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In this study, the performance of low-temperature sintered Bi-B-Si-Zn-Al glass/SiC
composites by vacuum hot-press sintering between 700°C and 1000°C was
investigated. The specimen had a relatively preferable density of 95.5% and
thermal conductivity of 8.660 Wm−1K−1 after sintering at 900°C for 2 h. The
dielectric constant and dielectric loss tangle of the composite were 32.9 and 0.57
at 20 GHz, respectively. The XRD analysis indicated the formation of Bi, Zn and
ZnAl2O4 crystals, and the microstructure showed the low contact angle of the glass
and SiC grain. Such low-temperature sintered SiC ceramic may have a promising
application in the electronic field.
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1 Introduction

LTCC (low-temperature co-fired ceramics), a technology developed from high-
temperature co-fired ceramics (HTCC) multilayer circuits, has been widely used as the
substrate for integrated device packaging. With the development of electronic
equipment toward miniaturization and multi-function, the low thermal conductivity
of LTCC becomes the limiting factor for its extensive application. In order to be co-fired
with high electrical conductivity metals (Ag, Cu, and Au), the sintering temperatures of
LTCC generally are required to be below 1,000°C. The restricted condition makes
improving the thermal property of LTCC an urgent challenge. Silicon carbide (SiC)
ceramic is an important structural material applied in mechanical seals, wear linings,
and heat exchangers, owing to its excellent properties, such as high thermal
conductivity(260–420Wm−1K−1) [1–3], abrasive resistance and hardness [4–6],
appropriate thermal shock, and a low coefficient of thermal expansion similar to
that of silicon [7–9]. However, the low self-diffusion of SiC ceramic caused by its
stable Si-C covalent bonds makes densification sintering difficult without sintering
additives.

The most prevailing method to densify SiC ceramics is by adding sintering additives.
These aids, together with SiO2 adsorbed on the SiC particle surface [10], can transform into

a liquid phase at a temperature lower than that of solid-state sintering of SiC. Alumina and rare
earth (RE) oxides are popular combinations as aids to liquid phase sinter SiC ceramics, such as
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Al2O3–Y2O3 [11–14], AlN–Er2O3 [15, 16], AlN–Sm2O3 [17, 18], and
Al2O3–CeO2 [19]. In recent years, researchers have been actively
searching for new sintering additives, such as RE-Si-C (RE = La,
Ce, and Pr) [20], TiO2–SiC–Al2O3–Y2O3 [21],
AlN–Y2O3–CeO2–MgO (22), and Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2 [22].
Table 1 shows the relative density, thermal conductivity, and
hardness of some liquid phase sintering SiC composites for
comparison with this study. However, the liquid phase formation
temperature of these additives always exceeds 1,500°C, which makes
SiC ceramics not available in connecting with some low melting point
metals, such as silver (961°C) and copper (1,083°C). Glass is a good
choice to lower the sintering temperature of ceramics below 1,000°C
[28, 29]. Low-temperature co-fired ceramics (LTCC) are most likely
made up of alumina and glass [30]. However, little research has been
conducted on replacing alumina with silicon carbide, although the
thermal conductivity of SiC ceramic is tens of times higher than that of
Al2O3 ceramic [31]. In this study, we use Bi–B–Si–Zn–Al (BBSZA)
glass as the sintering aid to densify SiC ceramics. The BBSZA glass has
a low melting point, good wettability with ceramics, and a thermal
coefficient similar to that of silicon, which is a good choice applied as a
sintering additive of ceramics [32]. In our research, the high thermal
conductivity of 8.660 Wm-1K-1 is obtained by loading 50wt% BBSZA
glass with SiC ceramics. The result shows the perspective of liquid
phase sintered SiC ceramic applied in the low-temperature co-fired
ceramics.

2 Experiment

The Bi2O3–B2O3–SiO2–ZnO–Al2O3 glass is composed of 27 mol%
Bi2O3 (Aladdin, 99.9%), 27 mol% ZnO (Aladdin, 99%), 26 mol% B2O3

(Aladdin, 98%), 15 mol% SiO2(Aladdin, 99.99%), and 5 mol%
Al2O3(Aladdin, 99.99%). The starting materials were mixed
according to the proportion and melted at 1,150°C, thus quenched
in deionized water and ground to a certain size (d50 = .29 μm). Here,
50-wt% SiC ceramics (Sinopharm; 99.8%, 0.8 μm) and 50-wt% BBSZA
glass were mixed in ethanol and ball-milled in agate jars for 4 h at
350 rpm. After ball mixing, the slurry was dried at 60 °C for 12 h. Then,
the dried powders were further ground in a mortar to avoid
agglomeration. Finally, these powders were put into a graphite

mold, which was padded with the graphite paper in the location of
contact with powders and also sprayed with boron nitride on the inner
wall of the mold. Then, the graphite mold was placed in a vacuum
quartz tube furnace for sintering. The samples were heated in the hot-
pressing furnace at a heating rate of 10°C min−1under a uniaxial load of
30°Mpa. Table 2 lists the samples characterized in the study, as well as
their composition and sintering temperature. Four sintering
temperatures of 700°C, 800°C, 900°C, and 1,000°C, respectively,
were set and kept for 1 h, marked as HP700, HP800, HP900, and
HP1000, respectively.

The phase compositions of the samples were identified via an
X-ray diffractometer (XRD, Rigaku SmartLab 9kW, Japan) with Cu
Kα radiation (λ = .15418 nm). The microstructure of composites
coated with Pt was observed by scanning electron microscopy
(GeminiSEM 500, Germany). The bulk densities were determined
using a multifunction densimeter (AR-150PM, China). The thermal
conductivities were obtained using the hot disk thermal constant
analyzer (TPS2200, Sweden). The dielectric properties were tested
by using the vector network analyzer (MS46322B). Vickers hardness
was measured by the Vickers hardness tester (HUAYIN, China), and
each sample was tested five times to take the average value. The dc
resistivities of samples were measured using a high-resistance meter
(Tonghui, TH2683A, China) with an applied voltage of 10 V, and the
dc resistivity of each sample was calculated using the following
equation:

ρ � RS/L. (1)
In the equation, ρ is on behalf of resistivity and R, S, and L represent
the resistance, cross-sectional area, and the wire length of the sample,
respectively.

3 Results and discussions

3.1 Phase composition

Figure 1D shows the XRD patterns of the SiC/BBSZA composites
sintered at different temperatures. The XRD peaks of 6H-SiC
(PDF#97-001-5325) and Bi (PDF#97-005-3797) were observed in
all specimens. The presence of bismuth indicated that bismuth

TABLE 1 Additives, sintering temperature, relative density, thermal conductivity, and hardness of the SiC composites reported in the literatures.

Additive Sintering temperature(°C) Relative density (%) Thermal conductivity
(Wm−1K−1)

Hardness Reference

Al2O3–Y2O3 1900 97 70 — [30]

Al2O3–CeO2 1840 99.1 — — [19]

AlN–Y2O3–Sc2O3 1950 96.7 110.3 25 GPa [31]

Y2O3–Sc2O3–MgO 1850 99.9 99 25.4 GPa [32]

Al2O3–Y2O3–TiO2 1900 96.2% — 24.4 GPa [21]

Al2O3–Y2O3–CeO2–MgO 1900 99.6% 73 28.1 GPa [22]

(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2) B2 1900 99.3 — 21.9 GPa [23]

ZnO–CaO–Al2O3–SiO2 glass 1,550 95.5 7.104 1084HV10 [24]

This work 900 95.5 8.660 330HV
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oxide had been reduced. It is known that silicon carbide can reduce
some metal oxides at high temperatures [33]. In this system, the
following chemical reaction occurred:

SiC + Bi2O3 � Bi + SiO2 + CO ↑ . (2)
This explains the appearance of bismuth. The phase with relatively

small intensities of zinc was detected by XRD in the specimens of
HP900 and HP1000. The emergence of zinc may be attributed to the

decomposition of zinc oxide in the BBSZA glass. According to the
Ellingham diagram, zinc oxide can decompose into zinc and oxygen
under a certain ultra-low oxygen partial pressure (almost vacuum
conditions) above 800°C. It can be comprehended that why the
samples of HP700 and HP800 did not contain zinc. The chemical
reaction process exhibits as following:

ZnO � Zn + O2 ↑ (3)

TABLE 2 Batch composition and sintering temperature of SiC/BBSZA glass composites.

Sample Batch composition (wt.%) Sintering temperature (°C)

HP700 50 wt.% +50 wt.% SiC 700

HP800 50 wt.% +50 wt.% SiC 800

HP900 50 wt.% +50 wt.% SiC 900

HP1000 50 wt.% +50 wt.% SiC 1,000

FIGURE 1
Phase composition. (A) Transmission electron microscopy (TEM) image of the SiC/BBSZA composites sintered at 900°C. (B) High-resolution TEM
(HRTEM) image of ZnAl2O4. The d-spacing of .257 nm and .292 nm correspond to the d (311) and d (220) of ZnAl2O4. (C)High-resolution TEM (HRTEM) image
of Bi. The d-spacing of .315 nm corresponds to d (012) of Bi. (D) X-ray diffraction (XRD) patterns of SiC/BBSZA composites sintered at 700°C, 800°C, 900°C,
and 1,000°C, respectively. (E) EDS images of HP900.
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Moreover, aluminum oxide and zinc oxide in the BBSZA glass can
react with each other to form spinel in the following reaction:

ZnO + Al2O3 � ZnAl2O4 (4)
The X-ray feature peaks of ZnAl2O4 (PDF#97-000-9559) can be

found in samples of HP800 and HP900. The crystal of ZnAl2O4 in
HP1000 disappears due to the difference in Gibbs free energy between
reactions (3), (4). The Gibbs free energy of reaction (3) is lower than
that of reaction (4), which makes reaction (3) have more chance to
occur at 1,000°C.

A high-resolution transmission electron microscope (HRTEM)
can determine the phase of composites by analyzing the diffraction
patterns and streaks. Figure 1A shows the HRTEM images of the SiC/
BBSZA composite ceramic sintered at 900°C. The interplanar spacing
values of .257 nm and .292 nm correspond to d (311) and d (220) of
ZnAl2O4, respectively, as shown in Figure 1B. Otherwise, in Figure 1C,
the interplanar spacing value of .315 nm matches d (012) of the Bi
crystal. An amorphous phase can be seen around the ZnAl2O4 and Bi
crystals, which represent the BBSZA glass. The analysis results of
HRTEM verify the conclusion of XRD.

Figure 1E shows the EDS mapping images of the SiC–BBSZA
composite ceramic sintered at 900°C. EDS mapping can exhibit the
distribution of elements in the composites. The appearing location of
the Si element matched well with that of the C element, indicating the
existence of the SiC crystal in this area. It is worth noting that the O
element almost has the same location as that of the Si and C elements.
This could further prove the occurrence of reaction (2). In addition,
the distribution of Bi, Zn, and Al elements is both uneven along with
the phenomenon of aggregation. The aggregation of the Bi element is
because of the generation of bismuth in reaction (2), and the
aggregation of Zn and Al elements is contributed by the products
of Zn and ZnAl2O4 in reactions (3), (4). Otherwise, the position of Al
element aggregation is partially the same as the Zn element, suggesting

the formation of the ZnAl2O4 crystal. These EDS mapping images
corresponded well with the results of XRD.

3.2 Microstructure

The microstructures of SiC/BBSZA composites sintered at
different temperatures are shown in Figures 2A–D. The samples of
HP700, HP800, and HP900 exhibited dense morphology except that
the sample of HP700 formed some obvious pores, owing to the poor
liquidity of glass at 700°C. The liquid phase sintering process could be
divided into three stages: particle rearrangement, solution and
precipitation, and solid-state sintering [34]. The densification of
composites occurs quickly in the first stage as pores between grains
are filled with the liquid phase. So, good flowability of the liquid phase
facilitates the densification of ceramics. At 800°C–1000°C, the
microstructure of samples showed homogeneous and dense
morphology, which is beneficial to their thermal property.
Nevertheless, HP1000 seems to have larger grains than other
composites sintered at a lower temperature. So, we etched these
composites with strong acids and alkalis to remove the glass, Bi,
Zn, and ZnAl2O4; as shown in Figures 3A–D, the characteristic of acid
and alkali resistance of SiC provides a convenient way to display the
SiC grain size. It can be found that the distribution of SiC particle sizes
is uneven. Also, compared with other samples, the number of fine
grain particles of HP1000 decreased. This phenomenon can be
attributed to the occurrence of secondary recrystallization [35]. As
we all know, normal grain growth exhibits an increase in the average
size, but if the grain boundaries are hindered by a second phase, such
as impurities, the normal grain growth will stop. Secondary
recrystallization is a process in which large grains grow excessively
by consuming a uniform fine grain matrix that is essentially no longer
growing. In particular, secondary recrystallization may occur when the

FIGURE 2
SEM images of SiC/BBSZA composites sintered at different temperatures: (A) 700°C, (B) 800°C, (C) 900°C, and (D) 1,000°C.
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particle size of the original material is not uniform or the sintering
temperature is high. The driving force of secondary recrystallization is
the excess interfacial energy of the grain boundary. The grain
boundary phase of the large grains moves under the impetus of

interfacial energy, resulting in large grains’ further growth and
small grains’ disappearance. After secondary recrystallization
occurs, the gas pores enter the grain interior and become isolated
pores, making the sintering rate decrease or even stop. Because the

FIGURE 3
SEM images of SiC/BBSZA composites sintered at different temperatures etched with strong acids and alkalis: (A) 700°C, (B) 800°C, (D) 900°C, and (D)
1,000°C.

FIGURE 4
Backscattered electron (BSE) images of SiC/BBSZA composites sintered at different temperatures: (A) 700°C, (B) 800°C, (C) 900°C, and (D) 1,000°C.
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pressure of the gas in the small pores is relatively large, it may migrate
and diffuse into the large pores at low pressure, making the pores on
the grain boundaries larger as the grains grow, i.e., the pore size
increases.

Backscattered electron (BSE) images can clearly show the
distribution of the different phases of the composites as the
brightness of the lining depends on the atomic number. In this
study, we take advantage of it to know the distribution of Bi,
BBSZA glass, and SiC. Figures 4A–D show the microstructures of
the ESB pattern of SiC/BBSZA composite ceramics sintered at
different temperatures. The bright areas represent the location of
the heavy atom in the samples (referring to Bi and BBSZA glass in this
study), while the dark areas show the distribution of light atoms
(referring to SiC, Zn, and ZnAl2O4 in the samples). The distribution of
composites of HP800, HP900, and HP1000 in the bright regions both
remained uniform. On the contrary, the HP700 sample exhibited
uneven distribution in the bright areas due to the poor liquidity of
glass. In addition, with the temperature increasing from 800°C to
900°C, the shape of light areas gradually tends to change from round to
elongated, which indicated the flowability of Bi and BBSZA glass
became better. This suggests the structure of the sample HP900may be
denser than that of HP700.

3.3 Thermal conductivity

Figure 5A shows the curves of relative density and thermal
conductivity of SiC/BBSZA composites sintered at different
temperatures. The two curves showed a similar trend, which

both increased as the sintering temperature increased up to
900°C and then decreased. The thermal conductivity of
composites is closely related to the density in liquid phase
sintering because pores can impede the propagation of phonons.
With the sintering temperature increasing from 700°C to 900°C, the
thermal conductivity of the composites varied from
4.056 Wm−1K−1 to 8.660 Wm−1K−1; meanwhile, the relative
density increased from 86.1% to 95.5%. The thermal
conductivity of the SiC/BBSZA composites reached the highest
(8.66 Wm−1K−1) at 900°C, which outdistances that of conventional
LTCC (~2–4 Wm−1K−1). In addition, the thermal conductivity
decreased by 3.7% when the sintering temperature varied from
900°C to 1,000°C. There may be two reasons for the decrease in
thermal conductivity of HP1000. The first factor is the decrease in
the relative density, which may be caused by the increase in pore
size. The other factor may be the disappearance of ZnAl2O4 at
1,000°C. After all, the thermal conductivity of ZnAl2O4 potentially
is higher than that of Al2O3 [36–38], which is a good thermal
conductor in composites.

3.4 DC resistivity

Figure 5B shows the electric resistivities of SiC/BBSZA
composites sintered at different temperatures. The resistivities
decreased sharply when the temperature varied from 700°C to
900°C and then have a small rise at 1,000°C. According to the
pseudo-percolation model [39], electrons of the composite tend to
conduct along the lowest resistance (the thinnest grain boundary).

FIGURE 5
Thermal conductivity, resistivity, Vickers hardness, and dielectric properties of SiC/BBSZA composites sintered at different temperatures. (A) Thermal
conductivity of SiC/BBSZA composites with different sintering temperatures; (B)DC resistivity of SiC/BBSZA composites with different sintering temperatures;
(C) Vickers hardness of SiC/BBSZA composites with different sintering temperatures; (D) dielectric constant and dielectric loss tangent of SiC/BBSZA
composites with different sintering temperatures.
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Bismuth has a certain electrical conductivity due to its metallicity.
The abundant SiC and bismuth could touch each other to form a
conductive network, which is beneficial to electron conduction.
So, the density microstructure and uniform distribution of bismuth
are the main reasons why the HP900 sample has the lowest
resistivity. Otherwise, the high resistivities of HP700 and
HP800 samples could be attributed to two reasons: first, the
amorphous phase (BBSZA glass), an insulator, hinders electron
conduction; second, pores in the composites destroy the contact of
SiC particles.

3.5 Hardness

Figure 5C shows the Vickers hardness of SiC/BBSZA composites
sintered at different temperatures. The factors influencing the
hardness of materials include the microstructure, composition,
crystallographic direction, and grain size. The grain size of SiC/
BBSZA composites does not change much when the sintering
temperatures are between 700°C and 900°C. Therefore, the
difference in the microstructure of these samples may play a vital
role in hardness. The hardness showed an increasing trend with the
rising temperature, similar to that of relative density. The hardness of
the composites of HP900 is the highest up to 330 HV, which

corresponds to the densest structure of composites at the sintering
temperature. The decrease in pores enhances the hardness of
materials. However, hardness tends to decrease when the pore size
becomes bigger. This can interpret the decreasing hardness of
HP1000 [40].

3.6 Dielectric properties

Figure 5D shows the curves of the dielectric constant and the
dielectric loss tangent of SiC/BBSZA composites with different
sintering temperatures at 20 GHz. It can be observed that the
dielectric constant and dielectric loss tangent represented a similar
trend, in which both increased when the temperature varied from
700°C to 900°C and then decreased. The following formula is used for
calculating the permittivity of complexes—Lichtenecker’s logarithmic
mixture law [41–43]:

Inε � ∑
n

i�0ViInεi, (5)

where ε represents the permittivity of composites, εi is on behalf of the
permittivity of each component in the sample, and Vi represents the
volume fraction occupied by each component, and ∑Vi � 1. In this
composite, the dielectric constant can be presented using this law, and
let us take HP900 as an example.

FIGURE 6
Comparison of heat dissipation performancewith andwithout HP900 in the chip resistor. (A–C)Optical images of the electronic devicewith andwithout
HP900 as the heat dissipating material; (D,E) Corresponding infrared thermal images of working electronic devices with and without HP900 as the heat
dissipating material; (F,G) maximum and average temperatures of two chip resistors as a function of their operation time.
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Inε � VSiCInεSiC + VBiInεBi + VglassInεglass + VSiO2InεSiO2

+ VZnAl2O4InεZnAl2O4 + VZnInεZn + VporesInεpores. (6)

By searching the literature, it is found that the dielectric
constants of 6H-SiC, Bi, ZnAl2O4, and Zn are approximately 6.7,
3.3, 8.5, and 2.1, respectively [44–46]. It is essential to note that the
dielectric constant of pores is low to 1.0, the same as that of air. The
sample of HP900 obtained the biggest dielectric constant because the
composite has fewer pores than other samples. Moreover, the
disappearance of ZnAl2O4 and the increase of Zn lead the
dielectric constant of the composite of HP1000 to decrease even
though the sample had a dense structure. Otherwise, the dielectric
loss has a close relationship with electrical conductivity because the
electric energy can be converted into heat. It can be understood that
better electrical conductivity leads to a higher dielectric loss tangent.
Accordingly, the resistances’ variation trend of composites sintered
at different temperatures is almost the same as that of the dielectric
loss tangent; the sample of HP900 holding the smallest resistivity had
the biggest dielectric loss tangent, which conforms to the
previous rule.

3.7 Heat dissipation performance

To verify the thermal property of SiC/BBSZA composites
sintered at 900°C, we fasten the sample on a chip resistor (JUC-
31F) to observe its effect on device heat dissipation, simultaneously
using another resistor as a blank control group to compare. The chip
resistor can automatically power off when its temperature reaches to
a certain value. From Figures 6A–C, it was found that the sintered
sheet of HP900 can improve the heat dissipation performance of
chip resistors as it can prolong the LED lighting time by nearly 50%
more than that of the blank group. The infrared thermal imaging
camera was used to record the temperature change of two chip
resistors during the heating process, as shown in Figures 6D, E. The
composites can effectively hinder the rapid rise of temperature of the
device, owing to its high thermal conductivity. The curves of the
average and maximum temperature of the two group devices during
the heating process are shown in Figures 6F, G. The maximum
temperature of the blank group rose to 158°C in a few seconds, while
the device possessing composites varied from 27°C to 53°C in 120 s.
Moreover, the curves of the highest and average temperature in the
chip having composites are closer than that of the blank
group. These differences between the two groups suggest the
excellent thermal property of SiC/BBSZA composites sintered at
900°C.

4 Conclusion

In this research, the effect of sintering temperatures on
densification and properties of SiC/BBSZA composite ceramics are
investigated, and these are the obtained results:

• XRD, TEM, and EDS analysis results suggested the formation of
Bi, Zn, and ZnAl2O4 crystals in the composites, which can
contribute to thermal conductivity and has a vital influence
on other properties of samples.

• The SiC/BBSZA composite sintered at 900°C showed the highest
thermal conductivity value (8.660 Wm−1K−1), suitable dielectric
constant (ε = 32.9), dielectric loss (tanð = .57), Vickers hardness
(330 HV), and dc resistivity (1.71 × 104Ω cm), whichmaybe has
good application prospects for electronic substrate materials due
to its low sintering temperature and excellent comprehensive
performance.

• The decrease in the relative density of the composite sintered at
1,000°C may be attributed to the occurrence of secondary
recrystallization, and the SEM of composites etched with
strong acids and alkalis also supported the explanation.
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