2. Soil moisture modeling and
forecasting

2.2.1. General methodology for modeling soil
moisture

The soil moisture modeling approach adopted in this study

is based on that used in the Joint UK Land Environment

Simulator (JULES), which is based on the Met Office Surface

Exchange Scheme (MOSES). The JULES/MOSES methodology

is fully described in Cox et al. (1999), Best et al. (2011), and Clark

et al. (2011). In order to speed up computation, and hence to

allow the system to be implemented in Python over large regions,

several adaptations have been made to the JULES method.

Unlike JULES, the model does not include full photosynthesis

or radiation schemes, resulting in differences to the way that

potential evapotranspiration and stomatal conductance are

derived (Boult et al., 2020).
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As a result of the modifications listed above, the model

requires different driving data to JULES. Specifically, rather

than long and shortwave radiative fluxes, land-surface (skin)

temperature is prescribed. The meteorological driving data

required to run the model at the daily scale are thus: 2m

daily mean air temperature, 2m maximum air temperature, 2m

minimum air temperature, skin temperature, surface pressure,

10m wind speed, 2m surface humidity and precipitation. The

model is run at an hourly time step, using the JULES methods

for disaggregating the daily driving data to the hourly scale.

In the model, vegetation properties are prescribed in a

similar way to JULES, except that there is no capability to tile

vegetation or to vary plant function types over a grid. For the

purposes of this study, a maize crop was assumed to be growing

for the WRSI modeling and bare soil was assumed for the soil

moisture forecasts. The treatment of crops is described in the

Section 2.2.3.

2.2.2. Model driving data

The model is driven with TAMSAT v3.1 rainfall data

and the NCEP reanalysis (Kalnay et al., 1996; Maidment

et al., 2017). The following data were used from the

NCEP reanalysis: 10m wind speed, daily 2m minimum,

maximum and mean temperature, specific humidity, sea-level

pressure and land surface temperature (“skin temperature”

in the NCEP dataset). All data were provided at the

daily time scale and were re-gridded to a common 0.25◦

resolution. Both the TAMSAT and the NCEP data are

complete and the only pre-processing carried out was the

re-gridding of the datasets. The driving data are routinely

processed within the TAMSAT system, and are publicly

available from: http://gws-access.jasmin.ac.uk/public/tamsat/

tamsat_alert_forcing_data/subset/Africa/0.25/yearly_files/.

Water resource satisfaction requirement index (WRSI) was

calculated for maize, based on FAO parameters for growing

degree days (Allen et al., 1998), and based on the ratio of actual

to potential evapotranspiration inferred from the land-surface

modeling results. Note that although maize is considered in

this study, WRSI could be easily calculated for other crops. It

would also be simple to adjust theWRSI parameters for different

varieties of maize (for example a fast growing 90-day variety).

This means that the decision support framework could easily be

applied to other crops.

2.2.3. Methodology for modeling soil moisture
in regions of crop cultivation, and for deriving
the water resource satisfaction index

The soil moisture model used in this study was adapted

for crops by allowing the leaf area index (LAI), plant height

(h) and rooting depth (rd) to vary in both space and

time. The variable LAI, h and rd are based on a growing

degree day (GDD) model, for which the plant development

stage and hence the LAI, h and rd depend on prescribed

crop-specific GDD. Within a region, these stages will be

reached on different dates, depending on the temperature and

planting date.

The WRSI is defined as the seasonal mean percentage

crop water requirement, calculated from planting to

harvest, with the harvest date based on the GDD to

maturity. The full method for calculating WRSI, and its

relationship to soil moisture is described in Asfaw (2020)

(with the description included as an appendix to Boult et al.

(2020).

2.2.4. Forecasting of soil moisture

In this study, the TAMSAT-ALERT forecasting method

described in Asfaw et al. (2018) and Boult et al. (2020) is

used to produce spatially variable probabilistic forecasts of soil

moisture, which are then integrated into the DST. This method

is summarized as follows:

The TAMSAT-ALERT system aggregates meteorological

metrics (such as precipitation) over user defined periods, which

can include both the past and future. Land surface metrics,

such as soil moisture, and agricultural metrics, such as crop

yield, can be derived by driving impact/land surface models

with the aggregated meteorological time series. Time series

of meteorological variables are generated by splicing together

historical data (satellite-based observations or reanalysis) with

an ensemble of possible weather futures. The future weather

ensemble is the weather that has occurred at the locality in

question in the past.

In effect, TAMSAT-ALERT is an ensemble forecasting

system, with ensemble members based on possible weather

futures, derived from the climatology. It provides a quantitative

answer to the question: Given the climatology, the stage

of the growing season, the state of the land-surface,

the weather so far in the season of interest, and the

meteorological forecast, what is the likelihood of some

adverse event?

Predictions of seasonal metrics are derived by statistically

analyzing the ensemble. TAMSAT-ALERT can thus be used

to monitor and predict any metric that can be derived

from environmental time series data. It should be noted

that TAMSAT-ALERT can be run without recourse to any

proprietary data. In addition, TAMSAT-ALERT has the

capability to incorporate the seasonal tercile rainfall forecast

to weight the ensemble members to add additional forecasting

ability (Asfaw et al., 2018; Boult et al., 2020).

TAMSAT-ALERT is a general framework that can

incorporate any impact or land-surface model, which is driven

with meteorological data. In this application, TAMSAT-ALERT

will be run using the soil moisture modeling approach described

in the previous sections.
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FIGURE 3

Climatological water requirement satisfaction index (WRSI)

calculated for variable planting dates throughout Africa. On the

figure, WRSI is calculated for the planting date that results in the

highest climatological WRSI (averaged over 15 years). The red

circles indicate localities for which yield and planting date

observations were supplied.

2.3. Approach to calibration and
validation

Key to the success of the DST is identification of the optimal

day for planting. The overarching aim is to enable farmers

to plant as close as possible to the true optimal day, whilst

respecting local planting practices and appetite for risk.

The DST was validated and calibrated empirically–with

the aim of determining how close to the optimal planting

date the recommendations were. To this end, we utilize

a large agronomical dataset provided by One Acre Fund.

These data include geo-located yield and planting date

observations at the individual farm level for the seasons listed

in Supplementary Table 1 and for the locations displayed in

Figure 3. A basic quality control was undertaken to check

for repeated values, missing values and infeasible locations

and planting dates. The data were generally found to be of

good quality.

During the calibration and validation process, the yield

achieved by farmers was compared with the difference between

the recommended and observed planting dates. The yield data

were gathered into bins, with each bin representing a 10-

day relative difference compared to the recommended date.

Yield was expressed as the median of the binned yield values.

Negative differences indicate that planting occurred earlier than

would have been recommended, and positive values indicate that

planting occurred later than recommended. Values near zero

indicate “compliant” farmers (i.e. those who planted close to the

recommended date).

2.3.1. Calibration procedure and results

During the calibration, the procedure outlined above was

carried out for a range of parameters, in order to determine

the parameter set that resulted in recommendations closest

to the true optimal planting date. The DST aims to support

farmer decision making, rather than to promote radical change

in behavior. As well as considering yield improvement, the

calibration process therefore also took into account historical

farmer behavior, in order to provide recommendations that

broadly match historical local planting windows.

For soil moisture, the predefined threshold was determined

through a sensitivity study, in which the PFC criteria were

varied - resulting in revised estimates of optimal planting date.

The number of farmers planting near each candidate optimal

planting date, and the yields they achieved were compared for

each country/season. In order to be consistent with established

farmer practices, the choice of PFC criteria was based primarily

on the number of farmers planting, with yield being a secondary

criterion. Defining the threshold this way, in principle, allows

the DST to be applied in cases where detailed datasets of planting

date and yield are unavailable, so long as there is local knowledge

on approximate historical planting dates. Figures 4, 5 show the

sensitivity study results for candidate PFC criteria of 25, 50, 70,

and 95% for 15-day accumulations of soil moisture (analogous

analyses were carried out for 5- and 10 day accumulations).

Figure 4 shows that for Kenya, Uganda, Rwanda and Zambia,

a PFC of 70% results in advice that is broadly consistent with

current practice – i.e., most farmers planted around the time

considered optimal by the DST. Figure 5 shows that farmers

who planted around the optimal time identified by the DST

had higher yield than those who planted too late (see later

sections for further discussion of the yield comparisons). For

Malawi, in contrast, setting a criteria of PFC 70% would result in

advising farmers to plant considerably later than they have done

historically. Greater agreement with historical planting dates

was achieved using a PFC threshold of 25%.

In summary, based on these results, for Kenya, Rwanda,

Uganda and Zambia, the criteria were set as follows:

• Climatological probability of a WRSI exceeding 0.75 of the

maximum achievable WRSI is >0.5.

• Probability of the 15-day soil moisture exceeding 70% PFC

is >0.8.

For Malawi, the criteria were set to:

• Climatological probability of a WRSI exceeding 0.4 of the

maximum achievable WRSI is >0.5.
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FIGURE 4

Number of farmers plotted against the di�erence between the actual and recommended planting time for all countries and seasons for PFC

threshold criterion ranging from 25 to 95%.

• Probability of the 15-day soil moisture exceeding 25% PFC

is >0.8.

The fact that it was necessary to vary the decision

support criteria is not surprising considering the

variability in the climate and the fact that many farmers

cultivate crops in sub-optimal conditions. Furthermore,

experimental work suggests that the moisture sensitivity

of root growth during the early growing season varies

according to temperature, with there being more benefit

to high soil moisture when temperatures are highest

(Cutforth et al., 1986).

2.3.2. Validation procedure

Hindcasts of upper level soil moisture were generated for

all possible planting dates and for all years/seasons for which

data were available (see Supplementary Table 1). These ensemble

forecast were combined with the climatological WRSI forecasts,

enabling the DST to be run retrospectively (i.e. in hindcast

mode). The validation was carried out using the yield/planting

date comparison procedure described above for individual

seasons and countries. The system was judged to be working

well if higher yield was achieved by farmers planting near

the date that would have been recommended. The statistical

significance was tested using Moody’s test for the difference
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FIGURE 5

Yield plotted against the di�erence between the actual and recommended planting time for all countries and seasons for PFC threshold

criterion ranging from 25 to 95%.

between medians. Because the data are noisy, the plots only

include bins for which at least 25 values are available. The tables

included in Supplementary Information, however, show all bins,

including those with few values.

3. Results

3.1. Historical case studies: Validation
against observations

The results collated for all countries and years are displayed

in Figures 6, 7. To allow for regional and interannual variation

in yield, the yield is expressed relative to the yield achieved

by compliant farmers for each season and country. It can be

seen that the farmers in general fare better when they plant

close to the recommended date. Farmers who plant earlier than

recommended have slightly reduced yields, and those planting

later do markedly worse. Further detail of the results is shown

in Table 1, which lists median yield for each bin, along with

the number of farmers, the standard deviation in yield, the

level of statistical significance (P-value derived using Moody’s

test for the difference between medians). Note that although

only bins with more than 25 data points are included in the

yield/compliance plots, all data are shown in the table. In a

separate analysis we controlled for other factors that might cause
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yield differences, and found there were no statistically significant

differences in variety selection, fertilizer rate, weed management

and compost use between compliant farmers and those who

planted later.

Although at an aggregated level farmers on average achieve

higher yield when they plant close to the optimal time, there

is a lot of variability. Not all farmers who plant close to the

recommended time do better than those who plant early or late.

This is illustrated by box and whisker plots shown in Figure 7,

which demonstrates that there is a wide range of outcomes for

farmers, regardless of whether they plant early, are compliant or

plant late.

A critical question for the implementation of the DST is

whether it can be applied to a range of geographical, agricultural

and meteorological settings. To address this, the data were

FIGURE 6

Yield plotted against the di�erence between the actual and

recommended planting time for all countries and seasons. Yields

in all bins were significantly di�erent to the −5 to 5 day bin.

analyzed for individual years and countries. The results

are summarized in Figure 8 (with further plots included as

Supplementary Information). As was described in the previous

sections, the DST criteria were the same for all countries,

except for Malawi, where farmers plant in the very earliest

stages of the growing season (Supplementary Figure 10). For

all the countries, planting at the optimal time recommended

by the DST has benefit for yield, with significantly lower

yield achieved in the late planting groups, compared to

the compliant group. The results for the early planters are

more mixed, reflecting the high risk/reward ratio conferred

by early planting. This is more evident when the data are

disaggregated by year shown. In Kenya during 2017, for

FIGURE 7

Box and whiskers plot for yield di�erence between the

median for compliant farmers (in a given season and country)

and the yield achieved. The categories are: early (>10 days

before recommendation); compliant (within 10 days of

recommendation) and late (>10 days after the

recommendation).

TABLE 1 Comparison between yield achieved and the di�erence between the observed and recommended planting dates.

Median di�erence from
recommended planting
date (days)

Median yield
di�erence
(kg/acre)

Standard
deviation in yield

(kg/acre)

P value (based on
Moody’s test for

di�erence between
medians)

Number of
farmers

−39 −45 766 3% 352

−28 −19 839 0% 773

−19 −21 807 0% 1,416

−9 −78 955 0% 2,245

1 0 894 5,479

10 −348 1,001 1% 5,648

19 −450 955 0% 4,541

29 −558 975 0% 2,758

39 −615 1,074 0% 1,796

All yield data is in kg/acre.
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FIGURE 8

Yield plotted against the di�erence between the actual and recommended planting time for individual countries–data collated from all seasons

for which we have data. Red dots denote yields that are significantly di�erent to yields within the −5 to 5 day bin.

example, a subset of farmers planted significantly before the

recommended date and achieved a high yield. It is clear

from the rainfall time series, however, that in other years

farmers who planted at that time would have experienced a

severe dry spell (Supplementary Figure 1). Analogously, early

planters achieved high yields in Uganda during 2018, but in

other years, these planters were affected by severe dry spells

(Supplementary Figure 7).

Frontiers inClimate 10 frontiersin.org

https://doi.org/10.3389/fclim.2022.993511
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Black et al. 10.3389/fclim.2022.993511

The situation in Rwanda is different from other countries

because the rainy season is divided into two growing

seasons: season A and season B. Season A (August-

January) is the primary growing season and season B

(February-June) is a secondary, but important, season.

In a sense, the planting date decision support tool has

little role to play in management of season B because

farmers simply plant as soon as they have harvested

their season A crops (Supplementary Figure 5). However,

for Season A, it is crucial that farmers plant as early as

possible to benefit from a relatively short cropping period,

and very few farmers plant before the recommended date

(Supplementary Table 4).

3.2. Operational implementation of the
planting date DST

3.2.1. Pilots with One Acre Fund

Gridded soil moisture forecasts for a range of applications

are run by the TAMSAT group on the Jasmin high performance

computational platform (https://gws-access.jasmin.ac.uk/

public/tamsat/tamsat_alert/). The forecasting model is run

for all Africa, and data for farm locations is extracted by

One Acre Fund. The recommendations are then forwarded

by SMS to individual farmers. The driving data for the

model are produced daily but in practice, running the system

twice weekly has proved sufficient for operational DST

applications. The DST has been piloted for One Acre Fund

clients since 2019:

2019–2020: DST was run for a limited number of

communities in Kenya and Zambia using an earlier version of

the soil moisture forecasting technology. All advisories were

produced by the TAMSAT group. The pilot sparked demand

from the wider One Acre Fund client base.

2020–2021: An API was developed by One Acre Fund,

enabling the DST to be run in country. The DST was run for

>300k farmers in Kenya and Zambia. A trial was undertaken to

test whether sending farmers an SMS prompting them to plant

at the optimal time increases their likelihood of planting at the

optimal time. Results from the trial suggest a potential for using

SMS campaigns to influence farmers’ planting dates, especially

for farmers who are likely to plant after the optimal time (late

planters). Specifically, ’treated’ farmers were 20% more likely to

plant within the optimal window and on average planted 4 days

closer to the optimal date.

2021–2022: Following the 2020–2021 pilot, the service

was extended to Malawi, Rwanda and Uganda with minor

revisions to the calibrations and the API. The soil moisture

forecasts were supplemented with additional precipitation

forecast outputs (which are not formally incorporated to the

API, but which are used for further interpretation by One

Acre Fund).

3.2.2. Extension beyond One Acre Fund

It is notable that the DST has so far only been implemented

by One Acre Fund. At early stages of development, it has made

sense to focus on a single organization, to allow for testing and

refinement, and to avoid the risk of users losing confidence in

the system. There is, however, strong demand for this type of

service (for example, Singh et al., 2018), and no technological

reason why the DST cannot be scaled out more widely. The

soil moisture forecasts are routinely generated for all of Africa

and our intention is to place the forecasts on a public server,

together with a full set of hindcasts from 2016-present, to

facilitate calibration. However, although it would be technically

possible to develop a subscription system that enables farmers

to access the advisories directly, we are cautious about this

approach. It is crucial that DST does not undermine existing

farmer support systems, provided by governmental and non-

governmental organizations. With this in mind, our current

intention is to focus on partnering with governmental and

non-governmental farmer support organizations, building their

capacity to utilize the DST to enhance the services they provide.

4. Discussion and conclusions

This study has presented a new DST, aimed at supporting

farmer decision making on planting date. The DST was

developed in response to demand from One Acre Fund clients,

who are primarily smallholder farmers in southern and eastern

Africa. African smallholders are amongst the most vulnerable

populations in the world to climate variability and change (for

example Harvey et al., 2014). Enabling such farmers to adapt

to a changing climate is thus key to improving food security

in Africa. As was described in the introduction, adjustment of

planting date is a key adaptation strategy to climate variability

and change. This is, in part, because changes to growing season

timings are projected over the next century under all emissions

scenarios. Indeed, changes in seasonality of rainfall are already

observed globally (Dunning et al., 2018; Wainwright et al.,

2021). The capacity to cope with variability in the timings of

growing seasons is thus key to building resilience to climate

change. Unlike some existing systems, which use historical

data to provide information on long term climate-related risk

(for example Reichenbach et al., 2003), the TAMSAT-ALERT

DST allows for year-to-year variation in rainy season onset.

It blends the real time monitoring and forecasting approach

taken for meteorological monitoring and forecasts with the risk

assessments that underpin agricultural decision support.

A second feature that differentiates the TAMSAT-ALERT

DST from other systems is the use of soil moisture, rather

than rainfall. Soil moisture in the upper soil layers depends

both on antecedent soil moisture conditions (how wet the

soil is at the outset) and the flux of moisture in and out of

the soil via precipitation and evapotranspiration (for example,

Seneviratne et al., 2010). In other words, wet soils are less likely
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to dry down to critical levels during dry spells. Accounting

for antecedent soil moisture thus enables a more accurate

assessment of the risk of critically dry conditions in the days

after planting.

Finally, previous work has demonstrated the necessity of

carefully considering the delivery and context of decision

support in the global south (for example, Trogo et al., 2015).

Smallholders in Africa have limited access to smartphones and

computers. Limited literacy in some socio-economic groups also

affects capacity to interpret multiple streams of data provided

within bulletins and by more sophisticated DSTs. The use of

simple SMSmessages has been found by One Acre Fund to be an

effective way to reach farmers, including those in marginalized

socio-economic groups. Perhaps more importantly, however,

the TAMSAT-ALERT planting date advisories are currently

provided in the context of an established and trusted system of

holistic farmer support. A future challenge will be how to scale

out the system more widely so that advisories can benefit all

farmers–not only those served by One Acre Fund.

In summary, this paper has presented a new DST that

targets a critical weather-related agricultural decision: when to

plant. In addition to developing and evaluating a framework

for identifying optimal planting date, we have demonstrated

the implementation of the DST within a well-established

agricultural support programme. Ongoing work aims to

improve the skill of the DST–for example by incorporating

meteorological forecasts and remotely sensed soil moisture.

Even more important than this technical work, however, is

developing a system that improves the resilience of smallholder

farmers to climate variability and change. In this context, skillful

identification of optimal planting date is only the first step.

Future work will focus on robust operational solutions that can

be extended at low cost throughout the global south.
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