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Landmanagers are making concerted efforts to control the spread of invasive plants,
a task that demands extensive ecosystem monitoring, for which unoccupied aerial
vehicles (UAVs or drones) are becoming increasingly popular. The high spatial
resolution of unoccupied aerial vehicles imagery may positively or negatively
affect plant species differentiation, as reflectance spectra of pixels may be highly
variable when finely resolved. We assessed this impact on detection of invasive plant
species Ailanthus altissima (tree of heaven) and Elaeagnus umbellata (autumn olive)
using fine-resolution images collected in northwestern Virginia in June 2020 by a
unoccupied aerial vehicles with a Headwall Hyperspec visible and near-infrared
hyperspectral imager. Though E. umbellata had greater intraspecific variability
relative to interspecific variability over more wavelengths than A. altissima, the
classification accuracy was greater for E. umbellata (95%) than for A. altissima
(66%). This suggests that spectral differences between species of interest and
others are not necessarily obscured by intraspecific variability. Therefore, the use
of unoccupied aerial vehicles-based spectroscopy for species identification may
overcome reflectance variability in fine resolution imagery.
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1 Introduction

Globally, invasive plants pose significant threats to natural ecosystems (Gurevitch & Padilla,
2004) and biodiversity (Gaertner et al., 2009; Kimothi & Dasari, 2010; Peerbhay et al., 2016).
Across the state of Virginia, invasive, non-native plants are radically altering natural
environments by inhibiting the growth of native species upon which native wildlife and
insects depend (Miller et al., 2013). These widespread changes in species composition also have
broader impacts on soil chemistry and forest canopies, with effects on dynamics of carbon,
nutrients, water, and energy (Liao et al., 2008; Lovett et al., 2016).

Ailanthus altissima (tree of heaven) is a notably widespread and harmful invasive tree not
only in Virginia but across the U.S. (Burkholder, 2010). It tends to impact the soil chemistry and
species composition of ecosystems in which it is present by: increasing nutrient cycling rates;
increasing soil C, N, K, and Mg; and encouraging the encroachment of other plant species that
thrive in high nutrient environments (Gómez-Aparicio & Canham, 2008). Elaeagnus umbellata
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(autumn olive) is a common invasive shrub; as of 2017, it was found on
39,000 ha in the U.S. (Oliphant et al., 2017). It has a relationship with
N-fixing endosymbionts and affects nitrifying (ammonium-oxidizing)
microorganisms (Naumann et al., 2010; Malinich et al., 2017), and
therefore is especially competitive in disturbed areas with N-poor soils
(Malinich et al., 2017). In addition to its tolerance of nutrient-poor
conditions, E. umbellata is also drought resistant and able to survive in
a wide range of soil moisture conditions (Naumann et al., 2010;
Malinich et al., 2017). Last, it can outcompete native plants after
establishment due to its dense shading (Oliphant et al., 2017).

Land managers are making concerted efforts to control the spread
of invasive plant species, a task that demands extensive ecosystem
monitoring (Miller et al., 2013). Traditional approaches to ecosystem
observation and monitoring are satellite-based and ground-based.
Each approach, however, has caveats. Satellite imagery covers large
areas but cannot provide fine-scale details, whereas ground surveying,
despite its ability to provide fine-scale details, is labor intensive, and is
challenging for surveying broad areas. Unoccupied aerial vehicles
(UAVs) provide data on an intermediate scale, with much higher
spatial resolution than satellite data and with more spatial coverage
than ground surveys (Alvarez-Vanhard et al., 2021). As UAVs merge
the benefits of more traditional satellite-based and ground-based
monitoring, they are becoming an increasingly popular means to
observe ecosystems, including invasive plant species monitoring (Sun
& Scanlon, 2019).

Whereas UAVs are becoming increasingly popular as a vehicle for
invasive plant species monitoring, spectroscopy has been and
continues to be used for the remote sensing of plant and ecosystem
observation. Spectroscopy, which includes a large number of narrow,
contiguous bands, provides detailed spectral information (Kaufmann
et al., 2008; Chance et al., 2016), which is influenced by differences in
biophysical and biochemical characteristics of plants (Matongera et al.,
2016; Yang et al., 2016; Wang et al., 2020), including: pigments
(Mahlein et al., 2010; Xiao et al., 2014), such as chlorophyll (Asner
& Martin, 2008; Thenkabail et al., 2014; Chance et al., 2016),
anthocyanins, and carotenoids (Blackburn, 2007); plant water and
vegetation stress (Thenkabail et al., 2014); and leaf N, P, and K
(Mutanga et al., 2004; Asner & Martin, 2008; Thenkabail et al.,
2014; Chance et al., 2016). Thus, spectroscopic data, which serve as
an indication of plant chemical and structural properties, vary within
and across ecosystems (Martin & Aber, 1997; Ustin et al., 2004).

Spectra are strongly related to certain biochemical and structural
plant traits (Jacquemoud et al., 2009; Ollinger 2010; Kattenborn et al.,
2019). Generally, greater spectral variation is associated with species or
trait variation (Palmer et al., 2002). Certain wavelengths, such as those
associated with upper-canopy pigments, water, and nitrogen, can be
analyzed to differentiate among species. Intraspecific (within species)
trait variability, however, is sometimes similar to or even greater than
interspecific (among species) variation (Jung et al., 2010; Messier et al.,
2010; Leps et al., 2011; Auger & Shipley 2013).

Though imaging spectroscopy has been previously used to identify
individual plant species (Mishra et al., 2017), particularly invasive
species (Chance et al., 2016; Aneece & Epstein, 2017; Kganyago et al.,
2017; Skowronek et al., 2017), using spectroscopic sensors in concert
with UAVs is a relatively new application for these technologies.
Whereas a few UAV-based studies have been successful in identifying
individual plant species, this has been accomplished in large
monocultures where the target plant is easily distinguished from
the surrounding vegetation (Huang & Asner, 2009).

Additionally, UAV imagery has much finer spatial resolution than
satellites. It is not known, however, whether the very fine spatial
resolution of data provided by UAVs is beneficial or detrimental to the
process of differentiation. Smaller pixel size overcomes the challenge
of averaged spectral properties of large pixel sizes over heterogeneous
landscapes (Underwood et al., 2007). Peña et al. (2013), for example,
found that increased resolution from 2.4 m to 1.2 m increased the
differentiability of tree species by 25%. Similarly; Roberts et al. (2004)
found that plant species were least distinct at the stand scale and most
distinct at the branch scale, a scale similar to that of Peña et al. (2013).
Detection of invasive plant species is likely improved by the fine spatial
resolution that a UAV can achieve, as it does not require large and
homogeneous infestation stands. With very fine spatial resolution,
however, spectral variation among pixels will be greater than with
coarser spatial resolution, which yields a smoothing effect of extreme
values. It is expected, then, that spectral variation will be greater with
decreasing spatial resolution. It is essential to understand the
mechanisms that allow for the detection of target invasive plant
species within these fine-resolution images.

To explore the fundamental questions of whether variability
caused by fine-resolution spectroscopy enhances or impedes the
ability to differentiate plant species, we collected images during the
2020 growing season from forest canopies in northwestern Virginia at
the Blandy Experimental Farm (BEF), where invasive species are
present and common. We address the following questions:

1) Over which wavelengths do intra-individual and intraspecific
variability of target invasive plant species exceed interspecific
variability?

2) Can the spectral signal from individual pixels within a tree crown
be used to effectively detect target invasive plant species in an
image?

3) How much does intra-individual and intraspecific variability of
target invasive plant species impede the ability to differentiate
among species?

2 Materials and methods

2.1 Study site

Blandy Experimental Farm (BEF), a biological field station owned
by the University of Virginia, is located in the Shenandoah Valley in
northwestern Virginia (39.06oN, 78.07oW). At 190 m elevation, BEF
has a mean annual precipitation of 975 mm, a mean annual
temperature of 12°C, and a mean July high temperature of 31.5°C.
It contains 80 ha of old fields in various stages of succession (Bowers,
1997).

Aerial spectroscopic data collection took place over three 1-ha
fields at BEF, based on their abundance of the invasive plant species of
interest, A. altissima and E. umbellata, along with several other trees,
shrubs, forbs, and grasses. The fields are in early-to mid-successional
stages and are approximately 20, 25, and 30 years in age (Figure 1;
green, blue, and purple polygons, respectively). Each field is located on
low-relief topography. The early successional field (green polygon in
Figure 1A; Figure 1B) contains abundant invasive shrubs, including E.
umbellata within a heterogeneous matrix of forbs, graminoids, shrubs,
and trees (including A. altissima). The 25-year-old early-to-mid-
successional field (blue polygon in Figure 1A; Figure 1C) contains
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abundant invasive shrubs, including E. umbellata, within a
heterogeneous matrix of forbs, graminoids, shrubs, and trees, but
with more prevalent trees and shrubs than the early successional field.
The mid successional field (purple polygon in Figure 1A; Figure 1D)
contains abundant invasive shrubs, along with abundant A. altissima.

2.2 Data collection and image post-
processing

Spectroscopic images were collected using a DJI Matrice 600 Pro
drone equipped with a high-precision GPS system and an imaging
spectrometer (Nano-Hyperspec, Headwall Photonics, Bolton, MA).
The imaging spectrometer has a spectral range of 400–1,000 nm (in
the visible and NIR portions of the electromagnetic spectrum), with a
spectral resolution of 2–3 nm over 270 spectral bands. Flight plans over
each field were created using universal Ground Control Software (UgCS),
in which the UAVwould fly in straight lines at a consistent height of 48 m
above the ground to obtain images with 3 cm pixels. The imaging
spectrometer was programmed to capture images along the flight plan
using HyperSpec III software (Headwall Photonics, Bolton, MA).

Images were collected in themiddle of the growing season in late June
(DOY 178), midday between 10h and 15 h to reduce bidirectional
reflectance distribution function (BRDF) effects and under consistent
sky conditions. This date of collection was chosen for its proximity to
when the National Ecological Observatory Network (NEON) collects
spectroscopic images using a fixed-wing aircraft with coarser resolution

(approximately 1 m resolution, compared to .03 m resolution). Collected
spectroscopic images were adjusted for incoming and scattered solar
radiation using a sampled dark reference at the time of flight and a grey
scale reference tarp with known reflectance located in the flight scene,
respectively. Using HyperSpec III software, terrain and perspective effects
were removed with a 1-m digital elevation model provided by the US
Geological Survey, and a mosaic of multiple images was created.

2.3 Image sampling

Individuals of 16 tree and shrub species and plant types (A. altissima,
Celastrus orbiculatus, E. umbellata, Gleditsia triacanthos, Galium verum,
Maclura pomifera, Juglans nigra, Juniperus virginiana, Lonicera japonica,
Loniceramaackii, Pinus virginiana,Rhamnus davurica, Rubus sp., Solidago
altissima, Symphoricarpos orbiculatus, and graminoids) were identified in
each of the three fields using a high-precision Trimble GPS with
measurement accuracy of 0.5 m and used to catalogue individuals
within imagery. If a given species was present in images of a field, up
to eight individuals were selected for analysis. In cases where fewer than
eight individuals were present, as many as were present were sampled.

Within the images, 15 well-lit and representative pixels were
selected for spectral sampling from each individual. To remove
outliers, a mean was taken across all wavelengths for each
reflectance spectrum of a pixel, and a mean was calculated in a
similar fashion for all 15 pixels from each individual. Any pixel
within an individual that differed more than 25% from the mean

FIGURE 1
(A). Locations of fields in which spectroscopic data were collected during the 2020 growing season. A field in early secondary succession, an
intermediate early-to-mid successional field, and amid-successional field, shown in green, blue, and purple, respectively. (B). Early successional field, which is
about 20 years in age and contains abundant invasive shrubs, including E. umbellata. (C). Mid-successional field, which is about 30 years in age and contains
abundant invasive shrubs, along with A. altissima. (D). Early-to-mid successional field, which is about 25 years in age and contains abundant invasive
shrubs, including E. umbellata.
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of the individual was removed from the dataset. This removed
approximately 1% of pixels from observation.

2.4 Assessing variability due to fine-scale
images

Both relative and absolute intraspecific (among individuals
within a species) spectral variability were calculated. Relative
variability was determined using the coefficient of variation
(CV), which compares the variability among the means of each
individual to the grand mean of the species. Absolute variability
was determined using standard deviation (SD). CV and SD were
calculated across all wavelengths for each species. Interspecific
(among species) spectral variability was also quantified using
CV and SD for comparison to intraspecific variability.

To differentiate A. altissima and E. umbellata, individuals from
Fields E and M were used to train an algorithm with Partial Least
Squares Discriminant Analysis (PLS-DA) using the pls R package
(Liland et al., 2022). To create an algorithm to detect A. altissima,
pixels known to be species other than A. altissima were recoded into
“other” and were separated from A. altissima. The same process was
followed for E. umbellata. Once an algorithm was established using
reflectance at each wavelength to separate A. altissima and E.
umbellata pixels in the component space from other species, it was
applied to a testing dataset using Field EM, to test the effectiveness of
each algorithm. The algorithms to detect A. altissima and E. umbellata
with PLS-DA on the training data were applied to each pixel in the
testing dataset. Because the pls R package applies the PLS-DA
algorithm to each pixel in both components, only pixels
categorized as the species of interest in both components were
classified as the species of interest, while pixels categorized as the
species of interest in only one component were not.

Then the percentage of pixels within each individual tree or shrub
was calculated for each class, and if over half the pixels were classified
as the species of interest, the individual was classified as the species of
interest. If fewer than half the pixels were classified as the species of
interest, the individual was classified as other species. This was done
for all individuals using each algorithm to detect both A. altissima and
E. umbellata. Following classification, omission error (false negatives),
commission error (false positives), overall accuracy, and Matthew’s
Correlation Coefficient (MCC; Eq. 1) were calculated. MCC uses the
balance of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) and can range from −1 to 1, where -1 is
entirely incorrect classification and 1 is entirely correct classification.
An MCC value of 0 represents classification due to chance.

TPpTN( ) − FPpFN( )
��������������������������������������
TP + FP( )p TP + FN( )p TN + FP( )p TN + FN( )√ (1)

3 Results

3.1 Intra-individual and intraspecific variability
relative to interspecific variability

TheCVof intra-individual variability exceeded theCVof interspecific
variability at 454 nm, 514–663 nm and 694–714 nm in A. altissima, with
the greatest ratio of relative intra-individual to interspecific variability of

1.42 occurring at 701 nm. The CV of intra-individual variability of E.
umbellata did not exceed the CV of interspecific variability (Figure 2A).
The SD of intra-individual variability exceeded the SD of interspecific
variability in A. altissima at 530 nm, 570 nm, 574 nm, 583–645 nm,
696–714 nm, and 940 nm and in E. umbellata from 450 to 530 nm and
585–705 nm. The greatest ratio of absolute intra-individual to
interspecific variability of 1.18 in A. altissima occurred at 703 nm and
at 459 nm with a ratio of 1.35 in E. umbellata (Figure 2B).

The CV of intraspecific variability exceeded interspecific
variability in A. altissima from 527 to 641 nm and 699–719 nm
and in E. umbellata from 516 to 521 nm, 603–667 nm, and
690–703 nm. The greatest ratio of relative intraspecific to
interspecific variability of 1.29 in A. altissima occurred at
703 nm and 1.29 in E. umbellata at 696 nm (Figure 3A). The SD
of intraspecific variability in A. altissima exceeded the SD of
interspecific variability at 603 nm, 607 nm, and from 701 to
719 nm and in E. umbellata from 450 to 530 nm and
585–705 nm. The greatest ratio of absolute intraspecific to
interspecific variability of 1.16 in A. altissima occurred at
707 nm and 2.04 in E. umbellata at 690 nm (Figure 3B).

3.2 Detection using pixel spectra

The two components of the PLS-DA used to differentiate A. altissima
pixels from all other species explained a total of 81% of variability in the
training data (36% in component 1, and 45% in component 2). A. altissima
separated most from other species in component 1 and overlapped
considerably in the component space (Figure 4A). Wavelengths in the
NIR region (763–935 nm) loaded heavily in component 1 (Figure 4B), and
wavelengths in the green to yellow spectral region (525–590 nm) loaded
heavily in component 2, with the greatest loading values occurring around
540–550 nm (Figure 4C). The two components of the PLS-DA to
differentiate E. umbellata pixels from all other species explained a total of
72% of variability in the training data (46% in component 1, and 26% in
component 2). UnlikeA. altissima,which separatedmost in component 1,E.
umbellata separated from other species in both components and overlapped
much less in the component space (Figure 5A). Wavelengths in the blue to
green spectral regions (450–510 nm) loaded heavily in component 1 in the
negative direction, with a maximum magnitude occurring around 480 nm
(Figure 5B).Wavelengths in the red edge region (705–725 nm) loaded most
heavily in component 2 (Figure 5C).

Applying the algorithm to the test field to detect A. altissima
provided an overall accuracy of 66%, with all 3 A. altissima individuals
(5% of all individuals) falsely classified as not A. altissima and
17 individuals (29% of individuals) falsely classified as A. altissima.
Of the 17 individuals incorrectly classified as A. altissima, 5 were
Lonicera maackii, an invasive shrub, and 3 wereMaclura pomifera and
Rhamnus davurica. Overall accuracy to detect E. umbellata was 95%,
with 7 out of 8 individuals correctly classified as E. umbellata and
2 individuals falsely classified as E. umbellata (Table 1).

3.3 Variability and differentiation

Wavelengths in the visible spectral region with a ratio of relative intra-
individual to interspecific variability (CV) greater than 1 also loaded heavily
in component 2 in the PLS-DA to separateA. altissima from other species in
discriminant analysis (Figure 6A). Wavelengths in the visible and red edge
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spectral regions with a ratio of absolute intra-individual to interspecific
variability (SD) greater than 1 also loaded heavily in component 1 to separate
E. umbellata from other species in discriminant analysis (Figure 6B).

Wavelengths in the visible spectral region with a ratio of relative
intraspecific to interspecific variability (CV) greater than 1 also loaded
heavily in component 2 to separate A. altissima from other species in
discriminant analysis (Figure 7A). Wavelengths in the visible and red
edge spectral regions with ratios of relative and absolute intraspecific
to interspecific variability (CV and SD, respectively) greater than 1 also
loaded heavily in component 1 to separate E. umbellata from other
species in discriminant analysis (Figure 7B).

4 Discussion

We utilized both relative (CV) and absolute (SD) variability, as
they provide complementary pieces of information; relative variability

is calculated by normalizing differences by the mean absolute
reflectance values. Normalizing using absolute reflectance values
can inflate variability in wavelengths with generally low reflectance
values (e.g., visible), compared to those wavelengths with typically
higher reflectances (e.g., near infrared). Together however, these two
indices provide a more holistic perspective of variability.

Spectral signals from individual pixels detect E. umbellata more
accurately than A. altissima, even with some wavelengths exhibiting
absolute intraspecific variability more than twice that of interspecific
variability. Despite the overall degree of absolute intraspecific
variability for E. umbellata, it exceeds interspecific variability over
fewer wavelengths compared to A. altissima, and the relative
variability within E. umbellata individuals (intra-individual
variability) does not exceed interspecific variability for any
wavelength. These patterns suggest that not only degree of
variability but also frequency of high levels of variability, metric of
variability, and scale at which variability occurs are all of importance.

FIGURE 2
(A) Ratio of intra-individual (within individuals, averaged for a single species) to interspecific (among species) coefficient of variation (CV; the variation
normalized by mean) across all wavelengths. (B) Ratio of intra-individual to interspecific standard deviation (SD) across all wavelengths. Spectra are split into
visible, red edge, and near-infrared regions. Ratio values over 1 indicate variability that is greater on average within individuals of a species than among species.

FIGURE 3
(A) Ratio of intraspecific (among individuals within a species) to interspecific (among species) coefficient of variation (CV; the variation normalized by
mean) across all wavelengths. (B) Ratio of intraspecific to interspecific standard deviation (SD) across all wavelengths. Spectra are split into visible, red edge,
and near-infrared regions. Ratio values over 1 indicate variability that is greater on average among individuals within a species than among species.
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Spectral regions in which both relative and absolute intra-
individual or intraspecific variability exceed interspecific
variability are of interest, as they may hinder differentiation of
species. Wavelengths at which both relative and absolute intra-
individual variability exceed interspecific variability in A.
altissima are 530 nm, 570 nm, 574 nm, 583–645 nm, and
696–714 nm. Wavelengths at which both relative and absolute
intraspecific variability exceed interspecific variability in A.
altissima are 603 nm, 607 nm, and 701–719 nm. Wavelengths
at which both relative and absolute intraspecific variability exceed
interspecific variability in E. umbellata are 516–521 nm,
603–667 nm, and 690–703 nm, whereas relative intra-individual
variability in E. umbellata does not exceed interspecific variability
for any wavelengths. Therefore overall variability likely does not
impede classification of E. umbellata to the same extent as for A.
altissima.

In addition to considering the degrees to which and frequencies
with which intra-individual and intraspecific variability exceed
interspecific variability, the specific wavelengths over which
variability is high and how they relate to separation in PLS-DA are
also important. Intra-individual variability exceeds interspecific
variability over some wavelengths that are important for separation
in PLS-DA for both species. For A. altissima, only relative intra-
individual variability exceeds interspecific variability in wavelengths
that are important for separation, while absolute intra-individual
variability does not. For E. umbellata, only absolute intra-
individual variability exceeds interspecific variability at wavelengths
that are important for separation, while relative intra-individual

variability does not. The lack of overlap between wavelengths
important for separation and both high relative and absolute
variability for each species suggests intra-individual variability
likely does not influence classification.

Intraspecific variability also exceeds interspecific variability
over some wavelengths that are important for separation in PLS-
DA for both species. For A. altissima, only relative intraspecific
variability exceeds interspecific variability in wavelengths that are
important for separation, while absolute intra-individual
variability does not. For E. umbellata, both absolute and
relative intraspecific variability exceed interspecific variability
for wavelengths that are important for separation. As both
relative and absolute variability are high in wavelengths
important for separation of E. umbellata from other species,
intraspecific variability could potentially influence
classification, but intra-individual variability likely does not.

The classification results suggest that differences between the
species of interest and all other species are more important than the
variability among all species, represented by interspecific
variability. The amount of overlap in locations of pixels in the
PLS-DA component space further supports that factors in addition
to intra-individual and intraspecific variability may affect
classification. Not only is classification of E. umbellata
ultimately more accurate than that of A. altissima, but also A.
altissima overlaps with other species more than E. umbellata does
in the PLS-DA component space. The lower accuracy of A.
altissima classification, as well as its location in the PLS-DA
component space, suggests that similarities in spectra across

FIGURE 4
(A) Location of all E. umbellata training pixels (purple) and all other species (grey) in component space. (B) Shown below the x-axis is Component 1, and
(C) beside the y-axis are the loadings for each wavelength in Component 2.
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individuals of multiple species may have a greater impact on
detection than intra-individual and intraspecific variability. This
implies that A. altissima has more spectral features in common
with other species, particularly L. maackii, M. pomifera, and R.
davurica. The similarities of reflectance spectra among a subset of
all species are not necessarily captured in the values of interspecific
variability, which is why examining pixels in the PLS-DA
component space is an additional useful tool.

Traditional hyperspectral data collection efforts are inadequate on the
basis of either time or space. For example, satellite data, though temporally
robust and therefore providing phenological data, are often too coarse in
resolution to detect individual tree and shrub canopies. Collection by
fixed-wing aircraft has a finer spatial resolution but is typically collected at
much lower frequency, often on an annual basis. Fixed-wing aircraft data
collection also requires an open field, which can be a challenge in some
forest studies. UAV-based data collection combines the spatial and
temporal benefits of each data collection method to provide data with

high temporal and spatial resolution. Our results suggest the very fine,
leaf-scale resolution of hyperspectral data collected by UAV does not
impede differentiation, but rather, the differences among the species of
interest and all other species are most important. As these data were
collected mid-growing season when phenological differences are least
noticeable, utilizing additional dates for differentiation will likely improve
detection of invasive plant species.

According to a 2021 literature review (Dainelli et al., 2021),
utilizing UAVs to identify invasive plants is not only novel but
also tends to be used in concert with RGB, thermal, or
multispectral sensors rather than hyperspectral sensors.
Researchers who have used hyperspectral imagery to
accomplish species recognition and detection have done so in
Brazilian tropical forests (Miyoshi et al., 2020a; Miyoshi et al.,
2020b), boreal forest (Nezami et al., 2020), and subtropical forest
fragments (Sothe et al., 2019) to detect vines, conifers, and
broadleaf trees. To our knowledge, this is the first effort to

FIGURE 5
(A) Location of all E. umbellata training pixels (light green) and all other species (grey) in component space. (B) Shown below the x-axis is Component 1,
and (C) beside the y-axis are the loadings for each wavelength in Component 2.

TABLE 1 Accuracy of the algorithm to detect A. altissima and E. umbellata in a test field. Individuals were classified based on the classification in each component. True
positives and negatives and false positives and negatives are given as number of individuals out of 59 total individuals.

True
positive

True
negative

Omission error (false
negative)

Commission error (false
positive)

Overall
accuracy (%)

Matthew’s correlation
coefficient

A. altissima 0 39 3 17 66 −0.15

E. umbellata 7 49 1 2 95 .96
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identify and map invasive plant species within heterogeneous
vegetation communities using UAV-based hyperspectral data
in plant communities typical of the eastern U.S.

We expect to produce an effective general methodology in
utilizing spectroscopy to identify and locate targeted invasive
plants, although we focused here on the invasive tree A.
altissima and shrub E. umbellata from aerial images. These two
invasive plants are commonly occurring across the U.S. and are
particularly relevant to the understanding of the ecological impact
of invasive species. The conclusion that differences between the
species of interest and all other species is more important than
intra-individual and intraspecific variability indicates that the
temporal flexibility of sampling via UAV will aid in the effort of
individual species detection. The ability to detect invasive plants
allows for the potential to map and monitor their spread. Future
work may build on this foundation to generalize detection of these

plants in additional plant communities. The addition of
spectroscopy in these efforts also provides the opportunity to
incorporate an understanding of the variability in plant
chemical and structural traits, from canopy to landscape scales.
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