
A refined pH-dependent
coarse-grained model for peptide
structure prediction in aqueous
solution

Pierre Tufféry1* and Philippe Derreumaux2,3

1Université Paris Cité, CNRS UMR 8251, INSERM U1133, Paris, France, 2Université Paris Cité, CNRS UPR9080,
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de
Rothschild, Paris, France, 3Institut Universitaire de France (IUF), Paris, France

Introduction: Peptides carry out diverse biological functions and the knowledge of
the conformational ensemble of polypeptides in various experimental conditions is
important for biological applications. All fast dedicated softwares perform well in
aqueous solution at neutral pH.

Methods: In this study, we go one step beyond by combining the Debye-Hückel
formalism for charged-charged amino acid interactions and a coarse-grained
potential of the amino acids to treat pH and salt variations.

Results: Using the PEP-FOLD framework, we show that our approach performs as
well as the machine-leaning AlphaFold2 and TrRosetta methods for 15 well-
structured sequences, but shows significant improvement in structure prediction
of six poly-charged amino acids and two sequences that have no homologous in the
Protein Data Bank, expanding the range of possibilities for the understanding of
peptide biological roles and the design of candidate therapeutic peptides.
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1 Introduction

Peptides of less than 40 amino acids have diverse biological functions, acting as signaling
entities in all domains of life, and targeting receptors or interfering with molecular interactions.
Hormones and their bacterial mimetics (Fetissov et al., 2019), neuropeptides and their roles in
neurodegenerative diseases (Ben-Shushan and Miller, 2021), antimicrobial peptides
contribution to host defence (Mookherjee et al., 2020), and immunomodulatory peptides in
the perspective of vaccine design (Pavlicevic et al., 2022) are some current directions motivating
their study at a fundamental level. Due to their specific features, peptides have also gained
interest as therapeutical agents (Muttenthaler et al., 2021), particularly to target protein-protein
interactions (Cabri et al., 2021). They are also considered as having interest in the development
of new functional biomimetic materials (Levin et al., 2020). Peptides have limitations though, as
they can be highly flexible (Apostolopoulos et al., 2021), which motivate efforts to understand
and predict their conformational energy landscapes.

Structure prediction of polypeptides with amino acid lengths up to 40 amino acids in
aqueous solution can be performed by a series of methods including machine-learning
approaches such as AlphaFold2 (Jumper et al., 2021), TrRosetta (Du et al., 2021), and
APPTEST (Timmons and Hewage, 2021). Looking at AlphaFold2, which revolutionized
structure prediction of single folded domain to a root-mean-square deviation (RMSD)
accuracy of 0.2 nm, its capability lies on machine learning based on protein data bank
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(PDB) (Rose et al., 2012) templates, multiple sequence alignments, co-
evolution rules and sophisticated algorithms to predict local backbone
and side conformations, and side chain - side chain contact probability
within distances bins. AlphaFold2 builds the protein by energy
minimization using a protein-specific energy potential.

TrRosetta is basically similar to AlphaFold2. It builds the protein
structure based on direct energy minimizations with a restrained
Rosetta. The restraints include inter-residue distance and
orientation distributions predicted by a deep neural network.
Homologous templates are included in the network prediction to
improve the accuracy further.

APPTEST also uses machine learning on the PDB structures with
a chain length varying between 5 and 40 amino acids. APPTEST
derives Cα-Cα and Cβ-Cβ distance restraints, and backbone dihedral
restraints that are input of simulated annealing and energy
minimization.

Other methods which are accessible by WEB-servers or can be
downloaded include Rosetta (Bonneau et al., 2001), I-TASSER (Zhang,
2008), PepStrMod (Singh et al., 2015) and PEPFOLD (Shen et al.,
2014; Lamiable et al., 2016). Rosetta is a fragment-assembly approach
based on Monte Carlo simulation, a library of predicted nine and then
three residues, and a coarse-grained model, followed by all-atom
refinement. I-TASSER is a hierarchical approach that identifies
structural templates from the PDB by multiple threading
approaches, with full-length atomic models constructed by iterative
template-based fragment assembly simulations.

The PEPstrMOD server predicts the tertiary structure of small
peptides with sequence length varying between 7 and 25 residues. The
prediction strategy is based on the realization that β-turn is an
important feature of small peptides. Thus, the method uses both
the regular secondary structure information predicted from PSIPRED
and the β-turns information predicted from BetaTurns. The structure
is further refined with energy minimization and molecular dynamic
simulations.

PEP-FOLD2 is a fast accurate structure peptide approach based on
the prediction of a profile of the structural alphabet of four amino acid
lengths along the sequence, and a chain growth method based on the
coarse-grained sOPEP2 model followed by Monte Carlo steps. It
should be noted that PEP-FOLD2 is not free of learning as it uses
an Support Vector Machine predictor relying on multiple sequence
alignment. Of practical interest, during the time of this study, we could
not access the APPTEST and PepStrMod servers. Also, TrRosetta
cannot be applied to sequences with < 10 amino acids.

Overall, all these methods generate good models for well-
structured peptides at pH 7 in aqueous solution because most
structures deposited in the PDB from nuclear magnetic resonance
(NMR) and X-ray diffraction experiments were determined at neutral
pH, and the PDB contains close to 200,000 structures as of
30 October 2022.

These methods face, however, two current limitations: correct
conformational ensemble sampling of intrinsically disordered
peptides or proteins (IDPs) which lack stable secondary and
tertiary structures, and accurate conformational ensemble
prediction of peptides as a function of pH and salt conditions. The
first issue has motivated the development of new force fields, such as
CHARMM36m-TIP3P modified (Huang et al., 2017), AMBER99SB-
DISP (Robustelli et al., 2018) and many others (Nguyen and
Derreumaux, 2020). The current approach to address the impact of
pH variations is to perform your own extensive molecular dynamics

and replica exchange molecular dynamics simulations at your desired
pH. Alternatively one can use pH-replica exchange molecular
dynamics using a discrete protonation method (Sabri Dashti et al.,
2012) or all-atom and coarse-grained continuous constant
pH molecular dynamics (CpHMD) methods (Barroso da Silva
et al., 2016; Huang et al., 2016; Aho et al., 2022). Accurate and fast
peptide structure predictions at different pH and salt conditions are
the objectives of the present study.

The organization of this paper is as follows. In section 2, we
present an extension of the coarse-grained, sOPEP2, force field to
integrate Debye-Hückel charge interactions as a function of pH and
salt concentrations. Next, we present the TrRosetta, AlphaFold2 and
PEP-FOLD with and without Debye-Hückel protocols and the
analysis methods. In section 3, we present the results of structure
predictions of six poly-charged peptides as a function of pH and
compare them to experimental circular dichroism (CD) data, and the
predicted models obtained by TrRosetta and AlphaFold2. The charged
polypeptides are particularly interesting to assemble the
sOPEP2 interactions and the Debye-Hückel charge interactions.
This is followed by the prediction of 15 ordered peptides, which
have NMR structures resolved at a pH varying from 2 to 8. We finish
this section on the prediction of four peptides for which low-resolution
experimental data and topological descriptions are available. Finally
section 4 summarizes our findings.

2 Methods

2.1 The sOPEP2 force field

The sOPEP2 potential, to be used in a discrete space, originates
from the OPEP potential which uses an explicit representation of the
backbone (N, H, Cα, N and H atoms) and one bead for each side chain,
whose position to Cα and Van der Walls radius depend on the amino
acid type (Maupetit et al., 2007; Sterpone et al., 2014). The sOPEP2 is
expressed as a sum of local, non-bonded and hydrogen-bond
(H-bond) terms, with all parameters described in (Binette et al., 2022).

E � Elocal + Enonbonded + EH−bond (1)
Since the geometry in PEP-FOLD is mainly imposed by the

superimposition of the discrete structural alphabet (SA) letters, the
local contributions are restricted to a simple flat-bottomed quadratic
potential to described the energy associated with dihedral angles ϕ and
ψ, described by:

E ϕi( ) � ϵϕ ϕi − ϕ0_sc_i( )2 (2)

where ϕ0_sc_i = ϕ within the interval [ϕlow_sc_i, ϕhigh_sc_i] and ϕ0_sc_i =
min(ϕ − ϕlow_sc_i, ϕ − ϕhigh_sc_i) outside of the interval ϕlow_sc_i and
ϕhigh_sc_i are specific to each amino acid type (Binette et al., 2022).

Non-bonded interactions corresponding to repulsion/
attraction effects are described using the Mie potential (Mie,
1903) given by:

Evdw_ij � ϵij ×
m

n −m

r0ij
rij

( )
n

− n

n −m

r0ij
rij

( )
m

[ ] (3)

where ϵij is the potential depth and r0ij is the position of the
potential minimum function of atomic types for i and j. The
combination of exponents, n and m, gives the relationship
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between the position of the potential minimum (r0) and the
position where it is zero (gR0):

gR0 � m

n
( ) 1

n−m
r0 (4)

Hydrogen bonds are considered explicitly, using a combination of
two types of contributions:

EH−bond � EHBpairwise + EHBcoop (5)

where EHBpairwise corresponds to the two-body contributions of all
hydrogen bonds between residue (i) and residue (j), characterized by
the hydrogen/acceptor distance rij and the donor/hydrogen/acceptor
angle αij:

EHBpairwise rij, αij( ) � ϵHB
α ∑

ij,j�i+4
μ rij( ) · ] αij( ) + ϵHB

β ∑
ij,j>4

μ rij( ) · ] αij( )
(6)

μ rij( ) � ϵij · 5
σ

rij
( )12

− 6
σ

rij
( )10[ ] (7)

] αij( ) � cos αij( ) if αij > 90°
0 otherwise

{ (8)

where σ = 0.18 nm is the position of the potential minimum and ϵ is the
potential depth.We distinguish betweenα-helix-like hydrogen bonds defined
by O(i)-H(i+4) and other hydrogen bonds. Hydrogen bonds between a pair
of residues separated by less than four amino acids are not considered.

EHBcoop involves four-body interactions involving pairs of
hydrogen bonds (between residues (i) and (j) and residues (k) and
(l)), so as to stabilize secondary structure motifs. The cooperation
energy is given by the following equations:

EHBcoop(rij, rkl) � ϵcoopα ∑C(rij, rkl) × Δ ijkl( ) + ϵcoopβ

× ∑C(rij, rkl) × Δ′ ijkl( ) (9)
C(rij, rkl) � exp( − 0.5(rij − σ)2) · exp −0.5 rkl − σ( )2( ) (10)

Δ ijkl( ) � 1 if k, l( ) � i + 1, j + 1( )
0 otherwise

{ (11)

Δ′ ijkl( ) � 1 if k, l( ) � i + 2, j − 2( )
or k, l( ) � i + 2, j + 2( )

0 otherwise

⎧⎪⎨⎪⎩ (12)

2.2 Debye-Hückel charge interactions

The new sOPEP version introduces the possibility to consider pH-
dependent charge interactions, using the Debye-Hückel formulation
(Debye and Hückel, 1923).

EDHij � qipqjpe
−rij/lDH( )/ ϵ rij( )prij( ) (13)

where qi and qj correspond to the charge of particles i and j, j > i + 1,
respectively, rij is the distance between the particles, lDH is the Debye
length that depends of the ionic strength of the solvent, and ϵ(rij) is the
dielectric constant that depends on the distance between the charges:

ϵ r( ) � Dw − Dw −Dp( ) s2r2 +Dpsr +Dp( )e−sr/Dp (14)

where Dw is the dielectric constant of water, Dp is the dielectric
constant inside a protein, and s is the slope of the sigmoidal function.
In practice, we used values of 78, 2 and 0.6 for Dw, Dp and s,
respectively, as stated in (Iwaoka et al., 2020).

Since the sOPEP representation does not include all-atom side
chains, but charges associated with particles of heterogeneous sizes, it
is necessary to shift the energy curve to have energy values compatible
with those of the Mie formulation. For each pair of particle, we shifted
the distance using:

rSHij � rij + shiftij and we evaluated EDHij using rSHij except for
ϵ(r), where the unshifted distance is used.

Shift values were adjusted for r such as Evdw_r = k,
EDHr � Evdw_r, as illustrated in Figure 1. In practice, we found
that values of k on the order of 4 kcal/mol are convenient, and the
Debye-Hückel energy was truncated to EDHr to avoid redundancy
with the Mie potential. Also, as sOPEP2 side-chain side-chain
potential already includes some of the interactions between the
charged residues, the Mie potential is restricted to only the
repulsive part for charged side chains.

Charges were assigned to particles depending on the pH using pKa
values of 3.9, 4.2, 6.0, 10.5 and 12.5 for ASP, GLU, HIS, LYS and ARG
side chains, respectively, and 9.0 and 2.0 for the N-terminal α-
ammonium and C-terminal α-carboxyl groups, respectively. Note
that it is possible to consider blocking the extremities using acetyl
and N-methyl on the N-terminus and C-terminus groups,
respectively, in which case no charge is assigned to the extremity.

Finally, we have considered weighting differently the electrostatic
contributions depending on the separation of the amino acids in the
sequence. In our experience, best results were obtained using a weight of
10 for residue separation of less than 7 amino acids and a weight of 2,
otherwise.

FIGURE 1
Fitting Debye-Hückel (DH) energy to Mie potential. The shift of the
unshifted DH potential (red) is set so that the Mie (black) and shifted DH
potential (green) cross for some energy threshold (4 kcal/mol in this
case).
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2.3 PEP-FOLD, TrRosetta and
AlphaFold2 protocols and analysis

Our validation test set includes a total of 25 peptides as described
in Section 3. For each peptide, we performed two PEP-FOLD
simulations, one TrRosetta simulation which uses PDB templates
and homologous sequences, and one AlphaFold2 simulation in its
standard version using three recycles, template information, and
AMBER refinement. Both TrRosetta and AlphaFold2 simulations
return five models that we considered equiprobable. The PEP-
FOLD simulations without Debye-Hückel (referred to as PF-
noDH), and with Debye-Hückel (PF-DH) generated 200 models
each. We selected the representative models of the five best clusters
identified among the 200 generated models based on their rankings
using sOPEP2 energies - i.e. the standard PEP-FOLDmodel selection -
for PF-noDH and the sum of sOPEP2 and Debye-Hückel energies for
PF-DH.

We have considered 15 peptides for which a PDB structure is
available. These correspond to peptides previously studied during
PEP-FOLD development and new peptides with their structures
released after 1 September 2019, and determined in pure aqueous
environment. The predicted models of the 15 peptides were evaluated
by computing the CAD-score (Olechnovič et al., 2013). The reported
CAD-score corresponds to the largest value of the cross CAD-scores
between the five predicted models and all NMR structures. Following
our previous work, if the CAD-score calculated on the backbone atoms

is > 0.60, the model is associated with largely correct secondary
structure prediction, otherwise if it is > 0.65 the model is correct in
terms of secondary and tertiary structures. For the poly-charged
peptides, we also computed their secondary structure contents
using STRIDE program (Frishman and Argos, 1995). For the four
sequences free of any NMR structure, we compared their predicted
and experimental topologies.

3 Results and discussion

3.1 Predicted models of poly-charged
peptides

For the simulations of the six poly-charged peptides, namely (EK)
15, (EK)5, (H)30, (E)15, (K)15 and (R)25, we calculated the alpha-
helix, coil and turn contents averaged over the five models of each
method and compared with circular dichroism (CD) experiments. It is
to be noted that by default TrRosetta, AlphaFold2 and PF-noDH only
perform simulations at neutral pH. CD values are not available at all
pH varying from 3 to 13. We report, however, on the pH-dependent
conformations using PF-DH. Results are summarized in Table 1.

TrRosetta, AlphaFold2 and PF-noDH have a very high propensity
to report alpha-helical conformations for the six polypeptides at
pH 7.4, the exception being (H)30, with alpha-content varying
from 54% to 97%, while CD displays only coil or beta-turn signals.

TABLE 1 Structural impact of pH variation on poly-charged peptides.

Experiment PF-noDH PF-DH AlphaFold2 TrRosetta

Exp. Blck pH CD α Coil β-turn α Coil β-turn α Coil β-turn α Coil β-turn

3 28 69 3

(EK)15 - 7.4 β-turn 94 6 0 0 85 15 97 3 0 97 3 0

11 24 68 8

3 0 100 0

(EK)5 - 7.4 coil 90 10 0 0 68 32 54 10 36 68 26 6

11 0 78 22

(H)30 - 5 coil 0 100 0

7.4 aggregation 75 5 20 95 5 0 81 19 97 3 0

(K)15 Ace, Nmt. 3.6 0% α 0 100 0

7.4 0% α 93 7 0 0 100 0 73 8 19 93 7 0

11.2-13 83.7% α 93 7 0

3–3.6 ND-42% α 93 7 0

(E)15 Ace, Nmt. 4.2 75% α 93 7 0

7.4 0% α 93 7 0 0 100 0 93 7 0 93 7 0

(R)25 - 5.7 50% coil 0 100 0

7.4 ND 96 4 0 0 100 0 77 4 19 96 4 0

11.3 50% coil 15%α 0 100 0

13 96 0 0

Results are presented for PEP-FOLD, without and with Debye-Hueckel (PF-noDH, PF-DH), AlphaFold2 and TrRosetta. Experimental information about the blocking of extremities (Exp. Blck.) using

acetyl (Ace) or N-methyl (Nmt), pH and Circular Dichroism (CD) data, is reported. ND, stands for not determined.
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For instance, for (EK)5, TrRosetta reports 68% helix and 26% coil,
AlphaFold2 reports 54% helix and 10% coil and PF-noDH reports 90%
helix and 10% coil. Only PF-DH is able to predict the CD coil character
of (EK)5 with 68% coil and 32% turn.

PF-DH is the single method to predict 85% coil and 15% turn
consistent at pH 7.4 with the beta-turn CD signal of (EK)15 (Smith
et al., 2020), and PF-DH predicts 100% coil at pH 5 consistent with the
coil CD signal of (H)30 (Jesus, 2020). There is strong experimental
evidence that (H)30 polymerizes at pH 7.4 forming beta-sheets. At this
pH, PF-noDH and TrRosetta predict strong helical conformations,
while PF-DH and AlphaFold2 predict a random coil, with contents of
95% and 81%, respectively.

The polypeptides (K)15 and (E)15 are particularly interesting
because the alpha-helix content changes inversely with the pH. As
observed by CD, the helical content of (K)15 increases with pH, while
the helical content of (E)15 decreases with pH (Batys et al., 2020). (K)

15 have 0% helix at pH 3.6 and 83.7% helix at pH 11–13 by CD. PF-
DH finds 0% helix at pH 3.6 and 93% helix at pH 11–13 (Figure 2). In
contrast to (K)15, (E)15 (Figure 3) have 42% helix at pH 3.6 and 0%
helix at pH 11–13 by CD. PF-DH finds 93% helix at pH 3.6 and 100%
coil at pH 11–13.

The conformation ensemble of (R)25 is predicted to have 50% coil
and 31% beta-sheet at pH 5.7 and have 51% coil and 21% beta-sheet at
pH 11.3 by CD (Morga et al., 2022). PF-DH predicts 100% coil,
independently of the pH values. Its performance is however much
better than those of PF-noDH, AlphaFold2 and TrRosetta which
predict a high helical signal varying from 77% to 96%.

Overall, the structure predictions of the six polypeptides at neutral
pH (7.4) give quite different contents of the secondary structure using
PF-noDH and PF-DH, with PF-noDH behaving and failing like
AlphaFold2 and TrRosetta predictions. This result emphasizes the
role of the Debye-Hückel charged-charged interactions when treating
poly-charged peptides. The results also demonstrate that the learning
stage of the local conformations in PEP-FOLD performed from
structures at neutral pH can be counterbalanced by the force field,
making possible to explore new conformations depending on the pH.
In contrast, AlphaFold2 and TrRosetta rely on homologous structures
and multiple sequence alignements. Since neither is available for poly-
charged peptides, it is normal for both predictors to fail. But
surprisingly, the LDDT (local distance difference test) metric
predicted by both methods is, on average, very high (> 80%) for all
amino acids of the six poly-charged peptides.

It is important to emphasize that in this study, we assume the
standard pka values of charged amino acids irrespective of the amino
acid composition of the peptides and the conformations of the
peptides. This is a strong limitation of our current approach.
Determining the pka values of charged amino acids in protein
structures has motivated the development of many theoretical
methods (Sabri Dashti et al., 2012; Barroso da Silva et al., 2016;
Huang et al., 2016; Aho et al., 2022). To illustrate the variation of the
pka values, we used the H++ server which is based on classical
continuum electrostatics and basic statistical mechanisms
(Anandakrishnan et al., 2012). Using (K)15, we found pka values
ranging from 10.1 to 9.4 (versus 10.5 in our model); using (R)25, we
found pka ranging from 9.6 to 11.6 in one conformation, and from
10.9 to 11.7 in another conformation (versus 12.5 in our model), and
using (H)30, we found pka variations from 4.7 to 6.3 (versus 6.0 in our

FIGURE 2
PF-DH Conformational ensemble of (K)15 as a function of pH. (A)
pH 7.4 (B) pH 13. Only the lowest energy model (rank 1) is depicted.

FIGURE 3
Conformational ensemble of (E)15 at pH7.4. (A) PF-noDH, AlphaFold2 and TrRosetta (B) PF-DH. Only the lowest energy (rank 1) model is depicted.
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model). Clearly this change of pka of the amino acids will impact the
equilibrium conformations of PF-DH.

3.2 Predicted models of polypeptides with
NMR structures

The experimental information of each well-ordered peptide, given
in Table 2, includes the amino acid length varying from 8 to 35 amino
acids, the number of NMRmodels, the WDC (well-defined rigid core)
according to the PDB, the topology, the pH varying from 4.3 to 7, the
ionic strength varying from 0 to 150 mM NaCl, the blocking of the
extremities and the amino acid sequence.

Table 3 reports on the CAD-scores using the full sequences and
the rigid cores of each of the 15 peptides using the four methods. Note
we give the results of PF-noDH, AlphaFold2 and TrRosetta, because
these methods which are pH independent are used irrespective of the
experimental pH conditions.

The first striking result is that (the mean, standard deviation and
median) values of the CAD-scores averaged over the 15 peptides are
nearly identical for the four methods using both the full sequences or
the rigid cores. They reach (0.73, 0.07, 0.75) for PF-noDH, (0.74, 0.10,
0.74) for AlphaFold2, (0.74, 0.06, 0.74) for PF-DH and (0.76, 0.08,
0.77) for TrRosetta using the full sequences. Similar trends are
observed considering the well-defined rigid cores, the average

CAD-scores being of 0.75, 0.76, 0.76 and 0.78 for PF-noDH, PF-
DH, AlphaFold2 and TrRosetta, respectively.

The second result is that PF-noDH and PF-DH do not predict any
low quality models (CAD-score < 0.6), while AlphaFold2 produces
CAD-scores of 0.59, 0.55 and 0.6 for the three targets 6nm3,1egs and 7li2
(Figures 4–6, respectively). It has to be noted that the structures of these
three peptides were solved at pH 5.8, 6.5 and 7. This low score results in
differences between the experimental and predicted topologies.
Experimentally, 6nm3 adopts a helical-like conformation, 1egs adopts
a beta2-like conformation and 7li2 adopts a beta-2 like conformation. Of
note, a beta-2 like conformation has the topology of a beta-hairpin but
lacks the H-bond network.

For these three systems, AlphaFold2 predicts an extended-
unstructured conformation. The 7li2 target is also problematic for
TrRosetta, as it is the single system with a CAD-score < 0.6, namely
0.58 leading to an extended-unstructured conformation. Inversely,
TrRosetta is the best method to predict the beta-hairpin of 1pgbF
(Barducci et al., 2011) with a CAD-score of 0.91 versus 0.83 with
AlphaFold2 and 0.79 with PF-DH.

The third result is related to the performance of PF-DH with
respect to PF-noDH, which provides evidence that the weights of the
Debye-Huckel salt bridge interactions are consistent with the weights
of sOPEP2 interactions. It was far from being evident that the addition
of charges at extremities and charged amino acids in the core of the
sequences would not change the quality of the models for pH varying

TABLE 2 Peptide set.

Target L # mod. WDC Topo. pH ion.Str Exp. Blck. Sequence

6mi9 19 10 3–19 α distort. 4.3 0 Nmet. PMARNKILGKILRKIAAFK

6j9p 12 10 2–12 α 5 0 - RRLIRLILRLLR

1fsd 28 41 3–25 β2α 5 0 - QQYTAKIKGRTFRNEKELRDFIEKFKGR

1j4m 14 1 ND β2 5 0 - RGKWTYNGITYEGR

1le1 12 20 2–11 β2 5.5 0 Nmet. SWTWENGKWTWK

6nm3 8 5 ND α-like 5.8 0 Nmet. RKIWWWWL

6svc 35 20 2–35 β3 6 150 - SKLPPGWEKRMSRNSGRVYYFNHITNASQFERPSG

2evq 12 43 2–10 β2 6 20 - KTWNPATGKWTE

1egs 9 20 1–9 β2-like 6.5 0 Ace, Nmet. TKSAGGIVL

6r2x 25 15 9–20 Cα 6.5 148 - FETLRGDERILSILRHQNLLKELQD

7b2f 31 20 6–21 αCα 6.5 100 - MNNNELTSLPLAERKRLLELAKAAKLSRQHY

6s0n 9 20 ND α-like 6.8 1 - QDVNTAVAW

7li2 22 20 1–22 β2-like 7 0 - AGTMRVTYPDGQKPGQSDVEKD

1wbr 17 32 1–16 αC 7 0 Ace, Nmet. QAERMSQIKRLLSEKKT

1pgbF 16 1 ND β2 7 0 - GEWTYDDATKTFTVTE

pep17 17 - α 2 0 - ETGTKAELLAKYEATHK

pep38 38 - αTα 3.6 20 - DWLKARVEQELQALEARGTDSNAELRAMEAKLKAEIQK

pep10 11 - β2 4.3 0 - IYSNSDGWTWT

tau fragment 17 - β2 7 0 - DNIKHVPGGGSVQIVYK

For each peptide with an experimental structure available we specify its PDB, identifier (PDB), size (L), the number of NMR, models available (# mod.), its well defined core according to the PDB

(WDC), its topology (topo.); and the experimental conditions including the pH, the ionic strenght (ion. Str.) and the presence of extra groups to block the N terminus (acetyl) and C terminus (N

methyl) (Exp. Blck.), and the amino acid sequence. Four additional peptides without deposited structures but for which information exists in the literature are reported at the bottom of the table.
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TABLE 3 Performance prediction for structured peptides.

Exp. PF-noDH PF-DH AlphaFold2 TrRosetta

Target Topo pH Topo Full WDC Topo Full WDC Topo Full WDC Topo Full WDC

6mi9 α 4.3 α 0.85 0.86 α, α-like 0.84 0.86 α 0.83 0.86 α 0.84 0.84

6j9p α 5 α 0.75 0.77 Cα 0.70 0.71 α 0.74 0.76 α 0.74 0.75

1fsd β2α 5 αCα 0.62 0.63 β2α 0.66 0.69 β2α 0.73 0.76 β2α 0.71 0.73

1j4m β2 5 β2 0.67 0.67 β2 0.76 0.76 β2 0.74 0.74 β2 0.73 0.73

1le1 β2 5.5 β2 0.76 0.8 β2 0.75 0.75 β2 0.83 0.87 β2 0.8 0.79

6nm3 α-like 5.8 α 0.72 0.72 α,unstr 0.73 0.73 coil 0.59 0.59 - - -

6svc β3 6 β3 0.66 0.66 β3 0.70 0.70 β3 0.79 0.8 β3 0.78 0.79

2evq β2 6 β2 0.84 0.86 β2 0.82 0.86 β2 0.89 0.93 β2 0.8 0.79

1egs β2-like 6.5 β2, β2-like 0.71 0.71 β2-like 0.70 0.70 coil 0.55 0.55 - - -

6r2x Cα 6.5 Cα 0.75 0.9 Cα 0.74 0.91 α 0.8 0.92 Cα 0.8 0.9

7b2f αCα 6.5 αC, α 0.77 0.82 αCα 0.79 0.84 αCα 0.79 0.84 αCα 0.77 0.83

6s0n α-like 6.8 α 0.76 0.76 α 0.79 0.78 coil 0.67 0.67 - - -

7li2 β2-like 7 β2, β2-like 0.62 0.62 β2, β2-like 0.64 0.64 coil 0.6 0.6 coil 0.58 0.58

1wbr αC 7 α 0.69 0.7 α 0.70 0.70 α 0.69 0.7 α 0.68 0.69

1pgbF β2 7 β2 0.77 0.77 β2 0.79 0.78 β2, ext − untr 0.83 0.83 β2 0.91 0.91

MEAN 0.73 0.75 0.74 0.76 0.74 0.76 0.76 0.78

STDEV 0.07 0.09 0.06 0.08 0.10 0.12 0.08 0.09

MEDIAN 0.75 0.76 0.74 0.75 0.74 0.76 0.77 0.78

For each structure, we report a short description of the topology of the 5 best models, and the CAD-score values (seemethods) obtained for PEP-FOLDwithout and with Debye-Huckel (PF-noDH, PF-

DH), AlphaFold2 and TrRosetta. Note that TrRosetta is not functional for amino acid lengths < 10.

FIGURE 4
Conformational ensemble of 6 nm3. (A) PF-noDH, (B) PF-DH at pH 4.3, (C) AlphaFold2, (D) NMR structure. For A, B and C, the 5 predicted models are
depicted. For D, all models provided in the PDB are depicted.
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FIGURE 5
Conformational ensemble of 1egs. (A) PF-noDH, (B) PF-DH at pH 4.3, (C) AlphaFold2, (D) NMR structure. For A, B and C, the 5 predicted models are
depicted. For D, all models provided in the PDB are depicted.

FIGURE 6
Conformational ensemble of 7li2. (A) PF-noDH, (B) PF-DH at pH 4.3, (C) AlphaFold2, (D) TrRosetta, (E) NMR structure. For A, B, C and D the 5 predicted
models are depicted. For E, all models provided in the PDB are depicted.
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FIGURE 7
Conformational ensemble of pep17. (A) PF-noDH, (B) PF-DH—pH 2, (C) AlphaFold2 and (D) TrRosetta. For each method, the 5 predicted models are
depicted.

FIGURE 8
Conformational ensemble of pep10. (A) PF-noDH, (B) PF-DH at pH 4.3, (C) AlphaFold2, (D) TrRosetta. For each method, the 5 predicted models are
depicted.
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between 2.9 and 7. The number of titratable amino acids varies from
1–2 (1le1, 1egs - 6nm3, 6evq), 4 for 1j4m, 5 for 6j9p and 1pgbF, 6 for
6mi9, 7 for 1wbr and 7li2, 9 for 6r2x, 10 for 6svc and 7b2f, to 12 for
1fsd. The results also show that the pH-independent PEP-FOLD
version and the pH-dependent PEP-FOLD version perform
similarly for peptides containing charged, hydrophilic and
hydrophobic amino acids.

Finally, using NMR structures as a reference, a very recent study
benchmarked the accuracy of AlphaFold2 in predicting 588 peptide
structures between 10 and 40 amino acids, including soluble peptides,
membrane-associated peptides, and disulfide-rich peptides (McDonald
et al., 2023). Although the study ignores pH conditions and the presence
of the membrane, AlphaFold2 can be used for the modeling of peptide
structures anticipated to have a well-defined secondary structure.
AlphaFold2 is particularly successful in the prediction of alpha-helical
membrane-associated peptides and disulfide-rich peptides, but also shows
some shortcomings in predicting phi and psi angles. It was found that
AlphaFold2 performs at least as well if not better than TrRosetta and PEP-
FOLD using our 2016 set of parameters.

3.3 Predicted models of polypeptides without
any NMR structures

The last four peptides have been discussed in literature in terms of
topological features without delivering any NMR structure. Their
sequences are given at the bottom of Table 2.

Two peptides are rather well described by all four methods.
Pep17 has been shown as a stable monomeric helix at pH two
using CD and NMR experiments (Bradley et al., 1990). PF-noDH,
PH-DH at pH 2 and AlphaFold2 predict a helical conformation with a

frayed N-terminus, while TrRosetta predicts a full helical
conformation (Figure 7). Pep38 determined experimentally as a
helix-turn-helix at pH 3.6 (Fezoui et al., 1997) is also well
reproduced by the four methods.

There are two cases, where AlphaFold2 and TrRosetta fail to
produce the experimental data. The first peptide is pep10 which is
described experimentally by an ensemble of distinct transient beta-
hairpins at pH 4.3(Alba et al., 1997). It is described as an unstructured
turn-like conformation by TrRosetta (Figure 8D), and an ensemble of
extended and beta2-like conformations by AlphaFold2 (Figure 8C). In
contrast, PF-noDH and PF-DH predict well a beta-hairpin
conformation (Figures 8A,B).

The second peptide is the tau fragment encompassing residues
295–306 containing the aggregation-prone PHF6 motif (306–311).
Using cross-linking mass-spectrometry, ab initio Rosetta (Ovchinnikov
et al., 2018), and CS-Rosetta which leveraged available chemical shifts
(Lange et al., 2012) for the tau repeat spanning residues 243–365, the tau
fragment 295–306 was predicted as a beta-hairpin at pH 7 (Chen et al.,
2019). PF-noDH and PF-DH predict the same conformation (Figures 9A,
B). In contrast, AlphaFold2 predicts extended conformations (Figure 9C),
and surprisingly TrRosetta finds a random coil conformation (Figure 9D).

Overall, this small set of peptides provides evidence of some
limitations of AlphaFold2 and TrRosetta when the target does not
have an homologous sequence in the PDB.

4 Conclusion

Integrating pH variation effects to a coarse-grained model, where the
side chains are represented by one single bead, is an important step toward
accurate polypeptide structure prediction in aqueous solution, as coarse-

FIGURE 9
Conformation ensemble of tau-fragment at pH 7. (A) PF-noDH, (B) PF-DH, (C) AlphaFold2 and (D) TrRosetta. For each method, the 5 predicted models
are depicted.
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graining with various granularities (de Vries and Zacharias, 2013;
Sieradzan et al., 2022), enhance sampling. This task has been
performed by combining a Debye-Hückel formalism for charged -
charged side chain interactions and the sOPEP2 potential. By using a
total of 25 peptides of amino acid lengths varying between 7 and 38 amino
acids, this study provides evidence that PF-noDH, PF-DH,
AlphaFold2 and TrRosetta perform similarly on peptides deposited
in the Protein data Bank, but PF-DH outperforms the two recent
machine-learning methods for poly-charged peptides, and peptides
for which homologous sequences are not deposited in the PDB. Of
note, our new formulation takes into account the impact of salt
concentration variations, but we could not identify from the literature
any case reporting a conformation change upon ionic strength variation.

Overall this work is one step towards peptide structure prediction
in mimicking in vivo conditions. We are currently working on IDP’s in
aqueous solution and de novo structure prediction of peptides at the
surface of two-dimensional cell membranes.
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