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Quantitative systems pharmacology (QSP) modeling has become an increasingly
popular approach impacting our understanding of disease mechanisms and helping
predict patients’ treatment responses to facilitate study design or development go/
no-go decisions. In this paper, we highlight the notable contributions and
opportunities that QSP approaches are to offer during the drug development
process by sharing three examples that have facilitated internal decisions. The
barriers to successful applications and the factors that facilitate the success of
the modeling approach is discussed.
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Introduction

Since its advent as an approach described in the NIH white paper from 2011 (Peter et al.,
2011), quantitative systems pharmacology (QSP) modeling has gained popularity in drug
development. While the scope of QSP modeling needs further clarification (Bradshaw et al.,
2019), it includes an attempt to quantitatively unravel the complex mechanisms and
interactions between physiology and drugs (including investigational drugs) to predict
responses given a drug intervention. Systems biology-based models describe biological
pathways and their regulatory networks at molecular, cellular, tissue, and organ system
levels to further the understanding of biological processes (Loewe and Hillston, 2008).
Pharmacokinetic-pharmacodynamic (PKPD) modeling aims towards understanding
pharmacological responses by quantifying the relationship between observed drug exposure
and its observed non-clinical or clinical endpoints, often linking exposure to one endpoint
whilst QSP models are used to capture multiple longitudinal biomarker measurements
simultaneously in disease platform models. PKPD modeling is considered a top-down
approach such that it is driven by already-observed data, whereas systems biology-based
modeling is a bottom-up approach in that it starts from the fundamental understanding of
biological knowledge such as molecular or cellular signaling pathways to predict the behavior of
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biological systems (Figure 1). In this context, quantitative systems
pharmacology modeling can be considered as a balanced platform of
bottom-up and top-down modeling approaches, which allows
integration of biological knowledge available a priori and observed
data obtained posteriori to help drug development decisions in a
science-informed and practical way.

The availability of quantitative longitudinal data from non-clinical
research has led to the increased use of these models in the internal
decision-making process in pharmaceutical companies. QSP models
are developed at various biological scales ranging from cellular,
molecular, tissue, organ, patient, and/or population levels, thereby
highlighting the use of these models in delineating various multiscale
mechanisms of pharmacological responses (Nijsen et al., 2018). These
models have been used to determine the affinity required to engage a
target; aid the target validation and lead discovery stage; predict and
monitor drug response by identifying appropriate biomarkers; and
predict toxicity effects in various organs. QSP models are frequently
used for dosage regimen decisions for first-in-human studies by
utilizing a wide range of non-clinical data and published
competitor’s clinical data. In addition, the models allow cost-
effective assessment to help understand target engagement for
efficacy and safety risks for optimization of clinical study designs.
Furthermore, the QSP modeling approach can be also taken to
efficiently expedite development for an alternate drug indication
during life cycle management process wherein the drug targets
different diseases or patient populations via the same or similar
mechanism of action. There are several publications that emphasize
the emerging potential of QSP applications for pharmaceutical
research in improving drug development decision-making (Leil and
Bertz, 2014; Ramanujan et al., 2016; Bloomingdale et al., 2017;
Clausznitzer et al., 2018; Bradshaw et al., 2019; Aghamiri et al., 2022).

The availability of biological knowledge and data from the
preclinical stage allows development of QSP models, but the
sparsity and limited granularity of observed data still constrains
their predictive capability. Nevertheless, employment of these
models at the stage, where clinical data is yet to be collected, has
the potential to predict clinical responses to make an impact in the
decisions of dosage regimen, subject enrollment criteria, sampling/
monitoring times, biomarker-adaptive clinical trial design, rescue drug
intervention strategy, etc. The QSP approach has been used in various

therapeutic areas: a PubMed search with keywords “quantitative
systems pharmacology” AND therapeutic areas listed as
“autoimmune”, “cardiovascular”, “infection”, “metabolism”,
“neuroscience” or “oncology” yielded the following metabolic QSP
models amount to the highest number of models with a total of
112 cases; next is oncology with 45; cardiovascular models, 21;
neuroscience, nine; infection, 10; and autoimmune disease, 4, over
the last decade (as of December 2022).

QSP model applications in the clinical stage include further
addressing the biological mechanism of action of a therapeutic
agent; identifying biomarkers to predict clinical success; or
understanding disease pathology (Knöchel et al., 2022), which
provide a way to address clinical development decisions such as
biomarker interpretation, study subject enrollment stratification, or
competitive landscape evaluation (Ramanujan et al., 2016). An
example of a successful application of QSP models from a
clinician’s point of view may include offering insights on dosage
individualization, based on their biomarker levels, to improve the
probability of success of the treatment. Precision medicine will be
better achieved by providing appropriate diagnostic tools: these
technologies can help clinicians quantify multiple relevant
biomarkers to subgroup patients in their susceptibility to a disease,
prognosis, or likelihood of responding to a drug, and a QSP approach
can guide the decisions on which biomarker(s) is the most
informative.

Figure 2 is a schematic showing potential impact of systems
modeling in the drug development pipeline. In this paper, we
highlight the impact of QSP modeling via three case study
applications that answered specific questions in early drug
development. We show how various modeling approaches such as
agent-based modeling (ABM); hybrid modeling with ordinary
differential equations (ODE), partial differential equations (PDE),
and ABM; and non-linear mixed-effects modeling with ODE are
routinely used to influence the internal decision-making processes
at various drug development stages at AstraZeneca. Case 1 shows how
an agent-based modeling approach can be used in the context of
gastrointestinal safety assessment (predictions of chemotherapy-
induced diarrhea); Case 2 shows a hybrid model in the context of
cardiovascular diseases guiding study dosage regimen decisions in
human ventricular progenitor therapy development and Case 3 show
how a systems modeling approach was used in oncology for the
characterization of the interplay of longitudinal biomarkers given little
available data. The mathematical details (code and impact) of these
case studies will be discussed in separate stand-alone papers.

Case studies

Case 1: An agent based model (ABM) of the
gastrointestinal system

Chemotherapy-induced diarrhea presents a constant challenge for
the development of safe and tolerable drugs. It is among the primary
reasons for treatment interruption during drug development and
clinical trials: the incidence of chemotherapy-induced diarrhea has
been estimated to be as high as 80% (McQuade et al., 2016). For a given
chemotherapeutic compound, this toxicity can be mitigated by
carefully selecting a dose and a dosing regimen before a first-in-
human study, and these should be decided through non-clinical

FIGURE 1
Quantitative systems pharmacology models balance the models to
predict the pharmacological response via observed data-driven
pharmacokinetic-pharmacodynamic (PKPD) models and biological
knowledge-driven systems biology models.
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experiments and fit-for-purpose mathematical modeling and
simulations. Traditionally, non-clinical toxicity studies involve
animal experiments, but gastrointestinal toxicity does not always
translate between species: some dosages can be tolerated in animals
but are devastating to humans, and vice versa (Peters et al., 2020).

Purpose
We can surmount the interspecies difference by working with

human cells, usually in the form of enteroids/organoids/organ-on-a-
chip systems, but this approach is not without its own caveats. In vivo
crypts and organoids show marked differences, and though great
progress has been made to make these systems replicate in vivo crypts
as closely as possible, the results are not immediately translatable
(Peters et al., 2020). These differences include, but are not limited to, a
lack of a supporting mesenchyme layer (with signaling cells of its own,
which are involved in extensively studied injury-recovery feedback
mechanisms), zonation/compartmentalization differences due to the
different geometries, and mechanical/physical differences that are
relevant to cellular proliferation and mobility (caused by the
different geometries and surrounding environments). Therefore, a
dictionary is required to translate the in vitro data into clinical adverse
effect prediction observed in real patients, for which a QSP model is a
suitable choice.

Computational modeling approach
In pursuit of this dictionary, we developed an agent-based model

that simulated the interactions of individual cells (the agents)
interacting in the geometry of the crypt. The model incorporates
all the major cell types and multiple clinically relevant signaling
mechanisms. It replicates the geometry, physical and mechanical
forces and cell zonation of in vivo crypts and demonstrates many
experimentally observed phenotypes. With the assumption that the
mechanistic action of a drug is the same in organoids and real crypts,
we used this agent-based model to transfer the experimentally

observed effects in human-derived organoids into predictions of
chemotherapy-induced diarrhea in real patients. The model can be
viewed as an in silico organ that, by replicating multiple aspects of
human biology, can be used in the drug-discovery pipeline to make
safety and toxicity predictions, circumventing the need for animal
studies, and/or test biological hypotheses to gain mechanistic insight.

The intestinal crypt is particularly amenable to an agent-based
modelling approach (see (Meineke et al., 2001) (Pitt-Francis et al.,
2009) (Buske et al., 2011) for a selection of historic applications of
agent-based modelling to the intestinal crypt). The
compartmentalization of the cells in the crypt, and the inner
workings of signaling mechanisms that cause this, are well studied,
with bountiful single-cell data (including signaling knockouts (Riccio
et al., 2008), ablations of single types of cells (Tan et al., 2021), and
more (Liu et al., 2019)) with spatial and temporal resolution. Indeed,
building an agent-based model of the gastrointestinal crypt is not a
new concept, but our new model contains an unprecedented number
of sub-systems (internal protein networks and intercellular signaling
mechanisms), allowing it to recreate many clinically relevant
phenotypes, recovering from a variety of injuries in experimentally
verified fashion.

For the development of the model, we focused on three key
tenets (in roughly ascending order of importance): computational
speed/efficiency, modularity, and a focus on emergent behavior.
Computational speed has long plagued agent-based modelling
and is a topic of great interest. The simulation of all the agents can
be computationally intensive and hence time consuming
(Bonabeau, 2002), but in our current model, a full virtual drug
exposure with all analytics obtained from the model can be
calculated within minutes on a standard consumer laptop. In a
pharmacological setting, this is a vital feature: a quick, efficient
model allows many more trial simulations for greater accuracy in
results, increasing flexibility in testing hypotheses and vastly
improving ease of use.

FIGURE 2
Applications of quantitative systems models throughout drug development pipeline.
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The ABM is comprised of multiple sub-systems, such as those
describing intercellular signaling, the cell’s DNA integrity, the cell
cycle proteins, etc., which are mathematical models in their own right.
Each individual piece of the model was chosen according to current
knowledge, but this can, and will, change over time: because of this, the
sub-systems of the model are modular such that each sub-system is
easily replaceable without a full-scale reparameterization of the model.
This also allows us to expand the model to introduce new pathways
and modalities that may be required for better understanding of a
drug’s action.

We focused on five signaling mechanisms that have been
experimentally demonstrated to be vital for the correct functioning
of the intestinal epithelium (to-be-published work by Louis Gall et al.,
“An agent-based model of the mouse small intestinal epithelium enables
the prediction of the spatiotemporal dynamics of drug-induced events at
multiple scales”). Briefly, these are the following signalingmechanisms:
Wnt, Notch, BMP, ZNRF3/RNF43 and Hippo-YAP mediated contact
inhibition, which are all dynamically and continuously simulated in
the model, to maintain homeostasis and drive the model back to
homeostasis following injury. Based on these signals, the cells follow
rules which determine whether the cell should proliferate or
differentiate, and if so what type of cell to become. In total, we
considered seven types of cells (stem cells, absorptive progenitors,
secretory progenitors, Paneth cells, enterocytes, enteroendocrine and
goblet cells) that form over 99% of the intestinal epithelium (Haber
et al., 2017).

Cellular proliferation in the model is governed by internal cell
cycles simulated in each cell, represented by a previously published
mathematical model (Csikász-Nagy, 2009) with an additional set of

equations describing the cell’s DNA and RNA content. The cell cycle
proteins, along with the DNA and RNA levels, are used to govern
cellular proliferation: rising and falling cyclin levels thereby
determining a cell’s progression through the division cycle, and the
integrity of DNA is checked at cell cycle checkpoints. The model can
be viewed as a collection of individually simple rules that combine to
produce the complex emergent behaviors and phenotypes exhibited by
the crypt-villus complex. The net result of the myriad internal and
inter-cellular protein networks is a model that is driven constantly
towards the homeostatic state, capable of responding to and
recovering from injury and insult in a realistic manner. Here, it
should be stressed that we can still verify the model outputs with
comparison to experimental data, making the model quantitative.

All these sub-systems can be individually perturbed to simulate the
effects of drugs. The workflow of the model is shown in Figure 3. We
first coupled a PK model for the concentration of a drug to the sub-
cellular systems of the ABM, fitting the effects of the drug on single
cells according to the data obtained from organoid experiments. We
then simulate this drug-cell interaction in every cell of the ABM,
allowing us to replicate the propagation of this drug-induced injury
from the single-cell level to the entire epithelial tissue. We then
extrapolate this epithelial injury, which manifests as a reduction
cells in the villus compartment or a reduction of cells of a
particular type (e.g., goblet cell loss), to predict the probability of
adverse outcomes. For example, as presented in Figure 3, we associate
the risk of diarrhea to the severity and duration of epithelial cell loss in
the villus. This is the main translational step, wherein we used the
model to translate non-clinical experiments on organoids to robust
clinical predictions of gastrointestinal toxicity in real patients.

FIGURE 3
Workflow of the gastrointestinal agent-based model. (A) Mechanistic knowledge and drug effect gathered from organoid experiments, PK model for a
fictitious drug; (B) four subplots show key cell cycle proteins (top panel) and DNA and RNA integrity (bottom panel) for no therapy-induced perturbation (left
panel) and perturbation (right panel); (C) demonstrative picture of an ABM simulation of the crypt subject to drug injury with apoptotic cells shown in black; (D)
proportion of apoptotic cells at each cell position (left bottom panel); number of cells (same color codes as in (C))in crypt (top right panel) and villus
(bottom right panel); (E) pictorial demonstration of calculation of diarrhea risk, derived from duration and severity of epithelial cell loss, shaded region
represents the period the number of cells on epithelium is below the homeostatic amount. Pharmacokinetics (PK); Agent based model (ABM);
Deoxyribonucleic acid (DNA); Ribonucleic acid (RNA).
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We built an agent-based model with multiple clinically relevant
signaling pathways and internal protein interaction networks. The
core ABM can be viewed as a platform, which was designed to be
readily expandable, eliminating the need for the redevelopment and
parameterization of entirely new, bespoke models for each drug.
Rather than a collection of equations calibrated to explain known
data, we have constructed an in silico crypt structure which can be used
for hypothesis generation and the prediction of the toxicity and safety
risks of a drug. Our agent-based modelling was possible for the
gastrointestinal crypt because of the abundance of suitable data in
the intestinal epithelium, which can be difficult to obtain (in terms of
time and money, and experimental techniques needed to isolate and
analyze the relevant biological systems). The necessary information
includes temporal and spatial data (with a resolution of the scale of
individual cells), knowledge of the types, location and lineages of a
single cell and a clear understanding of the multiple signaling
networks that influence cell differentiation and zonation.

In summary, this modeling approach facilitates the translation
from experiments on human cells to real-world predictions of
gastrointestinal toxicity such as therapy-induced diarrhea. This
model may be further used for understanding of pathology to
develop a new drug related to intestinal cell structure (e.g.,
inflammatory bowel disease). We expect that this approach will
save time and money by reducing/removing the need for animal
experiments, and thereby expediting the development of safer and/or
more efficacious drugs for patients.

Case 2: Heart regeneration following
myocardial infarction

Myocardial infarction, the occlusion of a coronary artery and the
subsequent damage of myocardial tissue, can result in the death of up
to one billion cardiomyocytes. The lost cardiomyocytes cannot be
regained due to the limited regenerative potential of the adult
mammalian heart (Frangogiannis, 2015). A promising therapeutic
approach under development is the endovascular delivery of human
ventricular progenitor (HVP) cells to the infarcted region of the heart
with the goal of generating new cardiac myocytes that can be
assembled into a three-dimensional functional ventricular heart
tissue (Poch et al., 2022). Such an approach has the potential of
providing a safe and efficacious therapy leading to full cardiac
functional recovery for patients suffering from heart failure with
reduced ejection fraction (Foo et al., 2021).

Purpose
Myocardial regeneration is based on a complex interplay of cells

and molecular pathways spanning several temporal and spatial scales.
This therapeutic intervention interacts with the three-phased cellular
responses that follow a myocardial infarction: the inflammatory,
proliferative, and maturation phases (Humeres and Frangogiannis,
2019a). Predicting the time-dependent response of the treated tissue,
to maximize therapeutic potential, is a daunting task, which a reliable
computational model may facilitate by testing multiple therapeutic
scenarios in silico. Furthermore, the safety and efficacy of this
therapeutic intervention should, ideally, be assessed by reflecting
individual patient’s specific variables such as the location of the
HVP injection, the number of injections, and the number of cells
per injection.

Computational modelling approach
To model such a complex series of biological events, an ABM

framework was chosen, with ABMs falling within the broad category
of QSP models by integrating several scales from molecular pathways
to organ behavior. ABMs allow the tissue and organ level behavior to
naturally emerge from the simulated cellular level while also allowing
the integration of intracellular pathways and tissue level chemical
kinetics within their framework (Metzcar et al., 2019). The developed
computational model is a combination of ordinary differential
equations (ODEs) describing key intracellular pathways governing
cellular proliferation and differentiation; partial differential equations
(PDEs) describing tissue level chemical kinetics; and an overarching
ABM framework describing the cellular dynamics and connecting the
various scales together.

Given the complexity of this multifaceted biological response, the
most relevant biological mechanisms had to be selected to develop a
computationally reasonable model accounting for the sequela of
events between the initial myocardial insult and the HVP-driven
myocardial remodeling. As part of this selection process, every
biological event deemed important enough to be included in the
model went through an evaluation stage where different degrees of
simplification were applied: for example, (i) the complex post-infarct
chemokine field was modeled as a single representative chemotactic
agent (Rouillard and Holmes, 2014), (ii) key cell types such as host
cardiac myocytes, fibroblasts, donor HVPs, and endothelial cells were
considered in the parsimonious model, and (iii) two temporal phases
were defined - (a) the initial acute remodeling phase and (b) the
subsequent HVP delivery and its remodeling phase. An HVP
modeling and simulation workflow is shown in Figure 4A.

Acute remodeling phase
A region of damaged myocardial tissue, characterized by the

release of a representative inflammatory cytokine, is defined at the
start of the simulation within a larger area of healthy myocardium, in
turn characterized by an anti-inflammatory phenotype. The
representative cytokine field represents the combined effect of
transforming growth factor-β (TGF-β), fibroblast growth factors
(FGFs), interleukin-1β, tumor necrosis factor alpha (TNF-α) and
the other cytokines released during the initial inflammatory phase.
Host fibroblasts, dispersed throughout the entire cardiac tissue, are
modeled to react by migrating towards the injury site following the
cytokine gradient. After reaching the infarcted myocardial region,
these fibroblasts are modeled to secrete new collagen. At each timestep
the fibroblasts’ position and the cytokine field are updated, the latter is
described by a diffusion-reaction PDE. This remodeling phase is
assumed to last for up to 14 days (Humeres and Frangogiannis,
2019b). In addition to migrating toward the injury site and
secreting new collagen, host fibroblasts switch between an active,
pro-inflammatory phenotype and a dormant one depending on the
strength of the local cytokine field: the local cytokine field is evaluated
for each fibroblast and, if above a threshold, the fibroblast is
considered active. Fibroblasts proliferate and become apoptotic
after they reach a maximum number of proliferating events. The
collagen area fraction at the end of acute remodeling phase is shown in
Figure 4B.

HVP delivery and chronic remodeling phase
The model accounts for the time delay between infarction and

HVP cell injection in selected locations inside and around the
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infarcted tissue. The delivered HVPs mature over time and
differentiate into cardiac myocytes replacing the damaged tissue.
The new cardiomyocytes, by replacing non-contractile tissue, lead
to an improvement in the ejection fraction, the primary metric for
therapy evaluation. An example of simulation results of HPV
proliferation and differentiation is shown in Figure 4C.

In summary, a computational model of heart regeneration
following HVP cell injection has been developed to help identify
optimal delivery settings, on a patient-specific basis, for therapy-
planning via outcome prediction. The model is used to evaluate
the safety and efficacy of the therapy at the in vivo preclinical
stage, with the goal of employing it for clinical translation. In vivo
preclinical trials are expensive and time-consuming, with a parameter
space that is difficult to be fully investigated, with a caveat that the
results might be sparse and therefore difficult to interpret. QSPmodels
such as one presented here are, therefore, a promising avenue to
support experimental work. Given the complexity of the underlying
biological mechanisms and the multiple temporal and spatial scales
involved, the ABM framework has provided us with the ability to
connect different temporal and spatial scales seamlessly. Furthermore,
this approach can be also used to predict the effect of pharmacological
therapies (e.g., anti-arrhythmic drugs) and evaluate their effect on the
overall cell therapy outcomes, which prepares for the mitigation of
adverse events that might arise under specific therapeutic conditions.
The model has its set of challenges that include computationally and
biologically complex mechanisms: (i) multiple spatial and timescales
that lead to computational challenges to accommodate the time scales
of fast intracellular kinetics vs days/months of infarct remodeling at

the tissue/organ level and (ii) intricacies of the complex network of
cytokines regulating inflammation. Despite these challenges, this
modeling approach facilitates answering therapy development
questions like dose, injection site, and number of injection sites as
monotherapy or in combination with other pharmacological
interventions.

Case 3: Systems modeling to support dosing
and biomarkers sampling strategies in
immuno-oncology

Immuno-oncology (IO) is an essential part of the cancer
therapeutic arsenal for a variety of cancer types and stages. Tumors
use checkpoint proteins [e.g., the cytotoxic T lymphocyte-associated
molecule-4 and programmed cell death receptor-1 (PD1)] that
suppress immune system responses to evade detection, and
therapeutic interventions based on checkpoint inhibitions have
proven to be successful. However, there are still a lot of patients
who require different effective therapy (Haslam and Prasad, 2019),
and limiting regulatory T cells may be therapeutically effective (anti-
Treg) by directly reducing Treg activities, leading to indirect
augmentation of the function of effector T cells (Teff).

Purpose
QSP modeling approach was taken to answer if targeting Treg

enhances the efficacy of a checkpoint inhibitor (anti-PD1). Mice
experiments directly answer the question by observing tumor size

FIGURE 4
Agent-Based Model (ABM) of myocardial infarction (MI) and human ventricular progenitor (HVP) therapy. (A) clinical HVP therapy modeling and
simulation workflow; (B) collagen area fraction predicted by the ABM at the end of the acute remodeling phase of myocardial infarction; (C) simulation
example of HVP proliferation and differentiation: initial stage before HVP injection where only host fibroblasts are present (left) and final stage after HVP
injection where a mixture of host fibroblasts and HVPs are present (right). Size of the simulated domain (shown in mm) is 4 × 4 cm.
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changes, but they do not provide insights on longitudinal changes in
biomarkers due to the difficulty in sampling. With such a limitation of
data scarcity, QSP modeling was expected to help elucidate the
mechanistic interplay of anti-PD1 and anti-Treg on Treg and Teff
longitudinal changes.

Computational modeling approach
Instead of a full representation of the immune system with all its

components in the model, our systems modelling strategy focused on
specific components that characterize the major pathways while
maintaining connections among measurable biomarkers. In this
case study, the underlying dynamics are represented via two
components of the immune system: i) an immuno-response
component via cytotoxic effector T cells (Teff), which attack tumor
cells and ii) an immuno-suppressive component via Treg and PD1/
PDL1 (Programmed cell death-1/-ligand 1), which control immune
evasion mechanisms. These two components are modelled to
modulate the tumor growth that is assumed to continue if uninhibited.

The diagram in Figure 5A shows the model representation where
the tumor grows and sheds antigens that stimulate Treg and Teff; Teff
drive tumor killing; Treg downregulate the activity of Teff;
PDL1 binding to Teff downregulates Teff; and the PDL1 level is
increased by Teff. The QSP model was built using collected
longitudinal data of tumor size kinetics, Treg (measured via a
biomarker called Forkhead box P3: FOXP3) and Teff (associated
with a biomarker called granzyme B: GzmB). The pharmacological
treatments studied include an anti-Treg drug, a PD1 antibody (anti-
PD1) drug, and their combination. The inter-individual variability was

addressed using non-linear mixed effects modeling (Kosinsky et al.,
2018) by allowing the stimulation of the immune cells and the initial
inoculum size vary among mice.

Figure 5B shows that the model captured the heterogeneity in
tumor growth in the absence of any treatment. Administration of an
anti-PD1 drug or an anti-Treg drug at a projected therapeutic dose
resulted in tumor growth inhibition in some of the studied mice. The
combination of the treatments led to slightly more responders
compared to those of anti-PD1 only, although the number of
studied mice was small (responders: non-responders = 6:4 vs. 4:6).
The time-course effects on Treg (Figure 5C) and Teff (Figure 5D) by
the two monotherapies and their combination were predicted, given
the limited measured data: since the final biopsy sample was obtained
upon animal sacrifice at the end of the experiment, Treg and Teff data
were available at one time point from each non-responder mouse,
whereas the responder could not provide any measurable data due to
no tumor biopsy that can be taken.

The modeling approach provided insights into plausible
longitudinal changes of Teff and Treg despite limited measured
data. In non-responders with an anti-PD1 drug only, the Teff
activity did not change or decreased (Figure 5D) whereas the level
of Treg initially increases in most cases prior to a plateau or decrease
(Figure 5C). The initial increase in Treg is likely due to the
uncontrolled tumor growth and its subsequent antigen shedding
that stimulated the Treg activity. In contrast, the responders were
predicted to have a delayed Treg build-up while a sustained rapid
increase of Teff was observed. Both cell types subsequently decreased
upon the tumor disappearing in the responders.

FIGURE 5
(A) The diagram shows the tumor growing (“proliferation”) and being eliminated (“kill”) by effector T cells (Teff). Increased tumor death is assumed to
stimulate Teff and regulatory T cells (Treg) via antigen shedding leading to various stimulation. Teff upregulate PDL1 (green arrow) while their own activity is
downregulated by Treg cells (left orange inhibition line) and the PDL1 (right orange inhibition line). The inhibition by anti-Treg and anti-PD1 treatment are also
indicated (maroon inhibition line). Longitudinal experimental data (orange databases) for tumor size, Treg and Teff data were used to calibrate themodel.
The model captured the heterogeneity in (B) Tumor size, (C) Treg, and (D) Teff changes over time in non-treated (first column), anti-PD1 (second column),
anti-Treg (third column) and the combination (fourth column) treatedmice. The tumor size, Treg and Teff profiles for mice classed as responders are shown in
blue while non-responders are shown in red (several Treg profiles after anti-Treg treatments are hidden beneath the red decreasing non-responder profiles).
Regulatory T cells (Treg); Effector T cells (Teff); Programmed cell death ligand 1 (PDL1); Granzyme B (GzmB); Forkhead box P3 (FOXP3) protein.
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With the anti-Treg, Treg activity was depressed in most cases in
accordance with the treatment’s mechanism of action (several blue
responder Treg profiles after anti-Treg treatments are hidden beneath
the red non-responder profiles in Figure 5C). The dosing intervals of
anti-Treg (short half-life) were reflected as fluctuations in the
predicted Treg level. The Treg activity increased once the
treatment was terminated in the non-responder. Although the Treg
profiles showed high inter-individual variability even in the no-
treatment cohort, the responders were always predicted to have
robust increase in Teff, suggesting that Teff is a better predictive
marker for the response compared to Treg. In other words, while Treg
are the therapy target, the response is mainly driven by the intrinsic
capability of each mouse’s Teff that are stimulated by the tumor. The
Teff activity is masked by Treg in the absence of treatment, and when
an anti-Treg weakens the Treg’s inhibition effect on Teff, the increased
Teff activity becomes apparent. The combination of these drugs leads
to a synergistic process where simultaneous modulation of Treg and
Teff activity resulted in an enhanced response, although several mice
did not respond even in the combination.

This case study demonstrates that the longitudinal interplay of
tumor inhibition, Treg and Teff could be deciphered using the
modeling approach despite no or limited measured biomarker data.
Although the immune response mechanisms used in the model were
grossly simplified, the model could capture the observed main patterns
in the response and provide an understanding of the complex
dynamics associated with the response. Considering the hypothesis
that anti-Treg treatment as a combination with anti-PD1 would
provide additional treatment effects, longitudinal Treg profiles may
have been regarded more directly relevant for drug development
decisions. However, this case study indicates longitudinal Treg
profiles have high inter-individual variability, and the Teff profiles
may better predict pharmacological responses.

In summary, we developed a minimalistic description of immune
and immune-suppression activity by reflecting the observed two
longitudinal biomarkers of each study subject simultaneously,
although there are several other mathematical IO modeling
approaches (Sancho-Araiz et al., 2021). This approach ensured that
the link to the two targets under-consideration (PD1 receptor and
Treg cells) is explicit and the predictions could be interpreted with a
simple mechanism given the available limited data. Moreover, in our
approach we also captured the pre-clinical variability in response
through the non-linear mixed effect approach, which is not often done
within QSP applications.

Perspectives

This paper demonstrates the role of QSP modeling efforts in
AstraZeneca’s drug development program via case studies, which were
selected to cover a wide range of mathematical modeling methods
including agent-based modeling, partial differential equation
modeling, and ordinary differential equation modeling. Other
applications of systems modeling at AstraZeneca include evaluation
of new target pathways; optimization of compound physicochemical
properties; characterization of efficacy and toxicity mechanisms of
action; recommendation of treatment posology of monotherapies and
combination therapies by balancing efficacy and toxicity; and
guidance of study subject stratification strategies based on clinical
responder features. Particularly, quantitative systems modeling plays a

critical role in predicting clinical hematological toxicity risks by
translating preclinical data obtained from micro-physiological
systems (MPS), which use human hematopoietic stem cells and
progenitor cells in the bone marrow (Pin et al., 2021). The analysis
of MPS data is routinely performed to simulate clinical outcomes
under various dosage regimens for mono- and combination-therapies
to recommend the optimal dosage regimen to be studied in clinical
trials.

Given our understanding of the crucial role that QSP plays, some
challenges exist in the path towards achieving the goals set for QSP
models. The major challenge is the limitation in data to support
complex biological and pharmacological systems. Inconsistent,
imbalanced, missing and/or limited data in various datasets can
affect the prediction accuracy of these models (Cheng et al., 2022).
Fortunately, project experimentalists are willing to conduct studies to
generate essential data if such studies are both feasible to conduct and
considered valuable for better clinical prediction via modeling.
However, complex assay development and inherently complex
physiological systems result into scarcity of relevant multi-scale
data. These challenges may lead to modeling bias with incorrect
assumptions, which requires systems modelers to develop
computationally efficient methods to check the model performance
(e.g., multi-parameter model diagnostic profiling (Fey et al., 2015)).
Another notable challenge is the accessibility of models with
standardized annotation. To meet the accelerated timelines of
projects that require model-derived insights, available models in
the public domain can be adopted to answer compound-specific
questions thereby eliminating the need to build a model from
scratch. However, often times, these models can fail to run or fail
to reproduce published outcomes (Kirouac et al., 2019). The external
sharing of QSP models via markup languages and open-source code
will help enhance the reusability, and collaborative development of
these models (Fleisher et al., 2017). This is particularly important if
QSP models are to be accepted as a part of regulatory submissions
because, from a regulatory perspective, this transparency will improve
the admissibility of these models.

As tremendous time and effort is required to develop these
complex models, early engagement between modelers and the
project team is necessary. Due to the inherent nature of the QSP
model framework being multiscale; being computationally complex;
and requiring extensive data from non-clinical as well as clinical space,
early-stage planning and involvement of QSP modelers in the project
team are inevitable. The development and success of these models are
dependent on i) the quality, amount, and type of data available from
non-clinical to clinical research and ii) the interdisciplinary
collaboration among translational scientists, quantitative modelers
(who understand pharmacology and systems biology), and
clinicians. Especially, rapid advancement in new drug modalities
such as cell therapy, gene therapy, bis-specific engagers, antisense
nucleotides to name a few (that accompany a plethora of hypotheses
and missing information in addition to observed data) requires input
from various expertise to help integrate the available knowledge. This
further emphasizes the need for collaboration and makes it inevitable
to have continuing conversation, engagement among the modeler,
project team, and regulatory agencies regarding model use, model
credibility assessment, verification, and decision risk.

There is a steady rise in both QSP-related publications and
submissions to the US Food Drug Administration (FDA) (Zineh,
2019), but the inclusion of QSP models in regulatory documents is still
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at its early stages. In 2014, the US FDA evaluated an alternate dosing
regimen in the treatment of hypoparathyroidism, which was possible
using an open-source QSP model (Peterson and Riggs, 2010). Based
on the quantitative evaluation of the model, the FDA asked for
optimization of the dosing regimen to address safety concerns for
hypercalciuria. It is therefore important for QSP models to be
transparent, reproducible and be extended beyond the research
space to have an impact in drug development. A consortium-based
article by the UK QSP network group (created in 2015) outlined the
recommendations and provided a checklist of best practices for QSP
models that can enhance the quality, reproducibility, and further
applicability of QSP models (Cucurull-Sanchez et al., 2019). Gadkar
et al. highlighted the important components of the QSP modeling
process crucial for success, which includes the identification of
impactful questions, understanding of time constraints and agreement
on feasible modeling goals as crucial parts of project initiation (Gadkar
et al., 2016). FDA scientists discussed model calibration, validation, and
performance of a few published QSP models and proposed a list of
questions to be addressed for the QSP model assessment to establish
common expectations (Bai et al., 2019).

The systems modeling approaches have been useful for
company’s discussions thereby facilitating go/no-go decisions or
study design decisions. While the potential of QSP modeling
approaches need more clinical verification, the future iterations of
these models with clinical data from various stages can especially aid
in reducing the Phase I concerns on safety, assisting in repositioning
Phase II efficacy ‘failures’, and/or assisting in patient increase
responder rates by proposing study subject stratification strategy
(few listed in Figure 2). It is important to note that as clinical
development is expensive compared to non-clinical and early

development, tailoring each step of drug development with earlier
quantitative pharmacological understanding of a drug candidate can
aid overall financial savings. With the recent advancement in
biomarker assay methods, novel non-clinical experiment systems,
and high computing power, in addition to an interest in model-
informed drug development by academia, regulatory agencies, and
pharmaceutical companies, we anticipate more successful use cases
of QSP modeling integrated in drug development and regulatory
decisions.
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