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Surface vegetation represents a link between the atmosphere, water, and human
society. The quality of the ecological environment in the upper andmiddle reaches of
the Yellow River (UMRYR) has a direct impact on the downstream basin. However,
only few studies have investigated vegetation changes in the UMRYR. Therefore, we
used the coefficient of variation and linear regression analyses to investigate
spatiotemporal variations in the normalized difference vegetation index (NDVI).
Further, we used the geographical detector model (GDM) to determine the
spatial heterogeneity of the NDVI and its driving factors and then investigated the
factors driving the spatial distribution of the NDVI in different climatic zones and
vegetation types. The results showed that the NDVI in the UMRYR was high during
the study period. The NDVI was distributed in a spatially heterogeneous manner, and
it decreased from the southeast to the northwest. We observed severe degradation in
the southeast, mild degradation in the northwest and the Yellow River source region,
and substantial vegetation recovery in the central basin. Precipitation and vegetation
type drove the spatial distribution of the NDVI. Natural factors had higher influence
than that of anthropogenic factors, but the interactions between the natural and
anthropogenic factors exhibited non-linear and bivariate enhancements. Inter-
annual variations in precipitation were the main natural factor influencing inter-
annual NDVI variations, while precipitation and anthropogenic ecological restoration
projects jointly drove NDVI changes in the UMRYR. This study provides a better
understanding of the current status of the NDVI and mechanisms driving vegetation
restoration in the UMRYR.
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1 Introduction

Vegetation plays a role in water conservation and soil preservation (Berendse et al., 2015).
Global environmental changes are causing alterations in terrestrial vegetation and many regions
of the globe are becoming greener (Zeng et al., 2018). Changes in vegetation are usually influenced
by the surrounding environment, and changes in the vegetation structure affect ecological
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processes by influencing terrestrial atmospheric and water cycles
(Forzieri et al., 2017) and are considered indicators of climate
change (Flantua et al., 2016; Workie and Debella, 2018). Therefore,
long-term regional monitoring of ground cover and studies on the
factors that influence changes in vegetation coverage are critical.
Currently, remote sensing technology is used to monitor global
vegetation coverage. The normalized difference vegetation index
(NDVI) is the most widely used indicator (Rousta et al., 2020) as it
can eliminate the influence of various factors (solar altitude angle,
atmosphere, etc.) on remote sensing images, and it is considered to be
the best indicator of vegetation coverage (Zhou, 2014). The Moderate
Resolution Imaging Spectroradiometer (MODIS) NDVI exhibits higher
spatial resolution and accuracy for vegetation monitoring and has been
widely used to study surface vegetation coverage at different spatial and
temporal scales (Eckert et al., 2015; Zhang et al., 2017).

The Yellow River Basin is an important ecological security barrier
in China, as well as an important area for anthropogenic activity and
economic development, and it has a pivotal strategic position in the
overall development and modernization of the country. Recently, the
vegetation coverage in the Yellow River Basin has become a research
focus (Jiang et al., 2015; Li et al., 2019). The upper and middle reaches
of the Yellow River (UMRYR), particularly in the Loess Plateau area,
experience frequent heavy rainfall and severe soil erosion, resulting in
a riverbed that is higher than the ground surface in the lower reaches
and a fragile ecological environment in the basin. Vegetation coverage
is particularly important for soil and water conservation in regions
with high slopes, loose soil, and heavy rainfall (Woznicki et al., 2020);
therefore, it is critical to monitor vegetation changes in the UMRYR.
Generally, changes in vegetation are considered to be the result of both
natural and anthropogenic factors. However, these factors do not act
independently on vegetation, but instead interact with each other.
Traditional correlation methods can only detect linear relationships,
thereby limiting their accuracy in determining the influence of NDVI
factors. In contrast, the geographical detector model (GDM) proposed
by Wang and Xu (2017) quantitatively detects spatial heterogeneity
using variance. This method is not based on linear assumptions and
can accurately identify interactions between factors; Shrestha and Luo
(2017) believed that the GDM is more effective than Principal
Component Analysis and Geographically Weighted Regression in
determining the influence of explanatory variables. Thus, it is more
suitable for investigating the drivers of spatial distribution of the
NDVI, and it has been used in many studies worldwide (Wang et al.,
2021; Peter et al., 2021; Zheng et al., 2021; Venkatesh et al., 2022).

Few studies of vegetation changes in the UMRYR have been
conducted. Most existing studies have focused on the entire Yellow
River Basin and examined the region-wide NDVI. The large
topographic and climatic differences between the eastern and western
UMRYR lead to very spatially heterogeneous vegetation distribution. This
complex spatial heterogeneity results in a more complex response of the
NDVI to its driving factors, and vegetation types respond differently to
different factors. Therefore, it is important to understand the factors
driving the NDVI of different vegetation types in the region to correctly
understand the drivers of regional vegetation coverage. Moreover,
previous studies of the NDVI in the UMRYR have mainly investigated
natural factors such as climate (Lu et al., 2021), and anthropogenic factors
such as land use (Wang et al., 2019), limiting the evaluation of other
human activities that drive the NDVI. In addition, the spatial resolution of
previous studies was relatively low and did not include data from recent
years. Thus, they do not accurately reflect the current vegetation status.

Therefore, in this study, we selected MODIS NDVI data with a
spatial resolution of 250 m and used the coefficient of variation and
trend analysis to determine spatiotemporal variations in the NDVI in
the UMRYR from 2000 to 2020 at both annual and growing season
scales. We used the GDM to detect the spatial heterogeneity of the
NDVI and its driving factors, and to study the factors driving NDVI in
different climatic zones and vegetation types. The results of this study
can provide a scientific basis for vegetation restoration in the UMRYR
and help promote ecological protection and high-quality development
in the Yellow River Basin.

2 Materials and methods

2.1 Study area

The UMRYR (32°12′–41°50′ N, 95°53′–113°35′ E) (Figure 1)
includes Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia,
Shaanxi, Shanxi, and Henan provinces (autonomous regions) and
has an area of 77.4 × 104 km2, accounting for approximately 97% of the
Yellow River Basin. The terrain in the basin is high in the west and low
in the east, and the elevation difference from west to east occurs in
three steps. The UMRYR is mainly located in the first and second
steps. The first high-altitude step, with an average altitude of more
than 4,000 m, is located in the northeastern Tibetan plateau, which is
the source of the Yellow River. The second step, with an average
altitude of 1,000–2000 m, occurs mainly on the Loess Plateau. The
UMRYRmainly has a continental climate, owing to its large span from
east to west, the topography and climatic characteristics differ between
the east and west and include a southern temperate zone, a middle
temperate zone, and a plateau climatic zone. The three main climate
zones include nine secondary climate zones, and cover arid, semi-arid,
and semi-humid regions. The watershed area contains huge climate
differences for a variety of vegetation types. There are four main
vegetation zones from west to east: the Tibetan Plateau vegetation
zone, the desert zone, the steppe zone, and the deciduous broad-leaved

FIGURE 1
Map of the upper and middle reaches of the Yellow River Basin (I:
Qingnan District; II: Qilian–Qinghai Lake District; III: Bomi–Chuanxi
District; IV: Middle Temperate Zone Menggan District; V: Middle
Temperate Zone Mengzhong District; VI: Middle Temperate Zone
Mengdong District; VII: South Temperate Zone Jin–Shaanxi–Gan
District; VIII: South Temperate ZoneWeihe District; IX: South Temperate
Zone Luhuai District).
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forest zone. The watershed also experiences serious soil erosion,
contains fragile ecosystems (Shi and Shao, 2000), and has spatially
heterogeneous natural and socioeconomic conditions.

2.2 Data sources and processing

2.2.1 MODIS normalized difference vegetation index
In this study, MOD13Q1 NDVI data were used to analyze

variations in the NDVI within the UMRYR. The MOD13Q1 NDVI
data had a temporal resolution of 16 days and a spatial resolution of
250 m and were obtained from the NASA website (https://ladsweb.
nascom.nasa.gov/). The maximum value composite (Holben, 1986)
was used to produce monthly and annual NDVI data for 2000–2020.
This method eliminated the effects of clouds, atmosphere, and solar
altitude angle. April to October was selected as the vegetation growing
season in the UMRYR (Ma et al., 2019), and the NDVI values from this
period were averaged to produce the NDVI for each growing season.
The NDVI values were divided equally into five vegetation coverage
classes: low (≤ 0.2), medium-low (0.2–0.4), medium (0.4–0.6),
medium-high (0.6–0.8), and high (> 0.8), to determine the spatial
and temporal distributions of the NDVI.

2.2.2 Driving factors
Based on previous studies, we selected 18 factors that are

representative, easily quantifiable, and accessible, as independent
variables (Table 1). Topographic factors determine the

redistribution of solar radiation and how much sunlight is
received locally by the land surface, directly producing local
climatic differences and affecting the spatial distribution of
vegetation (Anderson et al., 2020). In this study, elevation,
slope, and aspect were obtained from digital elevation model
(DEM) data with a 30 m spatial resolution. Temperature is a
limiting factor for vegetation growth, including mean,
minimum, and maximum temperature (Buras et al., 2020).
Precipitation is characterized by irregularity and seasonal
variability, which is a particularly important factor in the
distribution of the NDVI (Dagnachew et al., 2020). The number
of hours of sunshine also affects vegetation growth (Saeed et al.,
2017). The climate data were collected at 114 meteorological
stations in and around the UMRYR (Figure 1) from 2000 to
2020 and interpolated using the inverse distance weighting
method. Soil, vegetation, and landform types are important
environmental factors that affect vegetation distribution (Peng
et al., 2019). The anthropogenic factors selected for this study
are indicators that have been shown by previous studies to quantify
socioeconomic factors. Land use type is considered to be the most
important anthropogenic factor influencing the NDVI (Bégué
et al., 2011). Data related to roads, residences, and rivers were
calculated using the Euclidean distance in ArcGIS (Liu et al., 2021).
Data on GDP and population density, often used as indicators of
the degree of human activity (Qin et al., 2022), were obtained by
interpolating the statistical yearbooks of prefecture-level cities. The
night-time light index is a quantitative indicator that can reflect the

TABLE 1 Detection factors.

Type Factors Index Unit Source

Natural factors X1 Slope ° Geospatial Data Cloud of the Chinese Academy of Sciences (http://www.gscloud.cn/)

X2 Aspect °

X3 Elevation m

X4 Soil type — Resource and Environmental Sciences Data Center of the Chinese Academy of Sciences (http://
www.resdc.cn/)

X5 Vegetation type —

X6 Landform type —

X7 Distance to the river km OpenStreetMap (https://download.geofabrik.de/asia/china.html)

X8 Precipitation mm China Meteorological Data Network (http://data.cma.cn)

X9 Mean temperature °C

X10 Sunshine hours h

X11 Minimum
temperature

°C

X12 Maximum
temperature

°C

Anthropogenic
factors

X13 Distance to the road km OpenStreetMap (https://download.geofabrik.de/asia/china.html)

X14 Distance to a residence km

X15 Population density People km−2 Resource and Environmental Sciences Data Center of the Chinese Academy of Sciences (http://
www.resdc.cn/)

X16 GDP 10,000 yuan km−2

X17 Land use type —

X18 Night-time light index — Harvard Dataverse platform (https://doi.org/10.7910/DVN/YGIVCD)
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level of economic development, e.g., urbanization, and can
effectively detect human activity. This index has been used to
study the NDVI (Yang et al., 2019).

The independent variables in the GDM should be discrete
quantities; thus, the driving factors must be classified. Slope was
classified into 7 categories according to the Technical Regulations
for Land Use Status Survey; aspect was classified into 9 categories
according to slope orientation; soil type was classified into
16 categories according to the traditional “Soil Occurrence
Classification” system; vegetation type was classified into
11 categories according to the 1:1,000,000 Chinese Vegetation
Atlas; landform type was classified into 6 categories according to
the 1:1,000,000 Landform Atlas of the People’s Republic of China; and
land use type was classified into 8 categories according to the 1:
1,000,000 Land Use Map of China. All other factors were classified
according to the natural breakpoint method, which avoids artificially
introduced interference, maximizes the difference between the classes
(Chen et al., 2013), and is widely used to classify data for the GDM
(Duan and Tan, 2020; Liu et al., 2021). The distances to the river and to
the road were classified into 8 categories, and the remaining factors
were all classified into 9 categories.

The above data were extracted according to the vector boundary of
the UMRYR and were re-sampled to maintain the 250 m scale of the
NDVI data. Using ArcGIS to create a fishnet tool, a 5 km × 5 km grid
with 30,325 sampling points was generated for the entire region to
spatially extract the attribute values.

2.3 Methods

2.3.1 Coefficient of variation
The coefficient of variation (CV) can reflect the dispersion of the

NDVI distribution and any fluctuations in the time series (Alavi and
King, 2020). Larger CV values indicate a more heterogeneous
vegetation coverage distribution, larger fluctuations in the time
series data, and an unstable time series. Conversely, smaller CV
values indicate a more concentrated vegetation coverage
distribution and a more stable time series.

2.3.2 Linear regression analysis
Linear regression analysis was used to analyze the trends of each

image element in the images (Measho et al., 2019), which was then
used to analyze the trends of the NDVI and climatic elements in the
UMRYR from 2000 to 2020.

2.3.3 Pearson correlation analysis
Pearson correlation analysis was used to investigate the correlation

between the factors and dynamic NDVI changes (Kalisa et al., 2019).

2.3.4 Geographical detector model
The spatial distribution of geographic phenomena are

heterogeneous, and the spatial distribution of the independent and
dependent variables are similar when the independent variable has a
significant influence on the dependent variable. The non-linear
influences and interactions between the driving factors make it
challenging to quantify the driving mechanisms (Piao et al., 2020).
The GDM is a tool for detecting the spatial heterogeneities of
geographic phenomena (Wang and Xu, 2017), and it uses spatial
heterogeneity to identify its driving factors. In this study, we used the

GDM to analyze the factors driving the spatial heterogeneity of
vegetation distribution in the UMRYR.

(1) Factor detector

The factor detector can quantitatively detect the explanatory
power of each factor on the spatial distribution of the NDVI, as
expressed by the q statistic. The q value has a distinct physical
meaning, indicating that factor X explains q × 100% of the spatial
distribution of the NDVI. The q value ranges from 0 to 1 and a larger q
value indicates a greater explanatory power of factor X on the NDVI
(Wang et al., 2016).

(2) Interaction detector

Interactions also occur between geographic phenomena. For
example, elevation affects temperature and precipitation changes.
The interaction detector can identify the influence of interactions
between different drivers on the dependent variable, as well as any
relationships between the factors, which is an advantage of the GDM
(Wang and Xu, 2017).

(3) Risk detector

A risk detector was used to determine whether there was a
difference in the mean values of the dependent variables between
two sub-regions (Wang, 2010). The sub-region with the larger NDVI
value had the higher vegetation coverage.

(4) Ecological detector

The ecological detector was used to compare whether there was a
significant difference between the effects of two factors on the spatial
distribution of the NDVI (Wang, 2010).

3 Results

3.1 Spatial variations in the normalized
difference vegetation index

The overall annual vegetation coverage in the UMRYR was high,
with an annual average NDVI of 0.576 from 2000 to 2020. The middle
reaches had a higher vegetation coverage than the upper reaches did.
The NDVI values tended to be higher in the southeastern part of the
UMRYR and lower in the northwestern part. High NDVI values were
concentrated in the southeastern Yellow River source region, the
Qilian Mountains in the western part of the basin, the Hetao Plain
in the north, the Weihe Basin in Guanzhong, and the Lvliang
Mountains in the east. The regions with low NDVI values were
located in Inner Mongolia, northern Shaanxi, central Gansu, and
central Ningxia provinces (Figure 2A). The NDVI was generally lower
during the growing season than it was throughout the entire year. The
average growing season NDVI from 2000 to 2020 was .426, and its
distribution was consistent with that of the annual NDVI (Figure 2B).

The total area of the high and medium-high vegetation coverage
regions (NDVI > 0.6) in the UMRYR increased from 36% to 62% from
2000 to 2020. The areas of both the high and medium-high vegetation
coverage regions also increased substantially, while the total area of
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FIGURE 2
Spatial distributions of the (A) annual and (B) growing season NDVI.

FIGURE 3
The (A) annual and (B) growing season NDVI values and areas of regions within each class. I: low vegetation coverage (0.0 <NDVI ≤0.2), II: medium-low
vegetation coverage (0.2 < NDVI ≤.4), III: medium vegetation coverage (0.4 < NDVI ≤ 0.6), IV: medium-high vegetation coverage (0.6 < NDVI ≤0.8), V: high
vegetation coverage (0.8 < NDVI ≤1.0).
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low and medium-low vegetation coverage regions (NDVI ≤ 0.4)
decreased from 41% to 19% and the area of the low vegetation
coverage region decreased substantially. Regions with low
vegetation coverage transformed into medium-low vegetation
coverage regions, medium-low vegetation coverage regions
transformed into medium vegetation coverage regions, and so on.
Thus, most of the vegetation coverage regions in each class shifted to a
higher class, indicating that the vegetation coverage in the watershed
improved (Figure 3A). Low, medium-low, and medium vegetation
coverage (NDVI ≤ 0.6) regions dominated the watershed during the
growing season. Although the total area of high and medium-high
vegetation coverage regions increased over 21 years, this still only
accounted for 27% of the total NDVI (Figure 3B).

The annual NDVI fluctuations were small during the past 21 years
and the spatial coefficient of variation was relatively small. The
coefficient of variation was less than 0.2 in most parts of the
UMRYR, and the areas with the most variation were located in the
steppe and desert regions of the basin (Figure 4).

The degradation and improvements in vegetation coverage from
2000 to 2020 were clear. In the UMRYR, 43% of the areas with

increased vegetation coverage were located in southeastern Gansu,
southern Ningxia, and northern Shaanxi provinces in the central part
of the basin, while 31% of the areas with reduced vegetation coverage,
of which 27% was only slightly reduced, were concentrated in the
Yellow River source region. The most serious vegetation degradation
was observed in the southeastern part of the basin in Baoji, Xi’an,
Weinan, Yuncheng, and other areas with a high degree of economic
development (Figure 5).

3.2 Temporal variations in the normalized
difference vegetation index

The growing season and annual NDVI changes from 2000 to
2020 both trended upward. The mean annual NDVI value increased
from 0.488 to 0.631 (a rate of 0.048 (10 a)−1) and its minimum and
maximum values occurred in 2000 and 2018 (0.488 and 0.636,
respectively) (Figure 6A). The mean growing season NDVI value
increased from 0.346 to 0.471 during the study period (a rate of 0.044
(10 a)−1) and its maximum and minimum values occurred in 2000 and
2018 (0.346 and 0.472, respectively) (Figure 6B). The annual and
growing season NDVI trends and rates of change were approximately
the same, even though the growing season NDVI was substantially
lower than the annual NDVI. The significance test indicated that the
trends in both the annual and growing season NDVI variations were
significant (p < 0.05). The above results indicated that vegetation
coverage in the UMRYR improved significantly from 2000 to 2020.

3.3 Factors driving spatial heterogeneity in the
normalized difference vegetation index

3.3.1 Factor detection
The magnitude of influence (q-value) of each factor on the spatial

distribution of the NDVI in the UMRYR was obtained using the factor
detector (Figure 7A). The influence of each driver on the NDVI was
highly significant (p < 0.01). By comparing the q-values of the factors,
we found that precipitation was the main factor driving the spatial
distribution of the NDVI in the UMRYR, with an explanatory power
of 51% for annual precipitation and 56% for growing season
precipitation, both of which were much larger than the other

FIGURE 4
Spatial distribution of the coefficient of variation.

FIGURE 5
Spatial distribution of trends in the NDVI.

FIGURE 6
Temporal trends in the NDVI from 2000 to 2020. (A) Annual; (B)
Growing season.
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factors. Precipitation was followed by vegetation type, which had an
explanatory power of more than 40% for both annual and growing
season NDVI distributions. Other factors had less than 30%
explanatory power on an annual scale. During the growing season,
the influence of minimum temperature was 34% and the influence of
soil type was 31%. The influence of climatic factors (such as mean
temperature, sunshine hours, and maximum temperature) decreased
during the growing season, and the influence of precipitation and
minimum temperature was greater on the growing season than on the
annual NDVI distribution. The magnitude of the influence of each
factor varied on different time scales. The overall influence of
anthropogenic factors was smaller than that of natural factors, and
among the anthropogenic factors, the influence of land use type was
the largest at more than 20%.

The data revealed substantial differences between basins in the
UMRYR. In the upper reaches of the Yellow River (URYR), elevation
and precipitation were the main factors that influenced the NDVI
spatial distribution. During the growing season, the influence of
elevation and precipitation exceeded 50%. The influence of
temperature factors (mean, maximum, and minimum temperatures)
during the growing season was larger than that of the annual NDVI
distribution (>45%), and the influences of the other factors were
essentially the same (Figure 7B). In contrast, elevation had very little
influence on the middle reaches of the Yellow River (MRYR), and
precipitation was the main influencing factor (Figure 7C).

The q-values of the factors in 2000, 2005, 2010, 2015, and
2020 were investigated separately and their inter-annual changes
were also analyzed. The influences of all factors changed very little,
and the rankings of the influences did not change, indicating that the
driving factors affecting the spatial distribution of the NDVI from
2000 to 2020 did not change substantially.

3.3.2 Ecological detection
Ecological detection indicated that there were no significant differences

between aspect and distance to the road and night-time light, elevation and
landform type and distance to the river, landform type and distance to the
river, minimum and mean temperatures and sunshine hours, distance to
the road andnight-time light, or distance to a residence andGDP. The other
aspects were significantly different (p < 0.05) (Figure 8).

3.3.3 Interaction detection
The interaction detection results indicated that the explanatory

power of the interactions between any two factors on the NDVI was
larger than that of a single factor. In addition, the interactions
between any two factors underwent non-linear or bivariate
enhancement. Most of the study area experienced bivariate
enhancement (Figure 8). The interactions between annual
precipitation and other factors exceeded 50%, indicating that
annual precipitation was the dominant factor driving the spatial
distribution of the NDVI in the UMRYR. The interactions between

FIGURE 7
Detection factor q values [(A) UMRYR; (B) URYR; (C) MRYR].
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FIGURE 8
Interaction detection and ecological detection results. [Note: “*” and “**” indicate non-linear and bivariate enhancements of two factors, respectively;
the red boxes indicate the absence of significant differences between the two factors (p < 0.05)].

TABLE 2 Range or type of detection factor with better vegetation coverage.

Factor Range or type NDVI

Slope (°) >25 0.734, 0.743, 0.751

Aspect East, Northwest, West 0.646, 0.640, 0.639

Elevation (m) 3,109–3,668 0.794

Soil type Leached soil 0.890

Vegetation type Broad-leaved forest 0.841

Landform type Large and Medium undulating mountains 0.770, 0.767

Distance to the river (km) 0.00–9.64 0.666

Annual precipitation (mm) 881.69–1048.01 0.826

Annual mean temperature (°C) 11.48–13.09 0.792

Sunshine hours 1565.00–2191.01 0.766, 0.770

Minimum temperature 6.58–8.59 0.793

Maximum temperature 19.04–20.74 0.764

Distance to the road (km) 50.46–58.00 0.694

Distance to a residence (km) 0.00–6.10, 56.71–67.48 0.667, 0.664

Population density (people km-2) 392.37–565.15 0.766

GDP (10,000 yuan km-2) 2996.68–12103.92 0.736, 0.741, 0.730

Land use type Forest land 0.793

Night-time light index 0 0.635
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annual precipitation and vegetation type had the highest q value
(61%), while the interactions between vegetation type and the other
factors all exceeded 40%, indicating that vegetation type also had a
major influence on the NDVI. Some factors that had little influence
on the NDVI when examined alone, substantially increased their
influence on the NDVI when interacting with other factors. This
indicated that some factors that had little direct influence on
vegetation may influence vegetation growth under the combined
effect of multiple factors.

3.3.4 Risk detection
The range and type of detection factors with better vegetation

coverage are listed in Table 2. The implementation of the Grain to
Green Program has transformed land with a slope greater than 25° into
forests, thereby increasing vegetation coverage and effectively reducing
regional soil erosion. These land areas were also less disturbed by human
activity; thus, the NDVI values of regions in the UMRYR with slopes
greater than 25° were high. The eastern, northwestern, and western slopes
were all suitable for vegetation growth. The vegetation on these aspects
was influenced by precipitation and was mainly composed of cultivated
varieties. Compared to sunny slopes, shady slopes generally have lusher
vegetation, less evaporation and more adequate water conditions, higher
soil fertility, and better vegetation growth. The NDVI value varied with
soil, vegetation, and landform types. The vegetation types in the regions
with leached soil were mainly coniferous and broad-leaved forests, which
contain sufficient soil moisture. A river can provide water for the
vegetation in the surrounding area, which is conducive to its growth.
Thus, the closer to the river, the higher the NDVI value. Additionally, the
higher the annual precipitation, the higher the NDVI value, which
reached 0.826 in the region with the highest precipitation. However,
the NDVI value did not change substantially with an increase in annual
mean temperature. The longer the sunshine hours, the smaller the NDVI

value. Although the proper amount of light promotes photosynthesis,
excessive solar radiation naturally decreases the NDVI. This is due to the
decrease inmoisture content caused by increased evapotranspiration. The
NDVI trends for minimum and maximum temperature changes were
consistent with that of the annual average temperature, indicating that
temperature had little influence on the NDVI distribution throughout the
year, yet played an important role during the growing season. The NDVI
initially decreased, then increased with the distances to the road and to a
residence. It reached a maximum in regions farthest from the road,
indicating that road construction had a major influence on vegetation.
The NDVI also reached maximums in regions with the smallest and
largest distances to a residence. The regions farthest from a residence were
less disturbed by human activity. The change trend of population density
and the GDP was the same as above, indicating that human activity has
not yet caused major disturbances to vegetation and that vegetation
growth was better within a certain range. However, above a certain
population density, excessive production activities may cause damage to
vegetation growth. The NDVI was also influenced by changes in land use
type, and vegetation coverage was the highest in forested land. Smaller
night-time light intensity values yielded higher NDVI values. This also
indicated that greater human activity disturbs vegetation more.

3.4 Factors driving inter-annual change in the
normalized difference vegetation index

To further investigate the relationships between climatic factors
and changes in the NDVI, the correlations between temperature,
precipitation, and the NDVI were determined (Figure 9). The
annual precipitation and annual mean temperature increased at a
rate of 4.940 mm (10 a)−1 and 0.243°C (10 a)−1, respectively. The
correlation between the NDVI and temperature was 0.261, which

FIGURE 9
Temporal trends of annual mean temperature (A), annual precipitation (B), and NDVI.
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explained 6.8% of the NDVI changes. The correlation between the
NDVI and precipitation reached 0.700, with a 0.05 significance level,
which explained 49% of the variations in the NDVI (p < 0.05). The
correlations of the other climatic factors were all smaller. The NDVI
and precipitation time series displayed the best consistency, and
annual precipitation was both the main factor driving the spatial
variability of vegetation and the main climatic factor driving the

variations in the NDVI. The spatial distribution of annual
precipitation and annual mean temperature changes are shown in
Figures 10B, E. According to the spatial distribution of the correlations
(Figures 10C, F), the changes in the NDVI were positively correlated
with precipitation in Ningxia, Gansu, Inner Mongolia, and northern
Shaanxi provinces, and with temperature in areas such as the Yellow
River source region and the Qilian Mountains.

FIGURE 10
(A) Precipitation in 2020 (B) Precipitation trends (C) Correlation between the NDVI and annual precipitation (D) Mean temperature in 2020 (E) Annual
mean temperature trends (F) Correlation between the NDVI and annual mean temperature.

FIGURE 11
Spatial distributions of vegetation types in the UMRYR.
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4 Discussion

In response to the effects of climate change and human activity,
global vegetation greening programs have continued (Zhu et al., 2016).
China is one of the countries that contributes the most to global
vegetation greening (Luo et al., 2020), and the upper and middle
reaches of the Yangtze and Yellow River basins exhibit the best
vegetation recovery in China (Zhang and Ye, 2020). Major
ecological protection and restoration projects implemented in the
upper reaches of the Yellow River have curbed the trend of ecological
degradation, restored important ecosystems, and strengthened the
water-catching capacity through natural restoration and increased
precipitation. The middle reaches have enhanced soil and water
conservation through artificial ecological protection measures,
including by returning farmland to forests and by planting trees
according to local conditions (Wang et al., 2021). Effective
methods of vegetation restoration in the Yellow River Basin can,
therefore, be used as a reference for arid and semi-arid regions.

4.1 Spatial distribution of the normalized
difference vegetation index

The NDVI in the UMRYR decreased approximately from a
southeast to northwest direction, which is in alignment with the
spatial distribution patterns of precipitation and vegetation types
(Figure 10A; Figure 11). This also indicates the importance of the
effect of precipitation and vegetation type on the spatial distribution of
the NDVI. Desert and steppe regions are mainly distributed in the
northwest, where the temperature is high and the precipitation is the
lowest in the UMRYR. High temperatures accelerate evaporation,
intensify drought, and reduce soil moisture (Peng et al., 2013), which is
not conducive to vegetation growth; thus, the vegetation coverage is
low. In contrast, the south and southeastern parts of the UMRYR had
more favorable water and heat conditions, a prevalence of cultivated
vegetation, and high vegetation coverage. Miao et al. (2012) found that
the northwestern part of the UMRYR is mainly affected by wind
erosion and the vegetation coverage is the lowest, while the
northwestern part of the Yellow River source region is affected by
freeze-thaw action and has low NDVI values. The region subject to
water erosion was the largest and had the best vegetation coverage,

which is consistent with the spatial distribution pattern of vegetation
coverage obtained in this study.

4.2 Analysis of drivers of spatial heterogeneity
in the normalized difference vegetation index

The spatial distribution of vegetation in the UMRYR is mainly
influenced by precipitation, which is consistent with the findings of
previous studies (Sun et al., 2002; Lu et al., 2021), and most regions
in the study area are arid or semi-arid. Some studies have found
that the NDVI in arid areas is highly correlated with precipitation
(Djebou et al., 2015), which indicates that the results of this study
are reliable. Based on the factor detection results, vegetation type
clearly had a substantial influence on the spatial distribution of
vegetation in the study area. Based on the analysis of spatial
distribution maps (Figure 11), the spatial distribution of the
NDVI was also aligned with the spatial distribution of
vegetation types. The results of this study also indicate that
different vegetation types respond differently to precipitation
(Djebou et al., 2015). Therefore, we classified the climatic zones
and vegetation types for further discussion.

According to the climatic zone divisions established by the China
Meteorological Administration, the UMRYR contains nine zones
(Figure 1). The climatic zones were divided according to moisture
and heat, and the spatial distributions of the NDVI and moisture
conditions in the basin were more similar than those of the NDVI and
temperature. High NDVI values and high vegetation coverage were
located in the humid and semi-humid climatic zones, while generally
low NDVI values were located in the arid and semi-arid zones. In
general, the climatic conditions in the southern temperate zone were
relatively favorable, the vegetation was mostly cultivated vegetation,
and the vegetation coverage was influenced by both positive and
negative human activities. The middle temperate zone was more arid
and water-scarce, and its vegetation was influenced by precipitation
and soil moisture. The plateau climate zone had a higher altitude with
relatively little human interference, and the spatial distribution of
vegetation was influenced by topography, precipitation, and other
natural conditions (Table 3).

The NDVI values increased for all vegetation types, with deserts,
grasslands, and steppes exhibiting the largest increases. The NDVI of

TABLE 3 Main influencing factors of the NDVI in different climatic zones.

Climatic zones Influencing factors q value

Southern temperate zone Jin-Shaanxi-Gan Landform type 0.287

Weihe Land use type 0.311

Luhuai Night-time light index 0.300

Middle temperate zone Mengdong Landform type 0.200

Mengzhong Annual precipitation 0.318

Menggan Soil type 0.464

Plateau climate zone Bomi-Chuanxi Elevation 0.185

Qilian-Qinghai Lake Vegetation type 0.271

Qingnan Annual precipitation 0.398
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coniferous forest vegetation was mainly influenced by soil type, and
the areas with leached and hydromorphic soils had high NDVI values
due to their sufficient soil moisture and high natural fertility, both of
which are suitable for coniferous forest growth. Broad-leaved forests
were mainly located in the eastern and southern parts of the UMRYR,
as well as in the Lvliang and Qinling Mountains and the North Luohe,
Yanhe, and Weihe basins. Broad-leaved forests mainly grow in areas
with abundant rainfall and sufficient sunshine, and they have specific
precipitation and light requirements. Due to the arid climate, the
scrubland area was very small and the influence of precipitation was
evident in the presence of scrub in areas with good local moisture. The
desert was located in the northwestern part of the watershed,
containing low-lying areas with very few cold-tolerant, drought-
resistant, and saline-tolerant plants. The desert was surrounded by
steppes, which cover a large area of the watershed and experience low
precipitation and high evaporation. Thus, the vegetation coverage in
the desert and steppe regions was low due to the influence of
precipitation. The CV results also indicated that the fluctuations of
the NDVI in the steppe and desert regions during the last 21 years were
large, the stability of the steppe and desert ecosystems was poor, and
vegetation was easily changed by external environmental influences.
Some studies have shown that steppes respond strongly to
precipitation, followed by deserts in arid climates (Xu et al., 2018).
The western region of the UMRYR belongs to the Tibetan Plateau
vegetation zone, which has a high altitude, and climate and vegetation
conditions that differ from those in the eastern region. The vast
majority of the steppes were alpine meadows and alpine steppes,
and the NDVI was influenced by elevation. Swamp and alpine
vegetation were mainly distributed in a very small area of the
Yellow River source region, whereas the largest area of cultivated
vegetation was in the basin located in the middle reaches and was
influenced by precipitation.

The watersheds comprising the upper reaches of the Yellow River
are generally located at high altitudes. Altitude has a large influence on
temperature and moisture, which may affect vegetation growth. The
climate is also relatively cold and dry. Temperature has a very strong
influence on vegetation growth during the growing season and higher
temperatures can extend the length of the growing season, which is
beneficial to vegetation growth (Wang et al., 2019). The middle
reaches of the Yellow River are located on the Loess Plateau, where
the climate is relatively dry and the precipitation has a strong
influence. In general, the NDVI of the UMRYR was mainly
influenced by natural factors, particularly climatic factors, and less
influenced by human activity. However, although natural factors still
dominated throughout the year and during the growing season, their
magnitude of influence decreased and the influence of anthropogenic
factors continued to increase from the upper to the middle reaches.
Thus, the middle reaches were more disturbed by human activity than
the upper reaches were.

4.3 Analysis of drivers of spatiotemporal
change in the normalized difference
vegetation index

The NDVI in the UMRYR increased from 2000 to 2020, which is
consistent with the findings of previous studies (Wang et al., 2019; Lu
et al., 2021). We determined that the inter-annual variations in the
NDVI were influenced more by precipitation than they were by

temperature, which is consistent with the findings of Zhang et al.
(2021). Water is the main driver of biological processes in arid and
semi-arid regions (Xu and Wang, 2016). The climate in the basin has
become warmer and wetter over time, and NDVI values have
increased in regions with increased precipitation. Serious decreases
in the NDVI have also occurred in Baoji, Xi’an, Weinan, and
Yuncheng in the southeastern part of the basin due to decreased
precipitation and because these regions have higher degrees of
economic development and, therefore, more anthropogenic
disturbances. Since human activity influences the effect of
precipitation on the NDVI (Sun et al., 2002), this scenario has
produced a negative impact on the NDVI in these regions.

To support ecological restoration and to prevent ecological
degradation, China established the Chinese National Nature
Reserves (NNR), areas for the Three North Shelter Forest Program
(TNSFP), and areas for the Natural Forest Protection Program
(NFPP), in addition to other key ecological restoration projects (Lv
et al., 2011). Of these projects, the most effectively implemented one
was the NFPP in the upper and middle reaches of the Yellow River (Lv
et al., 2015). The country initiated the Grain to Green Program
(GTGP) in the upper and middle reaches of the Yellow and
Yangtze River basins in 1999 to return farmland to forests and
plant trees, with the goal of controlling soil erosion and improving
the quality of the ecological environment (Song et al., 2014). The
vegetation in the Yellow River Basin has recovered substantially and
soil erosion has improved since the GTGP was implemented (Wu
et al., 2019). As established herein, the upper reaches were mainly
affected by natural factors, whereas the middle reaches were mainly
affected by human activity. The forest construction projects in the
middle reaches of the Yellow River have restored the vegetation in the
region, and the ecological protection project has achieved good results
(Jiang et al., 2021). The vegetation recovery in the middle reaches was
better than that in the upper reaches, particularly in northern Shaanxi
(Nie et al., 2021a; 2021b). The purpose of the ecological engineering
projects in the Yellow River Basin was to prevent soil erosion and to
improve vegetation coverage by enhancing precipitation and planting
trees (Lu et al., 2021). The trend of the NDVI changes in the UMRYR
has been dominated by very slow growth since the implementation of
reforestation and ecological restoration projects in 1999, and the
overall spatial patterns of vegetation coverage have improved.
Precipitation is the main natural factor affecting vegetation
changes, and changes in precipitation affect vegetation coverage in
a subtle way. In addition, the role of anthropogenic ecological
restoration projects was larger than the role of climatic factors after
2000. Human activity has both positive and negative effects on
changes in vegetation coverage. The conversion of farmland to
forests and grasslands promoted an increase in the NDVI, while
surges in regional urbanization and industrialization, overgrazing,
and deforestation led to a decrease in the NDVI. However, the
positive effects were larger than the negative effects in the
UMRYR, and the overall vegetation coverage increased due to the
effective implementation of several ecological projects. Therefore, we
assert that natural factors and human activity jointly drove changes in
the NDVI, that precipitation was the main natural factor affecting the
NDVI changes, and that ecological restoration projects played a
driving role in the NDVI changes. These findings are similar to
those of Wohlfart et al. (2016) and Li et al. (2017), while Liu et al.
(2021) argued that climatic factors were more influential than human
factors, mainly because the time scales studied differed and because

Frontiers in Environmental Science frontiersin.org12

Gao et al. 10.3389/fenvs.2022.1072430

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1072430


climate is more sensitive to long-term NDVI. However, the study
period used herein began in 2,000, and the benefits of ecological
engineering projects appeared after 2,000, thereby indicating that the
influence of anthropogenic factors on the NDVI changes increased
gradually over time.

4.4 Implications and limitations

This study was the first to investigate the drivers of the spatial
distribution of the NDVI in the UMRYR using the GDM, which can
effectively detect the spatial heterogeneity of vegetation and
interactions between factors (Peng et al., 2019), and can analyze
the changes and factors driving NDVI in different vegetation types.
In this study, we selected MOD13Q1 data with a high (250 m) spatial
resolution, which were more accurate compared with data used in
previous studies. However, the time series was limited; we only
investigated the NDVI changes from 2000 to 2020, without
making any comparisons with the NDVI values prior to the
implementation of ecological projects in 2000. Quantifiable
anthropogenic indicators are difficult to obtain, and quantitative
studies of anthropogenic factors affecting changes in the NDVI could
be more in-depth. The method and criteria for classifying the
independent variables vary, which may lead to differences in the
study results. To provide more effective suggestions for future
vegetation restoration and sustainable development in the
UMRYR, further research regarding the sustainability of
vegetation changes is required.

5 Conclusion

In this study, MODIS NDVI data with a 250 m spatial
resolution were used to analyze the spatiotemporal variations in
the NDVI within the UMRYR from 2000 to 2020 using coefficients
of variation and trend analysis. We also used the GDM to detect the
spatial heterogeneity, driving factors, interactions between factors,
and suitability of the NDVI. We found that the vegetation coverage
in the UMRYR was high. The NDVI distribution was spatially
heterogeneous, with the NDVI decreasing from southeast to
northwest, and the NDVI in the central basin higher than that
in the upper basin. The inter-annual variations in the NDVI were
less volatile, and the trends of the growing season and annual NDVI
values increased significantly from 2000 to 2020. In the
southeastern part of the basin, the NDVI of the economically
developed cities was severely degraded, while the NDVI of the
northwestern part of the basin and the Yellow River source region
was slightly degraded. In contrast, vegetation in the central part of
the basin was restored. Precipitation and vegetation type were the
main drivers of the spatial distribution of the NDVI in the UMRYR.
The upper reaches were mainly influenced by elevation (48%). The
middle reaches were mainly influenced by precipitation (40%). The
influence of anthropogenic factors was much larger in the middle
reaches than it was in the upper reaches, and the influence of
natural factors throughout the basin was larger than that of

anthropogenic factors. The factors influencing the NDVI varied
by climatic zone and vegetation type. Inter-annual variations in
precipitation were the main natural factor affecting inter-annual
variations in the NDVI, and vegetation was effectively restored by
the implementation of ecological restoration projects. This study
provides a scientific basis for the future allocation of natural and
human resources in the upper and middle reaches of the Yellow
River. It also provided a reference for vegetation management in
arid and semi-arid river basins at home and abroad. In the future,
we will improve the existing classification methods and further
investigate the sustainability of the NDVI in the upper and middle
reaches of the Yellow River.
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