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Head and neck cancers are composed of a diverse group of malignancies, many of
which exhibit an unacceptably low patient survival, high morbidity and poor treatment
outcomes. The cancer stem cell (CSC) hypothesis provides an explanation for the
substantial patient morbidity associated with treatment resistance and the high
frequency of tumor recurrence/metastasis. Stem cells are a unique population of cells
capable of recapitulating a heterogenous organ from a single cell, due to their
capacity to self-renew and differentiate into progenitor cells. CSCs share these
attributes, in addition to playing a pivotal role in cancer initiation and progression by
means of their high tumorigenic potential. CSCs constitute only a small fraction of
tumor cells but play a major role in tumor initiation and therapeutic evasion. The shift
towards stem-like phenotype fuels many malignant features of a cancer cell and
mediates resistance to conventional chemotherapy. Bmi-1 is a master regulator of
stem cell self-renewal as part of the polycomb repressive complex 1 (PRC1) and has
emerged as a prominent player in cancer stem cell biology. Bmi-1 expression is
upregulated in CSCs, which is augmented by tumor-promoting factors and various
conventional chemotherapies. Bmi-1+ CSCs mediate chemoresistance and metastasis.
On the other hand, inhibiting Bmi-1 rescinds CSC function and re-sensitizes cancer
cells to chemotherapy. Therefore, elucidating the functional role of Bmi-1 in CSC-
mediated cancer progression may unveil an attractive target for mechanism-based,
developmental therapeutics. In this review, we discuss the parallels in the role of Bmi-
1 in stem cell biology of health and disease and explore how this can be leveraged to
advance clinical treatment strategies for head and neck cancer.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common form of

cancer worldwide with over 900,000 new cases and 400,000 deaths annually (1). HNSCC

incidence is strongly correlated with alcohol and tobacco use, as well as human

papillomavirus (HPV) infection. While there has been a marked decrease in HNSCC

associated with tobacco use, the incidence and mortality rate of HPV-induced HNSCC has

increased significantly (2). Current treatment modalities for HNSCC include surgery,

radiation, chemotherapy, EGFR inhibitors (e.g. Cetuximab) and immunotherapy (e.g.

Pembrolizumab) (3, 4). However, the modest improvement in overall survival rates achieved

with current therapies emphasizes the significant need for further research in this area.

Salivary gland cancers account for approximately 6% of all head and neck cancers, and

present significant treatment challenges due to their rarity and biological diversity (5).

Mucoepidermoid carcinoma (MEC) is the most common subtype of salivary gland cancer,

followed by adenoid cystic carcinoma (ACC) (6). Conventional chemotherapies are ineffective
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in salivary gland cancers, and currently no systemic or targeted

therapy is approved (7, 8). Given the limited understanding of the

underlying pathobiology of these diseases and lack of effective

chemotherapeutic approaches, surgery remains the main treatment

option for these patients. Considering that both HNSCC and

malignant salivary gland cancers follow the cancer stem cell

hypothesis, the understanding of the pathobiology of these cells

may unveil new therapeutic targets for these tumors.
Cancer stem cells in head and neck
cancer

The traditional, or stochastic, model of carcinogenesis postulates

that tumor growth is initiated by a single cell harboring advantageous

genetic mutations, which proliferates and dominates the tumor

architecture (9). In this model, all subsequently formed tumor cells

possess equal potential for tumorigenesis. Nowadays, it is widely

accepted that a tumor is highly heterogenous, constituted by cells

of varying biological characteristics. The hierarchical model of

carcinogenesis suggests that only a unique subset of tumor cells is

capable of tumorigenesis, namely cancer stem cells (CSCs) (10).

The CSC hypothesis presents that these cells are endowed with the

ability to self-renew and give rise to the various cell phenotypes of

a heterogeneous tumor through asymmetric and symmetric cell

division. CSCs and physiological stem cells share many attributes:

the capacity for self-renewal and differentiation, the ability to

survive for long periods of time, and strong resistance to harmful

agents (11). Hence, the most-accepted hypothesis for the genesis of

CSCs remains that they arise from physiological stem cells (12).

Other hypotheses include that CSCs arise from physiological

differentiated cells or progenitor cells.

Head and neck cancers have been shown to follow the CSC

hypothesis and hierarchical model of carcinogenesis, as they are

solid, heterogenous tumors consisting of both CSCs capable of

tumorigenesis and bulk tumor cells. CSCs have been diligently

studied and characterized in multiple types of head and neck

cancers, including head and neck squamous cell carcinoma

(HNSCC), mucoepidermoid carcinoma (MEC) and adenoid cystic

carcinoma (ACC) (13–17). Head and neck CSCs are endowed with

properties of invasiveness, quiescence, and epithelial-mesenchymal

transition (EMT) – a crucial process in cancer metastasis (18).

These cells have been found to reside in perivascular niches, with

the majority residing within a 100 µm radius of blood vessels, from

which endothelial cell-secreted factors enhance their self-renewal

and promote their tumorigenicity (19, 20). This

microenvironmental support, along with many other factors,

contributes to the increased resistance to therapies observed in

CSCs (21, 22).

The CSC hypothesis may explain the resistance to current

cytotoxic treatments and propensity for recurrence and metastasis

in head and neck squamous cell carcinoma, which are factors that

have a negative impact on the long-term survival of these patients.

CSCs are resistant to chemotherapies, because these agents

generally target cells with high proliferation rates, whereas CSCs

proliferate slowly and thus escape their cytotoxicity (23). Therefore,

the modest progress of therapies against HNSCC can at least
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partially be attributed to CSCs, rendering them to be a therapeutic

target of interest.
Biomarkers of cancer stem cells

In order to target CSCs, they must be identifiable by means of

unique cellular markers and pathways, which is an area of active

research in many cancers. Though differences in CSC biomarkers

across cancer types exist, their identification relies heavily on

intracellular enzymes, transcription factors, and cell surface

molecules. Here, we briefly discuss some commonly used

biomarkers of CSCs in head and neck cancer, which are illustrated

in Figure 1.

CSCs were first identified in HNSCC as expressing high levels of

CD44, a cell-surface glycoprotein for hyaluronic acid that is involved

in cell proliferation, survival, adhesion, migration, and intercellular

interactions (13). CD44 is one of the most common CSC markers

in several malignancies and has been shown to select for highly

tumorigenic CSCs as compared to CD44− cells (24). However,

since most cells in epithelia of the head and neck express CD44,

other biomarkers have been established to refine identification of

head and neck CSCs (25). Among these, aldehyde dehydrogenase

(ALDH) activity has been accepted as a frequent marker of CSCs.

In HNSCC patient-derived xenograft models and cell lines,

ALDHhigh cells demonstrated increased tumorigenicity, therapy

resistance, and EMT as compared to ALDHlow cells (26–28). As

complementary markers, purified CD44+ ALDHhigh cells constitute

an even more tumorigenic and invasive cancer cell population, as

compared to the other combinations of both markers’ expression

status (15, 17, 19). Additionally, these cells positively correlate with

decreased overall survival, disease grade, and treatment prognosis

in patients with HNSCC (29, 30).

CD133, a cell surface glycoprotein, is another prominent yet

more debated head and neck CSC marker (31). CD133+ cells

exhibit increased invasiveness, tumorigenicity, and chemoresistance,

but may present only a subpopulation of CSCs in oral squamous

cell carcinoma cell lines and tissues (32). CD133 has also been

shown to function as a regulatory switch of EMT and stemness

properties (33). Multiple other cell surface proteins have been

implicated as head and neck CSC markers: CD10 expression

correlates with poorer overall survival, local recurrences, and

therapeutic resistance (34, 35); CD24+ cells promote angiogenesis

and tumor progression (36); CD29+ cells are highly invasive,

migratory, and contribute to metastases (37); CD98+ cells are

tumorigenic and demonstrate increased expression of DNA repair

genes (38).

Various receptor tyrosine kinase (RTK) proteins have also been

found to promote chemoresistance, metastasis, and CSC properties

in head and neck cancer, with therapeutic targeting of these

receptors providing clinical promise. CSCs responsible for

Cisplatin-resistance and metastasis have been shown to express

high levels of c-Met+, and a Phase 1 trial of selective c-MET

inhibitor ARQ197 has shown early clinical success (16, 39). The

epidermal-growth factor receptor (EGFR) is another example of

RTK that is highly expressed in 90% of HNSCC patients and has

been linked to treatment resistance, poor clinical outcomes, and
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FIGURE 1

Markers of head and neck cancer stem cells. Selected proteins currently used for identification of CSCs in head and neck cancer. These include, but are not
limited to, various cell-surface glycoproteins, receptor tyrosine kinases, intracellular enzymes, and transcription factors.
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higher fraction of CSCs, which, together with CD44, has been

shown to promote tumor initiation and progression in vivo (40).

The EGFR receptor is the target of Cetuximab, an FDA-

approved antibody-based therapy currently accepted for

treatment of HNSCC (41). The interleukin-6 receptor (IL-6R) is

also strongly upregulated in head and neck CSCs and enhances

tumorigenicity and self-renewal via STAT3 signaling (20).

Lastly, CD117 is highly implicated in salivary gland CSCs, where

it is also commonly used to isolate progenitor cells of the

submandibular gland (42).

Other markers of CSCs are intracellular proteins vital to

maintaining stemness such as Oct4, Sox2, Nanog, and Bmi-1. Oct

4, Sox2, and Nanog are markers of pluripotency in embryonic

stem cells and crucial for these cells’ property of self-renewal (43).

CSCs from oral squamous cell carcinoma patient samples exhibited

high expression of Oct4 and Nanog, along with CD133, which was

correlated with greater tumor stage and worse overall survival

prognosis (44). Sox2 expression in head and neck CSCs was

responsible for their self-renewal, chemoresistance, invasion, and

tumorigenicity in vitro and in vivo (45). A meta-analysis revealed

that Sox2 could be utilized as an unfavorable prognostic factor for

higher tumor grade, stage, and metastases (46). Bmi-1 is a

polycomb group protein involved in the regulation of normal stem

cells. Head and neck CSCs also exhibit high Bmi-1 expression,

which has been shown to be required for sphere formation and

self-renewal, indicating that Bmi-1 is an important cellular marker

for CSC stemness (47). Interestingly, knockdown of Bmi-1 in

ALDH+ CSCs was shown to also downregulate expression of Oct4,

Nanog, Sox2, and c-Myc among other stemness markers in these

cells (48). In MEC, intense CD44 and Bmi-1 expression was
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observed in the tumor invasive front, while Oct4 and Nanog was

highly associated with perineural invasion in vivo (49).

Many of these cellular proteins have been investigated as

potential therapeutic targets for HNSCC, converging in a common

denominator of regulating cancer cell stemness (50). In this review,

we specifically elaborate on the role and molecular regulatory

network of Bmi-1 in mediating head and neck cancer stemness.

Additionally, we discuss the current literature on Bmi-1 in

promoting therapeutic evasion through chemo- and

radioresistance, and the potential therapeutic implications of

targeting this master regulator of stemness.
Bmi-1 and cancer stem cells

Physiological Bmi-1 function and regulation

Bmi-1 (B cell-specific Moloney murine leukemia virus

Integration site 1) is a 37 kDA protein that consists of three

domains: N-terminal RING domain, central domain, and C-

terminal proline-serine domain. The RING domain at the N-

terminal forms a complex with RING1B (51, 52). Bmi-1 is a

member of the Polycomb repressive complex 1 (PRC-1) and is

involved in H2A-K119 ubiquitination (53) facilitated in part

through this interaction between Bmi-1 and RING1B. Polycomb

group (PcG) proteins are a family of proteins involved in

transcriptional regulation that form complexes such as PRC-1 to

facilitate this regulation. The central domain of Bmi-1 contains a

ubiquitin-like (UBL) fold that interacts with PHC2, a polyhomeotic

protein that is a member of PRC-1; the UBL region also plays a
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role in the homo-oligomerization of Bmi-1 (54). Lastly, the C-

terminal is a proline-serine rich domain that serves as a regulatory

domain for Bmi-1 through negative regulation (55).

Bmi-1 plays a direct role in cell cycle regulation and senescence

as a negative regulator of the Ink4a locus that encodes p16Ink4a and

p19Arf, tumor suppressor proteins. Downregulation of Bmi-1

resulted in an increase in p16Ink4a and p19Arf expression leading to

senescence, while upregulation of Bmi-1 resulted in a decrease in

p16Ink4a and p19Arf expression leading to tumor formation in vivo

(56). p19Arf is an upstream regulator of p53, a key tumor

suppressor protein that functions by blocking MDM2-induced p53

degradation (57). p16Ink4a is an upstream regulator of another

tumor suppressor protein: the retinoblastoma (Rb) protein. The

phosphorylation of Rb proteins by cyclin D and cyclin E-

dependent kinases activates E2F transcription factors, which

promotes cellular senescence through entry into the S phase of the

cell cycle (58). Thus, Bmi-1 represses two tumor suppressor

proteins, p16Ink4a and p19Arf, which function by activating

senescence and apoptosis respectively.

Bmi-1 has also been implicated in several developmental signaling

pathways including Hox, Hedgehog, and Sox2 pathways. The role of

Bmi-1 in H2A-K119 ubiquitination has been linked to Hox gene

silencing in mouse embryonic fibroblasts when bound to various

Hox gene promoters, while Bmi-1 knockdown resulted in de-

repression of these genes. This provided evidence that Hox genes are

direct targets of Bmi-1-mediated transcriptional regulation and

underlines the importance of Bmi-1 in regulation of key

developmental processes in progenitor cells (53). Experiments

conducted in mammary stem cells illustrated that activating

Hedgehog (Hh) signaling upregulated self-renewal and Bmi-1

expression. In these cells within an in vivo mouse model,

upregulation of Gli1 and Gli2, two downstream transcription factors

of the Hh pathway, led to upregulation of Bmi-1 which suggests that

Hedgehog signaling mediates stem cell self-renewal through Bmi-1

(59). Bmi-1 is also a downstream target of Sox2, a crucial

transcription factor in maintaining stem cell pluripotency and

stemness in concert with Wnt signaling. Sox2 inactivation leads to

strong Bmi-1 downregulation in osteoblasts in vivo, whereas Sox2

overexpression causes Bmi-1 upregulation, and constitutive Bmi-1

expression rescues cell senescence promoted by Sox2 inactivation (60).

Bmi-1 is also regulated by the p38 mitogen-activated protein

kinase (MAPK) and Akt pathways. Epidermal growth factor

(EGF)-induced Akt activation directly phosphorylates and stabilizes

Bmi-1, rendering it resistant to proteasomal degradation and

allowing for its nuclear accumulation, whereas p38 inhibits Akt-

induced phosphorylation, destabilizing Bmi-1 and promoting

increased Bmi-1 degradation in neural stem cells in vivo (61).

MAPKAP kinase 3 (3pk), a downstream convergence point of p38

and ERK signaling, also regulates Bmi-1 through phosphorylation.

3pK phosphorylation and activation of Bmi-1 resulted in

chromatin dissociation and de-repression of Bmi-1 targets, one of

which is p14ARF – a tumor suppressor by means of MDM2

inhibition and subsequent p53 stabilization, arresting cells in G1

cell cycle phase (62, 63). As Bmi-1 phosphorylation by 3pk

illustrates, the phosphorylation status of Bmi-1 is inversely related

to its chromatin association, allowing for fine-tuned regulation of

Bmi-1 binding to chromatin throughout the cell cycle (64).
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In addition to cell cycle regulation and the maintenance of the

stem cell phenotype, Bmi-1 plays a role in reactive oxygen species

(ROS) damage and DNA repair. The transcription factor FoxM1c

is expressed highly in proliferating cells and was shown to protect

them from oxidative stress-induced senescence by directly

activating Bmi-1 expression via c-Myc in vitro and in vivo (65).

Deletion of c-Myc lead to a decoupling in FoxM1c-induced Bmi-1

expression, emphasizing that c-Myc serves as a bona fide

regulatory intermediate in Bmi-1 signaling. Similarly, Mel-18,

another polycomb group ring finger protein, downregulates Bmi-1

expression through transcriptional repression of c-Myc in human

fibroblasts (66). The absence of Bmi-1 in mice leads to an

accumulation of ROS that subsequently triggers the DNA damage

response (DDR) pathway (67). The p16Ink4a pathway, which is

negatively regulated by Bmi-1, induces ROS accumulation to

promote senescence (68). Bmi-1 is necessary for the DDR pathway

and is recruited to DNA double-strand breaks, where it contributes

to the repair of the DNA lesion with H2A ubiquitination (69).

Thus, Bmi-1 contributes to DNA repair through the DDR

pathway, but also by preventing elevated levels of ROS in the cell.

These reported findings suggest that Bmi-1-mediated repression

is a finely regulated and dynamically controlled process, with all

arrows pointing to Bmi-1 as a master regulator within the PcG-

mediated transcriptional system (Figure 2).
Bmi-1 regulation in cancer

In head and neck cancer, Bmi-1 is more highly expressed in

tumorigenic cells as compared to normal cells. More specifically,

elevated Bmi-1 expression is predominantly observed in

ALDHhighCD44+ when compared to ALDHlowCD44− cells in vitro

and in vivo (19, 70), and endothelial cell-secreted factors further

induce Bmi-1 expression in the CSCs (19), revealing Bmi-1 as an

important player in HNSCC CSC biology. Characterizing Bmi-1 as

an oncogene is a novel, active area of research in head and neck

cancer, with limited literature on the exact mechanism and signaling

pathways in interplay with Bmi-1. Therefore, we will also review

Bmi-1-associated signaling pathways in other types of cancer here.

As elaborated above, the Ink4a locus is a direct target of Bmi-1 in

normal cells. In breast cancer and oral squamous cell carcinoma,

changes in Bmi-1 expression did not affect p16Ink4a expression,

suggesting that the oncogenic activity of Bmi-1 functions through a

p16Ink4a-independent signaling pathway (71, 72). Conversely, in

laryngeal cancer, colorectal cancer, gastrointestinal cancer, and

non-small cell lung cancer a significant negative correlation

between Bmi-1 and Ink4a locus gene expression was observed,

suggesting that Bmi-1 promotes cellular renewal through the

inhibition of senescence and apoptosis (73–76). In yet another

example, Bmi-1-mediated tumorigenesis in liver cancer was not at

all related to Ink4a/Arf expression but required for RasV12-driven

tumor induction (77). These contrasting findings illuminate the

complex dysregulation of Bmi-1 in cancer, highlighting the need

for further research in this area.

Another paradoxical relationship has been observed between

Bmi-1 and Hox signaling pathways in cancer. Typically, high

expression of Bmi-1 results in lower expression of Hox signaling
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https://doi.org/10.3389/froh.2023.1080255
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


FIGURE 2

Potential involvement of Bmi-1 in key signaling pathways. The proposed molecular signaling network of Bmi-1 promotes increased stemness, self-renewal,
and proliferation, while decreasing apoptosis, differentiation, and senescence.
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proteins. However, in both Ewing sarcoma and certain leukemias it

was observed that despite the expected elevated levels of Bmi-1

expression, there were also elevated levels of Hox expression (78,

79). The underlying mechanism of these surprising findings is not

clear, but one hypothesis suggests that this could be due to a

mutation that unlinks Bmi-1 and Hox signaling (79) Unlike with

Hox signaling, the direct relationship between Hh signaling and

Bmi-1 observed in normal cells appears to be maintained in cancer

cells. In breast cancer, Gli-1 and Gli-2 overexpression induced

Bmi-1 expression, which was necessary to promote self-renewal of

both normal and malignant mammary stem cells (59). In ovarian

cancer, overexpression of various protein signaling effectors of the

Hh pathway also induced Bmi-1 expression (80).

A direct relationship between theAkt pathway regulationofBmi-1 is

also observed in various cancer cells. In MEC, CSCs exhibit constitutive

activation of mTOR, Akt, S6K1, and Bmi-1, and it was shown that

phosphorylation of S6K1 presents a crucial step in regulation of Bmi-1

in vitro and in vivo (81). In pancreatic cancer, overexpression of Bmi-

1 induced activation of the P13K/Akt pathway by negative regulation

of PTEN in CSCs (82). In endometrial cancer, a direct correlation was

found between Bmi-1 expression and Akt expression; interestingly,

lower levels of both Bmi-1 and the Akt pathway were associated with

more aggressive cancer phenotypes, which stands in contrast to most

other cancers (83). In gastric cancer, the microRNAs miR-498 and

miR-218 inhibited Bmi-1 function, as well as EMT and Akt signaling

(84, 85). A similar finding in breast cancer showed that the PcG
Frontiers in Oral Health 05
protein Mel-18 inhibited Bmi-1 and Akt expression, and that

constitutively active Akt rescued the tumor-suppressive function of

Mel-18 and Bmi-1 inhibition (86). As previously mentioned, Mel-18

suppresses Bmi-1 through inhibition of c-myc in normal cells. This

relationship between c-myc and Bmi-1 was supported in a lymphoma

mouse model: overexpression of both c-myc and Bmi-1 induced

transformation primary embryo fibroblasts (87).

In salivary gland cancer, p53 has been shown to play a central role in

regulating theCSCphenotype viaBmi-1 (70).Here, it was suggested that

p53 reduces CSC stemness not by inducing apoptosis, but rather by

regulating Bmi-1 expression via downstream p21 signaling and

promoting CSC differentiation, and that this mechanism was

independent of MDM2. In ACC, therapeutic inhibition of MDM2-

p53 was shown to decrease the CSC fraction via apoptosis as well as

an increase in cells within the G1 phase of the cell cycle in vitro and in

vivo (88). Altogether, while Bmi-1 regulation in cancer isn’t

necessarily conserved as compared to its physiological regulation,

these findings highlight Bmi-1 as an important player in tipping the

scales between health and disease.
Bmi-1 in tumorigenesis & metastasis

As previously mentioned, Bmi-1 is highly expressed in head and

neck CSCs, which drive tumorigenesis (13), and silencing Bmi-1

leads to a reduction in stemness and tumor formation in HNSCC
frontiersin.org

https://doi.org/10.3389/froh.2023.1080255
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Herzog et al. 10.3389/froh.2023.1080255
(48, 47). Bmi-1+ CSCs were shown to mediate invasion and lymph

node metastases in HNSCC, specifically through increased AP-1

activity and FOSL1 activation, as determined via lineage tracing

and genetic ablation studies (47). Bmi-1+ tumor cells formed

significantly more spheres and tumors than Bmi-1− cells, providing

strong evidence for the direct role of Bmi-1 in tumorigenesis both

in vitro and in vivo. In MEC, downregulation of p53 promoted

tumor growth through expansion of the CSC population and

upregulation of Bmi-1, providing evidence for not only the role of

Bmi-1 in regulating cancer cell stemness, but also for p53 being a

master regulator of cell fate within this context (70). Due to the

high rate of metastasis and recurrence observed in head and neck

cancer, these findings render the role of Bmi-1 particularly

significant and may lead to new therapeutic strategies.

The tumor microenvironment plays a crucial role in supporting

cancer cell growth, with microenvironment-associated cytokines and

growth factors defining tumorigenic potential of CSCs. In HNSCC,

endothelial cell-secreted IL-6 has been shown to promote

tumorigenicity of CSCs through STAT3 signaling activation and Bmi-

1 expression (89, 20). In fact, endothelial cells were shown to produce

a chemotactic gradient through secreted IL-6, which enhances survival

and motility of tumorigenic head and neck CSCs (20).

The epithelial-mesenchymal transition (EMT), a process through

which a cell shifts from an epithelial phenotype to a more migratory

mesenchymal phenotype, is a key feature of invasive cancers and

metastases. In nasopharyngeal carcinoma cells, silencing Bmi-1

resulted in a reversal of EMT, exhibited by a shift in epithelial and

mesenchymal markers and a reduction in metastases, indicating that

Bmi-1 induces EMT resulting in a more migratory and aggressive

phenotype in vitro (90). This occurs via the underlying mechanism

of Bmi-1 repressing PTEN, a negative regulator of the PI3K/Akt

pathway, which activates this pathway and down-regulates E-

cadherin in a Snail-dependent manner. Likewise, upregulating Bmi-1

in ALDH− head and neck CSCs promotes stemness properties,

tumorigenicity, and migration by upregulating Snail, an EMT

regulatory protein (91). A direct regulatory link has also been

established between Bmi-1 and another EMT regulatory protein,

Twist1. Twist1 directly binds to the regulatory region of Bmi-1, and

both interdependently promote EMT especially under hypoxic

conditions (92). Endothelial cell-secreted EGF and IL-6 were also

found to induce EMT to enhance the invasive capacity of head and

neck CSCs (20, 93). The human telomerase reverse transcriptase

catalytic subunit (hTERT) is involved in maintaining the telomeres

of cells, thereby prolonging cell life, and also contributes to EMT.

Bmi-1 expression mirrored that of hTERT and was required for

hTERT-induced EMT marker expression of oral epithelial cells via

suppression of p16INK4a (94). Altogether, these findings demonstrate

the direct role Bmi-1 plays in EMT and therefore, to the more

aggressive stem-like and migratory phenotype of tumor cells.
Bmi-1 in cancer therapeutics

Bmi-1 in chemoresistance

The lack of progress in HNSCC, MEC, and ACC treatment can

largely be attributed to therapeutic resistance of each of these
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cancer types, which can lead to both metastasis and recurrence;

notably, CSCs are particularly resistant to therapies compared to

bulk tumor cells. In the context of head and neck CSCs, Bmi-1 has

been strongly implicated in therapy resistance (Figure 3).

Cisplatin is still the most common chemotherapy agent used in

treatment of HNSCC, as well as many other cancers. However, it

has been shown that treatment with Cisplatin actually increases the

CSC fraction in HNSCC tumors, and Cisplatin-resistant cells

intrinsically express elevated levels of Bmi-1; there is also a direct

association between Cisplatin dosage or resistance and Bmi-1

expression in vitro and in vivo (22, 95). Interestingly, it has been

demonstrated that Cisplatin-induced apoptosis mainly occurred in

Bmi-1− tumor cells, and that in HNSCC recurrence specifically

Bmi-1+ CSC lineages were maintained in these tumors (47). As has

been previously mentioned, the IL-6/STAT3 pathway is highly

upregulated in head and neck CSCs, and IL-6 augments the

Cisplatin-induction of Bmi-1 expression and CSC fraction (22, 89).

Inhibition of IL-6 signaling decreased the CSC fraction in vitro and

in vivo, as well as suppressed Cisplatin-induction of Bmi-1

expression and the CSC fraction (20, 22, 95). Similarly, a

combination treatment of an AP-1 inhibitor and Cisplatin resulted

in inhibition of Bmi-1+ CSCs and a reduction in metastases,

suggesting a possible mechanistic pathway for chemoresistance via

Bmi-1 (47). Altogether, these results suggest a clear link between

Cisplatin resistance and Bmi-1 expression and support the

therapeutic strategy to include the use of either a direct Bmi-1

inhibitor or an inhibitor of a Bmi-1-associated pathway, such as

those mentioned above.

Interestingly, Salinomycin, a commonly used antibiotic,

successfully targeted CSCs in HNSCC, resulting in reduced Bmi-1

expression and invasive phenotypes of CSCs. When used in

combination with Cisplatin or Paclitaxel, Salinomycin greatly

increased overall cell death. However, it was found to increase

EMT markers, Akt, and mTor signaling, which may correlate with

cancer cell stemness (96). As mentioned previously, the PI3K/Akt

pathway is highly upregulated in head and neck CSCs and

therapeutic inhibition of the mechanistic target of rapamycin

(mTOR) has shown clinical success in head and neck cancer (97).

mTOR inhibition ablates Cisplatin-induced stemness and blocks

Bmi-1 expression in MEC (98). As opposed to in HNSCC, p53 is

not oftentimes mutated in salivary gland cancers, and a major

therapeutic strategy that has since been translated into clinical

trials involves targeting the MDM2-p53 interaction. A small-

molecule inhibitor of MDM2-p53 complex (MI-773) has been

shown to potently decrease the CSC fraction, Bmi-1 expression,

and tumor recurrence in both MEC and ACC (70, 88, 99, 100).

Inhibition of MDM2-p53 triggered G1 cell cycle arrest, and

sensitized tumors to Cisplatin chemotherapy (99, 100). Altogether,

these findings illuminate a variety of strategies to overcoming CSC-

mediated chemotherapeutic resistance to Cisplatin.

Comparable to the effect of Cisplatin, treatment with Metformin

(diabetes drug that has exhibited anticancer properties in various

other cancers) lead to a reduction in bulk tumor cells but an

increase in CSCs and Bmi-1 expression in HNSCC. Metformin

increased expression of Bmi-1, Oct4, Nanog, and CD44, and was

revealed to bind to mitochondrial complex III, suggesting a

possible role of Metformin in mediating ROS (101). Interestingly,
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FIGURE 3

Chemotherapeutic induction of Bmi-1 increases the cancer stem cell population. Antiproliferative chemotherapeutic agents currently used for treatment of
head and neck cancers have been shown to increase the CSC fraction in tumors viamultiple mechanisms, which include inducing the reactive oxygen species
response, the DNA damage response pathway, and apoptosis of Bmi-1− CSCs.
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in prostate cancer, Cisplatin functions by elevating intracellular ROS

through NADPH oxidase activation (102). Indeed, mechanistic studies

revealed that Cisplatin induces a mitochondria-dependent ROS

response in conjunction with, but independent from, its well-known

cytotoxic effect through inducing DNA damage (103). Therefore, it is

hypothesized that many cytotoxic effects of chemotherapeutic agents

function through ROS, eliciting protective effects on CSCs and Bmi-1

function. This relates to results described above regarding the role

Bmi-1 plays in maintenance of low ROS levels and in the DDR

pathway. By elevating ROS and DNA damage levels in the cell,

Cisplatin is likely activating Bmi-1 for response to these stimuli,

inadvertently activating cancer cell stemness properties.

Thus, further investigation into targeted therapies is necessary,

but the treatment for head and neck cancers will likely entail a

combination of systemic cytotoxic therapies and CSC-targeted

therapies such as small molecule inhibitors of Bmi-1.
Bmi-1 in radioresistance

In parallel to chemoresistance, radioresistance poses another

obstacle in successful treatment of head and neck cancers. In
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HNSCC, silencing Bmi-1 activity in ALDH+ CSCs led to increased

apoptotic activity as detected via Annexin V staining, resulting in

decreased radioresistance and an overall higher survival rate in a

mouse model (48). In nasopharyngeal cancer, silencing Bmi-1

resulted in re-sensitization to radiation therapy through increased

apoptotic activity of p53 and increased production of ROS (104).

These findings implicated Bmi-1 in contributing to HNSCC CSC

radioresistance.

Further literature on the role of Bmi-1 in head and neck cancer

radioresistance is limited. However, notable findings have been

reported in other cancers. Elevated levels of Bmi-1 were also

observed in adaptively radioresistant esophageal squamous cell

carcinoma (ESCC) cells, where Bmi-1 silencing led to re-

sensitization to radiation therapy (105). Similar to the observations

made in nasopharyngeal cancer, Bmi-1 conferred adaptive

radioresistance to ESCC cells, and Bmi-1-depleted cells treated with

radiotherapy expressed elevated levels of ROS and impaired DNA

repair capacities, further supporting a common mechanism by

which Bmi-1 mediates therapeutic resistance (105). In breast

cancer cells, Bmi-1 expression was also indicative of

radioresistance. Upon Bmi-1 knockdown, increased DNA double

strand breaks, reduced DNA repair, and increased apoptosis
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through elevated p53, p21 and Bax protein expression was observed

(106). In glioblastomas, radiation therapy primarily functions by

halting senescence and it was shown that Bmi-1 confers

radioresistance by inhibiting cell senescence through the p16

signaling pathway (107). Reduction of Bmi-1 expression by

overexpression of microRNA-128 in glioma cells also promoted

radiosensitivity and prevalence of senescent cells (108).

Collectively, these studies suggest that Bmi-1 promotes

radioresistance through decreased levels of ROS, increased DNA

repair, and suppression of senescence through mechanisms

resembling those that arbitrate chemoresistance. This also strongly

implicates Bmi-1 as a powerful point of convergence in multiple

therapeutic resistance mechanisms of different treatment modalities

across many cancers.
Bmi-1 as a prognostic factor

We have reviewed the prominent impact Bmi-1 has on

tumorigenesis, metastasis, and therapy resistance of head and neck

cancers. Yet, there are many unanswered questions: How does this

translate to overall patient survival? How can we leverage this

knowledge to better make predictions about patient prognoses and

treatment outcomes?

Few research studies to date have robustly investigated Bmi-1

expression patterns in head and neck cancer. Bmi-1 expression in

tumor tissue of oropharyngeal squamous cell carcinoma was

significantly higher as compared to normal mucosa, but no

difference in expression was observed between the primary tumor

and lymph node metastases (109). This expression pattern was

observed in both HPV-negative and HPV-positive samples (n =

12). In another study, HPV-positive human oropharyngeal

squamous cell carcinoma specimens showed lower Bmi-1

expression than HPV-negative tumors (n = 202) (110). In human

tissue specimens, Bmi-1 expression was significantly higher in oral

squamous cell carcinoma but showed no difference between

normal mucosa and oral dysplasia (n = 129) (111). Thus, more

elaborate studies are needed to determine the relevance of Bmi-1

expression in head and neck cancer, especially in relation to HPV

status and disease progression.

In one study analyzing CSC markers as prognostic factors for

HNSCC, it was observed that both Bmi-1 and CD44 are indicators

for poorer prognosis of overall and disease-free survival in patients

receiving primary radio-chemotherapy irrespective of HPV status

(n = 85) (112). Conversely, in SCC of the tongue, a strong

correlation was observed between low Bmi-1 expression and poor

patient prognosis (n = 73) (113), and in a separate meta-analysis

(n = 2143), Bmi-1 did not impact overall HNSCC survival

significantly (114). In another study, Bmi-1 expression in patient

samples (n = 216) was correlated with poor prognosis of

recurrence-free survival, but not overall survival (95). These

observations may indeed be explained by the CSC hypothesis, since

the small CSC fraction may not significantly contribute to overall

tumor growth and survival, but to tumor recurrence or metastases.

This ambiguity illustrates a definitive need for further research on

Bmi-1 as a prognostic factor in HNSCC.
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In other cancers, Bmi-1 has been a more promising negative

prognosticator. Bmi-1 overexpression has been reported in a

plethora of cancers, including gastric, ovarian, breast, head and

neck, pancreatic, lung, hepatocellular, and endometrial carcinoma

and correlated with a variety of indicators of poor prognoses as

described elsewhere (82). A meta-analysis of non-small cell lung

cancer revealed a correlation between elevated Bmi-1 expression

and increased tumor size, metastasis, and lower overall survival

rates (115). Bmi-1 was also found to be a negative prognostic

factor in gastric cancer and endometrial adenocarcinoma, each

demonstrating heightened Bmi-1 expression to be indicative of

worse clinical stage, lymph node metastases, and overall survival

(116, 117). Based on these varied and contradictory findings, the

utility of Bmi-1 as a prognostic factor remains unclear. One

plausible explanation for this may be the lack of expression

analyses specific to a tumor subsite or clonal cell population. As

mentioned previously, tumor cells as well as a plethora of stromal

cells from the tumor microenvironment express Bmi-1, which

highly clouds the prognostic value of this marker. While these

studies do not yet provide convincing evidence for Bmi-1 serving

as a possible way to prognosticate treatment response, Bmi-1 is

undoubtedly an important master regulator of cancer cell stemness

and therapeutic resistance, rendering it a putative therapeutic

target, nonetheless.
Therapeutic targeting of Bmi-1

Bmi-1 has emerged as an attractive therapeutic target in CSC-

focused, mechanism-based cancer treatments. Therapeutic

inhibition of Bmi-1 was first described in a primary colorectal

cancer xenograft model, where it inhibited CSC self-renewal and

thus abrogated their tumorigenic potential (118). The anti-PD-1

immunotherapies Nivolumab and Pembrolizumab have been

approved as first-line therapies for HNSCC and are commonly

combined with Cisplatin treatment. In an in vivo mouse model of

HNSCC, Bmi-1+ CSCs were enriched in tumors following

treatment with Cisplatin and anti-PD-1 therapy, but treatment

with the Bmi-1 inhibitor PTC209 prevented induction of these

cells and tumor progression (119). In this study, Bmi-1 inhibition

was also shown to promote CD8+ T-cell infiltration by removing

repressive H2A ubiquitination to induce transcription of

chemokines necessary for their recruitment. Interestingly, Bmi-1

may play a significant role as immune modifier in several in vivo

studies: Bmi-1 inhibition restored B-cell-mediated humoral

immune responses via increased antibody function (120). Immune

escape of pancreatic cancer cells from NK cell-mediated

elimination in a hyperglycemic tumor microenvironment was also

shown to be mediated by upregulation of Bmi-1 and subsequent

MICA/B inhibition and GATA2 promotion (121). In a murine

myeloma model, Bmi-1 inhibition eliminated tumor-associated

macrophages and mediated chemoresistance (122).

The therapeutic potential of Bmi-1 inhibitors has also been

investigated in early human clinical trials. In a Phase 1 multi-

center, open-label study in patients with advanced solid tumors,

the second-generation Bmi-1 inhibitor PTC596 was determined to

be tolerable with manageable side effects (123). Notably, PTC596
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was shown to be successful in the treatment of acute leukemia in an

in vitro study irrespective of p53 mutational status, which could

provide highly beneficial in the treatment of salivary gland cancers

which typically demonstrate high mutational burden of p53 (124).

Another Bmi-1 inhibitor, PRT4165, prevents accumulation of all

detectable H2A ubiquitination sites around DNA double-stranded

breaks in an osteosarcoma model, which could be highly relevant

in combination with antiproliferative chemotherapies that

propagate the DNA damage response as mentioned in Figure 3

(125). In an ovarian cancer model, the Bmi-1 inhibitor PTC028

was shown to selectively inhibit cancer cell growth while leaving

normal cells unaffected, which could present a unique benefit as

compared to conventional chemotherapeutic agents that do not

selectively eliminate tumor cells (126). While there are limited

published studies on the efficacy of Bmi-1 inhibitors in head and

neck cancers, the success of these small molecule drugs in

treatment of other cancers in preclinical and clinical models

strongly supports their therapeutic potential.
Conclusion

There has been modest progress in the outcome of head and neck

cancer patients, in part due to therapy resistance which can be

attributed to the function of CSCs in tumorigenesis and tumor

dissemination. This emphasizes the need for further research into

the underlying mechanisms regulating the CSC phenotype. Bmi-1,

a polycomb complex protein, has been established as a pivotal

player in controlling cancer cell stemness. It has been implicated in

many major signaling pathways such as the p16Ink4a/p19Arf, PI3K/

Akt, MAPK, STAT3, and Hedgehog pathways. It also plays vital

roles in cellular processes responding to ROS and DNA damage. In

cancer, it has been widely linked to increased stemness, tumor

formation and metastasis, as well as therapeutic resistance. This

review attempted to synthesize the current evidence on Bmi-1
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within the context of head and neck cancer stem cells, and to

provide support for future research aimed at targeting this master

regulator of cancer cell stemness using novel therapeutic approaches.
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