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ABSTRACT

This article presents an overview of image transformation with a secret
key and its applications. Image transformation with a secret key enables
us not only to protect visual information on plain images but also to
embed unique features controlled with a key into images. In addition,
numerous encryption methods can generate encrypted images that are
compressible and learnable for machine learning. Various applications
of such transformation have been developed by using these properties.
In this paper, we focus on a class of image transformation referred to as
learnable image encryption, which is applicable to privacy-preserving
machine learning and adversarially robust defense. Detailed descrip-
tions of both transformation algorithms and performances are provided.
Moreover, we discuss robustness against various attacks.
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1 Introduction

Distributed systems for information processing such as cloud computing and
edge computing have been spreading in many fields. However, the processing
can lead to serious problems for end users, such as the unauthorized use
of services, data leaks, and privacy being compromised due to unreliable
providers and accidents [35, 48, 55, 74]. In contrast, the spread of deep
neural networks (DNNs) has greatly contributed to solving complex tasks
for many applications, such as for computer vision, biomedical systems, and
information technology [56]. Machine learning (ML) utilizes a large amount of
data, which include sensitive personal information, to extract representations
of relevant features so that the performance is significantly improved [77,
91]. However, there are also security issues when using ML in distributed
systems to train and test data, such as compromised data privacy, data leakage,
and unauthorized access. Therefore, privacy-preserving ML has become an
urgent challenge. In addition, DNN models are deployed in security-critical
applications such as autonomous vehicles, healthcare, and finance due to their
remarkable performance. The DNN models used in such applications have to
be robust against various attacks such as model inversion attacks, membership
inference attacks, and adversarial attacks [30, 79, 84, 87].

Many studies on secure, efficient, and flexible communication/storage/
computing have been reported [16, 27, 29, 42, 43, 49, 57, 84, 89, 95, 98]. Full
encryption with provable security [like RSA (Rivest-Shamir-Adleman) and
AES (Advanced Encryption Standard)] is the most secure option for securing
multimedia data [2, 9, 10, 33, 55, 61, 72, 73, 78, 94], but there is a trade-off
between security and other requirements such as for a low processing demand,
bitstream compliance, and signal processing in the encrypted domain. Several
perceptual encryption schemes have been developed to balance these trade-offs.

Accordingly, we present an overview of image transformation with a secret
key, referred to as perceptional image encryption, which has given new solutions
to the above issues. One way of privacy-preserving computing is to use a
perceptual image encryption method that aims to protect visual information
on plain images. Compared with number theory-based encryption [2, 9, 10,
33, 55, 61, 72, 73, 78, 94], such as multi-party computation and homomorphic
encryption, perceptual encryption methods have a number of advantages. The
use of perceptual encryption allows us to directly apply machine learning
algorithms without increasing computational costs. In other words, there is
no need to prepare algorithms specialized for computing encrypted data.

Moreover, some perceptual encryption methods can produce compressible
encrypted images, called compression-then-encryption (EtC) images [26, 31, 34,
45, 51–53, 59, 60, 70, 96, 101], and the use of perceptual encryption enables us
to embed unique futures controlled with a key into an image [4–6]. Accordingly,
encrypted images can be designed so that they are compressible, learnable, or
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have a unique feature in addition to protecting visual information by using
a perceptual encryption method. Thus, in this paper, we focus on a class
of image transformation, referred to as learnable image encryption, that is
applicable to privacy-preserving machine learning and adversarially robust
defense.

Image Encryption Number Theory-Based Encryption

Perceptional Encryption Compressible

Incompressible

Photo Sharing Services

Image Retrieval

Machine Learning (DNN)

Adversarial Defense

Access Control

Machine Learning 
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Figure 1: Perceptual image encryption methods and their applications.

2 Image Transformation with Key and its Applications

Figure 1 shows a categorization of image transformation with a secret key,
called image encryption or image cryptography, where the image transformation
is classified into two classes: number theory-based encryption and perceptual
encryption. Number theory-based encryption includes full encryption with
provable security (like RSA and AES). In contrast, perceptional encryption can
offer encrypted images that are described as bitmap images, so the encrypted
images can be directly applied to image processing algorithms. In addition,
encrypted images can be decrypted even when noise is added to them, although
number theory-based encrypted images cannot.

In this paper, we focus on two properties of perceptually encrypted images:
compressibility and learnability. As shown in Figure 2, if an encrypted image
can be compressed by using a compression method such JPEG compression,
the encrypted image is compressible. In addition, if an encrypted image can be
applied to a learning algorithm such as DNNs in the encrypted domain, it is
learnable. Image encryption prior to image compression is required in certain
practical scenarios such as secure image transmission through an untrusted
channel provider. An encryption-then-compression (EtC) system is used in
such scenarios, although the traditional way of securely transmitting images is
to use a compression-then-encryption (CtE) system. Compressible encryption
is a key technology for implementing EtC systems.

Learnable encryption enables us to directly apply encrypted data to a model
as training and testing data. Encrypted images have no visual information
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Figure 2: Compressible and learnable image encryption.

on plain images in general, so privacy-preserving learning can be carried out
by using visually protected images. In addition, the use of a secret key allows
us to embed unique features controlled with the key into images. From these
properties, several transformation methods with a key have been proposed for
adversarially robust defense, access control, and model watermarking.

In Section 3, methods for generating compressible encrypted images are
briefly summarized, and then the compressible encrypted images are also
demonstrated to be learnable in Section 4. Accordingly, the encrypted images
can be applied to traditional ML such as support vector machine. Moreover,
existing image encryption methods for privacy-preserving DNN models are
compared in terms of image classification accuracy and robustness against
various attacks in Section 5. In addition to applications to privacy-preserving
processing, image transformation with a key is described to be applicable
to robust defense against adversarial examples, and model protection from
unauthorized access in Sections 6 and 7, respectively. In these applications,
image transformation aims to embed a unique feature into a model with a key,
even though it aims to protect visual information on plain images for preserving
privacy. Concluding remarks, the limitation and future work are in Section 8.

3 Compressible Image Encryption for EtC systems

The origin of image transformation with a key is in block-wise image encryp-
tion schemes for EtC systems. Such compressible encryption methods are
summarized here.

3.1 Encryption-then-Compression Systems

Block-wise image encryption schemes [26, 51–53] have been proposed for EtC
systems, in which a user wants to securely transmit an image I to an audience
or a client via social network services (SNS) or cloud photo storage services
(CPSS), as shown in Figure 3. The privacy of an image to be shared can be
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Figure 3: EtC system.

controlled by the user unless the user does not give the secret key K to the
providers, even when the image is generally recompressed by the providers. In
contrast, in CtE systems, the disclosure of non-encrypted images or the use of
plain images is required to recompress uploaded images. Accordingly, encrypted
images to be applied to EtC systems have to be compressed multiple times by
compression methods used by SNS providers such as JPEG compression or
other well-known compression methods used for SNS and CPSS.

3.2 Color-based Image Encryption

The first encryption method that can be used with JPEG compression is
introduced here [53]. This method was also demonstrated to be effective under
the use of JPEG 2000 [96], JPEG XR [54], and lossless compression [51].

A full-color image (I) with X × Y pixels is divided into non-overlapping
blocks each with Bx ×By; then, four block scrambling-based encryption steps
are applied to the divided blocks as follows (see Figure 4).

(1) Randomly permute the divided blocks by using a random integer gener-
ated by a secret key K1.

(2) Rotate and invert each block randomly (see Figure 5) by using a random
integer generated by a key K2.

(3) Apply negative-positive transformation to each block by using a random
binary integer generated by a key K3, where K3 is commonly used for
all color components. In this step, a transformed pixel value in the i-th
block Bi, p′, is calculated using

p′ =

{
p (r(i) = 0)

p⊕ (2L − 1) (r(i) = 1)
, (1)
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where r(i) is a random binary integer generated by K3, p ∈ Bi is the pixel
value of the original image with L bits per pixel, and ⊕ is the bitwise
exclusive-or operation. The value of occurrence probability P (r(i)) = 0.5
is used to invert bits randomly.

(4) Shuffle three color components in each block by using an integer randomly
selected from six integers generated by a key K4 as shown in Table 1.

An example of an encrypted image with Bx = By = 16 is shown in
Figure 8(b), where Figure 8(a) is the original one. Images encrypted by using
color-based image encryption have almost the same compression performance as
non-encrypted ones when using JPEG compression with Bx = By = 16 [26, 52].
Images encrypted by using block-wise encryption are called EtC images.

Figure 4: Color-based block scrambling image encryption.

Figure 5: Block rotation and inversion.

3.3 Security Against Ciphertext-only Attacks

Security mostly refers to protection from adversarial forces. Most image
transformation methods are designed to protect visual information that allows
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Table 1: Permutation of color components for random integer. For example, if random
integer is equal to 2, red component is replaced by green one, and green component is
replaced by red one, while blue component is not replaced.

Three color channels

Random integer R G B

0 R G B
1 R B G
2 G R B
3 G B R
4 B R G
5 B G R

us to identify an individual, a time, and the location of a taken photograph.
Untrusted providers and unauthorized users are assumed to be adversaries.
Block-wise encryption has to be robust against both brute-force and jigsaw
puzzle solver attacks used as ciphertext-only attacks [24, 25].

1. Brute-force attack

When an image with X × Y pixels is divided into blocks with Bx ×By

pixels, the number of blocks n is given by

n =

⌊
X

Bx
× Y

By

⌋
, (2)

where ⌊·⌋ is a function that rounds down to the nearest integer. The four
block scrambling-based processing steps in Figure 4 are then applied to
the divided image. The key space of the color-based encryption NC(n)
is given as below [52],

NC(n) = N !× 8n × 2n × 6n. (3)

For example, when a color image with 1024× 768 pixels is divided into
16 × 16 blocks, we obtain n = 3072, and NC(3072) = 3072! × 83072 ×
23072 × 63072.

2. Jigsaw puzzle solver attack

The jigsaw puzzle solver is a method of assembling jigsaw puzzles by using
a computer [71, 80, 85, 86]. In block-wise encryption, if we regard the
blocks as pieces of a jigsaw puzzle, decrypting encrypted images is similar
to assembling a jigsaw puzzle. Therefore, jigsaw puzzle solvers should be
considered as one of the attack methods against block-wise encryption.
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Extended jigsaw puzzle solvers for block-wise image encryption [24, 25]
have been proposed to assemble encrypted images including rotated,
inverted, negative-positive transformed, and color component shuffled
blocks. It has been shown that assembling encrypted images becomes
difficult when the encrypted images are under the following conditions:

• Number of blocks is large.

• Block size is small.

• Encrypted images include compression distortion.

• Encrypted images have less color information.

Since jigsaw puzzle solvers utilize color information to assemble puzzles,
reducing the number of color channels in each pixel makes assembling
encrypted images much more difficult. Thus, grayscale-based encryption
schemes, which will be described next, have a higher security level than
that of the color-based scheme because the number of blocks is large,
the block size is small, and there is less color information.

Other attacking strategies such as the known-plaintext attack (KPA) and
chosen-plaintext attack (CPA) should be considered for security. Block-wise
encryption becomes robust against KPA through the assigning of a different
key to each image for encryption. In addition, the keys used for encryption
do not need to be disclosed because the encryption scheme is not public key
cryptography. Therefore, the encryption can avoid the CPA, unlike public key
cryptography.

3.4 Grayscale-based Image Encryption

Two grayscale-based image encryption schemes [26, 83] were proposed to
enable the use of a smaller block size and a larger number of blocks, which
enhances both invisibility and security against several attacks. Furthermore,
images encrypted by using the grayscale-based schemes include less color
information due to the use of grayscale images, which makes the EtC system
more robust. Figure 6 shows a grayscale-based image generated with the
first grayscale-based image encryption scheme [26], where a color image is
split into three (RGB) channels, and the three channels are then combined to
generate one grayscale-based image. Figure 7 also illustrates a grayscale-based
image generated by the second grayscale-based image encryption scheme [83],
where RGB components are transformed into the YCbCr color space, and the
three transformed channels are then combined to generate one grayscale-based
image. After defining a grayscale-based image, three encryption steps from
step 1) to 3) are applied to the grayscale-based image in a similar manner to
the color-based one.
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Figure 6: Grayscale-based image generation in RGB space.

Figure 7: Grayscale-based image generation in YCbCr space.

In Figure 7, the use of the YCbCr color space allows us not only to improve
the JPEG compression efficiency but also to avoid the effect of sub-sampling
for chroma components, even when JPEG images with a 4:2:0 sub-sampling
ratio are interpolated to increase the spatial resolution for chroma components
in the decoding process (See Figure 7(b)). SNS and CPSS providers are known
to manipulate uploaded images by changing the sub-sampling ratio and JPEG
quality factor Q [22, 23], so users cannot choose a desired sub-sampling ratio
and a value for Q in general.

3.5 Applications of EtC Images

EtC images generated by using an image transformation method with a
secret key have several interesting properties such as being compressible,
learnable, and visually protected, so various applications of EtC images have
been developed as shown in Figure 1. EtC images were initially proposed to
be applied to SNS or CPSS for privacy protection. In addition, they were
demonstrated to be applicable to privacy-preserving reversible data hiding,
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Figure 8: Examples of images encrypted by using two encryption methods.

Figure 9: Privacy-preserving machine learning.

image identification, and image retrieval [36–38]. Moreover, since EtC images
are learnable as described in Section 4, a number of machine learning algorithms,
such as support vector machine (SVM) with a kernel trick, k-nearest neighbor
(kNN), and random forests, can be carried out directly by using encrypted
images [47]. Besides, space modeling and dictionary learning with encrypted
data can be performed [11, 67, 68].

4 Learnable Image Transformation for Traditional Machine
Learning

In this section, we discuss the application of EtC images to traditional machine
learning algorithms such as support vector machines (SVM), k-nearest neighbor
(k-NN), and random forests for privacy-preserving machine learning [47]. As
shown in Figure 9, a model is trained by using training data (images) encrypted
with a common key, and test images encrypted with the key are then applied
to the trained model. Properties of EtC images are shown here, and the
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properties enable us to carry out privacy-preserving machine learning without
any performance degradation [47].

In Figure 9, the goal of privacy-preserving machine learning is to classify
encrypted images without any visual information in an untrusted cloud server.
In this scenario, encrypted images have to be robust enough against various
attacks.

4.1 Traditional Machine Learning

Traditional machine learning models are trained on the basis of the relationships
between feature vectors of images, e.g., distance, inner product, and order
relationship of elements. Here, we briefly show that SVM, k-NN, and random
forests are based on such relationships.

4.1.1 Linear SVM

We first focus on linear SVM for two-class classification. In SVM computing,
an input feature vector x is classified as

ŷ =

{
1 (f(x) > 0)

−1 (f(x) < 0)
.

By using a weight vector w and bias b, the decision function f(x) is given as

f(x) = w⊤x+ b. (4)

The training of SVM, i.e., obtaining decision function f from a given dataset
S = {(xi, yi)|1 ≤ i ≤ N}, is done by solving the following dual problem with
respect to a dual variable vector α = (α1, · · · , αN ),

max
α

−1

2

∑
1≤i,j≤N

αiαjyiyjx
⊤
i xj +

∑
1≤i≤N

αi

s.t.
∑

1≤i≤N

αiyi = 0, 0 ≤ αi ≤ C, (5)

where C is a regularization parameter for the margin, and yi is a true label (1
or −1) of xi. The weight vector w and the bias b are calculated by using the
optimum α as

w =
∑

1≤i≤N

αiyixi (6)

b = yi′ −
∑

1≤i≤N

αiyix
⊤
i xi, i′ ∈ {i|1 ≤ i ≤ N ∧ 0 < αi < C}. (7)

As shown above, Equation (5) depends on the inner product of the input
feature vectors, not feature vectors themselves.
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4.1.2 SVM with Kernel Trick

SVM also has a well-known technique called the “kernel trick” for non-linear
classification. For non-linear classification using SVM, a function ϕ that maps
an input vector x onto high dimensional feature space F is utilized.

When the function ϕ is applied, the decision function in Equation (4)
becomes

f(x) = sign(w⊤ϕ(x) + b), (8)

and the optimization problem in Equation (5) is given by

max
α

−1

2

∑
1≤i,j≤N

αiαjyiyjϕ(xi)
⊤ϕ(xj) +

∑
1≤i≤N

αi

s.t.
∑

1≤i≤N

αiyi = 0, 0 ≤ αi ≤ C. (9)

In the kernel trick, the kernel function K(xi,xj) = ϕ(xi)
⊤ϕ(xj) of two vectors

xi, xj is defined instead of directly defining function ϕ.
Typical kernel functions are the radial basis function (RBF) kernel and

the polynomial one. RBF kernel is based on the Euclidean distance, and the
polynomial kernel is based on inner products:

K(xi,xj) = exp(−γ∥xi − xj∥2) (10)

K(xi,xj) = (1 + x⊤
i xj)

l, (11)

where γ is a hyperparameter for deciding the complexity of boundary determi-
nation, and l is a parameter for deciding the degree of the polynomial.

4.1.3 k-NN

The k-NN algorithm is usually based on the Euclidean distance. For each
sample xi in a training dataset S, the Euclidean distance

∥xi − x∥2 (12)

between testing samples x and xi is first calculated. Then, k nearest neighbors
are picked up in accordance with the calculated Euclidean distance. Testing
sample x is classified in the class most common among the neighbors. The
predicted label ŷ will be

ŷ = argmax
q∈{1,−1}

kq, (13)

where kq indicates the number of samples whose class label is q among the k
nearest neighbors.
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Figure 10: Relationship between two EtC images. Even after image transformation, typical
relationship between two EtC images is same as that between corresponding original images.

4.1.4 Decision Tree and Random Forests

Decision trees and random forests [14] are learned on the basis of the order
relationship of features among samples in a training dataset. In other words,
the separation boundary of decision trees does not depend on the scale and
bias of the features. Specifically, any full-rank diagonal matrix D ∈ Rd×d and
any vector b ∈ Rd can be used to transform the training dataset S = {(xi, yi)}
as S′ = {(Dxi + b), yi}, and a decision tree trained with S′ provides exactly
the same results as that trained with S.

4.2 Properties of EtC Images

Let us transform the i-th grayscale image Ii with H ×W pixels into a vector
xi = (p(0, 0), · · · , p(H − 1,W − 1))⊤ ∈ Rd, d = H × W , where p(h,w), 0 ≤
h ≤ H − 1, 0 ≤ w ≤ W − 1 is a pixel value at the (h,w) of I.

EtC images have three properties, that is, the Euclidean distance, the inner
product, and the order relationship of features between original vectors xi

and xj are preserved after the image transformation (see Figure 10). Because
the linear SVM, SVM with the kernel trick, k-NN, and random forests are
based on the Euclidean distance, the inner product, and the order relationship



14 Hitoshi Kiya et al.

of features, respectively, the properties of EtC images enable us to carry out
privacy-preserving machine learning without any performance degradation [47].

4.2.1 Block Scrambling, Block Rotation and Inversion

As shown in Figure 4, block scrambling and block rotation and inversion
are carried out to permute pixels. These operations are easily shown to be
represented as a permutation matrix. For example, a permutation matrix Q
is given as, for d = 3,

Q =

1 0 0
0 0 1
0 1 0

 , (14)

where Q has only one element of 1 in each row or each column, and the others
are 0, so Q becomes an orthogonal matrix. The orthogonal matrix meets the
equation

Q⊤Q = E, (15)

where E is an identity matrix.
A encrypted vector x̂i is computed by using Q as

x̂i = Qxi. (16)

Therefore, x̂i in Equation (16) meets the properties in Equations (17) and (18)
due to the orthogonality of Q [65, 69], where p̂i,j(k) corresponds to a pixel
value of an EtC image generated under the use of block scrambling, and block
rotation and inversion operations.

Property 1. Conservation of Euclidean distances:

∥xi − xj∥2 = ∥x̂i − x̂j∥2. (17)

Property 2. Conservation of inner products:

x⊤
i xj = x̂⊤

i x̂j . (18)

xj is a transformed vector from the j-th image Ij.

4.2.2 Negative-Positive Transformation

Next, let us consider the influence of negative-positive transformation. In the
case of using the transformation in Equation (1), the relation between a pixel
value p′i(h,w) = pi(h,w) and another p′j(h,w) = 255− pj(h,w) is given by

(p′i(h,w)− p′j(h,w))
2 = (pi(h,w)− pj(h,w))

2. (19)
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Note that pi(h,w) ⊕ (2L − 1) is equal to 255 − pi(h,w) when L = 8. From
this relation, it is confirmed that the Euclidean distance between xi and xj is
preserved after negative-positive transformation. However, since the relation

p′i(h,w) · p′j(h,w) = (255− pi(h,w)) · (255− pj(h,w))

̸= pi(h,w) · pj(h,w), (20)

the inner product x⊤
i xj is not preserved. Consequently, the negative-positive

transformation operation preserves only the Euclidean distance between xi

and xj . In addition, negative-positive transformation can be written in the
form Dxi + b using a full-rank diagonal matrix D and a vector b, so it does
not affect the order relationship of the features as shown in Section 4.1.4).

4.2.3 Negative-Positive Transformation with z-score Normalization

We can preserve the inner product even under the use of negative-positive
transformation by using z-score normalization [44], which is a well-known data
normalization method for machine learning. In z-score normalization, a value
pi(h,w) is replaced with zi like

zi(h,w) = (pi(h,w)− p(h,w))/σ(h,w), (21)

where p(h,w) = 1
N

∑N
i=1 pi(h,w), and σ(h,w) is a standard deviation given

by

σ(h,w) =

√√√√ 1

N

N∑
i=1

(pi(h,w)− p(h,w))2. (22)

Therefore, in negative-positive transformation, Equation (21) is given as

z′i(h,w) = −p′i(h,w)− p′(h,w)

σ′(h,w)

=
(255− pi(h,w))− (255− p(h,w)

σ′(h,w)

= −pi(h,w)− p(h,w)

σ(h,w)
= −zi(h,w), (23)

where

p′(h,w) =
1

N

N∑
i=1

p′i(h,w) = 255− p(h,w), (24)
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and

σ′(h,w) =

√√√√ 1

N

N∑
i=1

(p′i(h,w)− p′(h,w))2

=

√√√√ 1

N

N∑
i=1

(−pi(h,w) + p(h,w))2 = σ(h,w). (25)

Equation (23) means that the normalized value z′i(h,w) of p′i(h,w) becomes
the sign inverted value of the normalized value zi(h,w) of pi(h,w). A sign
inversion matrix can be expressed as an orthogonal matrix, so both the
Euclidean distance and the inner product are preserved under the use of
z-score normalization. In addition, z-score normalization does not affect the
order relationship of the features.

Hence, in the case of applying z-score normalization to EtC images,
negative-positive transformation allows us to maintain the inner products.
As a result, EtC images can maintain the Euclidean distance, the inner
product, and the order relationship of features under the use of z-score
normalization.

4.2.4 Experimental Results

A face authentication simulation was carried out. We used the Extended
Yale Face Database B [32], which consists of 38 × 64 = 2432 frontal facial
images with 192 × 160 pixels for N = 38 persons. M = 64 images for each
person were divided in half randomly for training data samples and queries.
Bx ×By = 8× 8 was used.

In the simulation, we trained SVM classifiers using the RBF kernel in
Equation (10) with z-score normalization, and the false rejection ratio (FRR)
and the false acceptance ratio (FAR) were calculated under a threshold τ for
classification. From the results illustrated in Figure 11, the EtC images were
confirmed to have no influence on the performance of the SVM classifiers under
z-score normalization.

In other simulations, we also confirmed that dimensionality reduction
methods, i.e., random projection [46] and random block sampling, can be
carried out in the encrypted domain to reduce the number of dimensions of
feature vectors, as shown in our previous work [47]. Therefore, dimensionality
reduction methods can be applied to representations for privacy-preserving
machine learning.
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Figure 11: Experimental results with SVM.

5 Learnable Image Transformation for DNN

In this section, we present learnable image transformation methods that are
specifically designed for privacy-preserving DNNs since EtC images used for
traditional machine learning cannot maintain the high performance that using
plain images achieves. Learnable image transformation methods for DNNs are
classified into three types: block-wise transformation, pixel-wise transformation,
and network-based transformation. Figure 12 shows an example of images
transformed by various learnable transformation methods.

5.1 Learnable Image Transformation

Figure 9 depicts a framework for learnable image transformation for DNNs,
which is the same as that for traditional ML. Transformed images without
visual information are sent to a cloud server for training and testing a model,
and the network in the cloud server classifies the images without being aware of
any visual information. Three types of image transformation are summarized
below.

5.1.1 Block-wise Transformation

Tanaka first introduced a learnable image transformation method that works in
a block-wise manner for image classification as learnable image encryption [88],
where a block-wise adaptation layer is used prior to the classifier to reduce the
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Figure 12: Example of images generated by various learnable image transformation methods
for DNNs. (a) Original image. (b) Tanaka [88]. (c) E-Tanaka [62]. (d) Pixel-based [81]. (e)
GAN-based [82]. (f) U-Net-based [40].

influence of image encryption. In Tanaka’s method, a color image is divided
into blocks, and each block is processed by using pixel shuffling (upper and
lower 4-bit split pixels) and negative/positive transformation with a common
key for all blocks.

Next, to enhance the security of encryption, the method was extended by
adding a block scrambling step as used for EtC images [62]. Hereinafter, we
refer to this extended learnable transformation as “E-Tanaka.” The E-Tanaka
method allows us to assign a different key to each block.

5.1.2 Pixel-wise Transformation

A pixel-wise transformation method was proposed [81] in which negative-
positive transformation and color component shuffling are applied. It enables
us not only to carry out data augmentation in the encrypted domain but also
to use independent keys for training a model and testing. In addition, this
pixel-wise transformation does not need any adaptation layer prior to the
classifier.

5.1.3 Network-based Transformation

Another type of learnable image transformation for DNNs is network-based
transformation that uses generative models to generate visually protected
images. In network-based methods, a generative model producing protected
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images is trained by considering both classification accuracy for a classifier
and perceptual loss based on a VGG model. Therefore, the generative model
is optimized to remove visual information on plain images while maintaining a
high classification accuracy. One network-based method utilizes a generative
adversarial network (GAN) [82]. Images encrypted by using this method can be
used for both training and test images. In contrast, a transformation method
with U-Net [40] was proposed to enhance robustness against various attacks,
but it cannot be used for training a model. Figure 12 shows an example of
images transformed by various learnable transformation methods.

5.2 Comparison among Learnable Encryption Methods

Learnable encryption for DNNs still has a number of issues that should be
solved because of its short history. To clarify the issues, existing learnable
encryption methods are compared in terms of design architecture, classification
accuracy, robustness against attacks, and restriction of use.

Three state-of-the-art attacks, the feature reconstruction attack (FR-
Attack) [17], the GAN-based attack (GAN-Attack) [63], and the inverse trans-
formation network attack (ITN-Attack) [40, 41], were applied to encrypted
images for cryptanalysis. As shown in Figure 13, some visual information on
the plain image was restored by using attack methods except network-based
transformation [40], where the attacker was assumed to know the encryption
algorithms.

We used previously reported results in Ito et al. [39]. Table 2 provides a
comparison among learnable image transformation methods summarized from
a variety of viewpoints. The network-based methods [40, 82] do not require
any key, and the block-wise method [88] and EtC method [26] use a common
key, while the extended Tanaka method (E-Tanaka) [62] and the pixel-based
method [81] utilize a different key. Next, only E-Tanaka [62] and EtC [26]
utilize block shuffling, which is an important step for enhancing robustness
against attacks. Another distinct point among encryption methods is the use
of an adaptation layer for reducing the influence of encryption in the two block-
wise methods [62, 88]. In terms of accuracy, the U-Net-based method [40]
can maintain the classification accuracy that using plain images achieves,
but images encrypted by this method cannot be used for training a model.
For robustness against attacks, the methods in [26, 62] and the U-Net-based
approach [40] are robust enough against all attacks as shown in Figure 13.

As summarized above, each encryption method still has some weak points.
In particular, encryption methods have to be robust enough against various
attacks, and moreover, they should have no performance degradation compared
with the use of plain images. In addition, conventional methods focus on image
classification, so other privacy-preserving applications such as object detection
and semantic segmentation should be discussed.
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Figure 13: Images restored with three attack methods [39]. Structural similarity index
measure (SSIM) values are given under images.

6 Image Transformation for Adversarially Robust Defense

Image transformation with a secret key enables us to embed unique features
controlled with the key into images. Various applications that do not aim to
protect visual information have been inspired by this property. One application
is to defend against adversarial examples [5].

Intentionally perturbed data points known as adversarial examples are
imperceptible to humans, but they cause DNNs to make erroneous predictions
with high confidence [13, 87]. To combat adversarial examples, image transfor-
mation with a secret key was proposed as a defense [5–7]. The main idea of
this defense is to embed a secret key into the model structure with minimal
impact on model performance. Assuming the key stays secret, an attacker will
not obtain any useful information on the model, which will render adversarial
attacks ineffective.
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Table 2: Comparison of various image transformation methods for privacy-preserving DNNs.
⃝, △, and×denote high, medium, and low, respectively.

Pixel- GAN- U-Net-
Tanaka E-Tanaka based based based EtC

Criteria [88] [62] [81] [82] [40] [26]

Block/Pixel key Common Different Different – – Common
Block shuffling – ✓ – – – ✓
Adaptation layer ✓ ✓ – – – –

Accuracy △ △ △ ⃝ ⃝ ×
Robustness △ ⃝ △ △ ⃝ ⃝

Training/Inference Both Both Both Both Inference Both

Figure 14: Overview of image classification with adversarial defense.

6.1 Overview of Adversarial Defense

To achieve a defensive ability, a model is trained and tested with transformed
images with a secret key. Figure 14 shows an overview of image classification
where training and test images are transformed with a secret key. The block-
wise transformation used for this application is defined as a function g that
takes input x ∈ [0, 1]

c×h×w for a c-channel image of height h and width w and
key K, and it produces a transformed image x̂ (i.e., g(x,K) = x̂).

The goal of an adversarial defense is to have a high classification accuracy
for both plain images and adversarial examples. To achieve this goal, the
defense proposed in [5–7] utilizes an image transformation with a secret key as
below.
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Figure 15: Example of images generated by three block-wise transformations with M = 2.
(a) Original image. (b) Pixel shuffling. (c) Negative/positive transformation. (d) format-
preserving Feistel-based encryption.

Figure 16: Procedure of block-wise transformation with secret key, g(x,K,M), which takes
image x, key K, and block size M and outputs transformed image x̂.

6.2 Transformation Procedure

A novel block-wise transformation with a secret key was proposed for adver-
sarial defense as in [5], where it has three variations: pixel shuffling (SHF),
negative/positive transformation (NEG), and format-preserving Feistel-based
encryption (FFX) [12]. Examples of transformed images for adversarial defense
are shown in Figure 15. The detailed procedure of the block-wise transforma-
tion is given as follows (see Figure 16):

1. Divide x into blocks with a size of M such that {B(1,1), . . . ,B( h
M , w

M )}.

2. Flatten each block tensor B(i,j) into a vector b(i,j) = (b(i,j)(1), . . . , b(i,j)(c×
M ×M)).

3. Permutate b(i,j) in accordance with the following steps for each transfor-
mation. (For SHF),

• Generate a random permutation vector v with key K, such that
v = (v1, . . . , vk, . . . , vk′ , . . . , vc×M×M ), where vk ̸= vk′ if k ̸= k′,
and 1 ≤ vn ≤ c×M ×M .
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• Permutate every vector b(i,j) with v as

b′(i,j)(k) = b(i,j)(vk), (26)

to obtain a shuffled vector, b′(i,j) = (b′(i,j)(1), . . . , b
′
(i,j)(c×M ×M)).

(For NEG),

• Generate a random binary vector r with key K, such that
r = (r1, . . . , rk, . . . , rc×M×M ), where rk ∈ {0, 1}. To keep the
transformation consistent, r is distributed with 50% of “0”s and
50% of “1”s.

• Perform negative/positive transformation on every vector b(i,j) with
r as

b′(i,j)(k) =

{
b(i,j)(k) (rk = 0)
b(i,j)(k)⊕ (2L − 1) (rk = 1),

(27)

where ⊕ is an exclusive-or (XOR) operation, L is the number of
bits used in b(i,j)(k), and L = 8 to obtain a transformed vector,
b′(i,j).

(For FFX),

• Generate a random binary vector r with key K, such that
r = (r1, . . . , rk, . . . , rc×M×M ), where rk ∈ {0, 1}. To keep the
transformation consistent, r is distributed with 50% of “0”s and
50% of “1”s.

• Convert every pixel value to be at 255 scale with 8 bits (i.e., multiply
b(i,j) by 255).

• Perform encryption (FFX) on pixel values in b(i,j) on the basis of
r as

b′(i,j)(k) =

{
b(i,j)(k) (rk = 0)
Enc(b(i,j)(k)) (rk = 1),

(28)

where Enc(·) is format-preserving Feistel-based encryption (FFX) [12]
configured with an arbitrary password and a length of 3 digits to
cover the whole range of pixel values from 0 to 255, to obtain a
transformed vector, b′(i,j).

• Convert every pixel value back to [0, 1] scale (i.e., divide b′(i,j) by
the maximum value of b′(i,j)).

4. Integrate the transformed vectors to form a transformed image tensor x̂.
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Table 3: Accuracy and attack success rate of models with adversarial defense under three
attacks for CIFAR-10 dataset (M = 4).

Attack success rate (%)

Model Accuracy (%) PGD (ℓ∞) CW (ℓ2) EAD (ℓ1)

SHF 91.84 3.82 0.0 0.0
NEG 93.41 3.18 0.0 0.0
FFX 92.30 4.37 0.28 0.0

6.3 Robustness against Attacks

Experiments were carried out using projected gradient descent (PGD) under
the ℓ∞-norm [64], Carlini and Wagner’s attack (CW) under the ℓ2-norm [15],
and elastic net attack (EAD) under the ℓ1-norm [21] for the CIFAR-10
dataset [50].

We used pre-trained models from [5] and reproduced results in Table 3
that summarizes classification accuracy and attack success rate for models
trained by using the three transformations, denoted as SHF, NEG, and FFX,
with a block size of 4. From the table, all defense models achieved more
than 90% accuracy and a low attack success rate (<5%). Compared with fast
adversarial training (Fast AT) [97], the feature-scattering approach (FS) [99],
and standard random permutation (SRP) [90] under the PGD attack with
various noise distances, the defense models with image transformation achieved
a high accuracy as shown in Figure 17.

7 Model Protection with Image Transformation

Training a successful DNN model is not a trivial task and requires three
ingredients: a huge amount of data, GPU-accelerated computing resources,
and efficient algorithms. For example, the dataset for the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC 2012) contains about 1.28 million
images, and training on such a dataset takes days and weeks even on GPU-
accelerated machines. Considering the expenses necessary to train a DNN
model, a trained model should be regarded as a kind of intellectual property
(IP).

In this section, we summarize model protection methods. There are two
aspects of model protection: model access control and model watermarking.
The former focuses on protecting the functionality of DNN models from
unauthorized access, and the latter addresses identifying the ownership of
models.
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Figure 17: Comparison with state-of-the-art defenses in terms of accuracy under PGD attack
for CIFAR-10 dataset [5]. Accuracy was calculated over 10,000 images.

7.1 Model Access Control

Chen and Wu first proposed a model access control method that utilizes
secret perturbation in such a way that the secret perturbation is crucial to
the model’s decision [20]. However, this method [20] requires an additional
perturbation network, and the parameters of the perturbation network have
to be kept secret. In addition, the classification accuracy of the method [20]
slightly drops compared with non-protected models under the same training
settings. Another method, DeepAttest proposed a hardware-level IP protection
to prevent from illegitimate execution of models by using a Trusted Execution
Environment (TEE) [18]. In contrast, a model access control method with
image transformation not only does not need any extra network, but it also
maintains a high classification accuracy [4]. The model access control method
with image transformation is described as follows.

7.2 Model Access Control with Image Transformation

The block-wise transformations for adversarial defense in Section 6 can also
be applied to model access control [4]. The framework of model access control
with image transformation is shown in Figure 18. From the figure, a model is
trained by using images transformed with key K. The trained protected model
provides correct predictions to authorized users who know the encryption
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Figure 18: Framework of model access control with image transformation.

Table 4: Classification accuracy (%) of access control method by image transformation under
three conditions (M = 4).

Model Correct (K) Incorrect (K ′) Plain

SHF 92.58 20.15 27.77
NEG 93.41 12.50 12.17
FFX 92.29 18.45 37.06

algorithm and correct key K. In contrast, unauthorized users cannot use the
model to full capacity even when the model is stolen without K.

We used pre-trained models with a block size of 4 (M = 4) from [4] and
reproduced results in Table 4 that summarizes the results under three con-
ditions: with correct key K, with incorrect key K ′, and without applying
transformation to test images (plain) on the CIFAR-10 dataset. The classi-
fication accuracy for incorrect key K ′ was averaged over 100 random keys.
The protected models are named after the shorthand for the type of trans-
formation; the model trained by using images transformed by pixel shuffling
is denoted as SHF, that by negative/positive transformation as NEG, and
that by Feistel-based format preserving encryption as FFX in Table 4. Among
the three models, NEG achieved the best access control performance (i.e.,
providing a high accuracy for correct key K and a low accuracy for incorrect
key K ′ and plain images).

Moreover, a recent study shows that pixel shuffling as image transfor-
mation with a secret key can be applied to one or more feature maps of a
network [3, 39]. This approach with feature maps [3] has achieved superior
performance compared with using image transformation.
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Figure 19: Framework of model watermarking framework with image transformation.

7.3 Model Watermarking

Model watermarking in general aims to identify the ownership of a model only
when the model is in question. The functionality of the model is not protected
regardless of the ownership. There are two approaches for model watermarking:
white-box and black-box. In the white-box approach, a watermark is embedded
in model weights by using an embedding regularizer during training. Therefore,
access to the model weights is required to extract the watermark embedded
in the model as in [19, 28, 75, 92]. In contrast, in the black-box approach,
an inspector observes the input and output of a model in doubt to verify the
ownership as in [1, 8, 28, 66, 76, 100]. Thus, access to the model weights is
not required to verify ownership in black-box approaches.

However, most conventional model watermarking methods are vulnerable
to piracy attacks [28, 58, 93]. To defend against such attacks, image transfor-
mation with a key has been adopted for model watermarking applications [8]
as below.

7.4 Model Watermarking with Image Transformation

A framework for image classification with model watermarking [8] is depicted in
Figure 19. To embed a watermark into a model, the model is trained with both
clean images and images transformed with key K. Such trained models learn
to classify both plain images and transformed ones. The embedded watermark
is detected by matching the predictions of the plain and transformed images.
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This property is exploited to verify the ownership of models. Specifically,
watermark detection τ is defined as

τ =
1

N

N∑
i=1

1(C(f(xi)) = C(f(x̂i))), (29)

where N is the number of test images, C(f(·)) is the argmax operation, f is
an image classifier, xi is a test image, x̂i is a transformed test image, and
1(condition) is a value of one if the condition is satisfied, otherwise a value
of zero. To verify the ownership, a user-defined threshold is required. The
threshold should be lower than watermark detection τ . For example, if the
threshold is 80 and τ is 90, ownership verification is successful because τ is
higher than the threshold.

In an experiment, the negative/positive transformation (NEG) in Section 6
was applied to the CIFAR-10 dataset. The results for models with block sizes
M = 2 and 4 are taken from [8] and summarized in Table 5. The models

Table 5: Classification accuracy (%) and watermark detection (%) of protected models with
M = 2 and 4 [8]. Values were averaged over testing whole test set (10,000 images).

Accuracy Accuracy Detection Accuracy Detection
Model (plain) (K) (τ) (K ′) (τ ′)
M = 2 92.74 93.43 95.87 10.53 10.260
M = 4 92.99 92.24 94.20 15.55 15.75

Figure 20: Classification accuracy under pruning attack [8].
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Figure 21: Watermark detection τ under pruning attack [8].

were tested with plain images and images transformed by correct key K and
incorrect key K ′, and the corresponding watermark detection values, τ and
τ ′, were calculated. When given K, both accuracy and watermark detection
values were high. In contrast, τ ′ dropped significantly under the use of K ′.

A watermarked model is pirated if the original watermark is removed or
a new verifiable watermark is injected while maintaining a model’s accuracy.
Piracy attacks require to modify model weights. Therefore, Pruning, in which
weight values that had the smallest absolute values were zeroed out as in [92],
can be used as a possible attack. Figures 20 and 21 show that watermark
detection was resistant up to 60% of parameter pruning and was directly
dependent on the model accuracy [8]. Therefore, the results showed that
attacking the watermark deteriorated the model accuracy. From the results,
we can imply that a watermarked model with image transformation cannot be
pirated without losing some accuracy.

8 Conclusion

In this paper, we presented an overview of learnable image transformation with
a secret key and its applications. We focused on two properties: compressibility
and learnability, although encrypted images have various properties. The use
of these properties allows us not only to compress encrypted images but also
to apply them to machine leaning algorithms. In addition, by using an image
transformation method, unique features controlled with a key can be embedded
into images, so adversarially robust defenses and model protection can be
achieved.



30 Hitoshi Kiya et al.

However, conventional transformation methods still have a number of weak
points. Generally, image encryption methods have to be robust enough against
various attacks. In addition, from the application perspective, when apply-
ing encrypted images to privacy-preserving machine learning, classification
performance should be maintained compared with the use of plain images.
The use of image transformation with a secret key for adversarial defense and
model protection is still at its infancy. Therefore, there is a lot of room for
improvement in terms of classification accuracy and robustness against various
threats. In addition, conventional studies have focused on image classification,
so other applications such as object detection and semantic segmentation
should be discussed in future work.
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