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With rapid advancements in high-throughput sequencing technologies,

massive amounts of “-omics” data are now available in almost every

biomedical field. Due to variance in biological models and analytic methods,

findings from clinical and biological studies are often not generalizable when

tested in independent cohorts. Meta-analysis, a set of statistical tools to

integrate independent studies addressing similar research questions, has

been proposed to improve the accuracy and robustness of new biological

insights. However, it is common practice among biomarker discovery studies

using preclinical pharmacogenomic data to borrow molecular profiles of

cancer cell lines from one study to another, creating dependence across

studies. The impact of violating the independence assumption in meta-

analyses is largely unknown. In this study, we review and compare different

meta-analyses to estimate variations across studies along with biomarker

discoveries using preclinical pharmacogenomics data. We further evaluate

the performance of conventional meta-analysis where the dependence of

the effects was ignored via simulation studies. Results show that, as the

number of non-independent effects increased, relative mean squared error

and lower coverage probability increased. Additionally, we also assess potential

bias in the estimation of effects for established meta-analysis approaches when

data are duplicated and the assumption of independence is violated. Using

pharmacogenomics biomarker discovery, we find that treating dependent

studies as independent can substantially increase the bias of meta-analyses.

Importantly, we show that violating the independence assumption decreases

the generalizability of the biomarker discovery process and increases false

positive results, a key challenge in precision oncology.
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1 Introduction

Patient response to anticancer drugs varies widely, and the

genomic-make-up of a patient’s tumor is a major factor

contributing to this variation. The filed of pharmacogenomics

studies the influence of genomic variation on individualized drug

response (Iorio et al., 2016). Due to the limited access and high

cost of clinical samples, cancer cell lines are frequently used to

investigate disease biology and its relationship to drug response

for biomarker discovery (Basu et al., 2013; Iorio et al., 2016).

Due to the complexity of generating pharmacogenomic

datasets, the reproducibility of preclinical data and the

findings from high-throughput profiling studies in cancer cell

lines has been extensively investigated (Haibe-Kains et al., 2013;

Haverty et al., 2016; Safikhani et al., 2016). Technological

improvements in high-throughput drug screening enable the

generation of large-scale pharmacogenomic datasets, which

provide a remarkable opportunity for the identification of

biomarkers predictive of drug response. However, biomarkers

often fail to generalize across independent studies. This is due to

the complexity of biological systems, the use of different

experimental protocols, and the application of various

technology platforms for both molecular profiling and data

processing methods (Haibe-Kains et al., 2013; Haverty et al.,

2016; Dempster et al., 2019). Moreover, the large number of

features and relatively small number of cell lines can lead to

findings that are not generalizable and show bias when assessed

in independent cohorts (Tseng et al., 2012; Hatzis et al., 2014;

Sweeney et al., 2017).

To address these issues, meta-analyses can be performed to

integrate independent studies to identify more reliable

biomarkers by increasing statistical power and reducing false

positives (Sweeney et al., 2017; Abbas-Aghababazadeh et al.,

2020; Borenstein et al., 2021). In recent years, several meta-

analysis methods have been proposed such as combining

p-values (Fisher et al., 1934; Stouffer et al., 1949; Won et al.,

2009), combining effect estimates (Borenstein et al., 2021), and

rankings (Hong et al., 2006). The strengths and limitations of

meta-analyses are evaluated particularly with respect to their

ability to assess variation across studies or heterogeneity (e.g.,

platform variability, inconsistent annotation, various methods

for data processing, cell lines heterogeneity, and laboratory-

specific effects) beyond within-study variation (e.g.,

experimental designs and populations of interest) (Veroniki

et al., 2016). As a result, the selection of an optimal meta-

analysis method depends considerably on the available data

structure and the hypothesis setting to achieve the underlying

biological goal (Chang et al., 2013).

Combining the p-values from multiple independent studies

has the benefit of simplicity and extensibility to different kinds of

outcome variables (Tseng et al., 2012; Chang et al., 2013).

However, this can only be performed under the parametric

assumption where the p-values are uniformly distributed

under the null hypothesis, while not accounting for the data

heterogeneity and direction of effect sizes, which represents a

major limitation of this method (Marot et al., 2009). Approaches

that combine effects including fixed- and random-effects (FE &

RE) models are widely used to achieve a broad inferential basis

for evaluations of effects (Cochran, 1954; Borenstein et al., 2021).

Under the FE model, we assume that there is one true effect that

underlies all the studies in the analysis, and that all differences in

observed effects are due to sampling error. In contrast, the RE

model incorporates the variability of the effects across studies in

addition to the within-study variability using a two-stage

hierarchical process. Several approaches have been proposed

to combine individual study results into an overall estimate of

effect using the inverse-variance strategy (Egger et al., 2008).

Assessing heterogeneity is a critical issue in meta-analysis

because different models may lead to different estimates of

overall effect and different standard errors. Several approaches

have been suggested that vary in popularity and complexity for

how best to carry out such combinations (Veroniki et al., 2016;

Guolo and Varin, 2017; Langan et al., 2019). Cochran (Cochran,

1954) proposed a Q test to determine the heterogeneity across

studies, however its statistical power depends on the number of

studies and sample size (Whitehead and Whitehead, 1991;

Turner et al., 2012; Hoaglin, 2016; Bodnar et al., 2017).

Higgins and Thompson proposed better statistic I2 to describe

heterogeneity that reflects the proportion of total variance that is

attributed to heterogeneity (Higgins et al., 2003). Meta-analysis

allows us to quantify heterogeneity between studies, but precisely

estimating the between-study heterogeneity is challenging. This

is especially true if the number of studies included is small. A

Bayesian approach was proposed to capture the uncertainty in

the estimation of the between-study variance by incorporating

prior knowledge (Sutton and Abrams, 2001; Bodnar et al., 2017;

Röver, 2017).

Traditional meta-analysis procedures make a crucial

assumption: effects are independent. When this assumption is

violated, conclusions based on meta-analyses can be misleading

and will bias the overall effect estimate along with inflating Type I

error. In real-world applications, there are various sources of

effect dependencies within and across studies. For instance, a

meta-analysis uses more than one outcome measure for the same

sample of participants, two treatment groups with the same

control group, duplicate full or partial data or samples, and

effects reported by the same research group (Becker, 2000;Wood,

2008; Lin and Sullivan, 2009; Hedges et al., 2010; Cheung, 2014;

Scammacca et al., 2014; Van den Noortgate et al., 2015; Cheung,

2019; Cooper et al., 2019; Liu et al., 2019; Wilson, 2019; Liu and

Xie, 2020; Luo et al., 2020; Borenstein et al., 2021). The

dependence of the effects must be resolved in a way that

permits each study to contribute a single independent effect to

the meta-analysis or modeled dependence in order to avoid

threats to the validity of the meta-analysis results. Reflecting

on duplicate data problems, detecting potential duplicate studies
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and options for the correction of duplication were discussed,

while the issue of prevention of duplication has not yet been

addressed (Wood, 2008). In general, different strategies have

been proposed to handle dependency including ignoring

dependence, avoiding dependence [e.g., averaging effects

(Wood, 2008) or shifting unit-of-analysis (Cooper et al.,

2019)], modeling dependence [e.g., robust variance estimation

(Hedges et al., 2010), multivariate meta-analysis (Becker, 2000),

multilevel meta-analysis (Cheung, 2014; Van den Noortgate

et al., 2015; Cheung, 2019)], and determining the covariance

of effects across studies for overlap samples (Lin and Sullivan,

2009; Luo et al., 2020). Moreover, the Cauchy combination test

Liu et al. (2019); Liu and Xie (2020) and the harmonic mean

p-value Wilson (2019) were proposed as robust choices to

combine p-values under arbitrary dependency structures to

control type I error rate and improve power of analysis.

Several preclinical pharmacogenomic meta-analyses have

been performed in an effort to discover predictive biomarkers

with consistent evidence across multiple research laboratories

(Cohen et al., 2011; Safikhani et al., 2016, 2017; Haverty et al.,

2016; Ding et al., 2018; Jaiswal et al., 2021; Xia et al., 2022).

However, virtually all existing datasets suffer from missing

observations due to limitations of the experimental

techniques, insufficient resolution, and sequencing costs which

prevent complete profiling of cancer samples at the genomic and

pharmacological levels (Choi and Pavelka, 2012; Basu et al., 2013;

Muir et al., 2016; Li et al., 2017). Notably, the lack of either

molecular (Basu et al., 2013) or pharmacological data [e.g., drug

response Li et al. (2017)] in a given study prevents its use for

biomarker discovery. Hence, investigators often attempt to make

datasets more complete by borrowing a subset of the data (e.g.,

molecular data, drug response data, or combination of both)

from one study and duplicating them in another study

(Consortium of Drug Sensitivity in Cancer Consortium, 2015;

Safikhani et al., 2016; Li et al., 2017; Ding et al., 2018; Jia et al.,

2021; Xia et al., 2022). For instance, the re-analysis of drug

response consistency by the Cancer Cell Line Encyclopedia and

Genomics of Drug Sensitivity in Cancer, investigators duplicated

the gene mutation, copy number alteration and mRNA

expression when assessing the generalizability of biomarkers

predictive of drug response (gene-drug associations)

(Consortium of Drug Sensitivity in Cancer Consortium, 2015;

Safikhani et al., 2016). In applied research, detection of non-

independent effects or duplicate study effects along with

modeling dependency remain challenging. When study effect

estimates are non-independent, conclusions based on the

conventional meta-analyses will bias the aggregated effects and

can be misleading or even wrong (Wood, 2008; Cheung, 2019).

In this study, we reviewed and compared the performance

of frequentist and Bayesian meta-analysis approaches to assess

gene-drug associations or biomarker discovery using

independent large-scale breast cancer and pan-cancer

pharmacogenomic datasets. We found that changes in the

number and size of studies along with the type of meta-

analysis methods can affect the identification of statistically

significant gene-drug associations. We further conducted

simulation studies to assess the performance of including

non-independent studies or effects in a traditional meta-

analysis approach. Results showed that as the number of

non-independent effects increased, higher relative mean

squared error and lower coverage probability were observed.

In addition, we aimed to evaluate the bias of avoiding the

dependence of effects in traditional meta-analyses via

preclinical pharmacogenomic data. To do so, we showed

how increases in the number of duplicated studies can

impact the bias of estimated overall effect and the

identification of gene-drug associations. The results indicate

that by increasing the number of dependent studies, bias of

estimated overall effect may increase and genes with lower

similarity of measured expression across studies denote

higher bias.

2 Materials and Methods

2.1 Data types and sources

We used transcriptomic (RNA-Sequencing and gene

expression microarray) and drug response data from

pharmacogenomic cancer cell line sensitivity screenings,

including the Cancer Cell Line Encyclopedia (CCLE: Broad-

Novartis) (Barretina et al., 2012), the Genomics of Drug

Sensitivity in Cancer (GDSC: Wellcome Trust Sanger

Institute) (Garnett et al., 2012; Yang et al., 2012), the

Genentech Cell Line Screening Initiative (gCSI) (Haverty

et al., 2016), the Cancer Therapeutics Response Portal (CTRP:

Broad Institute) (Basu et al., 2013), Oregon Health and Science

University breast cancer screen (GRAY) (Heiser et al., 2012), and

University Health Network Breast Cancer Screen (UHNBreast)

(Marcotte et al., 2016; Safikhani et al., 2017) (Table 1).

The cell lines’ gene expression profiles were generated using

RNA sequencing (RNA-seq) in all datasets except for CTRP and

GDSC datasets where the Affymetrix microarrays where used

(Table 1). Molecular information was obtained from the

PharmacoGx R package along with details on data processing

(Safikhani et al., 2016; Smirnov et al., 2016). Cell line drug

response data, in the form of area above the curve (AAC)

recomputed information, was also obtained from the

PharmacoGx R package (Table 1) (Smirnov et al., 2016).

In this study, we performed a breast cancer-specific and a

pan-cancer analysis to assess the generalization of our results. For

the breast cancer analysis, we included seven independent

studies, while the pan-cancer analysis excluded the

UHNBreast and GRAY datasets as they included only breast

cancer cell lines (Figure 1). Pan-cancer data was filtered for tissue

types containing at least 10 cell lines with available expression
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and drug response data (Supplementary Figure S1). Breast cancer

meta-analyses consisted of 11,198 genes and 19 cell lines shared

between studies. To analyze pan-cancer data, we selected

11,340 common genes and 168 cell lines between studies.

Common anticancer drugs such as Erlotinib, Lapatinib, and

Paclitaxel across studies were used to evaluate gene-drug

associations and discover biomarkers. Notably, Lapatinib and

Erlotinib are a potent, oral, reversible, dual inhibitor of epidermal

growth factor receptor (EGFR) and human epidermal growth

factor receptor 2 (HER2 or ERBB2) for breast cancer and a few

other solid tumors (Schlessinger, 2000; Geyer et al., 2006; Medina

and Goodin, 2008; Iqbal et al., 2011). Additionally, Paclitaxel is a

widely used drug for various solid tumors and breast cancer

treatment, however, resistance occurs frequently and the evasion

mechanisms remain unclear (Volk-Draper et al., 2014; Weaver,

2014).

2.2 Data pre-processing

The drug dose-response curves were summarized into AAC

values using a 3-parameter logistic model as implemented in

PharmacoGx (Smirnov et al., 2016). The AAC values range

between 0 and 1, with AAC close to 1 indicating the drug

sensitive cell lines and AAC close to 0 indicating the drug

resistant cell lines. Missing drug response data (AAC values)

were imputed within each study to simplify further analyses.

Imputation was completed via multiple imputation by

classification and regression trees (MI-CART) (Burgette and

Reiter, 2010; Burgette and Reiter, 2010) as implemented in

mice R package (Buuren and Groothuis-Oudshoorn, 2010).

For individual breast cancer and pan-cancer data analyses,

we focused on genes and drugs that were measured in all studies.

To avoid scaling issues and make comparisons between the

estimated effects across studies, the z-score transformation

(mean centered and variance scaled) was considered across

cell lines using raw gene expression values and imputed AAC

values. For a given gene, Pearson correlation was applied to assess

the similarity of measured expression across studies.

TABLE 1 Studies used in meta-analyses and corresponding drug
response versions, number of cell lines, and drugs along with
molecular data type. Different versions of GDSC study refer to drug
response assays alongwith updated cell lines and drugs. (*) represents
the CCLEmicroarray data. Transcriptomic and drug response data
were obtained from the PharmacoGx R package.

Dataset Drug
sensitivity

No. of
cell
lines

No. of
drugs

Molecular
data

CCLE Barretina
et al. (2012)

2015 1,094 24 RNA-Seq

CTRP Basu et al.
(2013)

2015 887 544 Microarray*

GDSC1 Garnett
et al. (2012)

2020 (v1-8.2) 1,060 343 Microarray

GDSC2 Garnett
et al. (2012)

2020 (v2-8.2) 1,104 190 Microarray

gCSI Haverty
et al. (2016)

2017 747 16 RNA-Seq

GRAY Heiser
et al. (2012)

2017 74 107 RNA-Seq

UHNBreast
Safikhani et al.
(2017)

2019 84 8 RNA-Seq

FIGURE 1
Distribution of cell lines across pharmacogenomic studies. Upset diagrams illustrate the number of cell lines for each study for (A) breast cancer
and (B) pan-cancer data. Pie chart shows the distribution of common cell lines across tissue types using pan-cancer data. Tissue types contain at
least 10 cell lines with available expression and drug response data included in pan-cancer analyses.
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2.3 Meta-analysis methods

Let us consider Gmatched genes across K studies. For a given

study k (k = 1, . . . , K), denote by xglk the standardized gene

expression intensity of gene g (g = 1, . . . , G) and cell line l (l = 1,

. . . , Lk), where Lk represents the number of cell lines in study k.

Let ylk be the standardized imputed drug response variable of cell

line l and study k. Under the breast cancer data, a standardized

linear regression model was applied to assess the association of

gene expression and imputed drug response, while adjusting for

the tissue types to evaluate pan-cancer data (Peterson and Brown,

2005). For each individual gene-drug association analysis,

estimated effect, standard error of estimated effect, and

p-value were obtained. To identify a broad inferential basis for

evaluation of estimated effects, meta-analysis techniques were

applied to integrate results of separate independent studies

including combining p-values and combining estimated effects

(Supplementary Figure S2A).

2.3.1 Combination of p-values
Combining the p-values from multiple independent studies

offers the benefits of simplicity and extensibility to different kinds

of outcome variables (Tseng et al., 2012). Fisher’s method (Fisher

et al., 1934) and Stouffer’s method (Stouffer et al., 1949) are

widely used to combine p-value results from different

independent studies.

For each gene, Fisher’s method sums up the log transformed

p-values obtained from individual study (Fisher et al., 1934). The

combined Fisher’s statistic χ2Fisher � −2∑k log(pk) follows a chi-

squared χ2 distribution with 2K degrees of freedom under the null

hypothesis.

For each gene, Stouffer’s method sums the inverse normal

transformed p-values (Stouffer et al., 1949). The combined

Stouffer’s statistic TStouffer � ∑kzk/
��
K

√
; where zk = Φ−1(pk) and

Φ is a standard normal cumulative distribution function; it

follows a standard normal distribution under the null hypothesis.

Major limitations of such classical methods are that they do

not account for the data heterogeneity and direction of effects.

Additionally, such methods are performed under the parametric

assumption that p-values are uniformly distributed under the

null hypothesis, though in practice such an assumption is not

always satisfied (Marot et al., 2009).

2.3.2 Combination of estimated effects
Let βk and sk be the estimated effect and its standard error in

study k, respectively. The most popular parametric statistical

methods for combining effects are based on fixed- and random-

effects (FE & RE)models (Cochran, 1954; Borenstein et al., 2021).

The FE model assumes that all studies in meta-analysis share a

single true effect β (i.e., average effect across all studies) is

specified as

βk � β + ϵk,

where ϵk is assumed to be independently distributed as

ϵk ~ N(0, σ2k) and within-study variance σ2k. Under the FE

model, estimated effects are assumed to be homogeneous

across studies and all differences in observed effects are due to

sampling error or within-study variability, while in practice such

an assumption is questionable. One of the challenges in meta-

analysis is that true effects are different across studies. Hence, the

RE model was proposed to incorporate the variability of the

estimated effects across studies in addition to the within-study

variability using a two-stage hierarchical process as follows

(DerSimonian and Laird, 1986; Brockwell and Gordon, 2001;

Viechtbauer, 2005; Bodnar et al., 2017)

βk � β + ηk + ϵk,

where ηk indicates the error accounting for the between-

study variability. Assume error ηk is independently distributed as

ηk ~ N(0, τ2), where τ2 is the between-study or heterogeneity

variance of ηk around β. The marginal distribution of βk follows

the normal distribution as βk ~ N(β, τ2 + σ2k), where ηk and ek
are independent. A common assumption is that each study is

based on studies large enough to consider the within-study

variance as known and equal to the estimate provided by each

study (i.e., s2k).

The goal is to estimate the overall effect β. Following the

summarized assumptions in Supplementary Table S1, several

approaches have been suggested for combining individual study

results into an overall estimate of effect applying an inverse

variance scheme (Egger et al., 2008). Under the FE model, the

most flexible and widely used inverse variance-weighted average

approach was proposed to estimate the overall effect as

β̂ � ∑K
k�1wkβk∑K
k�1wk

, wk � 1
s2k
.

However, under the REmodel, the proposed inverse variance

approach is considered to estimate the overall effect where wk �
1/(τ2 + s2k) and the estimate of overall effect depends on the

between-study variance. wk provides the uniformly minimum

variance unbiased estimator of β. A Wald-type 95% confidence

interval is estimated for the overall effect using the normal

approximation (DerSimonian and Laird, 1986). The proposed

RE meta-analysis approaches are typically performed in two

stages, where first the heterogeneity parameter is estimated,

and then the effect estimate is derived using the estimated

heterogeneity. One of the most troublesome challenging

aspects of meta-analysis is the determination of whether there

is true heterogeneity, as it can influence the choice of the

statistical method to combine estimated effects.

2.3.3 Measures of between-study heterogeneity
Under the RE model, the detection of heterogeneity requires

testing the null hypothesis τ2 = 0, which corresponds to the FE
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model. The homogeneity hypothesis is tested using theQ statistic

(DerSimonian and Kacker, 2007) given by

Q � ∑K
k�1

βk − β̂( )2wk

which has an asymptotic chi-squared χ2 distribution with

K−1 degrees of freedom under the hypothesis of consistent or

homogeneous association, and β̂ and wk are computed using the

FE model analysis. The DerSimonian and Laird (DL) estimator

DerSimonian and Laird (1986) is possibly the most frequently

used approach to estimate the between-study heterogeneity via

moments approach given by

τ̂2 � max 0,
Q − K − 1( )∑K

k�1wk −∑K
k�1w

2
k/∑K

k�1wk

⎧⎨⎩ ⎫⎬⎭.

Note that the Q test suffers from low power when studies

have small sample size (Lk) or are few in number (K) (Hoaglin,

2016). More importantly, the Q statistic and the estimate of

between-study variance depend on the scale of effects. Hence,

neitherQ nor τ̂2 can be used to compare degrees of heterogeneity

between different meta-analyses (Higgins et al., 2003). Several

approaches have been suggested over the years for how best to

assess homogeneity across studies, and the corresponding

research is ongoing.

The relative amount of between-study heterogeneity can be

expressed in terms of the measure of I2 � τ2/(τ2 + ~s2) that

reflects the proportion of total variance that is attributed to

heterogeneity (Higgins et al., 2003). ~s2 is required as an estimate

of the within-study variances. Unlike the Q test, I2 can be directly

compared between meta-analyses with different numbers of

studies and different types of outcome data and also does not

inherently depend on the number of studies in the meta-analysis

(Higgins et al., 2003). Due to the low power situation of meta-

analyses, Higgins et al. (2003) suggested that we could tentatively

assign a significant degree of heterogeneity (i.e., substantial

heterogeneity) when I2 > 50% and Q test p-value < 0.1
(Hoaglin, 2016).

Many alternatives to the DL approach have been proposed

such as modifications of the method of moments, likelihood

principle, model error variance, Bayes, and the non-parametric

approaches with the aim of avoiding distributional assumptions

(Veroniki et al., 2016; Guolo and Varin, 2017; Langan et al.,

2019). In this study, we focus on six different heterogeneity

variance estimators including moments estimators such as

DerSimonian and Laird (DL) (DerSimonian and Laird, 1986),

Paule and Mandel (PM) (Paule and Mandel, 1982), Hedges (HE)

(Hedges and Olkin, 2014) and Hunter-Schmidt (HS) (Schmidt

and Hunter, 2004), error variance estimator Sidik-Jonkman (SJ)

(Sidik and Jonkman, 2007), and empirical Bayes (EB) estimator

(Sutton and Abrams, 2001; Turner et al., 2012). A common

problem with such estimators is that they frequently produce

higher numbers for small meta-analyses, and lower for analyses

involving many studies which leads to inadequate heterogeneity

and effect estimates along with challenges in the choice of FE or

RE analysis methods (Turner et al., 2012; Bodnar et al., 2017;

Langan et al., 2019).

To compare meta-analyses results, within each study, the

effect size for each gene was measured. Meta-analyses for each

gene were performed across studies using the meta (Schwarzer

et al., 2019) and metap (Dewey, 2018) R packages. To correct for

multiple testing, the Benjamini & Hochberg procedure was used

to control false discovery rate (FDR) (Benjamini and Hochberg,

1995). The Jaccard coefficient index was applied to compare the

similarity between the identified top-ranked genes associated

with a drug using different independent meta-analyses. An UpSet

plot was applied to visualize the number and the overlap of genes

associated with drugs by considering different meta-analysis

methods and volcano plot to highlight statistically significant

gene-drug associations.

2.3.4 Bayesian approaches
Bayesian inference has been suggested in the context of meta-

analysis to capture uncertainty in estimation of the heterogeneity

by incorporating prior information (Sutton and Abrams, 2001;

Bodnar et al., 2017; Röver, 2017). Compared to the earlier

discussed approaches, Bayesian methods offer several potential

advantages which include producing a distribution for the effect

and heterogeneity, leading to credible intervals for overall effect

and heterogeneity.

Within the explained two-stage hierarchical model

(Supplementary Table S1), to infer the unknown hyper

parameters β and τ, prior knowledge needs to be specified

where the joint prior probability can be factored into

independent marginals p(β, τ) = p(β) × p(τ). The range of

reasonably specified priors is usually limited. Non-informative

or weakly informative priors for the effect β are usually applied.

However, informative normal prior constitutes the conditionally

conjugate prior distribution for the effect along with being

computationally convenient (Röver, 2017). In addition, for the

between-study heterogeneity τ an informative prior is often

appropriate especially when only a small number of studies is

involved (Bodnar et al., 2017; Röver, 2017). Let

p β, τ( )∝ τ

������������∑K
k�1

1
σ2k + τ2

( )2

√√
,

denote the non-informative uniform and Jeffreys priors for

parameters β and τ, respectively Bodnar et al. (2017); Röver

(2017). The Jeffreys prior’s dependence on the standard errors σk
implies that the prior information varies with the precision of the

underlying data βk. Posterior density may be accessed in quasi-

analytical form and 95% central credible intervals derived from a

posterior probability distribution can be constructed using the

bayesmeta R package Röver (2017). We draw attention to this
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Bayesian procedure by comparing its performance with

commonly used classical DL meta-analysis procedure.

2.4 Assessing the impact of duplication of
data across studies

Duplication in study effects has been defined as the

estimated effect results from a complete replication of a

particular study or from some subset of measured data

(Wood, 2008; Cheung, 2019). The dependency in the meta-

analysis is studies at the effects level, which can then be caused

by duplication of input data (e.g., gene expression), output data

(e.g., drug response measurements) or a combination of both

(Supplementary Figure S2B).

Aggregating non-independent effects will bias the estimated

overall effect in meta-analyses Wood (2008). For a given study

k′ (k′ = 1, . . . , K), let x+glk′ be the missing gene expression

intensity of gene g across cell lines l = 1, . . . , L, where L matched

cell lines is considered across studies (i.e., Lk = L, ∀k = 1, . . . K).

Assume available measured expression data xglk such that k′ ≠ k,

∀k = 1, . . . , K be duplicated for the missing data

(i.e., xglk → x+
glk′) which leads to a lack of independence of

effects across studies (i.e., βk ⊥⊥̸βk′). In each meta-analysis, Γ(γ,
K) denotes a set of all possible dependent studies by computing

γ-combination of K studies, where γ = 1, . . . , K−1 is the number

of missing expression data.
One of the considerable consequences of traditional meta-

analyses of non-independent studies compared with independent

ones is the significant differences in the estimate of overall effect

(Wood, 2008). Hence, for a given gene and γ, to investigate the

bias of ignoring the independence assumption of effects, the

mean absolute deviation (MAD) metric is computed as

MAD � 1
|Γ| ∑

d∈Γ
β̂d − β̂
∣∣∣∣∣ ∣∣∣∣∣,

where β̂ and β̂d demonstrate the estimated overall effect by

using the independent and non-independent studies,

respectively. In addition, we evaluate the association between

increases in the number of non-independent studies and the

similarity of measured expression across studies. The Jaccard

similarity index was applied to compare the similarity between

the detected top-ranked genes associated with a drug over

duplicated study effects. We evaluate whether there is an

increasing trend in bias over the number of non-independent

studies. Trend detection non-parametric Mann-Kendall (MK)

(Mann, 1945; Pohlert, 2016) method is considered to test the null

hypothesis H0: there is no monotonic trend in bias, versus the

alternative hypothesis Ha of an increasing trend of bias when the

number of studies increase. The MK trend test follows

asymptotically a normal distribution where a lack of samples

may decrease the power of analysis to detect trends.

2.5 Simulation study design

Most simulation studies currently explore the performance of

various methods by focusing on measuring inconsistency in

meta-analyses rather than in dealing with dependent effects

across studies. Therefore, we conducted a simulation study to

investigate the performance of the widely used RE meta-analysis

approach (DL) in estimating the overall effect in which the

dependence of the effects are ignored. We explored the effects

of different parameters, varied in the simulations including the

heterogeneity across studies (τ2), number of studies (K), variation

in studies (σ2k), correlation between random effects (ρ), and

overall effects (β). When effects were correlated across studies,

the traditional RE method (DL) was applied to assess whether

and for which conditions lack of independence assumption

across studies produced significantly different results. In this

study, we focused on the overall effect estimate and on its

standard error, because applied researchers are often mostly

interested in testing overall effect.

2.5.1 Simulation method and performance
measures

Parameter estimates and their performance measures are

assessed in a 3(K) × 4 (τ2) × 3 (σ2) × 3(β) × 4(ρ) factorial design

(Table S2), where number of studies, heterogeneity across

studies, variation within-studies, overall effects, and

correlation between random effects are varied and each

scenario is tested using a DL meta-analysis approach. Note

that the within-study variance is assumed to be equal. Under

the explained two-stage hierarchical model, for studies 1, . . . , K

in each meta-analysis, true effects (β1, . . . , βK)′ are simulated

from multivariate normal distribution NK(βIK, Σ), where IK is a

K × K identity matrix and the symmetric variance-covariance

matrix

Σ �
τ2 + σ21 ρ12σ1σ2 ρ13σ1σ3 / ρ1kσ1σK
ρ21σ2σ1 τ2 + σ22 ρ23σ2σ3 / ρ2Kσ2σK

..

. ..
. ..

.
1 ..

.

ρK1σKσ1 ρK2σKσ2 ρK3σKσ3 τ2 + σ2K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Parameter values are chosen to represent the range of values

observed in the pharmacogenomic meta-analysis. The number of

studies to be combined is manipulated at 3 levels (3, 7, and 10) to

simulate a statistical combination of a range of meta-analytic

preclinical pharmacogenomic studies. The Variation within

studies represents that large number of cell lines within

studies produces smaller within-study variance, which

influences overall effect estimation.

Heterogeneity variance parameter values (τ2) are defined

such that the resulting meta-analyses vary through a wide

range of levels of inconsistency between study effects. A

between-study variance of 0.001 would signify that almost no

true heterogeneity exists. The correlation selected to calculate the
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covariances between study effects ranges between 0.1 and 0.7. To

set one duplication scenario, the ρ12 had values 0.1 and 0.7, and to

increase the number of duplications to two and three, ρ23 and ρ13
had values 0.2 and 0.6, respectively. Finally, the overall effects are

chosen to be 0.2, 0.5, and 0.8 which are representing small,

medium, and large gene-drug correlation association.

Simulating all combinations of parameter values leads to

432 scenarios for non-independent effects meta-analyses. The

overall effect estimates were summarized across the

1,000 iterations. To evaluate the properties of the effect

estimators, we estimated the relative mean squared error

(MSE) and the coverage probability of the 95% confidence

intervals by recording the percentage of replications where

intervals included the true overall effect.

3 Results

3.1 Comparison of meta-analysis
techniques: Independent studies

We performed gene-drug association analysis for each

study using (adjusted) standardized linear regression model

to obtain estimated effect and its standard error along with

p-value per gene. Meta-analysis approaches were applied to

integrate information across studies including Fisher and

Stouffer methods to combine p-values and the RE model to

integrate estimated effects across individual studies. Meta-

analysis approaches differ on how they treat heterogeneity.

Hence, various heterogeneity approaches such as DL, HS,

PM, HE, SJ, and EB were compared (see Materials and

Methods section).

To assess the performance of different meta-analysis

approaches used to identify significant gene-drug associations

using breast cancer and pan-cancer pharmacogenomic datasets,

we compared the lists of genes significantly associated with drug

response (FDR <0.05; Supplementary Figure S3). The p-value

combination methods (Fisher and Stouffer) are almost the most

conservative (least number of significant genes) meta-analyses. SJ

is typically less conservative compared to p-value combining

methods, while it is most conservative among the RE meta-

analysis approaches. HS is always least conservative (greatest

number of significant associated genes). In addition, a large

percentage (~ 80 − 97%) of genes are found in common

across the methods that are not most conservative. Other

methods including HE, EB and PM demonstrate the similar

pattern to DL method with more than 80% of commonly

identified significant associated genes.

To compare the performance of different meta-analyses, we

computed the Jaccard index to assess the similarity between the

ranked lists of gene pairs obtained from different meta-analyses

(Supplementary Figure S4). We find that the top 100 ranked

gene-pairs are most similar with a range from 65% to 100%

across combining effects approaches except for the error variance

estimator SJ. This observation of similarity measures suggests

that meta-analyses are not identical and there is considerable

diversity between combining p-values and effects approaches.

Different types of meta approaches had been reviewed and

compared (Tseng et al., 2012; Sweeney et al., 2017). Hence,

we chose the less conservative and most commonly used DL

method to estimate heterogeneity for the rest of the meta-

analyses.

3.2 Breast cancer biomarker discovery

We performed the association analysis between genes and

drug response (AAC) using the RE meta-analysis model including

the DL heterogeneity estimation approach to combine estimated

effects (Pearson correlation coefficient) across breast cancer studies

(Figure 2). Drugs Erlotinib and Lapatinib demonstrate that 60%

and 62% of genes are negatively correlated with FDR <0.05,
respectively, i.e., higher gene expression is associated with lower

drug response, and therefore lower drug activity (Figures 2A,B).

However, Paclitaxel with 59% of genes correlated positively with

FDR <0.05 represents higher gene expression is associated with

higher drug activity (Figure 2C). In addition, ERBB2 is highly

sensitive to Lapatinib (overall effect = 0.74, 95% CI: 0.62 to 0.86,

p = 2.69e-34), while Paclitaxel and S100A1 are negatively

associated (overall effect = -0.51, 95% CI: −0.66 to -0.35, p =

1.53e-10) (Figure 2).Moreover, EGFR demonstrates less sensitivity

to Erlotinib (overall effect = 0.16, 95% CI: −0.01 to 0.34, p = 6.52e-

02) compared to the breast cancermeta-analyses where not limited

to the common cell lines (overall effect = 0.26, 95% CI: 0.16 to 0.36,

p = 2.47e-07) (Supplementary Figure S5). For breast cancer gene-

drug association meta-analyses, around 8%–13% of genes have

substantial estimated heterogeneity, where no greater than 1% of

them are significantly associated with drugs. However, almost

10%–30% of genes are associated to drugs with non-substantial

estimated heterogeneity (Supplementary Figure S6A).

3.3 Pan-cancer biomarker discovery

We considered the integration of estimated effects to assess the

gene-drug association across pan-cancer data using RE meta-

analysis including the DL heterogeneity estimation approach

(Figure 3). We obtained that 50% and 60% of genes are

negatively associated (FDR <0.05) with Erlotinib and Lapatinib,

respectively, i.e., higher gene expression was associated with lower

drug activity, while 51% of genes are positively associated with

drug Paclitaxel (Figure 3). EGFR and ERBB2 show considerable

sensitivity to Erlotinib (overall effect = 0.33, 95% CI: 0.26 to 0.40,

p = 4.23e-19) and Lapatinib (overall effect = 0.50, 95% CI: 0.44 to

0.56, p = 2.14e-52), respectively (Figure 3). However, S100A1 is

significantly resistant to Paclitaxel (overall effect = -0.21, 95% CI:
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-0.30 to -0.11, p = 2.54e-05) (Figure 3). Compared to the

breast cancer meta-analysis, the pan-cancer gene-drug

association meta-analyses contain less studies and more cell

lines where almost 5%–13% of genes have substantial estimated

heterogeneity and around 1% or less of them are associated with

drugs. Moreover, significant gene-drug associated with non-

substantial estimated heterogeneity ranges between 16%–20%

(Supplementary Figure S6B).

FIGURE 2
Breast cancer independent meta-analyses. Volcano plots show genes associated with drug response using RE meta-analysis model and forest
plots illustrate overall effect estimate using FE (red diamond) and RE (blue diamond) meta-analysis models using drugs (A) Erlotinib, (B) Lapatinib, and
(C) Paclitaxel. DL approach was applied to estimate heterogeneity across studies.
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3.4 Comparison of frequentist and
bayesian meta-analysis

To capture uncertainty in estimation of the heterogeneity, we

applied Bayesian technique by incorporation Jeffreys prior

information. We compared the performance of DL and

Bayesian approaches to estimate heterogeneity and overall

effect along with 95% confidence or credible regions. DL and

Bayesian procedures yield almost the same estimates for the

overall effect (Supplementary Figure S7). For the breast cancer

meta-analyses, the Bayesian credible interval is between 1.37 and

1.45 times wider than the DL interval, while as the number of

FIGURE 3
Pan-cancer independent meta-analyses. Volcano plots show genes associated with drug response using RE meta-analysis model and forest
plots illustrate overall effects estimate using FE (red diamond) and RE (blue diamond) meta-analysis models using drugs (A) Erlotinib, (B) Lapatinib,
and (C) Paclitaxel. DL approach was applied to estimate heterogeneity across studies.
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studies decreases using pan-cancer meta-analyses, the Bayesian

interval gets wider from 1.66 to 1.68 times of DL interval. The

conventional DL method detects no or low heterogeneity, while

Bayesian estimate of I2 ranges between 38% and 56%. In addition,

across all genes, to compare the impact of Bayesian and DL

methods, the length of 95% confidence and credible regions along

with estimate of I2 were computed (Supplementary Figures S8,

S9). The median of length of Bayesian intervals is 1.33–1.40 times

of DL interval using breast cancer data, while considering pan-

cancer data, the median of length of Bayesian credible becomes

around 1.52 to 1.54 times of DL interval across all drugs

(Supplementary Figures S8, S9A). The ranges of median of I2

Bayesian estimates are (36%–42%) and (47%–53%) using breast

cancer and pan-cancer meta-analyses, respectively

(Supplementary Figures S8, S9B). Our results are comparable

to those reported by Bodnar et al. (2017) due to assuming the

same priors.

3.5 Simulation study and non-
independent effects

In traditional DL meta-analysis where the independence of

effects was ignored, higher relative MSEs were observed as the

number of non-independent effects increased (Figure 4,

Supplementary Figures S10, S11). However, relative MSEs

were similar across different numbers of non-independent

effects in scenarios with small variation within and across

studies and large numbers of studies. In scenarios with a

small number of studies, relative MSEs were higher than

scenarios with larger numbers of studies. In addition, as the

variation within and across studies increased, the relative MSEs

gradually rose. We also observed that large correlation across the

effects can yield slightly higher relative MSE. As the overall effect

increased, the relative MSEs had considerable decreases across all

scenarios.

Coverage of the 95% confidence interval can differ by 5%–

15% in all scenarios (Figure 4, Supplementary Figures S10, S11).

As the number of non-independent effects increased, lower

coverage was observed. Coverage had variations up to 10%

between numbers of studies. Coverage varies between almost

90% and 96% when studies are homogeneous and up to two non-

independent effects included and can be as low as 80% in

scenarios with a small number of studies and three non-

independent effects. In addition, large correlation across the

effects can yield slightly lower coverage than smaller

correlation. As the overall effect increased, the coverage

decreased gradually in all scenarios.

The summary results indicated that the coverage of the 95%

confidence intervals improved (or relative MSE decreased) as the

number of studies increased, the variation within and across

studies decreased, and had a smaller number of duplications

across studies.

3.6 Duplicate study effects in a meta-
analysis: Application in pharmacogenimic
datasets

Duplication in study effects has been defined when estimated

effect results from a complete replication of a particular study or

from some subset of measured data. For instance, the generated

expression duplicated in the study contains missing expression

data for a given gene (Supplementary Figure S2B). To assess the

bias of ignoring the dependence of the effects, we considered

matched cell lines across non-independent studies for breast

cancer and pan-cancer meta-analyses individually. Therefore,

across whole genes, we considered all possible duplicated study

effects and applied the RE model, including DL heterogeneity

estimation approach to integrate the duplicate study effects, to

estimate overall effect and heterogeneity. Reflecting on duplicate

data problems, conclusions based on the traditional meta-analyses

will bias the aggregated estimated effects and can increase the false

positive results. Additionally, bias is determined using the mean

distance between the estimated overall effect using non-

independent studies and the overall effect by integrating

independent studies (i.e., MAD). Additionally, we investigate

the association of violating the independence assumption over

the similarity of measured expression per gene across studies by

applying the Pearson correlation. The median of estimated

Pearson correlation can be classified as low |r| < 0.3, medium

0.3 ≤ |r| < 0.7 and high |r|≥ 0.7 (Mukaka, 2012).

3.6.1 Bias assessment in non-independent meta-
analysis: Breast cancer and pan-cancer data

We assessed the increases in the number of duplication using

breast cancer data and its impact on the bias of the estimated

overall effect using theMAD across drugs and selected genes with

estimated substantial and non-substantial heterogeneity (Figures

5A–C). The results indicate that increases in the number of

duplicate study effects can considerably raise the bias of meta-

estimates of effects. In addition, testing the trend of bias across all

genes by growth in the number of non-independent studies

denotes almost 97%–99% of genes following an increasing

trend with p-value < 0.05 across drugs. Moreover, we obtain

genes with higher median Pearson correlations that show on

average less bias compared with genes that have low levels of

median correlations across studies (Figure 5D).

Additionally, under the pan-cancer non-independent meta-

analyses with more matched cell lines but fewer studies compared

with breast cancer data, we obtain a similar increasing pattern in

computed bias (Figures 6A–C). To evaluate the bias changes across

whole genes when more duplicate study effects were added in

meta-analyses, MK trend test results show almost 86%–93% of

genes with p-value < 0.05 were detected across drugs. Moreover,

similar to the breast cancer data, the average of bias across whole

genes was reduced as the median of Pearson correlations increases

(Figure 6D).
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3.6.2 Non-independent meta-analysis and
biomarker discovery

We evaluated whether violating the independence

assumption in meta-analyses can impact on the differential

expression analyses by considering Jaccard similarity index to

compare the 100 top-ranked genes associated with drugs under

non-independent and independent meta-analyses. The results

illustrate that if we have more duplicate study effects, the overlap

of detected expressed genes decreases and leads to a decrease in

power of analyses (Figure 7).

3.6.3 Non-independent bayesian meta-analysis
We also investigated how duplicate study effects can bias

the meta-analyses using the Jeffreys Bayesian approach and

compared the results with traditional DL meta-analysis. Because

Bayesian approaches take more time and are computationally

expensive, we only considered specific genes used by DL meta-

analysis instead of includingwhole genes.We evaluated the pattern

of changes in the number of duplicate study effects and the bias of

the estimated overall effect using the Bayesian approach across

drugs and selected genes. This process also considered estimated

substantial and non-substantial estimated heterogeneity using

breast cancer and pan-cancer data, respectively (Supplementary

Figures S12, S13A–C). By increasing the number of duplicate study

effects, bias of estimated overall effect will increase and genes with

higher correlation across studies will indicate less bias. In addition,

we observed no considerable trend for the average of 95% intervals

using Bayesian and DLmeta-analyses by increasing the number of

duplicate study effects (Supplementary Figures S12, S13D). The

results show that the median length of Bayesian intervals ranges

almost between 2.4 and 2.5 times the DL interval using breast

cancer data. When considering the pan-cancer data, the median

FIGURE 4
Mean squared error and coverage probability of overall effect estimates. Scenarios containing various within-study variances (row) and
heterogeneity across studies (column). The x-axis represents the number of studies and the y-axis shows the relative MSE (A,B) and coverage
probability of 95% confidence intervals (C,D). Set overall effect β = 0.2. Different colors represent a number of duplication or non-independent
effects across studies.
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length of Bayesian interval becomes around 4.6 to 4.8 times of DL

interval across all drugs.

4 Discussion

In this study, we reviewed and compared the performance of

various traditional meta-analysis including frequentist and

Bayesian approaches to improve the reproducibility of the

identification of biomarkers using independent large-scale

pharmacogenomic datasets. We observed that meta-analyses

are not identical and there is considerable diversity between

combining p-values and effect sizes approaches. We further

assessed the bias of including non-independent effects (or

duplicate data) in a conventional meta-analysis. When effects

are not independent, conclusions based on these conventional

procedures will bias overall effect estimates and inflate the type I

error rates (Becker, 2000; Wood, 2008; Lin and Sullivan, 2009;

Hedges et al., 2010; Scammacca et al., 2014; Van den Noortgate

et al., 2015; Cheung, 2019; Cooper et al., 2019; Liu et al., 2019;

Wilson, 2019; Liu and Xie, 2020; Luo et al., 2020; Borenstein et al.,

2021). We demonstrated how increases in the number of

duplicated studies can impact the bias of overall estimate of

effect and the identification of gene-drug associations. We also

evaluated whether violating the independence assumption in

meta-analyses can impact on the biomarker discovery.

FIGURE 5
Breast cancer non-independent meta-analyses: (A–C) bar plots demonstrate increases in the number of duplications and its impact on the bias
of estimated overall effect using MAD metric across drugs and selected genes with substantial (blue) and non-substantial (gray) estimated
heterogeneity estimation. Note that x-axis presents the number of duplicate study effects. (D) Violin plots show average of MAD values across non-
independent analyses per genes over median of Pearson correlation of each gene’s expression across studies: low (|r| < 0.3), medium (0.3 ≤ |r| <
0.7), and high (|r|≥ 0.7). Black dot at the box plot represents the median.
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Combining p-values and effects approaches are used to

aggregate results from separate independent analyses.

Although meta-analyses that combine p-values have widely

been used before, they were not able to address the direction

of effects and data heterogeneity (Marot et al., 2009). It was

denoted that p-values combination methods (Fisher and

Stouffer) are the most conservative and the HS RE model is

the least conservative to identify genes associated with drugs.

Among approaches for estimating between-study variance, SJ RE

method is the most conservative method. Assessing

heterogeneity is a critical issue in meta-analyses. Several

statistical methods are routinely used to identify the statistical

significance of heterogeneity which may lead to different

estimates of overall effect and different standard errors

(Veroniki et al., 2016; Guolo and Varin, 2017; Langan et al.,

2019). To address the uncertainty in the estimation of the

heterogeneity in a RE model when studies have either small

cell lines or are few in number, the Bayesian RE model was

proposed (Bodnar et al., 2017). The results indicated that the 95%

Bayesian confidence interval is considerably wider than the DL

method, while both DL and Bayesian procedures yielded the

same estimate for the overall effect. In addition, compared to the

Bayesian approach, the DL method detected no heterogeneity

which is comparable with reported results by Bodnar et al.

(2017).

The most substantial outcomes of the non-independent

studies are the significant differences in the estimates of the

overall effect. From the results of the simulation study, as the

FIGURE 6
Pan-cancer non-independentmeta-analyses: (A–C) bar plots demonstrate increases in the number of duplications and its impact on the bias of
estimated overall effect using MAD metric across drugs and selected genes with substantial (blue) and non-substantial (gray) estimated
heterogeneity estimation. Note that x-axis presents the number of duplicate study effects. (D) Violin plots show average of MAD values across non-
independent meta-analyses per genes over median of Pearson correlation of each gene’s expression across studies: low (|r| < 0.3), medium
(0.3 ≤ |r| < 0.7), and high (|r|≥ 0.7). Black dot at the box plot represents the median.
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number of non-independent effects increased, higher relative

MSE and lower-than-95% coverage probability were

observed. However, almost equal relative MSEs across

different numbers of non-independent effects were

observed in scenarios with small variation within and

across studies as well as large numbers of studies.

Regarding the pharmacogenomics data analyses, the results

indicated that by increasing the number of duplicate study

effects, bias of overall effect will increase and genes with

higher correlation denote less bias. In addition, when we have

more duplicate study effects, the overlap of detected

associated genes with drugs decreases and produces low

power of analyses and more false positive findings.

Early meta-analytic researchers noted the non-independent

study problem and suggested solutions. Doing nothing to correct

dependent effects or accepting duplication inflate the Type I error

and bias the estimated overall effect. Avoiding dependence by

averaging effects (Wood, 2008) or shifting unit-of-analysis

(Cooper et al., 2019) can reduce the variance between effects

while informative differences get lost. Additionally, including the

correlation between effects from the same study using

multivariate approach, determining the covariance of effects

across studies for overlap samples, and estimating the variance

components (e.g., between-studies and within studies) were

proposed to deal with non-independent effects in meta-

analyses (Becker, 2000; Lin and Sullivan, 2009; Hedges et al.,

2010; Van den Noortgate et al., 2015; Luo et al., 2020). The most

complex strategy is to model the dependence by proposing

multilevel models where the correlation between effect sizes

from the same study is not needed and separate estimates of

the different variance components are estimated. However, when

using multilevel models, it is very important to correctly specify

all relevant random effects in the model (Cheung, 2014; Van den

Noortgate et al., 2015; Cheung, 2019). Moreover, to combine

p-values under arbitrary dependency structures, the Cauchy

combination test (Liu et al., 2019; Liu and Xie, 2020) and the

harmonic mean p-value (Wilson, 2019) were proposed. However,

the proposed methods may be less powerful or even powerless

under some conditions (Chen, 2022).

In conclusion, we should carefully define the inclusion and

exclusion criteria and use these criteria to determine whether or

not the studies or the effects should be included. We have to

properly incorporate the dependence in a meta-analysis by

including the covariance of non-independent effects or

modeling the dependency. This research area remains

challenging. Novel powerful and robust tests for combining

non-independent effects are still highly desired.
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