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We present a brute-force approach to analyze the concept drift behind time
sequence data. This approach, named SELECT, searches for the optimal length of
training data to minimize error metrics. In other words, SELECT searches for the start
point of a new concept from the input sequence. Unlike many related methods,
SELECT does not require a pre-specified error threshold to detect drift. In addition,
the visual analysis obtained from SELECT enables us to understand how significant a
drift has occurred. We test SELECT on two real-world datasets, stock price and
COVID-19 infection data. The experimental results show that SELECT can improve
the model performance of both datasets. In addition, the visual analysis shows the
points of significant drifts, e.g., Lehman’s collapse in stock price data and the spread
of variants in COVID-19 data. These results show the effectiveness of the brute-force
approach in analyzing concept drift.
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1 Introduction

The concept drift behind time sequence data has been studied on classification and
regression problems. Most previous studies use a pre-specified error threshold. Such studies
assume concept drift when the error exceeds the threshold.

In this paper, we present a brute-force approach to analyze concept drift. This approach,
named SELECT, searches for the optimal length of the training data that minimizes error
metrics. In other words, SELECT searches for the start point of a new concept from the input
sequence. Unlike many related methods, SELECT does not require a pre-specified error
threshold to detect drift. In addition, the visual analysis obtained from SELECT enables us
to understand how significant a drift has occurred.

We test SELECT on two real-world data sets, stock price and COVID-19 infection data. The
experimental results show that SELECT can improve the model performance of both data sets.
In addition, visual analysis shows the points of significant drift, e.g., Lehman’s collapse in stock
price data and the spread of new variants in COVID-19 data. This paper also compares SELECT
with other methods used in previous studies using synthetic data. The experimental results
show the effectiveness of the brute-force approach in analyzing concept drift.

The remainder of this paper is organized as follows: Section 2 presents a survey of concept
drift studies to clarify the importance of this research. Section 3 describes the proposed method.
Sections 4, 5 report the experimental results, and Section 6 summarizes our findings.

2 Related works

Concept drift has been studied in classification [1, 2] and regression problems [3, 4]. Among
them [5], surveyed the concept drift studies and referred to drift detectionmethods (DDMs) [1],
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such as early drift detectionmethods (EDDMs) [2] andHoeffding drift
detection methods (HDDMs) [6] as representative detection methods.
Most of these methods require a pre-specified error threshold. When
the error exceeds the threshold, a concept drift is assumed to have
occurred.

DDM, for example, tries to detect a concept drift in the model,
Pt(yt+1|xt) that predicts the probability of the target label, yt+1, from
the explanatory variable, xt at time t. Increasing time t from 0, DDM
detects a concept drift at time t when the classification error exceeds a
threshold. After the detection, a new model, Pt+1 is considered. DDM
adopts the standard deviation of the binomial distribution as the
threshold. HDDM uses the same strategy and adopts Hoeffdings’s
bounds as the threshold [3]. Also follows this approach by using the
mean prediction quality threshold.

A common drawback of these methods is that they require a pre-
tuned threshold. Since we could not find any appropriate threshold, we
used the SELECT brute-force approach. SELECT generates prediction
models using all possible lengths of the training data. Then, it selects a

training data length that produces the best accuracy. This brute-force
approach makes the requirement of the pre-tuned threshold
unnecessary.

Early results of this study have been reported at the COMPSAC
2022 workshop as [4] and KES2022 as [7]. This paper presents an
extension of the study by comparing SELECT with previous studies
based on the review results of the COMPSAC 2022 workshop and
KES2022.

3 Brute force tuning of training length

SELECT is a brute-force tuning method that finds the best
training length for time-sequential data. Figure 1 shows the
algorithm to predict the next target value, ŷ using SELECT. First,
SELECT generates MODELs for all possible training lengths, l (line
8). Then, it compares them using ErrorMetric (line 7–12) and
outputs the best training length, s (line 15). Any machine
learning model (e.g., regression, classification) can be used as the
MODEL(line 2) and any error metric (e.g., RSME, cross-entropy) as
the ErrorMetric (line 5).

Unlike most previous methods (DDM, HDDM, and EDDM), this
brute-force method does not require pre-tuned thresholds. Instead of
using pre-tuned thresholds, SELECT uses the results of machine
learning models. By selecting the best training length, it can find
the concept drift point as the starting point of the training data.

To the best of our knowledge, the properties of this simple method
have not been well investigated, possibly because it has a higher
computational cost than existing methods. However, the current
high-speed computers (especially with the improvement in parallel
processing performance) can efficiently process this simple method,
which may lead to interesting results, as shown in the following
sections.

Heatmaps are important by-products of SELECT. The heatmaps
(Figures 2, 4, 8, 10) obtained from SELECT enables us to understand
how concept drift occurred. In the heatmap, the x-axis denotes the
time-point, t, and the y-axis denotes the training length at the
corresponding points. The color indicates the value of the
ErrorMetric, and areas with similar colors indicate concept periods.
See later sections for details.

FIGURE 1
Prediction algorithm with SELECT.

FIGURE 2
Investment Results (A) and Attention (B) of S&P500.
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FIGURE 3
Model & Data Density of S&P500. (A) Model & Data Density of S&P500 before lehman’s collapse (2007/2). (B) Model & Data Density of S&P500 after
lehman’s collapse (2007/12). (C) Model & Data Density of S&P500 in 2015/2.
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4 Experimental results on real-world
data

4.1 Stock price prediction

4.1.1 Attention of stock price data
Recent studies have challenged the efficient market hypothesis

(EMH [8]) that entails the unpredictability of stock prices. A
significant breakthrough has been achieved using the deep learning
framework. Many supervised deep neural networks have been
proposed to predict stock prices using various attributes, such as
prices, economic news, financial events, and the relationship between
stocks. Recent studies used the attention mechanism to extract
relevant time-series data and improve prediction accuracy.
Although the advantage of the attention mechanism has been
demonstrated based on the various experimental results [9–13], a
common drawback of these studies lies in the interpretation of the
learned models.

This section attempts to solve this problem by presenting a
method that: 1) exhibits the critical period of time-series data
(i.e., concept drifts in the stock price data) and 2) interprets the
learned model during the corresponding period using the heatmaps
generated by SELECT. For this purpose, we applied SELECT to
S&P500 and NKY225 price data. We downloaded data of both the
indexes and prices of individual stocks from both indexes using the
Refinitiv Data stream service (https://solutions.refinitiv.com/
datastream-macroeconomic-analysis/). Because we could not access
data of individual indexes in the S&P500 for the period before March
2000, this section shows the results based on the data from April
2000 to March 2020.

Note that the S&P500 is the world’s largest stock market index,
and NKY225 is the index of the world’s third largest stock market.
For 20 years since 2000, the S&P500 provided stable profits except
during the financial crisis of 2007–2008 and COVID-19 recession
(2020 onward). Therefore, the analysis of S&P500 is an analysis of
the most extensive index and has academic significance from the
perspective of the modeling index, including the recession. In
addition, although NKY225 is the index of Japanese companies, it
includes a period of economic stagnation called “Japan’s lost

20 years.” The analysis of the difference between the profitable
S&P500 and unprofitable NKY225 is appropriate for economic
analysis.

Here, we defined theMODEL to predict the price change rate from
the previous month as follows:

ŷt+1 � kNN yt, mbt( )
where

it � Price of the index on last day of themonth t
yt � it − it−1( )/it−1

pj,t,d � Price of stockj in Index on d − th day of month t
pj,t � Price of stockj in Index on last day of themonth t
sj,t � Standard deviation, pj,t,d of stockj inmonth t
α � A tuning parameter
at � Number of stockj for whichpj,t < pj,t−1 − αsj,t( )
bt � Number of stockj for whichpj,t > pj,t−1 + αsj,t( )

mbt � at/bt
Here, kNN is the k-nearest neighbors algorithm [14]. yt is the

momentum of the index price in the month t from the previous
month. mbt is the Up-Down ratio calculated from the number of
stock price increases and decreases. Varying α omits the marginal
price variations of each stock that constitute the index and adjusts
mbt. To verify the utility of parameter α, we use .0 and 1.0 as the
values of α in the experiments. When α is set to .0, mbt is calculated
from all stock in the index. When α is set to 1.0, mbt is calculated
from only stocks whose price had changed greater than the standard
deviation. Although α should be adjusted to minimize the error, this
study reports results for α = {0.0, 1.0} because α = 1.0 improved the
error.

We set the inverse of correlation between yt and ŷt as the
ErrorMetric.

4.1.2 Results
4.1.2.1 S&P500

As previous works used various stock prices to demonstrate their
effectiveness, a comprehensive comparison is complex. Therefore, we
compare the investment results of the proposed method with that of
the index investment, which has been used as a standard method of
investment.

FIGURE 4
Investment results (A) and attention (B) of NKY225.
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The Figure 2A shows the investment results of the
S&P500 using the proposed method and the index investment.
The Sharpe ratio of the proposed method with α = 1.0 is 5.07,

which is higher than that of the index investment (1.33). Here, we
use the following equations to calculate the Sharpe ratio from
2000 to 2020:

FIGURE 5
Model & Data Density of NKY225. (A)Model & Data Density of NKY225 before lehman’s collapse (2007/2). (B) (A)Model & Data Density of NKY225 after
lehman’s collapse (2007/12). (C) Model & Data Density of NKY225 2015/2.
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FIGURE 7
Predicted models of COVID-19. (A) n2i-model: Number of inpatients from new cases. (B) i2s-model: Number of severe cases from inpatient cares. (C)
s2d-model: Number of death from severe cases.

FIGURE 6
COVID-19 variants in Japan [16].
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FIGURE 8
MASEs of COVID-19. (A) n2i-model: Log scaled MASE of hospitalization from new infections. (B) i2s-model: Log scaled MASE of predicting severe cases
from hospitalized cases. (C) s2d-model: Log scaled MASE of predicting death cases from severe cases.

TABLE 1 Detected drifts and accuracy.

Without drift detection (%) DDM HDDM EDDM Proposed (brute force)

Accuracy 76.2 92.3% 91.3% 89.5% 93.7

Found Drifts 148 198 210, 282 Figures 10, 11
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Sharpe Ratio � R p( ) − R f( )( )
s p( )p ��

T
√ ,

where

R p( ) � return of portfolio p;
R f( ) � risk − free rate;
s p( ) � standard deviation of p; and

T � Time period.

As shown in the Figure 2A, the proposed method can outperform
the index investment. In addition, it can extract the time when the
market structure varies. The Figure 2B is a heatmap whose x-axis,
y-axis, and color correspond to date, t, length, l, and the correlation,
respectively. The red line indicates the length, s selected by the
algorithm as shown in Figure 1.

The figure shows the training period length that maximizes the
correlation and increases in a step-by-step manner from 2000 to 2006.
However, from the end of 2006, SELECT discards outdated data and
only uses recent data. That is, the red line in Figure 2 shows the crucial
periods for prediction. Excessively outdated data are not essential for
prediction.

During the survey, several studies [10–13] have been observed
to use ALSTM. Figure 2 explains why ALSTM outperforms
LSTM. Asthe data includes important periods, i.e., concept
drifts, as shown in Figure 2, ALSTM could outperform LSTM
with the aid of an attention mechanism that can handle such
concept drifts.

The heatmaps shown in Figure 3 enable further interpretation of
the learned model. Figure 3 shows the model and data density of the
S&P500. In the model part of the Figure 3, the x-axis, y-axis, and color
correspond to the price variation in the current month yt andmbt, and
prediction of price variation in the subsequent month yt+1. The blue
heatmaps on the left side show only the points where the of the price
variation increases, Moreover, the red heatmaps on the right s show
the points where the price variation decreases.

The following are some of the noteworthy characteristics shown in
these heatmaps:

• Niederhoffer et al. [15] analyzed the trend of future price
fluctuations and reported that the direction of price
fluctuations would reverse. However, such a trend is not
evident in these heatmaps. Instead, each heatmap shows a
marginally contradicting trend. The direction of price
fluctuation is continuous, from, the red points on the left To
the blue points on the right side of the heatmaps.

• Moreover, mbt appears to yield better predictions. That is, the
price would increase if mbt < 1 and decrease if mbt > 1.
Specifically, the index price would vary in the same direction
as those of the individual stock prices that constitute the index.

• The model for predicting stock variation did not evolve during
the financial crisis of 2007–2008. That is, the model in February
2007 (before the crisis; Figure 3A) and that in December 2007
(during the crisis; Figure 3B) are similar. However, the model in
February 2015 (Figure 3C) is significantly different.

Although the models did not show a significant difference
during the 2007–2008 crisis, the kernel density of the training
data shows a difference in the economic status during the crisis (see
Figures 3A, B). In each heatmap, the x-axis, y-axis, and color
correspond to the price variation in the current month yt, mbt, and
the kernel density of the training data, respectively. Here, we
calculate the kernel density using a Gaussian kernel whose
bandwidth is set at 1.0.

A significant difference is noticed between Figures 3A, B for 2 <
mbt < 3. Although the models for February 2007 and December
2007 show minimal difference, the kernel densities of the
corresponding periods are different. The data distribution indicates
a different economic status during the financial crisis.

4.1.2.2 NKY225
NKY225 is an unprofitable index compared with S&P500. The

Sharpe ratio of index investment for S&P500 from 2000 to 2020 is
1.33, whereas that for NKY225 is .03. However, the proposed
method with α = 1.0 can achieve a Sharpe ratio of 2.23. This
difference in the Sharpe ratio is evident in the investment results
shown in Figure 4.

Figures 4, 5 for NKY225 correspond to Figures 2, 3 for the S&P500.
As shown in the figures, the model and data density related to
NKY225 are biased toward the lower side (red area on the right)
compared with the corresponding figures of the S&P500. This bias
appears to explain the unprofitability of NKY225.

4.2 Spread of COVID-19

4.2.1 Vaccine and variant of COVID-19
This section analyzes concept drifts in the COVID-19

infection data of Japan. Figure 6 shows the weekly number of
cases caused by different COVID-19 variants. The figure shows
the emergence and spread of new COVID-19 variants every
4–5 months.

FIGURE 9
Classification Errors of the cart with DDM.

FIGURE 10
Heatmap on synthetic data.
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The emergence of new variants of COVID-19 and widespread use
of vaccines have a significant impact on this data and make the
prediction of COVID-19 infections challenging.

Standard regressionmethods, such as ridge regression and support
vector regression cannot make accurate predictions.

The proposed model tries to offer accurate predictions by dealing
with concept drifts in the data trend. Note that most drift detection
methods require pre-tuned parameters to find drift points.
Determining appropriate parameters for detecting concept drift
points is challenging. Thus, we try to handle concept drifts in
COVID-19 data trend by brute-force tuning of the training data;
that is, we use SELECT to analyze the data.

A certain percentage of people with COVID-19 need
hospitalization several days after the infection. Moreover, a
certain percentage of those exhibit severe symptoms within

few days of hospitalization. Furthermore, a certain
percentage of critically ill patients die within the next few
days. To model these situations, we set up the following ridge
regression models:

ît+7 � Ridge ∑13
l�0

wlnt−l + b⎛⎝ ⎞⎠, (n2i)

ŝt+7 � Ridge ∑13
l�0

wlit−l + b⎛⎝ ⎞⎠, (i2s)

d̂t+7 � Ridge ∑13
l�0

wlst−l + b⎛⎝ ⎞⎠. (s2d)

The daily number of infections changed from zero to hundreds of
thousands. Such a major change causes scaling problem for error metrics.

FIGURE 11
Tree Models for each Period. (A) 1st Period. (B) 2nd Period. (C) 3rd Period.
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To overcome this problem, we used the mean absolute scaled error
(MASE [17]) as the error metric, i.e., the ErrorMetric in Figure 1, for
the COVID-19 data.

MASE �
1
V
∑V
v
yv − ŷv

∣∣∣∣ ∣∣∣∣
1

T − 1
∑T
t�2

yt − yt−1
∣∣∣∣ ∣∣∣∣ (1)

4.2.2 Results
We compared the prediction accuracy of SELECT with that of

the model trained on the entire dataset. To be precise, we analyzed
concept drifts in the daily infection data of COVID-19 in Japan
from 05/11/2020 to 03/02/2022. We downloaded the dataset
from [18].

Figure 7 shows the comparison results of the n2i-model (predict
hospitalization because of new infections), r2s-model (predict severe
cases from the hospitalized cases), and s2d-model (predict death cases
from the reported severe cases). All figures indicate that SELECT
improves prediction accuracy.

Figure 8 shows the heatmaps and lengths chosen by SELECT for
each model. The colors indicate the log2 scale MASE. The x- and
y-axes represent the date, t and corresponding training data length,
respectively. The red line on the chart indicates the best training data
length s chosen by SELECT.

A notable characteristic of these heatmaps is the presence of
periods of large (e.g., around August and December 2021) and
small errors (around January 2022 and September 2021). We
interpret these periods as follows:

• Around August or September 2021: In Japan, vaccines
administration was rapid during July and August 2021. This
significantly affects the model and increases the error.

• From December 2021 to 2022: The emergence of Omicron
variant around December 2021, with higher transmissibility
than earlier variants of the virus, made prediction error
around December significant.

In both cases, prior data did not contribute to the accuracy of the
n2i and i2s models, but SELECT could extract such periods based on
its by-product, the heatmaps.

5 Comparison of SELECT with previous
methods

5.1 Classification of synthetic data

To show the advantage of SELECT (i.e., the brute force tuning of
training length) over previous methods, this section reports the
experimental results of the classification problem on synthetic data.

We choose DDM [1], HDDM [6], and EDDM [2] as the
representative methods that use the pre-specified threshold to
detect concept drifts.

For the comparison of synthetic data, we generated 300 artificial
data using the following procedure:

• The explanatory variable is a two-dimensional vector (x1, x2)
composed of two scalar values x1 and x2. Class labels y (True and
False) is attached to each 2D vector (x1, x2).

• For the two scalar values, x1 and x2, random numbers with a
mean of approximately 0 and standard deviation of
approximately 1 were generated using the python’s random
function in Python language. We created 300 values for each x.

• The first 100 (period 1) class labels are marked as “True/False” if
the condition “x1 > 0” satisfies (referred as model 1). The last 100
(period 3) class labels are marked as “True/False” if the condition
“x2 > 0” satisfies (referred as model 2). The middle 100 (period 2)
class labels are marked by gradually changing the ratio from the
label generated by model 1 to the label generated by model 2.

To analyze the synthetic data, we used cart (decision tree; the
implementation is scikit-learn [19]) as the leaner (i.e., the MODEL in
Figure 1), and the simple error rate as the ErrorMetric. We create a
model using the data of the best training length selected by SELECT.

With DDM, HDDM, and EDDM, classification is performed using
the same learner (i.e., cart), using all the data to the point where DDMs
detect drifts. For the implementation of DDMs (i.e., DDM, HDDM,
and EDD), we used scikit-multiflow [20].

5.2 Results

Table 1 outlines the experimental results. Despite the change from
simple model 1 to 2, DDM, HDDM, and EDDM could not detect the
correct drift position. DDM found one intermediate position; HDDM
found one position before the change from model 1 to model 2; and
EDDM reported two positions in model 2.

These results were not better than initially expected. It is presumed
that this is because the change in period 2 is gradual, and the change in
classification error is also gradual (See Figure 9 for the transition of the
classification error).

On the other hand, SELECT selects the training lengths
corresponding to models 1 and 2 (Figure 10). Although the selected
training length during the transition frommodel 1 to model 2 (i.e., period
2) is unstable, the results are better than those of the existing methods.

In addition, proper classification trees are learned in each period
(See Figure 11 that shows two representative learned trees). In period
1, the learned rule classifies data using x1 (Figure 11 (a)), and the
learned rule in period 3 classifies data using x2 (Figure 11 (c)).

On the other hand, interpreting the classification tree for period
2 is complex. The classification trees for period 2 have multiple
condition nodes with two attributes, x1 and x2.

Furthermore, the improvement in the classification accuracy over
the entire period for SELECT is better than that of the other methods
(Table 1).

From the viewpoints of classification accuracy, extraction period,
and extraction model, SELECT presents itself as a superior drift
detection method than the existing methods (i.e., DDM, EDDM,
and HDDM). In other words, these results show that the method
using brute force tuning of training length performs better than the
methods relying on a pre-defined threshold.
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6 Conclusion

This paper proposes a brute-force approach named SELECT to
analyze the concept drift of time-sequence data. SELECT employs
brute force tuning of the training length to find concept drift. Not only
can it improve the accuracy of prediction and classification analysis,
but also it enables the analysis of time sequence data through
heatmaps. We conducted experiments with two real-world datasets
that revealed:

• the profit earned by SELECT outperforms the index
investment, and the analysis using heatmaps created by
SELECT reveals why ALSTM can outperform LSTM for
stock price analysis;

• SELECT improves the prediction accuracy for the spread of
COVID-19 and can extract significant drift points, such as
widespread use of COVID-19 vaccines and the emergence of
new variants.

We also show an example where SELECT outperforms the
representative methods (DDM, HDDM, and EDDM) that use the
pre-specified threshold to detect concept drifts.

Since SELECT requires a lot of computational resources to train
the model at all training lengths, SELECT has a performance
problem. However, this performance problem is left as a future
research issue.
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