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The goal of this investigation is to carry out a comprehensive analysis of
hydrodynamic forces, with particular attention being paid to the power-law fluid
flow across cylinders and presence gap considerations. With the assistance of the
Galerkin finite element method (GFEM), the discretization of the two-dimensional
system of non-linear partial differential equations was successfully completed. The
research is carried out with a significant variance of the flow behavior index (n) from
.3 to 1.7, gap aspects (Gp) from 0 .0 to .3, and fixed Reynolds number (Re) 20. To
obtain an extremely accurate solution, first, a coarse hybrid computational mesh
needs to be developed, and then, more refinement must take place. The selection of
the best possible case can be determined by comparing flow patterns, coefficients of
drag and lift, and cylinder gaps. The shear-thickening behavior of fluids has a
substantially greater influence on the drag characteristics than either the
Newtonian or the shear-thinning behavior of fluids do. In addition to this, the
shear-thickening action causes the upstream obstacle’s drag coefficient to
increase because the gap spacing becomes more widespread.
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1 Introduction

Non-linear fluids past over cylinders are being studied by many researchers over the years.
Engineering applications are designed and later modified based on the study of hydrodynamic
forces and flow configurations. Product qualities are being improved by deep and modified
investigations over the years. Flow patterns and their impact are also being investigated around
more than one bluff body. It is also significant to note that the arrangement/placement of
obstacles in the cross-flow also plays an important role and has a practical use. Extensive work
conducted on the non-Newtonian fluid flow around a single cylinder has been summarized in
the previous work [1–7]. This work is aimed to increase the stage of complicatedness
concerning the nature of fluid and the number of obstacles to investigate the influence of
hydrodynamic forces like drag and lift while changing the gap spacing around the circular
cylinders in the power-law fluid. Lesser work is available in the literature on the incompressible
power-law fluid flowing over cylinders of circular nature in tandem arrangement. Regarding the
positioning of the two cylinders, many investigations into non-Newtonian fluids are
available [8–12].
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The flow around two side-by-side circular cylinders and tandem
arrangements of circular cylinders simulated the results for different
Reynolds numbers. Using several modeling methodologies based on a
computational fluid dynamics solver, the authors suggest that the
impacts of flow patterns such as the frequency of primary vortex
shedding and the frequency of the secondary cylinder interaction may
be seen for flow around two rows of staggered cylinders. The behavior
of Reynolds numbers and gap spacing for the flow that occurs between
side-by-side cylinders can be found using a numerical study [13–16].
These researchers investigated not only the effects of different
gap spacings and Reynolds numbers but also the distinct flow
patterns. [17] investigated the characteristics of flow behaviors and
the action of fluid forces on two cylinders with a range of staggered
configurations.

A lot of computational work has been conducted to investigate
drag and lift forces on obstacles in the Newtonian flow field, but
analyzing the influence of non-linear viscosity functions on drag and
lift is still in its embryonic stage. Because of the examination of a wake,
recycling zone length, and drag and lift features, the flow of
incompressible flows over cylinders of varied cross-sectional areas
makes for an attractive field of study. [18] investigated numerically the
effects of the drag component on a heated circular cylinder for
Reynolds number (5≤Re≤ 50).Determining solutions in the field
of rheological fluid is a struggling mission for scientists because the
study of flow behaviors around the obstacles with the influence of force
parameters (drag and lift) has established the attention of scholars over
an insufficient decade [19–21]. [22] analyzed numerically the
influence of viscous fluid flows past confined cylinders using the
LBM algorithm and also studied the effects of drag components of
the cylinders. [23] offered an investigation of the laminar flow and heat
transmission that was caused by a long circular cylinder that was either
horizontal or vertical. The properties of MHD heat transport in a
cavity were studied by [24, 25], who used the Galerkin finite element
technique in their research. In addition, there is a general upward
tendency in the average Nusselt number along the bottom wall of the
tank and the right wall. There have been some interesting
advancements in our understanding of the non-linear fluid flow
recently, and they can be seen in [26–28].

The purpose of this investigation is to compute the fluid forces
based on gap aspects that are exerted over an obstacle that is
submerged in a power-law fluid flow. The CFD community has
not previously conducted such an analysis of forces in this domain.
In view of the numerous commercial uses of flow around dual
cylinders, the scope of this work has been narrowed to include
only some numerical results. The results of the circular cylinder are
used as a point of comparison in this section. The following is the
structure of this paper: the mathematical formulation is the topic of
discussion in Section 2. In Sections 3 and 4, we will investigate the
influence that the computing domain has and the effect that the grid
points have. In Section 5, we talk about how the spacing ratio affects
the aerodynamic forces, and in Section 6, we present our findings and
draw some conclusions.

2 Mathematical formulation

The continuity and momentum equations for the incompressible
shear rate model are given in their compact form and are written as
follows [31]:
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FIGURE 1
Schematic representation of the problem.

FIGURE 2
Computational grid at the coarse level.

TABLE 1 Code validation test compared to Majeed et al. [30–36].

Majeed et al. [30–36] Single cylinder

CD 5.5785 5.5785

CL .0106 .0106
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where

τ � m _γ( )n, (4)
where m, n, and _γ are the fluid consistency parameter, power law
index, and shear rate, respectively. For n< 1, the model obtained
effects of the shear-thinning fluid, and for n � 1, the model decline to
Newtonian fluid with constant viscosity. Also, n> 1 represented the
shear-thickening effects in the model.

The involved non-dimensionalized parameters are

Re ≡
ρUrefLref

μp
, (5)

CD ≡
2Fd

ρU2D
, (6)

CL ≡
2Fl

ρU2D
, (7)

where Uref and Lref are the velocity and length reference, and CD and
CL are the drag and lift coefficient with drag and lift forces denoted by
Fd and Fl, respectively.

3 Problem description

Consider a channel of dimensions (0, 0), (2.2, 0), (0, 0.41), and
(2.2, 0.41) are defined. The circular obstacle C1 is located fixed at
(.2, .2), and C2 is placed with various gap spacings. Both the top and
bottom walls of the channel are positioned so that u = v = 0. The
inlet of the channel is subjected to an inflow parabolic profile with a
maximum u velocity at .3, and a do-nothing boundary condition is
selected for the outlet.

LetD � 0.1m be the diameter of the obstacles C1 andC2, and also,
Gp is a confined space between the obstacles, as shown in Figure 1.
This simulation was performed by using H � 4.1D, Lu � 2D, L � 4D,
and Ld � 16D where Lu and Ld are upstream and downstream
distances from the centers of the obstacles to the inflow and
outflow edge, respectively. To accurately reflect the hydrodynamic
forces acting on the cylinder, additional components surrounding the
obstruction are taken into consideration.

FIGURE 3
Sequence of grids on the space mesh level: 1, 2, and 3 (from left to right).

TABLE 2 Data on meshes of varying refinement levels.

Level #. EL DOF Level #. EL DOF

1 662 1758 1 686 1806

2 1202 2964 2 1230 2988

3 1954 4458 3 1970 4434

4 3928 8196 4 3982 8169

5 5972 11814 5 5958 11655

6 10762 19722 6 10802 19584

7 25316 45720 7 30544 53034

8 62723 109302 8 63143 108654

9 118088 192414 9 117698 190551

Gp � 0.0 Gp � 0.1

Level #. EL DOF Level #. EL DOF

1 686 1806 1 694 1818

2 1270 3048 2 1260 3033

3 1990 4464 3 2024 4515

4 4032 8244 4 4034 8247

5 5972 11676 5 6018 11745

6 10570 19236 6 10800 19581

7 25162 44961 7 25004 44724

8 63371 108996 8 68975 117402

9 117958 190941 9 136230 218349

Gp � 0.2 Gp � 0.3

TABLE 3 Grid convergence tests.

Refinement level CD CL

L1 6.8482 .0356

L2 6.9111 .0619

L3 6.9246 .0706

L4 6.9333 .0720

L5 6.9347 .0731

L6 6.9359 .0728

L7 6.9389 .0726

L8 6.9397 .0721

Frontiers in Physics frontiersin.org03

Faraz et al. 10.3389/fphy.2022.1081130

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1081130


FIGURE 4
Influence on velocity for various gap spacings of a cylinder with n � 0.5 and Re � 20.

FIGURE 5
Influence on pressure for various gap spacings of cylinders with n � 0.5 and Re � 20.
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FIGURE 6
Influence on velocity for various gap spacings of a cylinder with n � 1 and Re � 20.

FIGURE 7
Influence on pressure for various gap spacings of cylinders with n � 1 and Re � 20.
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FIGURE 8
Influence on velocity for various gap spacings of a cylinder with n � 1.5 and Re � 20.

FIGURE 9
Influence on pressure for various gap spacings of cylinders with n � 1.5 and Re � 20.
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4 Numerical approach

At a constant Reynolds number Re = 20, it is well established that
viscous fluid flows are laminar, two-dimensional, and characterized by
symmetrical vortices and that these flows have a relatively constant shear
rate. The numerical technique has been tested to identify the convergency,

accuracy, and consistency of the outputs by evaluating the present study
with the literature for viscous fluids. This was conducted in order to
determine whether or not the results are convergent, accurate, and reliable.

Table 1 shows the comparison between the past literature and current
values for theNewtonian scenario, which is useful for code validation. The
quantities of the drag coefficient for a single cylinder are maintained at a
constant level of CD � 5.5785. Meshing is a crucial stage initial to set the
boundary conditions for simulation because of the influence of
convergence, accuracy, and outcome speed. It is fundamental to have
a maximum number of cells. The term “meshing” refers to the process of
discretizing a boundary with the intention that it enables the creation of
well-shaped pieces. The size of the cell has an enormous impact on how
accurately iterations are performed. Whenever the size of the cell is
reduced, the accuracy rate increases, but this also considerably leads to the
maximum amount of time spent computing. It only aids in the process of
breaking down a physical domain into a small discrete volume in which
sets of equations can be calculated.

The computational coarse level grid for various gap spacings of
obstacles is shown in Figure 2. For higher levels of optimization,
convert one element into four narrow-size elements. The refinement
mechanism is described in Figure 3.

The number of elements and degrees of freedom at various stages
of refinement are shown in Table 2, which was created under this
method of refinement.

Table 2 contains several different depictions of the domain
discretization of a channel that has a couple of cylinders arranged in a
tandem configuration. These representations are facilitated at multiple
levels of refinement. Based on the data that were examined on the degree of
freedom at various Gp � 0.0, Gp � 0.1, Gp � 0.2, and Gp � 0.3, it is
concluded that for the high-refinement levels, the degree of freedom is
192414 at Gp � 0.0, whereas 190551 at Gp � 0.1, also 190941 at Gp �
0.2, and 218349 at Gp � 0.3 with fixed Re � 20. According to Table 2,
when the gap spacing is exceeded, not only does the number of domain
elements but also the number of boundary elements grow from Gp � 0.1
to Gp � 0.3, which is a computed conclusion. The numerical scheme
(FEM) for the numerous approximations of the Navier stokes equation
with the hybrid grid was generated on a very high refinement level and also
criteria of convergence for non-linear iteration, which is already described
in [29–36]. Table 3 provides specifics on a number of different meshing
levels that can occur in a flow pattern that includes a circular cylinder.

FIGURE 10
Horizontal velocity along a vertical line at various places on the
x-axis for different values of n.

TABLE 4 Influence of the drag coefficient of both cylinders against n with various gap spacing.

Gp � 0.0 Gp � 0.1 Gp � 0.2 Gp � 0.3

n C1 C2 C1 C2 C1 C2 C1 C2

0.3 2.148395 -.23253 2.461355 .19132 2.838860 .599018 3.204682 .967313

0.5 3.141227 .072459 3.617459 .668107 4.135402 1.194294 4.602818 1.644271

0.7 4.337779 .438113 5.031590 1.242474 5.718024 1.907164 6.274340 2.422002

0.9 5.788294 .917502 6.787747 1.997172 7.680482 2.830688 8.317617 3.404983

1.0 6.641395 1.223230 7.839994 2.479747 8.849523 3.40825 9.520455 4.006838

1.1 7.602101 1.590200 9.037440 3.056645 10.16833 4.082747 10.86232 4.695231

1.3 9.962328 2.578129 12.00952 4.575488 13.36832 5.775786 14.05652 6.364044

1.5 13.18561 4.051716 15.97544 6.704247 17.48291 7.992949 18.08302 8.473910

1.7 17.60160 6.207376 21.27710 9.584699 22.80293 10.83925 23.25284 11.15001
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5 Results and discussions

(a) Impact on velocity and pressure:

In the present work, the computations of incompressible flow have
been carried out for the various quantities of the dimensionless parameters:
the power law index, n � 0.5, 1, 1.5, thereby covering all the cases for
n< 1, n � 1, and n> 1 while several gapswithfixedReynolds numberRe �
20. Taking into account, the gap spacing ratio in the direction of the flow
has an effect on the development of gapflow,which is theflow that happens
between the two stationary cylinders in combination with a range of gap
ratios. This flow can be affected by changing the gap ratios. Characteristics
of the fluid flow can be determined inside the domain by conducting an
analysis on the velocity profile, pressure field, force components, and the
drag and lift coefficients. Figures 4, 5 reveal the impacts of velocity profile
and pressure around the surface of confined tandem cylinders for the fluid
value of Re and n � 0.5 with the several ratios of gap spacing (Gp),
respectively. There is no pressure on the downstream cylinder atGp � 0.0,
but pressure increases downstream due to increasing the gaps between the
cylinders. Similarly, the flow pattern inside the cylinders increases for all
cases of power law index due to variation of the spacing factor. Figures 6, 7
show the effects of n � 1 fluid with different gap ratios on velocity and
pressure field, while in all cases n, the pressure is steady at the downstream
region, but continuously the steadiness decreases in the downstream region
for increasing the gap ratios of the obstacles.

Figures 8, 9 reveal the impact of n � 1.5 on flow patterns for various
gap levels with fixed lower Reynolds numbers. Both the velocity field and
the pressure field exhibit a considerable flow interaction between the two
cylinders in shear-thinning and shear-thickening flow, according to a
qualitative analysis of the data. In the case of extremely shear-thinning
flow, flow separation did not take place, regardless of the gap spacing
values that were used. In the shear-thickening instance, at the lower values
of the gap ratios, the wake distraction hypothesis can be seen, as shown in
Figures 3–9, when the wake of the upstream cylinder is being stifled as a
result of the downstream barrier being so near to it.

(b) Line graph behavior:

Figures 10A–E demonstrate the executed u-velocity at several power-
law indexes. The maximum flow pattern is taken as Umax � 0.3, and in

the present work also occurs asUmean � 0.2. In detail, at x � 0.0 the fluid
is initially justified at the inlet of the channel is parabolic behavior. At the
center of the cylindersC1 andC2, it can be noticed that the velocity curves
at x � 0.2 and x � 0.6, the velocity profile gain large values due to the
collision of the fluid with cylinders. For x � 0.4, the impact of cylinders
on the fluid reduces. The velocity profile at x � 0.4 is theminimum as the
velocity at the center of the cylinders, while at the downstream region, at
x � 2.2, the fluid seems low affected by the cylinders, and behavior almost
goes to the initial velocity profile.

(c) Impact of drag and lift coefficients.

The influence of the gap ratio between the two tandem circular
cylinders is at several Rein terms of force quantities, such as drag
(CD) and lift (CL) coefficients. Tables 4, 5 reveal the numerous
values of benchmark hydrodynamics quantities like drag and lift
coefficients across the cylinders C1 and C2. It is found that by
increasing both gap ratios and the power-law parameter, both force
coefficients upsurge. In the following statistical data, the drag
coefficient upstream is greater than the downstream for the
fixed Reynolds number (Re � 20), which is an interesting
discussion. Table 4 reveals that the values of the parameter of
the power law and gap ratio are increasing upstream, and the drag
forces over both cylinders are also increasing. Similarly, in Table 5
analysis, the effects of the lift coefficient increase for the increasing
power law index, while they decrease for maximum gap ratios at
both upstream and downstream obstacles. The numerical values of
the lift coefficient for a cylinder C1 are greater than C2 for the
selected Reynolds number. The maximum value of drag and lift
coefficient is 23.25284 and .378040 at upstream; also, for the
downstream cylinder, values are 11.15001 and .119215,
respectively, acquired at (n, Gp) � (1.7, 0.3), where the flow is
fully developed within the gap and the downstream region of
the second cylinder.

6 Conclusion

We have used the GFEM to simulate how the power-law fluid
flows around obstacles. It has been determined in great detail how

TABLE 5 Influence of the lift coefficient of both cylinders against n with various gap spacing.

Gp � 0.0 Gp � 0.1 Gp � 0.2 Gp � 0.3

n C1 C2 C1 C2 C1 C2 C1 C2

0.3 .025571 .008874 -.00762 .011906 .003153 .016973 .003794 .017977

0.5 .051922 .014069 .001657 .022615 .016077 .026787 .012159 .024690

0.7 .088363 .0214 .017863 .035761 .032791 .037726 .019369 .026402

0.9 .143015 .032382 .047741 .054927 .056846 .050756 .037022 .032969

1.0 .181425 .04028 .070730 .068270 .073551 .059099 .048600 .035939

1.1 .230239 .050672 .101146 .084698 .093626 .067930 .062328 .038030

1.3 .367722 .082251 .190430 .125730 .146428 .084085 .103935 .041791

1.5 .565125 .132204 .326787 .170921 .234683 .102181 .194112 .060382

1.7 .803697 .19602 .521362 .214693 .397118 .139750 .378040 .119215
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much of an impact the flow behavior index and gap spacing have on
the drag and lift coefficients of the cylinders. When calculating the
drag and lift coefficients across cylinders, it has been discovered that
the spacing performs a considerable role in the process. An increase in
the gaps causes an increase in the amount of fluid flow that is directed
toward the walls of the channel downstream of the obstacles. When
there is more space between the cylinders, the pressure on the cylinder
that is further downstream will be higher due to stagnation. When
looking at any gap spacing, the correlation between the drag and lift
coefficients is positive for the upstream cylinder, but when looking at
the downstream cylinder, the correlation is negative. When it comes to
tandem cylinders, the drag coefficient of both cylinders stays relatively
the same even when the case involves shear-thinning.
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Nomenclature

u, v velocity component

Uin inlet velocity

Uref reference velocity

_γ shear rate

p hydrodynamic pressure

m viscosity index

n power-law index

Re Reynolds number

D diameter of the obstacle

Lref reference length

#EL number of elements

# DOF number of degrees of freedom

CD drag coefficient

CL lift coefficient
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