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Abstract. Modal-based reduced-order models are preferred for modeling structures due to their computational
efficiency in engineering problems. One of the important limitations of the classic modal approaches is that they
are geometrically linear. This study proposes a fast correction method to account for geometric nonlinearities
which stem from large deflections in cantilever beams. The method relies on pre-computed correction terms and
thus adds negligibly small extra computational efforts during the time domain response analyses. The accuracy of
the method is examined on a straight-beam model and International Energy Agency (IEA) 15 MW wind turbine
blade model. The results show that the proposed method increases the accuracy of modal approaches significantly
in secondary deflections due to nonlinearities such as axial and torsional motions for the two studied cases.

1 Introduction

Reduced-order models (ROMs) based on a modal approach
are used in many structural engineering problems such as
wind turbine blades (Hansen, 2015), aircraft wings (Bis-
plinghoff et al., 2013) and spacecraft (Marshall and Pelle-
grino, 2021) due to their computational efficiency and rea-
sonable accuracy. These ROMs are based on the small-
deflection assumption; in other words they use constant stiff-
ness, mass and damping matrices which are not updated by
deflections unlike nonlinear models. Hence, the accuracy of
modal-based ROMs reduces as deflections increase and their
errors become significant for applications with large deflec-
tions such as long and flexible wind turbine blades or aircraft
wings. Moreover, the error in structural response amplifies
the error in aeroelastic response and load analysis due to the
coupled nature of the problem.

The large deflection effects on aeroelastic stability and
loads for wind turbine blades (Kallesøe, 2011; Beardsell
et al., 2016; Collier and Sanz, 2016; Riziotis et al., 2008)
and aircraft wings (Cesnik et al., 2014) are now well known.
Although these effects can be modeled in some aeroelastic
tools by using geometric nonlinear structural solvers (Larsen

and Hansen, 2019; DNV, 2016; Wang et al., 2017; Bauchau,
2009) where the stiffness matrix terms are a function of
deflections or in other words nonlinear, linear modal-based
ROMs are still in use even for structures with large deflec-
tions such as wind turbine blades (Branlard, 2019; Jonkman
and Buhl, 2005; Branlard and Geisler, 2022) due to their
speed. Therefore, it is very desirable to increase accuracy
with negligible extra computational demand for such tools.
This is fully aligned with the main focus of the present work.

The focus of this study is cantilever beam structures and
their reduced-order models (ROMs) based on modal ap-
proaches used in coupled simulations such as aeroelasticity
and load simulation of wind turbines and aircraft. A new cor-
rection method for moderately large bending deflection ef-
fects is proposed for modal-based ROMs. The method has
possible minimum computational cost during the coupled
analysis, since it includes only some correction terms which
do not require any extra iteration during the response analy-
sis.

There are many studies in the literature on geometri-
cally nonlinear ROMs, and most of them focus on clamped–
clamped beams or simply supported panels. Table 1 shows
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Table 1. Overview of the studies with cantilever structure models. The methods, reduction bases and example cantilever structures used in
the reference studies are given together with applied forces and maximum deflections in terms of span length.

Reference Method Reduction Example Force Max
basis structure direction deflection

Kim et al. (2009) Displacement based Bending modes+ 2D straight One bending 50 % of span
Non-intrusive with expansion modes beam direction
von Kármán kinematics

Wang et al. (2013) Displacement based Bending modes+ An unmanned One bending 25 % of span
Non-intrusive with expansion modes aircraft wing direction
von Kármán kinematics

Jain et al. (2017) Intrusive with Quadratic basis+ A wing model One bending 2 % of span
von Kármán kinematics modal derivatives direction

Rutzmoser et al. (2017) Intrusive with Different quadratic 2D straight One bending 30 % of span
von Kármán kinematics bases beam direction

Wu et al. (2018) Intrusive with Rubin basis+ NREL 5 MW Two bending 1 % of span
von Kármán kinematics modal derivatives blade directions

Gözcü and Dou (2020) Force based Linear modes+ 3D straight-beam Two bending 10 %–20 % of span
Non-intrusive modal derivatives NREL 5 MW blade directions

This study Linear approach Linear modes 3D straight beam Two bending 20 % of span
Correction terms IEA 15 MW blade directions

some prominent works with cantilever structures from the
literature together with the methods and examples used in
them. The methods shown in Table 1 are either intrusive
or non-intrusive. In the former, the nonlinear stiffness ma-
trix terms in modal space are derived analytically, while the
latter assumes a cubic relation between modal amplitudes
and internal forces and the coefficients are determined with
static analysis. As shown in the table, most of the work uses
von Kármán kinematics, which are very useful for deriving
the nonlinear stiffness terms as a function of displacements,
and it captures the moderately large deflections accurately
when plate or shell elements are used.

Intrusive and non-intrusive methods require reduction
bases where the displacements are a nonlinear function of
modal amplitudes. In the given studies a quadratic relation
between displacements and modal amplitudes is used with
modal derivatives or expansion modes which are called “dual
modes” in some studies. All of these studies, except Gözcü
and Dou (2020), are limited to beam models with forces ap-
plied in a single direction or forces in two bending directions
with bending deflections less than 2 % of the beam span.
Moreover, the methods used in existing studies require much
more computational time than linear ROMs due to the itera-
tive solutions required by nonlinear stiffness matrices. On the
other hand, our proposed method uses a linear reduction ba-
sis and linear stiffness matrix for computing deflections and
corrects the linear deflection results with some quadratic vec-
tors for capturing large bending deflection effects. It may be
less accurate compared to the ROMs with nonlinear stiffness

terms; however it has a very similar computational speed to
the existing linear ROMs and is easy to implement into ex-
isting aeroelastic tools compared to nonlinear models.

The focus of nonlinear ROMs in the literature is gener-
ally to use the same model for response and stress analysis.
On the other hand, this study aims to come with a fast and
accurate ROM correction method that is suitable only for re-
sponse analysis and not for stress analysis. The main contri-
butions of this paper are

– the selection of the important physics for the given ap-
plications and thus justification of particular method
choice (i.e., displacement-only correction),

– a proof of method suitability using a high-fidelity model
with prescribed external loads on both simple and com-
plex geometries.

The paper is divided into the following sections. The kine-
matics of the cantilever beam problem relevant to this study
are explained in Sect. 2, and the proposed method is ex-
plained in Sect. 3. Example cases are introduced and their
results are given together with discussion in Sect. 4, and the
conclusion is given in Sect. 5.

2 Relevant kinematics

This section explains the kinematics of cantilever beams and
geometric nonlinear effects due to large bending deflections
for symmetric beams and initially curved beams such as wind
turbine blades.
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Figure 1. Displacements of a cantilever and a clamped–clamped
beam under laterally distributed loads F . The deflected beam
length (Ldef) is equal to the undeflected length (Lundef) for the can-
tilever beam, resulting in zero axial strain. The clamped–clamped
beam has axial strain due to elongation in beam length.

Although there are many research studies about geomet-
rically nonlinear ROMs, most of them focus on clamped–
clamped beams or simply supported plates. In the clamped–
clamped case, the nonlinearity arises due to the length change
where a lateral deflection actually alters the length of the
structure which causes an additional stiffness effect such
as hardening or softening depending on the sign of length
change. This effect is referred to as the membrane effect
or bending–extension coupling (Touzé et al., 2021). In the
case of cantilever beams, a lateral deflection due to lateral
forces does not result in length change (no axial strain), so
there is no bending–extension coupling for cantilever beams.
However, the free end of a cantilever beam is displaced in
the beam span direction to keep the length constant when
it bends as shown in Fig. 1. In other words, the cantilever
beams with lateral loading go through large rotations which
do not result in any strain.

The cantilever beam in its deflected state can display a
bending–torsion coupling behavior that is not seen in the
undeflected state of the straight symmetric cantilever beam.
Figure 2 depicts these kinematics using a straight cantilever
beam. The lateral force (Fx) deflects the beam to “State-1”.
Subsequently, the force perpendicular to Fx is applied to the
beam which is now at “Final State”. It is observed that the
beam deflects not only laterally and vertically but also in the
torsion direction, even though there is no torsion load. Ge-
ometrically linear models (such as ROMs based on a modal
approach) can capture bending deflections but not the torsion
deflection for this problem, since their stiffness matrices are
not updated by new states or deflections.

These kinematics become even more prominent for ap-
plications such as wind turbine blades, which are ini-
tially curved structures due to prebend. They already have
bending–torsion couplings at their undeflected states, but the
lateral deflections change the magnitude as well as the direc-
tion of this coupling. Figure 3 shows the torsion deflection
due to the combination of flapwise and edgewise deflections
of a wind turbine blade with prebend at its undeflected posi-
tion. The edgewise and torsion motions are already coupled
for a blade with prebend as shown in the figure. However
this coupling first reduces and then changes sign with flap-

Figure 2. Illustration of beam deflections in lateral directions and
the resulting torsion motion due to the bending–torsion coupling at
the deflected state. The lateral (x, y) and axial (z) directions are
given in beam root coordinates.

wise bending deflections. As the blade goes through sinu-
soidal edgewise bending deflections due to gravity and rota-
tion, the torsion induced by edgewise–torsion coupling also
alters blade loads and aeroelastic stability (Kallesøe, 2011).
These coupling effects become significant for very flexible
wind turbine blades. In the case geometrically linear mod-
els like classical ROMs based on modal reduction are used,
the change in torsion–edgewise coupling cannot be captured
correctly for large blade deflections.

Here, the kinematics of a cantilever beam due to bend-
ing deflections are explained and kinematics due to axial–
bending coupling are left without mentioning since the pro-
posed method is developed only for secondary effects due
to large bending deflections of cantilever beams. Hence,
the method cannot capture stiffening effects with centrifu-
gal force (Wallrapp and Schwertassek, 1991; Branlard and
Geisler, 2022) which comes from bending–extension cou-
pling. However, centrifugal stiffening is already corrected for
linear models in existing tools such as Flex (Branlard, 2019)
and FAST (Jonkman and Buhl, 2005). In this study, mode
shapes at an undeformed state without centrifugal stiffen-
ing effects are use, since the mentioned existing tools com-
pute blade mode shapes at undeflected states. However, the
method is not limited with undeflected state modal analysis,
and it can also work with mode shapes computed at any de-
flected state.

3 Method

The nonlinear geometric effects of a cantilever beam can be
captured by nonlinear ROMs using different methods (in-
trusive or non-intrusive; see Table 1) and a reduction basis
where linear modes are used together with quadratic vectors
such as expansion modes (Hollkamp and Gordon, 2008) or
modal derivatives (Idelsohn and Cardona, 1985). It is ob-
served that effects of nonlinear stiffness terms such as stiff-
ening are not significant in bending directions for moderately
large deflections of a cantilever beam. On the other hand, the
geometric nonlinear effects explained in Sect. 2 are still ap-
parent for cantilever beams.
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Figure 3. Illustration of wind turbine deflections in flapwise (y) and edgewise (x) directions and the resulting torsion motion due to the
bending–torsion coupling at the deflected state. The lateral (x, y) and axial (z) directions are given in blade root coordinates. The effective
blade length is the projected length onto the root coordinate system in the axial direction. The edgewise–torsion coupling at the initial blade
position has an opposite direction in comparison to the edgewise–torsion coupling at the deflected blade position.

These kinematics together with other nonlinear effects
such as centrifugal stiffening are captured very accurately
by geometrically nonlinear models which come with much
higher computational cost compared to linear ROMs. Our
method uses linear ROMs which use linear mode shapes,
stiffness, mass and damping matrices for response calcula-
tion, and quadratic vectors are added to the linear response
results to capture large bending deflection effects. In the stud-
ies where intrusive methods are used, modal derivatives are
generally preferred as quadratic vectors for deriving nonlin-
ear stiffness terms in modal space. For non-intrusive meth-
ods, the terms for the cubic relation between modal ampli-
tudes and reduced stiffness terms are obtained from some
static solutions and the reduction basis includes generally ex-
pansion modes. In this study, both modal derivatives and ex-
pansion modes are investigated as correction terms for large
bending effects. The formulation and calculation process of
these vectors are explained below.

3.1 Modal derivatives

The modal derivatives (MDs) are quadratic vectors which in-
clude secondary effects that occur due to large deflections
(geometric nonlinearities) (Idelsohn and Cardona, 1985; Wu
and Tiso, 2014). The quadratic relation needs to be writ-
ten between physical displacements (u) and modal am-
plitudes (q) for defining modal derivatives. So, they can
be thought of as a second derivative of physical displace-
ments (u) with respect to modal amplitudes (q) when the
displacements are represented as a function of modal am-
plitudes. When Taylor series expansion of the displacements
around an equilibrium state (u0 = u(q0)) is written, the first
term (u(q0)) is the equilibrium state, the first derivative rep-

resents the linear mode shapes and the second derivative term
includes the modal derivatives as shown in Eq. (1).
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In this study, the equilibrium state is taken as the initial
state where u0 = 0 (undeflected state) and Eq. (1) can be
written in terms of mode shapes and their derivatives at the
initial state as

u(q)≈8 · q +
1
2

(
∂8

∂q
· q

)
· q +O

(
‖q‖3

)
, (2)

where 8 is linear mode shapes, u is the displacement vector
and q is the modal amplitude vector. The displacement vec-
tor is a function of time (t) and position (x), whereas mode
shapes are only a function of position (x) and modal ampli-
tudes are only function of time (t). So, they can be written
as u(t,x), q(t) and8(x); however their time and position re-
lations are not included in the equations for simplicity. The
linear mode shapes (8) and corresponding natural frequen-
cies (ω) can be found by the generalized eigenvalue solution,(

K−ω2
i M

)
φi = 0, (3)

where K and M are the tangent stiffness and mass matri-
ces and ωi and φi are the ith eigenvalue and corresponding
eigenvector (mode shape vector). The tangent stiffness is the
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Jacobian of the internal force with respect to the displace-
ment. It is a generalization of the linear stiffness matrix in
the nonlinear case. Here the tangent stiffness and mass ma-
trices are computed at the initial state (u0 = 0) for the pur-
pose of solving eigenvalue problems. As seen in the later
derivation in this section, the tangent stiffness at the deflected
state is also required to compute the modal derivatives. The
modal derivatives are calculated by taking the derivative of
the eigenvalue problem shown in Eq. (3) with respect to
modal amplitude qj .

∂

∂qj

((
K−ω2

i M
)
φi

)
=

(
∂K
∂qj
−
∂ω2

i

∂qj
M−ω2

i
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) ∂φi
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To determine the derivative of φi and ωi with respect to the
j th modal amplitude qj , another equation is needed. This
equation can be chosen as Eq. (5), where φi is the mass-
normalized mode shape vector.

∂

∂qj
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where φTi Mφi = 1. (5)

When Eqs. (4) and (5) are combined, the modal derivative
of the ith mode shape vector φi and natural frequency ωi
with respect to the j th modal amplitude can be determined
by[(
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Equation (6) contains all the terms that are required to com-
pute the modal derivatives. The derivation of modal deriva-
tives is similar to the derivation of the sensitivity of eigen-
modes and eigenfrequencies with respect to a design variable
in structural optimization.

For computation of modal derivatives, the terms related to
inertia effects (i.e., mass matrix and its derivatives) are gener-
ally ignored, since their contribution to the modal derivatives
is very limited (Rutzmoser et al., 2017). The derivative of the
eigenvalue can also be assumed to be zero due to the fact the
eigenfrequencies of the slender cantilever beams are not sen-
sitive to the vibration amplitude. These assumptions lead to
static modal derivatives which are symmetric, whereas modal
derivatives computed from Eq. (6) are not necessarily sym-
metric.

∂φi

∂qj
=−K−1 ∂K

∂qj
φi (7)

For conciseness, the static modal derivatives are sim-
ply called modal derivatives (MDs) hereafter. In Eq. (7),
the derivative of the stiffness matrix with respect to the

Figure 4. Bending deflection of a straight beam in the first mode
shape and its representation by linear mode shape and its modal
derivatives.

j th modal amplitudes, i.e., ∂K
∂qj

, is needed to compute the
modal derivatives. In this study, the derivative of the stiffness
matrix (K) with respect to the j th modal amplitudes (qj ) is
computed by central finite differences as

∂K
∂qj
=

K
(
φj δj

)
−K

(
−φj δj

)
2δj

, (8)

where K(φj δj ) is the tangent stiffness matrix when the sys-
tem displacements equal φj δj . The tangent stiffness ma-
trix at the deflected state of the structure by a given am-
plitude of δj is computed with a geometrically nonlin-
ear beam solver based on the co-rotational formulation
(https://doi.org/10.5281/zenodo.7533686) in Krenk (2005).
The calculation of ∂K

∂qj
from Eq. (8) is the only step where

a geometrically nonlinear solver is required. When the stiff-
ness matrix derivatives are ready, the computation of Eq. (7)
is straightforward, since the rest of the equation consists of
the stiffness matrix and linear eigenvectors at the undeflected
state. The tangent stiffness matrix at the undeflected state
is actually the linear stiffness matrix which is used in ex-
isting modal approaches. There are MMD number of modal
derivatives which are computed forM number of linear mode
shapes. The relation between M and MMD can be written as

MMD =
M × (M + 1)

2
. (9)

Figures 4 and 5 are used to give visual understanding of the
modal derivatives. Figure 4 shows bending of a straight beam
with an airfoil cross-section in one direction and its repre-
sentation by a linear bending mode and its modal derivative
by itself. The linear bending mode shape does not have any
displacement in the axial (spanwise) direction, so the total
(curved) length of the beam increases. The modal derivative
vector of the bending mode shape with respect to its modal
amplitude includes the axial displacement effect. When the
linear bending mode and its modal derivative are summed,
the axial displacement and bending effects are captured to-
gether.

Figure 5 shows the modal derivatives that are similar to
that in Fig. 4 except that the deflections occur in two bending
directions at the same time. Hence, together with the axial
displacements, there is also a torsion effect due to the cou-
plings at the deflected state. The linear modal approach is

https://doi.org/10.5194/wes-8-109-2023 Wind Energ. Sci., 8, 109–124, 2023

https://doi.org/10.5281/zenodo.7533686


114 O. Gözcü et al.: A correction method for large deflections of cantilever beams with a modal approach

Figure 5. Bending deflections of a straight beam in lateral (x and y)
directions and the representation of the deflections by linear mode
shapes and their modal derivatives.

only capable of capturing the bending deflections in two lat-
eral (x and y) directions. The axial displacements are cap-
tured by the modal derivatives of each bending mode shape
with respect to its own modal amplitudes in Fig. 5, whereas
the torsion effects are included in the cross-modal deriva-
tive vectors which are the derivatives of one bending mode
shape with respect to the modal amplitudes of another bend-
ing mode in the other direction.

3.2 Expansion modes

Expansion modes are similar to modal derivatives, but they
are computed by a non-intrusive approach (Hollkamp and
Gordon, 2008). The expansion modes also contain the sec-
ondary effects such as the axial and torsion motions caused
by the bending motions. These vectors are computed from
the difference between the deflections computed by linear
ROMs and the nonlinear deflections. The difference is writ-
ten as a function of the selected order of modal amplitudes,
and a quadratic (second-order) relation is used in this study.
Nonlinear deflections for static cases are computed in a geo-
metrically nonlinear solver. In the expansion mode approach,
the physical displacements are represented as

u(t,x)≈8(x)q(t)+8EM(x)qEM(t), (10)

where 8 and 8EM are the matrices whose columns are the
linear modes and the expansion modes, x is position, and
t is time. The expansion mode amplitudes qEM are quadratic
functions of the bending modes and can be written in terms
of the M linear mode amplitudes as

qEM =[
q2

1 q1q2 . . . q1qM q2
2 q2q3 . . . q(M−1)qM q2

M
]T
, (11)

where qi is the ith linear mode amplitudes. The relation be-
tween the number of linear modes (M) and the number of
corresponding expansion modes (MEM) is

MEM =
M × (M + 1)

2
. (12)

So, there are the same number of modal derivatives and ex-
pansion modes for the same number of linear modes, since
both of these vectors represent the quadratic relation between
deflections and modal amplitudes.

While the above Eq. (10) defines the expansion modes, the
procedure to compute the expansion modes is given below.

First, a set of static analyses are performed. The applied
forces are chosen as a combination of two linear mode
shapes (8), which can be written as

f =K
(
λi8i + λj8j

)
, (13)

where λi and λj are the prescribed scaling factors for the
ith and j th linear mode shape. The nonlinear displace-
ments (u) are computed with a geometrically nonlinear
solver for the loads f .

Second, the amplitudes of the linear modes, i.e., q, are
computed from the applied loads as

8TK8q =8T f =Krq = f r

q =K−1
r f r, (14)

where K and Kr are the full and reduced stiffness matrices
and f and f r are the full and reduced force vectors. When
the applied forces (f ) are known, q can be computed.

Once we have the linear modal amplitudes (q), the cor-
responding expansion modal amplitudes (qEM) can be com-
puted by using Eq. (11).

Then, the nonlinear displacements, the amplitudes of the
linear modes and the amplitudes of the expansion modes can
be collected into three matrices: U ∈ RN×Nk , Q ∈ RM×Nk
and QEM ∈ RMEM×Nk . Here each column of the matrices cor-
responds to a static load case. All load case results can be
written in matrix form as

U≈8Q+8EMQEM. (15)

Equation (15) is similar to Eq. (10) except that Eq. (15) is
in matrix form where the nonlinear displacements U, the lin-
ear modes 8 and the amplitudes of the linear modes Q are
known from the above steps. The only unknown in Eq. (15)
is the expansion modes 8EM.

Finally, the expansion modes can be determined by using
the least-squares method:

8EMQEM = U−8Q−→ minimize
8EM∈RN×MEM

|U−8Q−8EMQEM‖, (16)

where ‖ ‖ denotes the Euclidean or L2 norm of the vector
and it is solved for modal expansion matrix 8EM.

It is noted that the expansion modes are very similar to the
modal derivatives. They are identical except the numeric dif-
ferences if the sets of the ith and j th are symmetric and the
force amplitudes λi and λj are small enough. The computa-
tional cost of the expansion modes is more expensive than
the modal derivatives, since their calculation requires solv-
ing more static problems than the calculation of the modal
derivatives. The difference in the computational cost is small
when the number of linear modes (M) is small. However, this
difference becomes significant when the number of the linear
modes is large.
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Further, it is noted that one can extend Eq. (11) to include
higher-order expansion modes corresponding to higher-order
polynomial terms of the amplitudes of the linear modes, for
example, the expansion modes for the cubic and quadratic
terms of the linear modal amplitudes.

3.3 Numerical implementation

As mentioned before, the modal derivatives or the expansion
modes are not included in the reduction space. Consequently,
only the linear mass, stiffness and damping matrices are used
in the dynamic response analysis. This is not the case for
other studies in the literature (see Table 1), which have used
the nonlinear stiffness terms in the modal space.

Algorithm 1 shows the procedure to obtain a structural re-
sponse with correction vectors for pure structural response
analysis where the forces are functions of time and for cou-
pled response analysis where the forces are functions of both
time and displacements. In this study, modal derivative and
expansion mode vectors are used as correction vectors.

4 Results and discussion

The proposed method is demonstrated in the case studies of
a straight cantilever beam and the blade of the International
Energy Agency (IEA) 15 MW reference wind turbine under
static and dynamic loads. The displacement results are given
to evaluate the effectiveness of the correction methods based
on the modal derivatives and expansion modes to capture the
large bending deflection effects. The reduced-order model re-
sults are compared with HAWC2 results for both static and
dynamic cases. HAWC2 (Larsen and Hansen, 2019) is an
aero-servo-hydro-elastic load analysis tool for wind turbines
and has been developed by DTU Wind and Energy Systems.
It uses multibody formulation with Timoshenko beam and
can capture geometric nonlinearities (Pavese et al., 2016). In
HAWC2, the z axis is along the axial direction, whereas the
x and y directions are lateral directions (see Fig. 3 for the
HAWC2 coordinate system).

4.1 Straight beam

A cantilever straight-beam model is used for static and dy-
namic load cases. Table 2 shows the general properties of the
beam, whose cross-section properties are constant along the
beam length and shear coefficients are very high compared
to the bending stiffness values, so it behaves like an Euler–
Bernoulli beam.

Figure 6 shows x, y, z displacement and torsion motion
components of the first two mode-shape vectors of the beam.
Since the beam is straight and has no material coupling, both
bending mode shapes have only one lateral-direction dis-
placement without any axial or torsion component. The first
mode shape is in the x direction, and the second one is in the
y direction.

Table 2. Straight-beam geometry and cross-section stiffness prop-
erties. Beam is clamped from its root.

Length Unit mass EIxx EIyy GJ
[m] [kg m−1

] [N m2
] [N m2

] [N m2
]

10.0 172.4 215× 104 869× 103 416× 104

Figure 7 shows modal derivative (MD) and expansion
mode (EM) vectors for first two mode shapes. The results
are very similar for MD and EM vectors. These vectors show
the sensitivity of a mode shape with respect to a modal am-
plitude. The vector names are given so that the first number
represents the mode number for the linear mode-shape vec-
tor whose sensitivity is computed with respect to the modal
amplitude of the mode number, which is given as the sec-
ond number in the vector names. Hence, MD-1-1, MD-2-2,
EM-1-1 and EM-2-2 show the sensitivity of a mode shape
with respect to its own modal amplitude, whereas MD-1-2
and EM-1-2 illustrate the sensitivity of a mode shape with re-
spect to another mode’s modal amplitude. Since MD-2-1 and
MD-1-2 are the same for static modal derivatives, only MD-
1-2 results are shown here. This symmetry case is also valid
for expansion modes (EMs), since they are also computed
for static cases. MD-i-i and EM-i-i vectors have only axial
displacements since their mode shapes are only in one lateral
direction. On the other hand, MD-i-j and EM-i-j have only
torsion motions, which represent the coupling between two
lateral directions.

The first test was carried with static loads in the x direc-
tion. The applied force vectors are determined from the stiff-
ness matrix (K), first mode shape 81 and amplification fac-
tor (λ) as

Fx = λK81, (17)

where mode shape 81 is normalized according to its maxi-
mum value.

Expansion mode shape and modal derivative results are
the same for this test case; therefore they are given together
in Table 3, which shows the tip displacements for the linear
ROM without corrections (“Lin.”) and with modal deriva-
tive (“MD”) and expansion mode (“EM”) corrections and
HAWC2 results. Modal derivative, expansion mode and lin-
ear ROM results are the same for lateral (x) deflections,
since uncoupled mode shapes result in zero values in lateral-
direction components (see Fig. 7) of modal derivative and
expansion mode vectors. Linear ROM error in the x direc-
tion increases as the deflections increases, and the error is
less than 5 % for deflections of 20 % beam length. Moreover
the linear model cannot capture any axial (z) displacement,
whereas correction factors work quite well. The axial (z)
deflection is a secondary effect and is captured by correc-
tions coming from modal derivatives and expansion modes,
whereas the linear model estimates zero displacement in the
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Algorithm 1 Response calculation with quadratic correction vectors.

– Model generation step (time independent and done once)

a. Generate the linear ROM from the finite element model:

(i) Compute the linear modes (φi ) from
(

K−ω2
i
M
)
φi = 0

(ii) Compute the reduced-order stiffness Kr, mass Mr and damping Cr matrices by Galerkin projection:
Kr =8

T K8, Mr =8
T M8, Cr =8

T C8

b. Compute the correction vectors:
For the modal derivatives see Sect. 3.1
For the expansion modes see Sect. 3.2

– Pure structural response analysis (forces are functions of time)

a. Compute the modal amplitudes for the linear ROM by solving the equation of motion:
Mrq̈(t)+Crq̇(t)+Krq(t)=8T f (t)= f r(t)

b. Compute the displacements by using the linear modes, the correction vectors and the linear modal amplitudes:
With MDs : u(x, t)=8(x) · q(t)+ 1

2

(
∂8
∂q · q(t)

)
· q(t)

With EMs: u(x, t)=8(x)q(t)+8E(x)qE(q)
The calculation of displacements (u(x, t)) does not have to be done at each time step and can be performed as a post-process after
the time simulations.

– Coupled response analysis (forces are functions of time and displacements)

a. Compute modal amplitudes for linear ROM by solving equation of motion:
Mrq̈(t)+Crq̇(t)+Krq(t)=8T f (t,u)= f r(t,u)

b. Compute displacements by using linear modes, correction vectors, and the linear modal amplitudes:
With MDs: u(x, t)=8(x) · q(t)+ 1

2

(
∂8
∂q · q(t)

)
· q(t)

With EMs: u(x, t)=8(x)q(t)+8E(x)qE(q)

c. Update the loads (f (t,u)) and apply the loads

Figure 6. x, y, z and torsion components of first two mode shapes of straight beam. Beam span is along the z axis.

z direction and 100 % error for all solutions. Modal deriva-
tive and expansion mode errors are increasing by deflections
and are much larger than bending (x) direction errors. The
two main sources of error in the secondary (z) direction are
truncation errors coming from Eq. (2) and the error in the

bending (x) direction, which is even amplified for secondary
effects due to the formulation.

Figure 8 shows x and z (axial) positions of the struc-
tural nodes computed from HAWC2, linear ROM, MD and
EM models for λ= 2 and λ= 3 load cases. The quadratic
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Figure 7. x, y, z and torsion components of modal derivative and expansion mode vectors. Beam span is along the z axis.

Figure 8. Straight-beam x and z (axial) positions for λ= 2 (a) and λ= 3 (b) load cases. The positions are shown for HAWC2, linear ROM,
MD and EM corrections.

Table 3. Straight-beam lateral (x) and axial (z) tip deflection results for HAWC2, linear model, MD and EM corrections together with the
errors in the models compared to HAWC2.

λ x-HAWC2 x-Lin./MD/EM x-error z-HAWC2 z-MD/EM z-MD/EM-err. z-Lin. z-Lin.-err.

1 0.991 1.000 0.9 % −0.057 −0.059 3.51 % 0.0 100 %
2 1.933 2.000 3.35 % −0.218 −0.236 8.26 % 0.0 100 %
3 2.790 3.000 7.0 % −0.459 −0.530 15.47 % 0.0 100 %

corrections capture the secondary effects all along the beam
length.

The second test case includes static loads in the x and y di-
rections. The load components are determined by similar for-
mulation given in Eq. (17). The x-force components are am-
plified by λ= 2.5, and the y-force components are amplified
by λ= 1.0. Figure 9 shows x, y, z displacements and tor-
sion deflections along the beam length. The linear model es-
timates x and y displacements quite accurately, and quadratic
vectors do not alter results in these directions, since they do
not have components in these directions (see Fig. 7). On the
other hand they capture the secondary effects in the z and

torsion directions due to geometric nonlinearities. The lin-
ear ROM cannot capture any axial (z) displacements and tor-
sion deflections. On the other hand, MD and EM corrections
result in accurate estimation of the secondary effect even
though the loads are applied in two directions. Hence, they
can also capture the couplings between different directions.

The last load case with the straight-beam model includes
dynamic loads in two lateral directions. The x-direction load
is constant with λ= 2, whereas the y-direction load is com-
puted as

Fy(t)=Mg sin(ωt), (18)
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Figure 9. Straight-beam x, y and z displacements and torsion motion results along the beam span. The static load has x and y components.

Figure 10. Straight-beam dynamic analysis tip x, y and z displacements and torsion deflections for HAWC2, linear ROM, MD and EM cor-
rections.

where M is the mass matrix, g is the acceleration vector and
ω is a given rotation frequency of the rotor. Note that the
beam does not rotate; only the load varies with the given
frequency. So, there is no axial (z) force due to centrifugal
effects. For this example the gravity vector has only y accel-
eration with a value of 9.81 m s−2, andω is taken as 1 rad s−1.
The simulation time step is 0.01 s.

Figure 10 shows tip x, y and z displacements and torsion
deflections for 100 s. The linear model can capture dynamics
in the y direction very accurately, and its x-direction results
are very close to HAWC2 results without any fluctuations af-
ter 60 s, which cannot be captured without nonlinear stiffness
terms (Gözcü and Dou, 2020). However these fluctuations
are very small compared to the overall displacements in the
x direction. On the other hand, linear ROM results are again

zero in axial and torsion directions, whereas MD and EM cor-
rections work very well even for the initial transition period.
Moreover, there is no phase difference between HAWC2 and
MD/EM results, which indicates that the nonlinear stiffness
effects are very small for cantilever beams with moderate de-
flections. The fluctuations in the x direction due to nonlinear
stiffness term effects show the limitation of this method even
though the fluctuations are very small.

4.2 IEA 15 MW turbine blade

The blade of the IEA 15 MW wind turbine is modeled as
beams in HAWC2 and FAST for load analysis (Gaertner
et al., 2020). It is a more complex structure in comparison
to the beam studied in the previous section. The blade has
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Figure 11. The lateral and torsional displacements of the first two mode shapes of the IEA 15 MW reference wind turbine blade.

Table 4. IEA 15 MW reference wind turbine blade: geometric di-
mensions, mass, and initial curvature limits in the prebend (y) and
twist directions.

Length Mass Tip prebend Max chord Twist range
[m] [t] [m] [m] [

◦
]

117 44.7 4.00 5.77 −15 to 2

material coupling terms and an initially curved shape due
to prebend (mostly in the y direction), aerodynamic twist
and being back-swept (mostly in the x direction). Hence, the
blade mode shapes are coupled in the x, y, z and torsion
directions unlike the straight-beam example. Besides, their
cross-section stiffness properties change over the span and
material couplings between lateral bending directions, and
torsion brings additional couplings in mode shapes. Table 4
shows the relevant blade properties.

The straight-beam example mode shapes are uncoupled
so that mode-shape vectors include non-zero values only in
one lateral bending direction. However, the mode shapes of
the turbine blade are coupled due to its geometry and cross-
section material couplings. Figure 11 shows the first two
mode shapes of the blade. The first mode shape of the blade
is mainly in the y (flapwise) direction with 0.5 Hz, whereas
the second mode shape is mainly in the x (edgewise) direc-
tion with around 0.7 Hz. Moreover, both mode shapes have
components in all directions including the z (axial) and tor-
sion directions. The second mode shape’s torsion coupling is
much stronger than the first mode shape’s coupling, whereas
it has weaker coupling in the axial direction than the first
mode shape.

Figure 12 shows x, y, z and torsion components of modal
derivative and expansion mode vectors for the first two mode
shapes. MD and EM vectors are very similar, and they in-

Table 5. IEA 15 MW blade mean modal amplitude results for last
50 s of the analysis.

q1 q2 q3 q4 q5 q6 q7

12.44 1.13 0.74 −0.17 0.23 0.28 0.34

clude components in all directions due to the couplings. The
difference between MD and EM vectors comes from the nu-
merical computation process. As seen in Sect. 3.2, expansion
modes (EMs) are computed via the least-squares method,
which uses all displacement and modal amplitude results
gathered in matrices, whereas each modal derivative (MD)
is computed independently. Since the IEA 15 MW reference
wind turbine blade mode shapes are coupled, there are non-
zero values at off-diagonal terms in the displacement matri-
ces used during the computation of EMs. This leads to some
numerical differences between MDs and EMs for the IEA
15 MW blade case.

The blade loads include aerodynamic loads at a steady
11 m s−1 wind speed, which gives the highest thrust force.
The steady aerodynamic loads for a symmetric rotor (no tilt,
no yaw) are time independent (static), and their torsion com-
ponents are not included for this example so that the torsion
due to mode-shape couplings and dynamic forcing is clearer
for this example. On top of the aerodynamic loads, the weight
of the blade is applied in the x (edgewise) direction with the
formulation given in Eq. (18), where ω is 1.0 rad s−1. There
are 15 linear mode shapes for the blade ROM, and quadratic
vectors for the first three modes are included only, since these
modes have very high modal amplitudes among all modes
(see Table 5).

Figure 13 shows the tip displacement results of the blade in
the edgewise (x), flapwise (y), axial (z) and torsion directions
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Figure 12. The first three modal derivatives and three expansion modes for the blade of the IEA 15 MW reference wind turbine. The lines
show the lateral and torsional displacements along the span of the blade length.

Figure 13. The lateral and torsional displacements for the blade tip of the IEA 15 MW wind turbine obtained by using HAWC2, the linear
ROM, MD correction and EM correction.

for linear ROM, HAWC2 and correction models. Since most
of the thrust force is in the flapwise direction, the largest dis-
placements occur in that direction with a mean displacement
around 13.4 m. The fluctuations in the y direction are mostly
due to couplings between mode shapes; in other words they
are mostly due to linear stiffness effects and not the nonlinear
stiffness effects unlike in the case for straight-beam example
(see Fig. 10, x-direction results). Since nonlinear stiffness ef-
fects are very small in x and y displacements, the results are
very similar in terms of magnitude and phase for all models.

The secondary effects become clear in the z (axial) and tor-
sion directions. The linear model has 0.84 m mean tip axial
displacement for the last 50 s due to mode-shape couplings
(see Fig. 11); however the HAWC2 model has−0.41 m mean

tip axial displacements for the same time period. Hence, the
linear ROM estimates a 2.5 m larger rotor diameter com-
pared to HAWC2. The modal derivative correction model has
−0.29 m and expansion mode correction model has−0.23 m
mean axial (z) displacements. They also represent the fluctu-
ations in the z directions much more accurately compared to
the linear model, which has almost no fluctuations for the last
50 s. The linear model maximum tip torsion error compared
to HAWC2 for the last 50 s is about 1.36◦. The maximum
tip torsion errors in MD and EM models for the last 50 s are
0.63 and 0.26◦. The correction modes also capture the phase
of torsion motion more accurately than the linear model,
which is out of phase with HAWC2 in the torsion direction.
In this study, the load time series are prescribed and not up-
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Figure 14. Spanwise deflection results at the time when the maximum torsion occurs (67.5 s).

Figure 15. Spanwise deflection results at the time when the minimum torsion occurs (70.66 s).

dated with deflection. In other words, the results are not ob-
tained for an aeroelastic analysis. On the other hand, the im-
portance of torsion motion will increase for an aeroelastic
analysis. The difference in mean torsion results is critical in
static aeroelastic analysis where the steady operating condi-
tions are determined. On the other hand, the difference in
torsion fluctuations will affect the damage-equivalent loads
(Gözcuü and Verelst, 2020) and aeroelastic stability analysis
(Kallesøe, 2011).

Figures 14 and 15 show the displacement results over the
blade span at the two selected time steps where minimum
and maximum torsion deflections are obtained in the last 50 s
from HAWC2 (shown with dashed black lines). These time
steps also correspond to maximum and minimum edgewise
displacements. At 70.56 s, where the maximum tip torsion
occurs, linear ROM results are quite accurate except z and

x displacement (see Fig. 14). On the other hand, MD and
EM results are much better than linear ROM results in all di-
rections for that moment. The linear ROM has 1.29 m error
in the z direction at the blade tip, whereas MD and EM er-
rors are less than 0.17 m for the blade tip in Fig. 15. The lin-
ear ROM predicts a nonphysical elongation in the z direction
because of the non-zero motion in the z direction in the lin-
ear mode shapes (particularly “Mode-1”) shown in Fig. 11.
In contrast, the two correction methods in this study are not
limited by the linear mode shapes. Both of the correction
methods provide a correct estimation of the shortening of the
blade in the axial direction.

Figure 14 shows displacement and torsion results along
the blade span at the maximum tip torsion moment (67.51 s
in Fig. 13). The linear ROM is quite accurate in the x and
y directions; however it has low accuracy in the z and tor-
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sion directions. Its total torsion error over the blade span
is 33.6◦, whereas MD error is 7.7◦ and EM error is 1.7◦

along the blade span compared to HAWC2 results. The z-
direction results are similar to minimum-torsion-moment re-
sults in Fig. 15.

One of the findings in Figs. 10 and 13 is that the fre-
quency of the vibration is not affected by the large deflec-
tions of the blade. Even the linear model can predict the vi-
bration frequency or the time period of the periodic response
in good agreement with HAWC2 simulation in the main de-
flection directions. In practice, this means that no correction
is needed for the vibration frequency in the case of large de-
flections. This also suits the application of the proposed cor-
rection method to a variety of slender cantilever structures
including wind turbine blades. Besides, this allows using cor-
rection terms to capture secondary effects due to geometric
nonlinearities for moderately large deflections.

5 Conclusions

This study introduced a correction approach for capturing
the geometric nonlinear effects in the reduced-order models
of cantilever beam structures which go through moderately
large deflections. The approach is examined based on two
different types of correction vector (i.e., the modal deriva-
tives and expansion modes), leading to similar results. Both
correction vectors can be pre-computed by using a geomet-
rically nonlinear beam solver and then used in the dynamic
response analysis. The advantage of this approach is its low
computational cost during the coupled response analysis. It
is suitable for integration into the aeroelastic analysis tools
that use the modal-based reduced-order models for the can-
tilever beam structures such as wind turbine blades and air-
plane wings.

The proposed method is demonstrated by using two case
studies, including a simple cantilever beam and the blade
for the IEA wind 15 MW reference turbine. For the simple
cantilever beam, its mode shapes are uncoupled in the sense
that the displacements in the two bending modes are orthog-
onal to each other. For the turbine blade, its mode shapes
are coupled because of its curved and twisted geometry and
complex cross-sectional properties. In the case study of the
simple cantilever beam, the correction vectors based on the
modal derivatives and expansion modes have identical results
and they captured geometrically nonlinear effects accurately
for the lateral deflections for up to 25 % of the beam length.
In the case study of the blade of the IEA 15MW reference
turbine, modal derivative and expansion mode vectors have
small deviations from each other, since they are computed
by different numerical processes. The blade axial displace-
ments estimated by the linear ROM are in the opposite di-
rection to the axial displacements in the HAWC2 results. In
other words, the linear ROM predicts a nonphysical elonga-
tion of the IEA 15 MW blade span for the given load case. In

contrast, the two correction vectors in this study give a good
estimation of the axial motion of the blade tip. Further, the
torsion displacements obtained by the linear ROM are out
of phase with the HAWC2 results, whereas the torsion dis-
placements obtained by using the two correction vectors in
this study are in phase with the HAWC2 results. The torsion
phase difference between the nonlinear solver HAWC2 and
the linear ROM is crucial for aeroelastic stability and load
analysis of wind turbine blades. The comparison of these re-
sults shows that the proposed correction method is capable
of accurately estimating the nonlinear dynamic response of
the cantilever beam structures with large bending deflections,
and it is also suitable for the wind turbine blades with curved
and twisted geometry and complex cross-sectional proper-
ties.

The study can be extended with an implementation of
the correction method into an aeroelastic tool that uses the
reduced-order models for airplane wings or wind turbine
blades. Further, the proposed correction method can also be
implemented based on machine learning methods such as
neural network models or adaptive kriging methods.

Data availability. The IEA Wind 15 MW reference
wind turbine model can be accessed from GitHub
(https://doi.org/10.5281/zenodo.6330754; Barter et al., 2022).
The beam formulation and co-rotational formulation for
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accessed from the GitLab of DTU Wind and Energy Systems
(https://doi.org/10.5281/zenodo.7533686; Gözcuü et al., 2022).
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