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The circadian rhythms
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in the pathogenesis of
Neuromyelitis Optica
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Introduction: Neuromyelitis Optica (NMO) is an inflammatory demyelinating

disease of the central nervous system (CNS). NMO manifests as selective and

severe attacks on axons and myelin of the optic nerve and spinal cord, resulting in

necrotic cavities. The circadian rhythms are well demonstrated to profoundly

impact cellular function, behavior, and disease. This study is aimed to explore the

role and molecular basis of circadian rhythms in NMO.

Methods:We used an Aquaporin 4(AQP4) IgG-induced NMO cell model in isolated

astrocytes. The expression of Cx43 and Bmal1 were detected by real-time PCR and

Western Blot. TAT-Gap19 and DQP-1105 were used to inhibit Cx43 and glutamate

receptor respectively. The knockdown of Bmal1 were performed with the shRNA

containing adenovirus. The levels of glutamate, anterior visual pathway (AVP), and

vasoactive intestinal peptide (VIP) were quantified by ELISA kits.

Results: We found that Bmal1 and Clock, two essential components of the

circadian clock, were significantly decreased in NMO astrocytes, which were

reversed by Cx43 activation (linoleic acid) or glutamate. Moreover, the

expression levels of Bmal1 and Clock were also decreased by Cx43 blockade

(TAT-Gap19) or glutamate receptor inhibition (DQP-1105). Furthermore,

adenovirus-mediated Bmal1 knockdown by shRNA (Ad-sh-Bmal1) dramatically

decreased the levels of glutamate, AVP, and VIP from neurons, and significantly

down-regulated the protein level of Cx43 in NMO astrocytes with Cx43 activation

(linoleic acid) or glutamate treatment. However, Bmal1 knockdown did not alter

these levels in normal astrocytes with Cx43 blockade (TAT-Gap19) or glutamate

receptor inhibition (DQP-1105).

Discussion: Collectively, these results suggest that Cx43-glutamate signaling

would be a critical upstream regulator that contributes to the NMO-induced

rhythmic damage in SCN astrocytes.
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1 Introduction

The rare disease Neuromyelitis Optica (NMO) causes debilitating,

occasionally fatal changes in the central nervous system (CNS)

including attacks of severe blindness and paralysis (1, 2). It is caused

by antibodies directed against the water channel protein aquaporin-4

(AQP4) that is concentrated at the blood-brain barrier in astrocytic foot

processes (3–5). An AQP4-specific antibody (NMO-IgG) is a B cell-

dependent antibody subclass, emphasizing the synergistic role played

by cellular and humoral arms of adaptive immunity during the

pathogenesis of NMO (6, 7). In 2015, the International NMO

Diagnostic Team developed a new diagnostic standard for NMO

spectrum disorders (NMOSD), which further stratified the diagnosis

of NMOSD into AQP-4-IgG-positive and -negative (8).

Circadian rhythms govern the periodicity of physiological

processes in living beings (9). A critical role is played by it in animal

behavioral and physiological processes as well as disease states (10–12).

A clock gene activity network controls this rhythm, which is affected by

environmental cycles (especially light) (13). There has been research on

the influence and importance of the circadian clock for some

autoimmune and inflammatory conditions, including rheumatoid

arthritis, and inflammatory bowel disease (14–16). In NMOSD

patients, sleep disturbances are also associated with fatigue, according

to a recent clinical study (17). Although these reports have not been

investigated in-depth, they suggest that changes in daily rhythms may

be associated with the disease course of NMOSD (18). Themain clinical

manifestations of NMOSD are visual loss and paralysis, as well as an

obvious circadian rhythm disorder (8). Conversely, the disorder of

circadian rhythm can induce the disorder of immune function and

increase the risk of disease recurrence (19). Therefore, the regulatory

role of circadian rhythm may largely contribute to disease prevention

and treatment of NMOSD.

There have been many cases reported that NMOSD patients with

hypothalamic impairment to present with symptoms of sleep rhythm

disorder (17). Sleep has the function of consolidating immune

memory and enhancing immune defense (20, 21). And the immune

status of animals and humans, such as cytokines and other immune

mediators, will also affect the punctuality process of the circadian

rhythm (22–24). Therefore, there is a bidirectional relationship

between the circadian system and the immune system (25). The

Suprachiasmatic Nucleus (SCN), known as the “master clock” in

mammals, receives light-entrained signals through the retinal

hypothalamus bundle to keep the body adapted to its internal and

external environment (26–28). NMOSD lesions are most easily

involved in the optic nerve, optic chiasma, and hypothalamus

where AQP4 is highly expressed (4). The same anatomical basis

may be an important site for the bidirectional influence of NMO and

the circadian system (29, 30). So far, the research on the

characteristics of NMOSD circadian rhythm disorder is not in-
Abbreviations: ANP, atrial natriuretic peptide; AQP4, aquaporin-4; CNS, the

central nervous system; Cx43, Connexin 43; DMEM, Dulbecco’s Modified Eagle

Medium; FACS, fluorescence activated cell sorting; FBS, Fetal Bovine Serum; Glu,

glutamate; HBSS, Hank’s Balanced Salt Solution; LA, Linoleic acid; NMDAR, N-

methyl-D-aspartic acid receptor; NMO, Neuromyelitis Optica; NMOSD, NMO

spectrum disorders; SCN, The Suprachiasmatic Nucleus; VIP, vasoactive

intestinal peptide.
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depth enough, and the interaction between NMOSD and circadian

rhythm disorder and its mechanism is still not clear.

Prolo et al. confirmed the existence of clock genes expressed

rhythmically in astrocytes (31), and Brancaccio et al. reported that

astrocytes autonomously initiate and maintain complex diurnal

behavior of mammals through glutamate energy signals (32). It was

found that inhibition of Connexin 43 (Cx43) specifically expressed in the

astrocytes could interfere with the release of glutamate to affect the

diurnal oscillation of clock gene expression in the astrocytes, and the

increase of Cx43 expression could induce the formation of the clock

system (33). Cx43-mediated gap junction supports neuron-glial

interaction (34). This suggests that the astrocytes are important

regulators of circadian rhythms (35). The target antigen of the AQP4

antibody is AQP4 located on the astrocyte’s foot process, and the

astrocytes are involved in the pathogenesis of NMOSD (36–38). The

astrocytes with dual identities are likely to be the hubs of bidirectional

regulation of NMOSD and circadian rhythm disorder, but their roles and

mechanisms in NMOSD circadian rhythm disorder are still unknown.

Cx43-glutamate may play an important regulatory role in astrocytes’

participation in circadian rhythm, but no relevant reports have been

reported in NMOSD and further studies are needed (Figure 1).

In conclusion, it is of great theoretical and practical clinical

significance to explore the interaction between NMOSD medium

astrocytes and circadian rhythm regulation and its underlying

mechanism. In this study, anti-AQP4 IgG was used to induce an

NMO cell model to evaluate the potential role of Cx43 on the NMO-

induced neuron injury and circadian rhythms damage. We found that

the Cx43-glutamate signaling and circadian rhythm regulating genes

(Bmal1 and Clock) were significantly decreased in a time-dependent

manner. Moreover, we found that the levels of Bmal1 and Clock were

significantly decreased in normal astrocytes with a specific Cx43

hemichannel (Cx43 HC) inhibitor TAT-Gap19. Conversely, they

were increased in the NMO-induced astrocytes with a Cx43
FIGURE 1

Astrocytic regulation hypothesis of circadian disruption in NMO.
Neurons are the main pacing cells in SCN, which integrate and
synchronize the circadian rhythm of each cell through the neuronal
network. Astrocytes are involved in the pathogenesis of NMOSD, and
are also important regulators of circadian rhythm. They affect circadian
rhythm through glutamate pathway. We hypothesized that the
expression of clock gene Bmal1 in NMO astrocytes would affect Cx43
and glutamate levels, and then regulate the release of neuronal
synchronization signals. Circadian system and immune system interact
in a bidirectional manner: NMO disease state can lead to circadian
rhythm disorder, and circadian rhythm disorder can also induce NMO
disease recurrence.
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activator LA. Our results also suggested that the decreasing of Bmal1

contributes to the disease aggressiveness of NMO. Activation of

Cx43-glutamate signaling would be promising strategy for the

therapy of NMOSD and prevent NMO-damaged circadian rhythms.
2 Materials and methods

2.1 Primary astrocytes isolation and culture

Mixed SCN was removed from mice and minced with scissors in

ice-cold HBSS (Gibco), then digested with 0.25% trypsin solution

(Gibco, Carlsbad, CA, USA) at 37°C for 30 min. The dissociated cells

were rinsed and re-suspended in high glucose DMEM and counted.

Cells were plated in a T25 flask at a density of 30000 cells/cm2. After 2

days, the high glucose DMEM medium containing 10% FBS (Gibco)

and 1% Penicillin/Streptomycin (Gibco) was changed to remove cell

debris. 9–10 days later, we passaged the first split astrocyte population

at the appropriate cell concentration for the experiment. The purity of

astrocytes was confirmed by immunofluorescence and fluorescence

activated cell sorting (FACS) analysis of GFAP-positive cells, which

was up to 99.8%. Briefly, the cells were stained with FITC labeled anti-

GFAP antibody (Biolegend, USA). Data were collected using a

FACSCalibur cytometer (BD Biosciences, San Jose, CA) and

analyzed using FlowJo (Tree Star) software. For the NMO

induction of astrocytes, the anti-AQP4 IgG (5 ug/mL) and human

complement (10 ug/mL) was added into the culture medium of

astrocytes for the indicated time.
2.2 Primary neurons isolation and culture

Cortical tissues were removed from mice mechanically isolated in

an Opti MEM medium (Gibco). The cells were cultured on a flask

coated with 0.05 mg/mL poly-D-lysine in neurobasal medium

supplemented with B27 (Gibco) at 37°C and 5%CO2, and the

medium was changed every 3 days. After 12-15 days, after fixation

with 4% paraformaldehyde, the concentration and purity of neurons

were confirmed by staining with MAP2 antibody. To evaluate the effect

of astrocytes on neurons, the cultured astrocytes on the bottom (1.5×105

cells/well in 6-well plates) and the cultured neurons in the Transwell

chamber (5×104 cells/well in 6-well Transwell plates, 0.4 mm) were co-

cultured for 24 hours to observe the effect of astrocytes on neurons.
2.3 NMOSD in vitro astrocyte model

The NMOSD in vitro astrocyte model was established as previously

reported (39). Briefly, the anti-AQP4 IgG (5 mg/mL) and human

complement (C3,10 mg/mL, Complement Technology, Beijing) were
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added into the culture medium of astrocytes for the indicated time. For

the co-culture of astrocytes and neurons, the astrocytes were seeded in

the lower chamber of Transwell (Corning, USA), the neurons were

seeded in the upper chamber of Transwell (Corning, USA).
2.4 Quantitative real-time PCR (qRT-PCR)

Total RNA was lysed with TRIzol reagent and cDNA was

synthesized using a one-step RT-PCR kit (Thermo Fisher

Scientific). Real-time fluorescence quantitative PCR (qRT-PCR) was

performed using the ABI Vii7 system (Applied Biosystems, USA).

GAPDH is used as a housekeeping gene. The 2-△△CT cycle threshold

method (40) was used to calculate relative gene expression levels.

Primers used for QRT-PCR analysis are listed in Table 1.
2.5 Enzyme-linked immunosorbent assay
(ELISA) assay

Levels of Glu, ANP, and VIP in the cell culture medium were

determined using commercially available ELISA kits (eBioscience Co.,

San Diego, CA, USA) according to the manufacturer’s instructions. In

simple terms, take 100 mL supernatant, diluted standard, quality

control, and diluted buffer (blank) and place on a pre-coated plate

containing monoclonal antibody for 2 hours. Add 100 mL biotin-

labeled antibody and incubate for 1 hour. Wash the plate, add 100 mL
streptavidin-HRP conjugate, and incubate in the dark for 30 min.

Adding 100 mL substrate and stop solution indicates the last steps

before reading the absorbance (450nm) on the microplate reader.
2.6 Western blot

Total cellular proteins were lysed by RIPA buffer containing

protease inhibitors (Beyotime, China). The protein extractions were

harvested and quantified by bicinchoninic acid (BCA) analysis

(Beyotime, China). Protein extractions were separated by 10% SDS-

PAGE and transferred onto polyvinylidene fluoride (PVDF)membranes

(Millipore, USA). The membranes were incubated with antibodies

against Cx43 (Abcam, Cambridge, MA, USA) and GAPDH (Abcam,

Cambridge, MA, USA) as previously described. Using GAPDH as

endogenous controls, we determined the loading of total proteins.
2.7 Statistical analysis

Data are presented as mean ± SD (mean ± standard deviation) for

at least three independent experiments. Statistical analyses have been
TABLE 1 Primer sequences for QRT-PCR analysis.

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

Clock CCTATCCTACCrrCGCCACACA TCCCGTGGAGCAACCTAGAT

Bmal1 TCGTTGCAATCGGGCG CCGTATTTCCCCGTTCGC

GAPDH AAATGGTGAAGGTCGGTGTGAAC CAACAATCTCCACTTTGCCACTG
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performed using GraphPad Prism 9 software (GraphPad Software

Inc., La Jolla, CA, USA). One-way ANOVA and Student t-tests were

used to compare means between groups. It is statistically significant

when P less than 0.05 is used.
3 Results

3.1 The expression of Cx43 protein and
circadian rhythm regulating gene (Bmal1
and Clock) are time-dependently decreased
in astrocytes after NMO induction

To understand the effect of NMO induction on the level of Cx43

and circadian rhythm-regulating genes (Bmal1 and Clock), we

constructed an anti-AQP4 IgG-induced NMO model in SCN

astrocytes. The SCN astrocytes were isolated from the SCN tissues.

The identity of SCN astrocytes was confirmed with the expression of

an astrocyte-specific marker, GFAP, by immunofluorescence staining

(Figure 2A). The purity of SCN astrocytes was further confirmed by

fluorescence activated cell sorting (FACS) analysis, which was up to

99.8% (Figure 2B). The isolated astrocytes were then treated with anti-

AQP4 IgG (5 mg/ml) or control IgG (5 mg/ml) and human

complement (10 mg/ml) for 0,6,12,18 and 24 hours. The protein

level of Cx43 was significantly decreased after 12 hours of treatment

with NMO induction (Figure 2C). Moreover, the mRNA levels of

circadian rhythm-regulating genes (Bmal1 and Clock) were decreased

after 12 hours of treatment with NMO induction (Figure 2D).

Considering neurotransmitter glutamate (Glu) is mainly taken up by
Frontiers in Immunology 04
surrounding astrocytes after interaction with receptors in the synapse,

we then detected the levels of Glu in astrocytes. Notably, the level of

Glu also dramatically decreased after 12 hours of treatment with NMO

induction (Figure 2E). These results suggested that the level of Cx43

protein and circadian rhythm regulating gene (Bmal1and Clock) may

be involved in the NMO induction in astrocytes.
3.2 Astrocytes after NMO induction
significantly decreased the neuropeptides
(AVP and VIP) released from co-cultured
neurons

To evaluate the NMO astrocytes-induced neuron circadian

rhythm dysregulation, we constructed a co-culture model of

astrocytes and neurons. The neurons were isolated from the cortical

tissues. The identity of neurons was confirmed with the expression of

a neuron-specific marker, MAP2, by immunofluorescence staining

(Figure 3A). The purity of neurons was further confirmed by

fluorescence activated cell sorting (FACS) analysis, which was up to

96.8% (Figure 3B). After the co-culture of NMO inducted astrocytes

and neurons were for 0,6,12,18 and 24 hours. The protein level of

neuropeptides, including arginine vasopressin (AVP) and vasoactive

intestinal polypeptide (VIP), were detected by ELISA kits. The level of

AVP was decreased at 24 hours of co-culture with NMO astrocytes

(Figure 3C), whereas VIP was significantly decreased after 12 hours of

treatment with co-culture with NMO astrocytes (Figure 3D). These

results demonstrated an obvious NMO astrocytes-induced AVP and

VIP circadian rhythm release from the neuron.
B C

D E

A

FIGURE 2

The expression of Cx43 protein and circadian rhythm regulating gene (Clock and Bmal1) are time-dependently decreased in astrocytes after NMO
induction. (A) The identity of isolated SCN astrocytes was confirmed with GFAP by immunofluorescence staining. (B) The purity of SCN astrocytes was
further confirmed by fluorescence activated cell sorting (FACS) analysis. (C) The protein levels of Cx43 in SCN astrocytes with or without NMO induction
were analyzed by Western Blot. (D) The mRNA levels of circadian rhythm regulating genes (Clock and Bmal1) in SCN astrocytes with or without NMO
were analyzed by real-time PCR. (E) the levels of Glu in SCN astrocytes with or without NMO-IgG induction were analyzed by ELISA. *P<0.05, **P<0.01,
***P<0.001, compared with the blank group. N=3.
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3.3 Cx43-glutamate signaling inhibition
contributes to the NMO-induced circadian
rhythm dysregulation

To evaluate the role of Cx43-glutamate signaling in the NMO-

induced circadian rhythm dysregulation, we treated normal astrocytes

with a specific Cx43 hemichannel (Cx43 HC) inhibitor TAT-Gap19

(20 mM) or a glutamate N-methyl-d-aspartate receptor (NMDAR)

noncompetitive antagonist DQP-1105 (20 mM). Accordingly, the

protein level of Cx43 was decreased by TAT-Gap19 mildly, whereas
Frontiers in Immunology 05
significantly decreased by DQP-1105. We also treated NMO-induced

astrocytes with a Cx43 activator Linoleic acid (LA, 50 mM) or

glutamate (50 mM) (Figure 4A). The results showed that the NMO

decreased Cx43 protein level was reversed by LA or glutamate

treatment (Figure 4A). The levels of glutamate in astrocytes were

decreased by TAT-Gap19 and DQP-1105 treatment (Figure 4B).

However, the suppressed glutamate levels in NMO astrocytes were

elevated by LA or glutamate treatment (Figure 4B). Meanwhile, the

levels of Clock mRNA were decreased by TAT-Gap19 and DQP-1105

treatment in normal astrocytes (Figure 4C) and elevated by LA or
B C D

A

FIGURE 3

Astrocytes after NMO induction significantly decreased the neuropeptides (AVP and VIP) released from co-cultured neurons. (A) The identity of neurons
was confirmed with the expression of MAP2 by immunofluorescence staining. (B) The purity of neurons was further confirmed by fluorescence activated
cell sorting (FACS) analysis, which was up to 96.8%. After the co-culture of NMO inducted astrocytes and neurons for 0,6,12,18 and 24 hours. The
protein level of AVP (C) and VIP (D) were detected by ELISA kits. **P<0.01, ***P<0.001, compared with the blank group. N=3.
B

C

D E

A

FIGURE 4

Cx43-glutamate signaling inhibition contributes to the NMO-induced circadian rhythm dysregulation. (A) The protein level of Cx43 in normal astrocytes
with or without TAT-Gap19/DQP-1105 or NMO astrocytes with or without LA/glutamate were analyzed by Western Blot. (B) The glutamate levels in
normal astrocytes with or without TAT-Gap19/DQP-1105 or NMO astrocytes with or without LA/glutamate were analyzed by ELISA kit. (C) The mRNA
levels of Clock and Bmal1 in normal astrocytes with or without TAT-Gap19/DQP-1105 or NMO astrocytes with or without LA/glutamate were analyzed
by real-time PCR. The protein level of AVP (D) and VIP (E) were detected by ELISA kits. *P<0.05, ***P<0.001, compared with the indicated group. N=3.
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glutamate treatment in NMO astrocytes (Figure 4C). However, the

levels of Bmal1 mRNA were unchanged with the DQP-1105

compared with blank group,and with glutamate treatment

compared with NMO group (Figure 4C). The levels of VIP protein

were decreased by DQP-1105 treatment in the co-culture medium of

normal astrocytes and neurons (Figure 4D) and elevated by LA or

glutamate treatment in the co-culture medium of NMO astrocytes

(Figure 4D). However, the levels of AVP protein were unchanged with

these treatments (Figure 4E). Collectively, these results demonstrated

that Cx43-glutamate signaling impairment is critical to NMO-

induced circadian rhythm dysregulation.
3.4 Bmal1 knockdown reversed the Cx43-
glutamate signaling activation

To explore the critical role of Bmal1 in the Cx43-glutamate

signaling impairment in NMO-induced circadian rhythm

dysregulation, we constructed a recombinant adenovirus containing a

short hairpin RNA targeting Bmal1 to knock down the expression of

Baml1 in astrocytes. Interestingly, Bmal1 knock-down significantly

inhibited the protein level of Cx43 in the normal astrocytes or NMO

astrocytes, which was neither changed by the treatment of TAT-Gap19

and DQP-1105 in normal astrocytes nor the treatment of LA or

glutamate treatment in NMO astrocytes (Figure 5A). Moreover, the
Frontiers in Immunology 06
mRNA expression level of Bmal1 and Clock (Figure 5B) and the

glutamate levels (Figure 5C) were also suppressed by Bmal1

knockdown, which was neither changed by the treatment of TAT-

Gap19 and DQP-1105 in normal astrocytes nor the treatment of LA or

glutamate treatment in NMO astrocytes. Correspondingly, the levels of

AVP protein from neurons were also suppressed by Bmal1 knockdown,

which was neither changed by the co-culture of TAT-Gap19 and DQP-

1105 treated normal astrocytes nor the co-culture of LA or glutamate

treated NMO astrocytes (Figure 5D). The levels of VIP protein were

also unchanged with these treatments (Figure 5E). These results

revealed that Bmal1 knockdown reversed the Cx43-glutamate

signaling activation.
4 Discussion

The primary astrocytic disease NMO is associated with

inflammation and secondary myelin loss in the CNS (1, 2).

Aquaporin 4 (AQP4), a water channel, plays an important role in

disease pathogenesis as a target of autoantibodies (NMO-IgG) in

patient sera (19). Astrocytes are the major source of AQP4 expression

in the brain, especially near the end feet, where the blood-brain

barrier is located (4). As a result of the interaction between NMO-IgG

and AQP4 in astrocytes, rapid AQP4 endocytosis initiates

pathogenesis (7) and induced cortical neurodegeneration (41). In
B C

D E

A

FIGURE 5

Bmal1 knockdown reversed the Cx43-glutamate signaling activation. (A) The effect of Bmal1 knock-down on the protein level of Cx43 in normal
astrocytes with or without TAT-Gap19/DQP-1105 or NMO astrocytes with or without LA/glutamate were analyzed by Western Blot. (B) The effect of
Bmal1 knock-down on the mRNA levels of Clock and Bmal1 in normal astrocytes with or without TAT-Gap19/DQP-1105 or NMO astrocytes with or
without LA/glutamate were analyzed by real-time PCR. (C) The effect of Bmal1 knock-down on the glutamate levels in normal astrocytes with or without
TAT-Gap19/DQP-1105 or NMO astrocytes with or without LA/glutamate were analyzed by ELISA kit. The effect of Bmal1 knockdown on the protein level
of AVP (D) and VIP (E) was detected by ELISA kits. *P<0.05, **P<0.01, ***P<0.001, compared with the indicated group. N=3.
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this study, we constructed an anti-AQP4 IgG-induced NMOmodel of

SCN astrocytes. We found that the Cx43-glutamate signaling and

circadian rhythm regulating genes (Bmal1 and Clock) were

significantly decreased in a time-dependent manner.

Connexin proteins are involved in the formation of homotypic or

heterotypic gap junctions (GJs) between astrocytes, or between

astrocytes and oligodendrocytes. GJs connect two cells and provide

direct intercellular communication. They are responsible for the

exchange of intracellular second messengers, such as calcium ions.

Cx43 levels declined in half of the NMO cases, almost parallel with the

diminution of AQP4 levels in active lesions (42). Astroglial Cx43

protein plays a significant role in several CNS functions, including

cognitive behavior, motor control, and sleep-wake regulation.

Circadian rhythms control sleep and wakefulness (43). It is the

SCN that generates the central circadian rhythm, and it is closely

coupled with the rest of the brain to generate coherence (44). During

the circadian cycle, the SCN is entrained in the environmental light-

dark cycle through the excitation of glutamatergic neurons (38). A key

role of connexins is to regulate the rhythmic activity of neuronal

activity in SCN by electric coupling of neurons and astrocytic-

neuronal signaling (37). However, the role of Cx43 in the

regulation of circadian rhythms regulating genes, including Bmal1

and Clock, remains largely unclear in SCN. Herein, we found that the

levels of Bmal1 and Clock were significantly decreased in normal

astrocytes with a specific Cx43 hemichannel (Cx43 HC) inhibitor

TAT-Gap19. Furthermore, the level of Clock was increased in the

NMO-induced astrocytes with a Cx43 activator LA.

Cx43 is the most abundant connexin expressed on astrocytes and

forms gaps between astrocytes, which are the most abundant and most

functional glial cells in the brain (45). Because Cx43 hemichannels can

pass through large molecules, their opening might provide a

mechanism for transmitters like glutamate to diffuse out of astrocytes

(46, 47). As a result of its adaptive advantage, the circadian clock allows

for predictive, rather than entirely reactive, homeostatic regulation of

physiological functions. It was reported that the Circadian clock-

regulated ATP release from Cx43 might contribute in part to the

adaptation of functional bladder capacity in daily life. Moreover, it was

reported that astrocytic Cx43 was down-regulated in human NMO

lesions (48) and an in vitro model (49). In NMO, a large number of

inflammatory infiltrates could be seen in NMO lesions (50, 51). On the

other hand, inflammatory cytokines could also suppress astrocytic

Cx43 (52). In this study, we further found that the levels of Bmal1

and Clock were significantly decreased in normal astrocytes with a

glutamate N-methyl-d-aspartate receptor (NMDAR) noncompetitive

antagonist DQP-1105. The level of Clock was increased in the NMO-

induced astrocytes with glutamate. These changes supposed that the

circadian rhythms may be regulated by Cx43-signaling in the

pathogenesis of NMO.

It is well known that sleep and circadian rhythm are closely

intertwined, and they are coordinated to adapt the organism to

varying environments (29). The sleep abnormalities associated with

NMOSD patients have been mentioned in previous reports (31).

Based on some observation results regarding clinical phenomena and

the specific regions of damage of NMOSD, it appears that rhythmic

damage occurs more easily (17, 32). However, the underlying
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mechanism of rhythmic damage and NMO were rarely reported.

From our observations, on the one hand, the NMO induction

dramatically decreased the rhythm-regulating genes, including

Bmal1 and Clock, which were increased by Cx43 activator LA and

glutamate, suggesting that Cx43-glutamate signaling would be a

critical upstream regulator that contributes to the NMO-induced

rhythmic damage in SCN astrocytes. On the other hand, our results

suggested that the decreasing of Bmal1, the critical gene in circadian

rhythms, contributes to the disease aggressiveness and circadian

rhythm disorders of NMO.

The limitation of this study is that the in vitro environment cannot

completely simulate the complex in vivo environment. Therefore, in

vivo experiments need to be perfected to further verify the results.

In conclusion, our experiment confirmed that clock gene Bmal1

and Cx43 mediate inflammatory regulation and circadian rhythm

bidirectionally in NMO. Cx43 of astrocytes is involved in NMO

circadian rhythm disorders by influencing the diurnal oscillation of

glutamate. Activation of Cx43-glutamate signaling would be a

promised strategy for the therapy of NMOSD and prevent NMO-

damaged circadian rhythms.
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