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Editorial on the Research Topic

Community series in antimicrobial peptides: Molecular design, structure

function relationship and biosynthesis optimization

The continuous rise in antimicrobial resistance during the last decades has significantly
contributed to the R&D of alternatives such as antimicrobial peptides (AMPs). In the first
volume of this topic, we proposed a combinatorial approach involving AMPs, antimicrobials
and vaccines, which would be instrumental for the prevention and treatment of human and
animal diseases within the One Health framework (Figure 1) (Wang et al., 2018, 2019; Cardoso
et al., 2019a; Yang et al., 2019; Ma et al., 2021; Wu et al., 2021; Zheng et al., 2021; Hao et al.,
2022). Compared to conventional antimicrobials, AMPs possess certain advantages such as high
penetration and internalization, in some cases decreased likelihood of resistance emergence
among bacterial pathogens, and lower probability of accumulation in tissues (Wang et al., 2019,
2022; Aminov, 2022). Selective inhibition of bacterial pathogens without causing significant
cytotoxic effects, is not only an essential requirement but also a critical challenge for the R&D
of AMPs. The charge, special amino acid (aa) residues, hydrophobicity/hydrophilicity ratio and
secondary structure directly affect the antibacterial activity, stability and cytotoxicity of AMPs.
Thus, the discovery of new AMPs by natural screening, database mining and machine learning,
in addition to the rational structural design of these agents could greatly contribute to translating
them from lab to clinic. These exciting new developments are highlighted in 21 papers published
in the second volume of the community series of Research Topics devoted to AMPs.
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Discovery of natural AMPs

AMPs are short natural molecules, which are encountered
in the majority of living organisms and serve as a first line of
defense. According to the Antimicrobial Peptide Database (APD,
https://aps.unmc.edu/), AMPs have been discovered from six life
kingdoms: bacteria, archaea, protists, fungi, plants, and animals.
They are mostly of animal origin, with 74% of known natural
AMPs isolated from this source (Wang et al., 2016; Wang, 2022).
AMPs in animals serve as host defense peptides to prevent
pathogen invasion. Liu M. et al. established the coding sequences
(CDS) and deduced the full-length amino acid sequences of novel
hepcidin peptides from Antarctic Notothenioid Fish. The mature
hepcidin peptides four disulphide bonds, differing from the typical
defensins (α, β, and 2) with three such bonds. This AMP was
successfully expressed in Escherichia coli and displayed a broad-
spectrum antibacterial activity. Microorganisms also produce AMPs
to defend their ecological niches. Compared to animal AMPs,
however, the biosynthetic pathways of microbial AMPs are divided
into ribosomally produced and non-ribosomally produced peptides,
yielding a great diversity of structural types of AMPs. Wu Y.-p.
et al. isolated a cyclic non-ribosomal lipopeptide polymyxin A1 from
Paenibacillus thiaminolyticus and determined the biosynthetic gene

FIGURE 1

Framework of AMPs development for the post-antibiotic era.

cluster for its synthesis, which included five open reading frames
(ORFs). The lipopeptide structure confers stability and strong activity
against Gram-negatove bacteria. This AMP, however, should be
further tested for its efficacy and toxicity in vivo. Bacteriocins are
ribosomally produced AMPs, which primary function is to inhibit
competing strains present within the same ecological niche. Thus,
they display a narrow activity range, essentially directed toward close
relatives. This property could be advantageous, allowing precision
therapy and infection control. Vogel et al. isolated a bacteriocin
Angicin from Streptococcus anginosus, which is not subjected to
posttranslational modifications (Vogel et al., 2021). Angicin displays
no cytotoxicity toward eukaryotic cells since it precisely targets the
bacterial mannose phosphotransferase system (Man-PTS), and there
is no identified target in eukaryotic cells (Vogel et al.). Previous
studies on AMPs have been mainly focused on their antimicrobial
effect against bacteria, but some recent works have also involved
fungi. Fungi are frequently plant pathogens, and there has been a
considerable interest in using microorganisms or their compounds as
a sustainable bio-control measure for the protection of plants against
fungal diseases. Zhu H. et al. identified the antifungal tetrapeptide
His-Ala-Phe-Lys (Hafk) from the bacterium Burkholderia arboris by
using a Tn5 transposon mutation library. Inactivation or deletion
of the cobA gene resulted in a reduced antifungal activity and
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significantly decreased the production of Hafk. Thus, the Hafk
peptide has a significant potential as a biocontrol agent for crop
fungal diseases. Presently, however, the natural reservoirs of AMPs
such as the marine environment have not been sufficiently explored.
The discovery and development of novel AMPs from under-explored
ecological niches would certainly contribute to the health initiative
within the One Health framework (Travis et al., 2018; Lazzaro et al.,
2020; Hao et al., 2022).

Structure and function of AMPs

Natural AMPs are the product of long-term evolution and
they have evolved to perform certain functions such as providing
protection to against infectious invasion or occupation of ecological
niches. These functions are not always in-line with our needs, and
here we can investigate the structure-and-function relationships of
AMPs in order to improve their characteristics for our purposes.
Mehamycin, a drosomycin-type antifungal peptide (DTAFP), belongs
to the defensin-type family present in plants and ecdysozoans.
By analyzing sequence and structural features of Mehamycin and
other peptides in the DTAFP family, an 18-aa residue single
Disulfide Bridge-linked Domain (sDBD) insert was identified
(Gu et al.). Mutational analysis suggested a key role played by
this insert in broadening the antimicrobial spectrum, accelerating
pathogen eradication and thus conferring an evolutionary advantage.
Identification of allosteric residues uncovered the structure-and-
function trade-off. Besides the effect of peptide segments on
structure and function of AMPs, single aa residues may also
affect their biological function. This especially concerns aa with
unique properties such as hydrophobic and basic aa. Sultana et al.
investigated the role of basic aa residues, K58 and K59 and the N-
terminal α-helix containing residues K7 and K30, in the antimicrobial
activity of Angiogenin 4. Mutations in these positions resulted
in reduced antimicrobial activity against Salmonella Typhimurium.
Thus, the critical basic aa residues with different functionalities
rather than overall electrostatic interactions play a key role in cell
binding and disruption of the bacterial membrane integrity by
Angiogenin 4. Optimized AMPs may be obtained by rational design
by rearranging hydrophilic and hydrophobic residues, changing net
charge or through conformational changes (de Moraes et al.; Wu R.
et al.; Li et al.; Yuan et al.).

Computational mining of AMPs

At present, thousands of identified AMP sequences are deposited
in public AMPs databases such as antimicrobial peptides database
(APD, https://aps.unmc.edu/prediction), collection of anti-microbial
peptides (CAMP, http://www.camp.bicnirrh.res.in/), database of
antimicrobial activity and structure of peptides (DBAASP, https://
www.dbaasp.org/home), and database of antimicrobial peptides
(dbAMP, http://csb.cse.yzu.edu.tw/dbAMP/, all accessed on 14
December 2022). Their structure-and-function relationships,
however, are not explored to a level that would allow their further
improvement and optimization (Porto et al., 2018; Torres et al.,
2021; Wan et al., 2022). In the post-genomic era, the growing
number of sequences deposited in databases has become a new
rich resource for discovery, modification and redesign of novel

AMPs (Torres et al., 2022). Tools for such analyses include Multiple
Descriptor Multiple Strategy (MultiDS) screening system and
multi-task learning (MTL). They are based on physicochemical
and structural parameters, strategies, and algorithms for the rapid
search of new candidate AMPs from genome sequences, and
these systems introduce the relationship between MIC values and
other parameters, providing a new perspective for improving the
antibacterial activity and other key properties of AMPs (Lee et al.;
Liu L. et al.). AMPs identified by genome-based screening systems
were homologous to annotated and unannotated natural AMPs,
and the de novo design methods were implemented for optimal
AMP structures. Therefore, a comprehensive screening system
based on bioinformatic and artificial intelligence tools enable a
high-throughput prediction of novel functional AMPs with a high
potential and applicability for further wet lab work (Cardoso et al.,
2020; Torres et al., 2021).

Recombinant AMPs expression

Although chemical synthesis is an important method for the
preparation of short AMPs, the high manufacturing cost is a key
limiting factor, particularly for peptides > 35 aa residues and
with post-translational modifications (Deng et al., 2017; Cao et al.,
2018; Wibowo and Zhao, 2019). Recombinant expression systems
are widely used to produce various polypeptides and proteins. For
example, Bacillus is an excellent host that can express heterologous
proteins and also produce endogenous AMPs (Ren et al.). It is
worth highlighting that there is currently no universal approach
to express various AMPs, and the scope and applicability of each
system is limited which it is based on special vector construction
involving element reform and optimization, well-resistance selection
for expression host suicide from AMPs, exact cleavage and secretion,
and easy purification (Mao et al., 2014; Zhang et al., 2014; Teng et al.,
2015; Li et al., 2017a,b, 2020; Wang et al., 2017; Cao et al., 2018; de
Oliveira et al., 2020; Liu et al., 2021; Torres et al., 2021, 2022).

E�ects of AMPs on bacteria at di�erent
growth stages

In multicellular organisms AMPs are part of innate immunity
and thus serve as the first line of defense against pathogens.
Compared to traditional antimicrobials, AMPs are characterized
by more narrow mutant selection windows and lesser chances of
emergence of bacterial resistance (Rodríguez-Rojas et al., 2014,
2018; Yu et al., 2018; Liu et al., 2021; Zheng et al., 2021; Wu
et al., 2022). Activities of AMPs are usually evaluated in vitro

with exponentially growing bacteria, but under natural conditions,
bacterial growth rates are much slower (Savageau, 1983; Spaulding
et al., 2017). Bacteria in stationary phase, for instance, are significantly
less susceptible to antimicrobials compared to exponentially growing
bacteria (Gutierrez et al., 2017; Mccall et al., 2019). Using five
different AMPs and three antibiotics, Rodríguez-Rojas and Roll
demonstrated that AMPs possess a better bactericidal effect on non-
dividing bacteria compared to antibiotics. The authors reasoned
that AMPs were selected as an antimicrobial defense strategy by
metazoans precisely in part due to this desirable activity against
non-dividing bacteria.
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Conclusions

Pathogen resistance to antimicrobials, especially multi-drug
resistance, poses a serious worldwide public health concern due to
the higher morbidity and mortality rates caused by these infections.
Alternatives to antimicrobials such as AMPs attract attention due
to their multifactorial mechanism of action, low propensity to
select for bacterial resistance, intracellular antibacterial activity, and
special synergistic with conventional antimicrobials, among other
advantages (Travis et al., 2018; Wang et al., 2018; Cardoso et al.,
2019b; Lazzaro et al., 2020; Ageitos et al., 2022; Aminov, 2022;
Hao et al., 2022; Zhu R. et al.). Thus, the discovery, modification,
reformation and de novo design of AMPs represent an exciting
approach for infection management and control. With the use of
omics technologies, combined with synthetic biology approaches
and gene editing and artificial intelligence tools, the increasing
number of novel AMPs with high antimicrobial efficiency and low
cytotoxicity can now be mined and identified for a potential use
(Melo et al., 2021; Palmer et al., 2021). It must be not overlooked
that AMPs, as a part of innate immunity, play a significant role
in immune responses, which may occasionally be detrimental to
the host. Thus, defining the antimicrobial and immune stimulation
boundaries in order to limit the latter is a priority when designing
new AMPs.

Currently, some AMPs are undergoing phase II-III clinical
trials (Jiang et al., 2021). Most of them are used topically for
wound and skin infections. The main reason for the topical use
is to restrict systemic effects that could be detrimental for the
host because of the impact of AMPs on the immune system.
Compared to traditional antimicrobials, many AMPs derived from
animals have immune functions besides their antibacterial effect
(Ganz, 2003; Nesa et al., 2020). Thus, systemic application of
AMPs may potentially display side effects resulting from their
innate immunomodulatory properties. In order to be considered
for systemic administration, AMPs should lack off-target effects,
possess desirable bioavailability, stability, and half-life profiles, and
optimal pharmacokinetic methods should be established (Zheng
et al.). From a synthetic biology perspective, manufacturing of
AMPs is not problematic since numerous toolkits are currently
available (Cao et al., 2018; Hao et al., 2018). However, the choice of
expression systems for AMPs should be determined based on desired
properties such as the range of microorganisms targeted, the kind
of application envisaged, possibility and feasibility of heterogenous
expression of these peptides, and a reasonable and competitive cost of
manufacturing once AMPs are ready for clinical applications (Zhang
et al., 2011; Mao et al., 2014; Teng et al., 2015; Li et al., 2017b; Cao
et al., 2018; de Oliveira et al., 2020; Hao et al., 2022).
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