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Targeted alpha therapy (TAT) is a promising approach for addressing unmet

needs in oncology. Inherent properties make α-emitting radionuclides

well suited to cancer therapy, including high linear energy transfer (LET),

penetration range of 2–10 cell layers, induction of complex double-stranded

DNA breaks, and immune-stimulatory effects. Several alpha radionuclides,

including radium-223 (223Ra), actinium-225 (225Ac), and thorium-227 (227Th),

have been investigated. Conjugation of tumor targeting modalities, such

as antibodies and small molecules, with a chelator moiety and subsequent

radiolabeling with α-emitters enables specific delivery of cytotoxic payloads

to different tumor types. 223Ra dichloride, approved for the treatment of

patients with metastatic castration-resistant prostate cancer (mCRPC) with

bone-metastatic disease and no visceral metastasis, is the only approved and

commercialized alpha therapy. However, 223Ra dichloride cannot currently be

complexed to targeting moieties. In contrast to 223Ra, 227Th may be readily

chelated, which allows radiolabeling of tumor targeting moieties to produce

targeted thorium conjugates (TTCs), facilitating delivery to a broad range of

tumors. TTCs have shown promise in pre-clinical studies across a range of

tumor-cell expressing antigens. A clinical study in hematological malignancy

targeting CD22 has demonstrated early signs of activity. Furthermore,

pre-clinical studies show additive or synergistic effects when TTCs are

combined with established anti-cancer therapies, for example androgen

receptor inhibitors (ARI), DNA damage response inhibitors such as poly (ADP)-

ribose polymerase inhibitors or ataxia telangiectasia and Rad3-related kinase

inhibitors, as well as immune checkpoint inhibitors.
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1. Introduction

Despite drug discovery advances, an unmet clinical need
for novel oncology treatment modalities persists. Targeted alpha
therapy (TAT) represents one such modality, as α-particles have
several properties of potential value in cancer therapy. These
include high linear energy transfer (LET), short penetration
range, and induction of complex double-stranded DNA breaks
(1). High LET means a low number of hits are needed to
induce cell death (1), while the short-path length of α-particles
(50–100 µm) is expected to minimize damage to surrounding
healthy tissue (1). Furthermore, complex double-stranded DNA
breaks induced by alpha-radiation are hard to repair, promoting
cell cycle arrest and cell death (1, 2). TATs may also promote
T-cell infiltration through induction of immunogenic cell death
(3–6), or have increased potency against tumor cells with
alterations in DNA damage repair genes (cytotoxic radiation-
induced DNA damage increases their susceptibility to apoptosis)
(7–9).

Selective tumor targeting by TATs can be achieved through
two primary mechanisms: inherent radionuclide properties
(1) and the ability to chelate the radionuclide to a tumor-
targeting molecule (e.g., a monoclonal antibody, peptide
or small molecule) (1). Over the last 20 years, several
α-particle-emitting radionuclides have been investigated as
TATs, including: actinium-225 (225Ac, half-life 9.9 days);
astatine-211 (211At, half-life 7.2 h); bismuth-213 (213Bi, half-
life 45.6 min); radium-223 (223Ra, half-life 11.4 days); and
thorium-227 (227Th, half-life 18.7 days) (1). Lead-212 (212Pb,
half-life 10.64 h) is a β-emitter; however, it generates the
daughter nuclides bismuth-212 (212Bi) and polonium-212
(212Po), which are short-lived α-particle emitters (10). 223Ra
dichloride was the first and is still the only approved TAT
(11, 12), and is approved for use in metastatic castration-
resistant prostate cancer (mCRPC) with bone metastases (13,
14). 223Ra dichloride acts as a calcium mimetic and is
preferentially taken up in osteoblastic bone metastases (15,
16); it cannot currently be complexed to targeting moieties,
although recent developments have shown promise (14, 17).
Most other TATs, like targeted thorium conjugates (TTCs)
or targeted actinium conjugates, use isotopes chelated to
various targeting moieties. This enables delivery to a wide
range of tumors (14), extending the clinical application
of radionuclides.

2. Targeted thorium conjugates
and their mode of action

227Th, the progenitor of 223Ra, can be used in TTCs,
comprised of the 227Th α-emitting radionuclide, a chelator
such as octadentate 3,2-hydroxypyridinone (3,2-HOPO), and
a tumor-targeting moiety (13, 14). TTCs enable selective
delivery of 227Th to tumors by targeting antigens expressed

in cancer tissues but absent or at low levels in normal
tissues (2). For a therapeutic window, TTC characteristics
must allow for efficient delivery, accumulation and retention in
tumors, while sparing nearby healthy tissue (14). Cytotoxicity
results from the induction of clustered double-stranded DNA
breaks, followed by subsequent G2/M phase cell cycle arrest
and apoptosis (14). Immunogenic cell death has also been
demonstrated, occurring via increased tumor infiltration by
CD8+ T cells (5, 14). The activity of TTCs is not reliant
on cellular internalization of 227Th, given the α-particle
path length of 20–100 µM (2–10 cell diameters) in tissue,
a property which may overcome heterogeneous antigen
expression (14).

The relatively long half-life of 227Th (18.7 days) compared
with other radionuclides in current use for TAT (1) highlights
the need to identify appropriate targeting moieties that
complement the properties of 227Th. For example, while
typically longer than that of small molecules, the half-lives
of antibodies used as therapeutic agents vary considerably
(6–32 days) (17–19), suggesting that some may not be suitable
for delivery of a radionuclide with a longer half-life. For TTCs,
while it may be preferable to select antibodies with comparable
half-lives to 227Th, data are not yet available as to whether this
would be necessary for therapeutic efficacy.

When the 227Th component of a TTC decays, recoil energy
releases the daughter radionuclide 223Ra from the chelator (14).
Whilst data on the safety and biodistribution of 223Ra released
from TTCs are not available, 223Ra is well tolerated when
it is used as a treatment (20) and it is rapidly cleared from
plasma into the small bowel and excreted (21). Furthermore,
the amount of 223Ra released from a TTC will be much smaller
than that of a therapeutic dose of 223Ra. Daughter radionuclides
of 227Th that lie downstream of 223Ra in the decay cascade
have very short half-lives (14) and have no clinical consequence,
as indicated by the good tolerability of 223Ra as a cancer
therapeutic (20).

3. TTCs in cancer

Pre-clinical and clinical studies of TTCs have included
several tumor types expressing a range of different cancer-
related antigens (Figure 1).

3.1. Hematological cancers

Initial Pre-clinical studies focusing on hematological
cancers, targeting CD22 or CD33 in lymphoma and acute
myeloid leukemia (AML), respectively, demonstrated promising
anti-tumor activity (14, 22). Furthermore, CD22-TTC (BAY
1862864) has been investigated in a Phase 1 study in
patients with CD22-positive relapsed/refractory B-cell non-
Hodgkin lymphoma (23). In this setting, CD22-TTC was
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FIGURE 1

Timeline of TTC development. ARI, androgen receptor inhibitor; CD, cluster of differentiation; FGFR, fibroblast growth factor receptor; HER2,
human epidermal growth factor receptor-2; MSLN, mesothelin; PARP, poly (ADP)-ribose polymerase; PD-L1, programmed death-ligand 1; PDX,
patient-derived xenograft; PSMA, prostate-specific membrane antigen; TTC, targeted thorium conjugate; AML, acute myeloid leukemia; ATR,
ataxia telangiectasia and rad3-related protein; mCRPC, metastatic castration-resistant prostate cancer; ORR, overall response rate; TNBC,
triple-negative breast cancer; TEAE, treatment-emergent adverse event.

safe, with the most common grade ≥3 adverse events
being neutropenia, thrombocytopenia, and leukopenia (23).
Maximum 227Th blood concentrations increased proportionally
to the dose administered and stability of CD22-TTC in
the blood was demonstrated (23). The overall objective
response rate (ORR) was 24% (5/21 patients: 1 complete
and 4 partial responses), with the highest ORR seen in
patients with relapsed low-grade lymphomas [3/10 patients
(30%)] (23).

3.2. Renal cell cancer

CD27, part of the tumor necrosis factor receptor
superfamily, plays a vital role in T- and B-cell co-stimulation
(24). Physiological expression of CD70, the natural ligand of
CD27, is transient and restricted to activated immune cells
(24). However, CD70 dysregulation and overexpression has
been observed in several cancers (25–28), where it may play
a role in tumor progression and immunosuppression (29).
Therefore, CD70-TTCs have the potential to both eliminate
cancer cells and modulate immune responses. A CD70-TTC has
been shown to reduce cell viability in renal cancer cell lines and
significantly inhibit tumor growth in a renal cancer xenograft
model (25).

3.3. Breast cancer

Approximately 25–30% of breast cancers overexpress
human epidermal growth factor receptor-2 (HER2), which is
associated with more aggressive disease (30). Intrinsic and
acquired resistance to HER2-targeting antibodies or antibody
drug conjugates (ADC) necessitates development of novel
therapies (31, 32). A HER2-TTC, utilizing the HER2 antibody
trastuzumab (227Th-trastuzumab), showed significant dose-
dependent anti-tumor effects in HER2-expressing breast cancer
xenografts (33, 34). Moreover, when 227Th-trastuzumab was
compared with lutetium-177 (177Lu; a β-particle emitter)
complexed with trastuzumab, in a similar xenograft study,
each radionuclide conjugate had significant anti-tumor effects
and increased survival, although efficacy was higher with
227Th-trastuzumab than with 177Lu-trastuzumab. However,
177Lu-trastuzumab had a superior therapeutic index (34).
Additionally, clinically relevant concentrations of 227Th-
trastuzumab induced cytotoxic effects in HER2-expressing
breast cancer cell lines (35).

Initial HER2-targeted agents were ineffective against HER2-
low breast cancer (36). However, the ADC trastuzumab
deruxtecan recently demonstrated efficacy in this setting (37).
Notably, HER2-TTC has been shown to inhibit tumor growth in
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HER2-low colorectal cancer (CRC) xenografts (9), highlighting
its potential as an alternative treatment option for HER2-
low cancers. Furthermore, a Phase I trial of a HER2-TTC is
ongoing in advanced HER2-expressing cancers: HER2-high and
low expression in breast, gastric/gastroesophageal and other
tumors (38).

Fibroblast growth factor receptor 2 (FGFR2) is also a
promising target for TTCs, with amplifications in FGFR2
observed in a subset of triple-negative breast cancers (TNBCs)
(39–41). Elevated FGFR2 is associated with an aggressive
cancer phenotype and resistance to targeted therapy (39, 42),
making FGFR2-TTCs an attractive therapeutic option. Indeed,
in a human TNBC xenograft model, single-dose FGFR2-TTC
reduced tumor growth and was well tolerated (43).

3.4. Gastric cancer

HER2 is overexpressed in over 20% of all gastric cancers
and is a valid therapeutic target in this setting (44, 45). HER2-
TTC was associated with potent target-mediated cytotoxicity
in various cancer cell lines, including gastric cancer cell lines,
expressing different levels of HER2 (46).

FGFR2 is also a potential target for TTCs, with some gastric
cancers overexpressing the protein (47, 48). In gastric cancer
xenograft models, tumor growth was inhibited after a single dose
of FGFR2-TTC (48).

3.5. Colorectal cancer (CRC)

Next-generation sequencing identified FGFR2 aberrations
in a subset (1.4%) of patients with CRC (49) and FGFR2
expression has been seen in 2.9% of patients with CRC (50),
indicating some patients may benefit from therapeutic targeting
of this protein. In support of this, single-dose FGFR2-TTC
inhibited tumor growth in a xenograft model of CRC (48).

HER2-TTC has also been evaluated in CRC models in
combination with a poly (ADP)-ribose polymerase (PARP)
inhibitor, which is discussed later in this review (9).

3.6. Mesothelioma

Mesothelioma is a rare malignant growth of mesothelial
cells, occurring in lining layers of the viscera, e.g., pleura,
peritoneum and pericardium (51). Mesothelin (MSLN)
mediates cellular adhesion and is normally only expressed in
mesothelial cells; however, when dysregulated in cancer, MSLN
promotes proliferation, migration and invasion, making it an
attractive target for TTC-based therapy (52–55). MSLN-TTC
has shown potent cytotoxic effects in MSLN-positive cancer cell
lines (including mesothelioma) and, when used in single- or

multiple-dose regimens in cell line- and patient-derived
xenograft models, the conjugate had significant anti-tumor
activity and was well tolerated (56). Furthermore, MSLN-TTC
prolonged survival in a disseminated lung cancer model in
mice (56).

A first-in-human Phase I study of MSLN-TTC in patients
with advanced cancer (mesothelioma, as well as MSLN-
positive recurrent serous ovarian cancer and pancreatic
adenocarcinoma) was completed in the first half of 2022 (57);
results are being analyzed for future publication.

3.7. Ovarian cancer

Mesothelin-targeted thorium conjugate has been
investigated in MSLN-positive ovarian cancer models, with
significant anti-tumor activity seen when MSLN-TTC was
used in single-dose regimens in cell line-derived xenografts
and single- and multiple-dose regimens in patient-derived
xenografts (56). Data from the aforementioned first-in-human
study of MSLN-TTC in patients with advanced cancer,
including ovarian cancer, are awaited with interest.

Pre-clinical studies have also explored the potential
for HER2-TTCs in HER2-positive forms. 227Th-trastuzumab
demonstrated cytotoxic effects in HER2-expressing ovarian
cancer cell lines when used at clinically relevant concentrations
(35). Furthermore, in HER2-positive ovarian cancer xenograft
models, 227Th-trastuzumab delayed tumor growth and was
associated with survival benefit vs. unlabeled trastuzumab (58,
59) or 177Lu-trastuzumab (at the same absorbed radiation dose
to tumor) (59). Notably, fractionation of 227Th-trastuzumab
dosing in xenograft models reduced toxicity while retaining
efficacy, showing that administration schedule is an important
consideration for TTCs (60).

3.8. Prostate cancer

A TTC targeting prostate-specific membrane antigen
(PSMA) has been developed. In vitro, the antibody-based
PSMA-TTC was rapidly internalized in a target-dependent
manner, selectively reduced PSMA-expressing cell viability, and
induced double-stranded DNA breaks, cell cycle arrest (G2/M
phase), and apoptosis in prostate cancer cells (61). Consistent
with this, induction of DNA damage markers and apoptosis was
observed with PSMA-TTC in patient-derived xenografts in mice
(61). Further in vivo data showed PSMA-TTC was associated
with delayed tumor growth/tumor regression in PSMA-positive
patient- and cell line-derived xenograft models mimicking
different prostate cancer stages, including models resistant
to standard-of-care anti-androgens (including enzalutamide)
(61). This effect was seen with single as well as fractionated
dosing (61). In a mouse model replicating prostate cancer
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bone metastases, PSMA-TTC significantly reduced the growth
of tumors in the bone and was associated with changes in
tumor-induced bone morphology vs. controls (61).

A Phase I clinical study of PSMA-TTC, either alone or in
combination with the novel androgen receptor inhibitor (ARI)
darolutamide, in patients with mCRPC is currently ongoing;
the primary completion date was August 2022, the estimated
completion date is November 2023 (62).

4. TTCs in combination with other
cancer therapies

Due to the unique mode of action of TTCs, there is a strong
rationale for combining these with other cancer therapies, and
this has been investigated in several pre-clinical studies.

4.1. DNA repair pathway inhibitors

As TTCs induce complex double-stranded DNA breaks (1),
it is of interest to combine their use with PARP inhibitors,
as PARP-1 and PARP-2 are involved in DNA damage repair
(63, 64). BRCA mutations have been shown to sensitize cells
to PARP inhibition (65, 66), as BRCA proteins are crucial for
the repair of double-stranded DNA breaks (63). Indeed, in a
BRCA2-mutated prostate cancer xenograft model, PSMA-TTC
plus the PARP inhibitor olaparib showed more notable anti-
tumor activity than PSMA-TTC alone, while olaparib alone
showed no activity (67).

Additionally, HER2-TTC has been investigated in parental
and BRCA2 knockout HER2-expressing CRC cell lines and their
corresponding xenograft models (9). In cell viability assays, the
effect of HER2-TTC plus olaparib was synergistic in BRCA2
knockout cells vs. additive in parental cells (9). Similarly, when
combined with olaparib in BRCA2-deficient xenografts, low-
dose HER2-TTC resulted in similar tumor growth inhibition to
high-dose HER2-TTC alone, with the combination concluded
as being synergistic; by contrast, no synergistic effects were
seen with the combination in the parental xenograft model (9).
These findings support further evaluation of PARP inhibitors in
combination with TTCs.

Another protein involved in double-stranded DNA break
repair is DNA-dependent protein kinase (DNA-PK), which plays
a key role in non-homologous end joining (NHEJ) (68). Loss of
DNA-PK makes cells more susceptible to radiation, as NHEJ is
important for the repair of DNA double-strand breaks that are
induced by ionizing radiation (68). Combining PSMA-TTC with
a DNA-PK inhibitor resulted in synergistic anti-proliferative
effects in prostate cancer cells (69). The combination was
also more effective than PSMA-TCC monotherapy in prostate
tumor-bearing mice (69), indicating the clinical potential for
this combination.

FGFR2-TTC has been investigated in combination with
an inhibitor of the ataxia telangiectasia and rad3-related
protein (ATR), an enzyme involved in DNA damage response
(43, 70–72). In vitro, the combination of FGFR2-TTC plus
ATR inhibitor reduced cell viability and increased levels
of γH2A.X (an indicator of double-strand DNA breaks)
vs. FGFR2-TTC alone, while also reducing FGFR2-TTC-
mediated cell cycle arrest (43). In vivo, tumor growth
was significantly inhibited when the two agents were used
in combination at single-agent doses known to have no
effect (43). Data from ovarian cancer models studying
the MSLN-TTC plus ATR inhibitor combination support
these findings (7).

4.2. Immune checkpoint inhibitors

Immunostimulatory effects have been shown with
radiation, including external beam radiotherapy and α-particle
emitters, with the former showing anti-tumor effects when
combined with immune checkpoint inhibitors (4, 73–76).
These data provide rationale for combining a TTC with
an immune checkpoint inhibitor, such as programmed
death ligand-1 (PD-L1). MSLN-TTC demonstrated a robust
immunostimulatory effect in human cancer cell lines (5).
Moreover, in immunocompetent mice bearing implanted
murine tumors expressing human MSLN, tumor growth
was inhibited by MSLN-TTC and anti-PD-L1 individually,
with this benefit enhanced when these agents were used in
combination (5). Dendritic cell migration out of tumors and
CD8+ T-cell infiltration into tumors was observed when MSLN-
TTC was administered as monotherapy, with more extensive
T-cell infiltration seen when MSLN-TTC was combined with
anti-PD-L1 (5).

4.3. ARIs

Although ARIs are a common treatment option for
patients with prostate cancer, treatment resistance eventually
develops (77). This highlights the need for new therapeutic
approaches, such as novel combination treatments or new
agents with different mechanisms of action, to overcome this
therapeutic barrier.

The ARI darolutamide is approved for non-metastatic
CRPC in key markets (78, 79) and more recently for use in
combination with docetaxel for metastatic hormone-sensitive
prostate cancer in the United States (79). Darolutamide has been
shown to induce PSMA expression in prostate cancer cell lines
and xenografts (80, 81), providing a rationale for combining
the drug with a PSMA-TTC. In prostate cancer xenograft
models, darolutamide-mediated increase of PSMA expression

Frontiers in Medicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2022.1071086
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1071086 January 16, 2023 Time: 17:24 # 6

Karlsson et al. 10.3389/fmed.2022.1071086

facilitated tumor uptake of PSMA-TTC, and darolutamide
also impaired PSMA-TTC-mediated induction of DNA damage
repair genes (80). Furthermore, the combination of PSMA-
TTC plus darolutamide demonstrated synergistic inhibition
of tumor growth in xenograft models (80). The tumor
inhibitory activity of the combination was also more notable
than either agent alone in xenograft models that were
either resistant to the ARI enzalutamide (80) or hormone
independent (81). These results support clinical investigation of
this combination.

5. Discussion

227Th is one of a number of α-emitters suitable for chelation
and conjugation to tumor-targeting moieties and thus has the
potential to cover a broad tumor range. Indeed, pre-clinical
studies have shown anti-tumor activity of TTCs as monotherapy
across a broad range of tumor types, and TTCs targeting HER2,
PSMA, MSLN, and CD22 are under investigation in clinical
studies. Furthermore, there is a strong rationale and pre-clinical
evidence for combining TTCs with other targeted therapies,
supporting their clinical evaluation. However, no additional
TTC clinical trials are currently planned.

In addition to 227Th, various other α-emitters are being
explored as conjugates for the treatment of cancer. Those
considered to be the most suitable include 225Ac, 211At, 213Bi,
and 212Pb (the latter being a β-emitter that generates daughter
α-emitters) (1, 82), with the most clinical experience being
available for 225Ac and 213Bi (83–90).

The clinical potential of targeted radionuclide therapy is
further highlighted by the recent US approval of 177Lu-PSMA-
617 (a β-emitter conjugated to a small molecule PSMA ligand)
for the treatment of mCRPC (91–93). Moreover, promising
early clinical data has indicated that targeting PSMA with
225Ac via a small molecule (84, 94, 95) or an antibody (96)
has substantial potential in advanced prostate cancer, including
for patients who have received radiotherapeutics utilizing
177Lu (97), and suggests feasibility of using different targeted
radionuclides sequentially.

In summary, TATs represent an important therapeutic
development in oncology and offer promise for addressing
unmet medical needs for patients, such as resistance to
established therapies.
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