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ABSTRACT

After their inception in the late 1980s, recurrent neural networks
(RNNs) as a sequence computing model have seen mushrooming
interests in communities of natural language processing, speech
recognition, computer vision, etc. Recent variations of RNNs have
made breakthroughs in fields such as machine translation where
machines can achieve human level quality. RNNs assisted speech
recognition technology is providing services on subtitles for live
streaming videos. In this survey, we will offer a historical perspec-
tive by walking through the early years of RNNs all the way to their
modern forms, detailing their most popular architectural designs
and, perhaps more importantly, demystify the mathematical aspect
behind their memory behaviors.

Keywords: Recurrent neural networks, long short-term memory, gated recur-
rent unit, bidirectional recurrent neural networks, natural language
processing.

1 Introduction

Since Elman’s “Finding Structure in Time” [19], it has been long believed
that the recurrent neural network (RNN) as a sequence learning system is
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able to handle very long sequences by “encoding” the input into a vector
called the hidden state. Applications of learning systems with such capability
are omnipresent in our daily lives, including but not limited to spam email
detection [53], text content analysis [58, 59], language modeling, machine
translation, speech transcription, object tracking for surveillance systems [54,
57] and interactive systems such as automated customer services. More recently,
Graves et al. [22] has reported the breakthroughs led by RNNs for speech
recognition. Work on similar tasks can also be found in [5, 42, 47, 48, 68,
74–79]. Research in RNN-powered machine translation systems such as those
described in [50, 52] has lead to machine’s human level performance. RNNs’
ability to describe the content of images and videos has also been studied in
[4, 67] respectively.

Being different from feed-forward neural network designs, RNNs have at
least one cyclic connection that builds a path from a network node back to itself
according to [29]. The seemingly simple definition disguises its sophistication
in the training process, which requires unrolling of the model across time
for gradient generation and model weight sharing. What adds to the puzzle
is their memory mechanism after RNNs are trained. To demystify all those
puzzles, we will walk through the early designs of RNN – the simple RNN
(SRN) for motivation. We will then introduce the concept of time unrolling
and elaborate RNN’s training method – the back-propagation through time
(BPTT). Then, we will present RNN’s basic building blocks, such as the
LSTM and the gated recurrent unit (GRU) as well as models built on top of
them with the help of time unrolling. Finally, we examine RNN’s memory
behavior.

Although there are many writings on this subject – such as those in [13,
21, 23, 30] – due to its popularity, we try to differentiate ourselves by walking
through RNN’s early history and elaborating its macro vs. cell architectures
for a full picture. We also offer a case study of using RNNs for neural-based
architectural design to illustrate how RNNs can be applicable to real-world
problems. Perhaps, the most important differentiating factor is our focus on
the understanding of the memory behavior of RNNs, which is a rarely studied
topic in the literature. We hope this work can be beneficial to readers for a
deeper understanding on this subject.

2 Inception: Simple Recurrent Neural Networks

All RNN’s modern day achievements began with a humble beginning of nothing
more than a repeating sequence generator. The very first Jordan’s recurrent
neural model as described in [29] is tasked to produce patterns of “AAAB,”
where A is a vector of [ 11 ] and B is a vector [ 00 ]. The model’s graph is shown
in Figure 1, where each circle denotes a neuron that takes weighted inputs
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Figure 1: The graph of the sequence generating recurrent neural model by [29].

and computes the corresponding output based on its activation function. The
value of an edge that connects one neuron to the other is called the “weight.”
The bias terms are shown inside each neuron.

Throughout this survey, the notation for matrix or higher dimensional
tensor, vector and scalar are bold-face italic, bold-face italic with straight line
below and non-bold italic, respectively (e.g., m,v, and s). We would omit
the bias terms by including them in the corresponding weight matrices in the
following equations. The multiplication between two equal-sized non-scalar
variables in this paper is element-wise multiplication. Like feed-forward models,
the output ht of each neuron with respect of input xt can be expressed as

ht = f(W xxt). (1)

We follow the convention in [11]. That is, ht is the output (y
t

was frequently
used in place of ht in early work), xt is the input, W x is the weight, and f is
the activation function that is usually in form of sigmoid or hyperbolic tangent.
We would argue that Hornik et al. [28]’s “squashing” functions are particular
beneficial to the RNN’s numerical stability in the training process.

Jordan’s recurrent neural model has two state neurons (bottom), one hidden
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neuron (middle) and two output neurons (top). The state neurons have linear
activation function while the other ones have a binary threshold function that
outputs 1 if the weighted input is positive and, 0, otherwise. The output of
each neuron is shown in Table 1.

Table 1: Jordan’s recurrent model’s state at each time step.

Time Input activation Hidden activation Output activation

0 [0, 0]T 0 [1, 1]T → A
1 [1, 1]T 0 [1, 1]T → A
2 [1.5, 1.5]T 0 [1, 1]T → A
3 [1.75, 1.75]T 1 [0, 0]T → B

Being different from feed-forward models, each neuron can find a path
back to itself. The simple arrangement opens the door for a flexible modeling
of complex temporal dependencies as opposed to the hidden Markov model
(HMM) which is studied in [6, 7] or the Naive Bayes (NB) as described in [18,
32], where the temporal dependency concept stays insignificant or irrelevant
since they do not model the order of events in a sequence explicitly or assume
that events are only associated with each other through their immediate
neighbors. Being aware of the potential benefit, Jordan proposed one of the
early simple RNNs (SRN). It is shown in Figure 2, where neurons in the bottom
left are input neurons while the ones in the bottom right with weights pointing
to themselves are called “plan” neurons which take the previous outputs of the
model and the previous outputs of themselves as their inputs.

Mathematically, the following equations describe Jordan’s SRN:

st = fs(W hht−1 +W sst−1), (2)
ct = fc(W inXt +W sst), (3)
ht = fh(W cct), (4)

where Xt ∈ RM , st ∈ RN , ct ∈ RN ,ht ∈ RN ,W h ∈ RN×N ,W s ∈ RN×N ,
W in ∈ RN×M ,W s ∈ RN×N ,W c ∈ RN×N , the activation function for the
plan neurons are typically linear. The N is the number of neurons for the
plan, hidden and output units. The M represents the dimensionality of the
input at each time step.

To understand what this recurrence property implies and delivers in solving
real-world problems, Elman conducted a series of experiments to demonstrate
SRN’s learning capabilities on sequential patterns. One of such experiments
is to predict the next word given the previous words in a sequence. This is
called language modeling (LM), where each word is numericalized as a vector.
One way of such numericalization is called one-hot. In the one-hot scheme, the
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position of the “1” bit is only located in input’s entry position in the dictionary
while all other positions take value “0.” The vector size is equal to the total
number of elements in the dictionary. The behavior of the SRN for character
prediction is shown in Figure 3. We see from the figure that the SRN can predict
more accurately with more previous characters serving as the context for the
target characters. This implies that the SRN is able to extract or “memorize”
the information in the past. Furthermore, it is observed that the hidden state
of SRN can group words of similar properties into close distanced clusters in
a projected compact space as shown in Figure 4. Each word in the clustering
analysis is represented by averaging the hidden unit activation vectors which
are produced by that word. The distance is the L2 distance for clustering.

Figure 2: The graph of Jordan’s simple recurrent neural network.

Figure 3: The root-mean-squared error of the SRN for character prediction by [19].
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Figure 4: The hierarchical clustering result on SRN’s LM task by [19], where the distance is
in the L2 space.

Although being conducted mostly experimentally, Elman’s results were
convincing enough to deliver the following message. An artificial neural network
(ANN) with carefully designed recurrent connection is able to “find structure
in time.” A structure that encapsulates the information as a function of
time/sequence, through which the information flow is always directional – the
further away the information is from the current moment, the less observable
it is. The significance of finding such a structure is that, for a large number
of sequence learning problems including natural language processing (NLP)
and video processing, we are concerned with finding semantic patterns (which
is also studied in [16]) to solve the underlining problem by providing the
sequential/temporal information. The capability of a learning system in
grasping such patterns is thus crucial to its final performance.
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Figure 5: The graph of Elman’s SRN.

Elman also proposed a simpler version of SRN without plan units as shown
in Figure 5. Mathematically, it can be written as

ct = fc(W inXt +W cct−1), (5)
ht = fh(Wct). (6)

By comparing Elman’s SRN with Jordan’s, we see that the hidden state is
a function of the current input as well as all previous inputs. Thus, such an
architecture is ideal for building a probabilistic model to calculate the posterior
of p(ht|{Xi}ti=1). At the end of this survey, we will show such a property
holds the key to the analysis of RNN’s memory. Before getting there, we would
like to examine the RNN from a different perspective by unrolling its graph
across time in the next section. This will help us understand how an RNN is
trained.

3 Time Unrolling and Back Propagation Through Time

Time unrolling or unfolding is to create an equivalent RNN’s graph with-
out recurrent edges (see [10] for further details). This is made possible by
presenting the input X as a sequence from the input at the first time step
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(time step 1) all the way to the one at the last time step (time step T, T
can go to positive infinity). Then, at each time step, the recurrent edges
are redirected to the corresponding node in the next time step. Figure 6
shows the unrolling of Elman’s SRN’s hidden state. For a recurrent edge
that does not point to the same node, we illustrate its time unrolling version
in Figure 7.

Figure 6: Time unrolling of a graph with edges pointing to the same node.

Figure 7: Time unrolling of a graph with edges pointing to a different node.

Time unrolling not only helps in better understanding of RNN’s temporal
dynamics but also serves as the implementation guidance since it simplifies
the process into the creation of a feed-forward graph within a temporal loop.
The graph at each time step is called RNN’s cell unit. This terminology was
first introduced in the LSTM work to describe the model’s basic computing
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unit and then extended to general RNNs. The seemingly feed-forward like
structure of a cell often misleads people to an analogy of a deep layered CNN
(further readings of interpreting deep CNN can be found in [31, 73]). The
difference is that the cell at each time step has identical parameters (also called
weight sharing). After all, they are the “mirror” of the same graph before
unrolling.

Furthermore, the time unrolling/unfolding technique enables a particular
way of RNN training called back-propagation through time (BPTT). Un-
like feed-forward NN models, the error gradient is back-propagated not only
to the model at the current time step but also to previous time steps all
the way to the beginning of the sequence if the BPTT length is not trun-
cated. If it is truncated, BPTT will stop at a pre-defined distance to the
current time step t. Although time unrolling can allow the sequence to be in-
finitely long conceptually, BPTT only applies to a sequence with a pre-defined
maximum length in practice because of the computational power constraint.
This is implemented by either fixing the sequence length up to a maximum
value in training or using truncated BPTT. The BPTT process is illustrated
in Figure 8.

Figure 8: Illustration of the back-propagation through time (BPTT) process.

With BPTT, an RNN can be trained more efficiently by considering
the temporal/sequential nature of the input signal explicitly. Since the error
gradient now becomes a function of time, the shared model parameters updated
by these gradients become a function of time as well. RNN models trained with
BPTT can handle temporal inputs more easily. The problem arises in BPTT
training is the so-called gradient vanishing/exploding problem. Although
being different from feed-forward model, the training of RNNs shares a similar
problem along the temporal dimension since the gradient back-propagates
across time steps in a fashion similar to the one flowing through layers of
feed-forward models. According to [27, 43], gradient vanishing/exploding
happens when the input sequence becomes longer as shown in the paired
comparison between ordinary back-propagation and BPTT in Equations (7)
and (8), respectively. Let ϵt and ct be the training loss and the hidden state
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at time step t respectively, W c the recurrent weight, and η the learning rate.
Then, we have

W c =− η
∂ϵt
∂W c

+W c, (7)

W c =− η
∑

1≤t≤T,
1≤k≤t

(
∂ϵt
∂ct

 t∏
j=k

∂cj
∂cj−1


︸ ︷︷ ︸
gradient vanishing

explosion

∂ck
∂W c

)
+W c. (8)

By adopting a similar approach developed by [27], Razvan et al. [43]
examined the bounds of | ∂cj

∂cj−1
| for SRN and drew two conclusions. Let λ be

the largest eigenvalue of the Jacobian of ∂cj

∂cj−1
and γ be the upper bound of

its absolute value. It is sufficient for gradient vanishing to occur if λγ < 1.
It is necessary for gradient explosion to happen if λγ > 1. The gradient
vanishing/exploding problem makes RNNs difficult to train. This motivates
the proposal of LSTM, which will be elaborated in the next section.

4 LSTM and Further Extensions

4.1 Cell Models: LSTM and GRU

The conversion of an RNN from a sequence generator to its powerful modern
form is attributed to German computer scientists, Sepp Hochreiter and Jürgen
Schmidhuber, on their work on the long short-term memory (LSTM)
in the late 1990s. To solve the gradient vanishing/exploding problems, they
introduced an internal recurrent structure called the constant error carousal
(CEC) as shown in Figure 9.

Figure 9 shows the original proposal of LSTM with ϕ, σ and ⊗ denote
the hyperbolic tangent function,the sigmoid function and the multiplication
operation, respectively. All of them operate in an element-wise fashion. The
LSTM cell has an input gate, an output gate, and a CEC module. The
central idea of CEC is to force the error gradient for the recurrent connection,
∂ci/∂ci−1

,∀i ∈ 1, . . . , t, to unity so that the multiplicative term in Equation (8)
does not converge to zero or diverge to infinity. It was argued that the presence
of the input gate and the output gate is to ensure the error gradient does not
flow from the current cell to other cells. Such argument was inconsistent with
the ablation studies in [23], where it was observed that an LSTM without an
output gate performs equally well in many cases. A similar observation was also
given in [33]. The functionalities of LSTM’s gates are still debatable nowadays.
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Figure 9: The diagram of the original LSTM cell.

One important gating design of an LSTM in its modern form is however
missing in this earliest proposal. It is the forget gate. Soon after the original
LSTM, the forget gate was introduced to deal with the so-called hidden state
overflow problem. That is, when the absolute value of ct becomes very large,
its hyperbolic-tangent-activated output would stay at +1 or −1. This is
incurred by the gradient enforcement of CEC, which makes the hidden state
of an LSTM to increase or decrease to a prolonged period of time as shown in
Figure 10 if the input sequence keeps a similar pattern.

Figure 10: Illustration of the hidden state overflow problem by [20]. Starts of new sequences
with repeating symbols are indicated by vertical lines labeled by the symbols (P or T) to be
repeated in the sequences until the next ones start.

When the input consists of a series of repeating symbols “T” and “P,” we
show the evolution of ct in Figure 10 as the input sequence becomes longer.
The interval length between symbols in the horizontal axis denotes the length
of the repeating symbols start from its left, the vertical line denotes the start
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of a new series. As it can be seen, the hidden state of an LSTM increases or
decreases regardless of the input of new series.

The forget gate allows the recurrent error gradient to be equal or less than
one. This is equivalent to allowing gradient vanishing as long as the memory
length is long enough for the specific task. It was observed in [20] that the
forget gate is acting like a resetting mechanism. When a terminal signal is
received, its activation will be set close to zero so that hidden state ct will
be “refreshed” as if the previous elements in the sequence are forgotten as
given in Figure 11. We will later argue that such a “resetting” phenomenon
actually stems from the memory decay property of the forget gate, which
would constrain LSTM’s memory capability.

Figure 11: Resetting hidden states by introducing the forget gate in an LSTM by [20]. Top:
Internal states st of the two cells in a LSTM network during a test stream presentation.
Starts of new sequences with repeating symbols are indicated by vertical lines labeled by
the symbols (P or T) to be repeated in the sequences until the next ones start. Bottom:
simultaneous forget gate activations of the LSTM.

An LSTM with the forget gate is the most common form. Mathematically,
it can be written as

ct = σ(W fIt)ct−1 + σ(W iIt)ϕ(W inIt), (9)
ht = σ(W oIt)ϕ(ct), (10)

where ct ∈ RN , column vector It ∈ R(M+N) is a concatenation of the current
input, Xt ∈ RM , and the previous output, ht−1 ∈ RN (i.e., IT

t = [XT
t , h

T
t−1]).
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Furthermore, W f , W i, W o, and W in are weight matrices for the forget gate,
the input gate, the output gate and the input, respectively. The detailed block
diagram is shown in Figure 12.

Figure 12: The diagram of a LSTM cell with the forget gate.

Another variation of LSTM, called the vanilla LSTM, is popularized by
[23]. It has peephole connections from the CEC to the input, output and
forget gates. Thus, Equations (9) and (10) can be written as

ct = σ(W fIt + p
f
ct−1)ct−1 + σ(W iIt + p

i
ct−1)ϕ(W inIt), (11)

ht = σ(W oIt + p
o
ct)ϕ(ct), (12)

where p
i
,p

f
,p

o
∈ RN are called the peephole weights.

Based on the vanilla design, a convolutional LSTM (ConvLSTM) was
proposed by [45] to deal with spatial-temporal inputs for problems like rain-
fall intensity prediction, where inputs are multiple values defined on a two-
dimensional grid collected for a certain period of time. Unlike language
problems where input tokens are mostly one dimensional vectors (see Section
4.3), the ConvLSTM takes in three dimensional (e.g., C×H×W) sequence
of inputs, filtering them to get extracted feature maps in a fashion similar to
CNNs by substituting matrix multiplications in Equations (11) and (12) with
convolutions. As a result, we have the following equations for the ConvLSTM:

ct = σ(W f ∗ It + pfct−1)ct−1 + σ(W i ∗ It + pict−1)ϕ(W in ∗ It), (13)

ht = σ(W o ∗ It + poct)ϕ(ct), (14)

where ∗ denotes the convolution operation, It, ct, and ht are all three di-
mensional tensors. The ConvLSTM design is largely functional. It allows
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higher dimensional inputs and preserves LSTM’s memory capability. Before
proceeding to the next topic, we would like to mention that the LSTM actually
has many different forms, and only the most popular ones with proven efficacy
were reviewed above.

Another popular RNN cell model is called the GRU. It was originally
proposed for neural machine translation by Cho et al. in [12]. Its operations
can be expressed as:

zt = σ(W zXt +Uzht−1), (15)
rt = σ(W rXt +U rht−1), (16)

h̃t = ϕ(WXt +U(rt ⊗ ht−1)), (17)

ht = ztht−1 + (1− zt)h̃t, (18)

where Xt, ht, zt, and rt denote the input, the hidden-state, the update gate
and the reset gate vectors, respectively, and W z, W r, W , are trainable weight
matrices. Its hidden-state is also its output as given in Equation (18). Its
diagram is shown in Figure 13, where “Concat” denotes the vector concatenation
operation.

Figure 13: The diagram of a GRU cell.

As shown in the figure, for the same input Xt and cell number N , a GRU
cell uses fewer parameters than an LSTM (see Figure 12). An LSTM has four
weight matrices (for the input, the input gate, the output gate, and the forget
gate, respectively) while a GRU has only three weight matrices for the update
gate, the reset gate and the weight connection for h̃. In the original GRU
paper by [12], it was argued that the reset gate is functioning like the forget
gate in the LSTM and the update gate functions like a valve to control the flow
of information from the previous inputs. However, we will show that a GRU is
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actually the same as an LSTM in terms of their computing architecture with
no fundamental difference in the next section.

It was observed in [13] that a GRU outperforms an LSTM in some cases yet
no conclusive remarks were given. Similar observations were given in [30]. It
was concluded in [23] that there is neither obvious advantage nor disadvantage
of an LSTM as compared to a GRU. To sum up, there is no foregone conclusion
whether the GRU outperforms the LSTM. A GRU converges faster than an
LSTM for some particular RNN models.

4.2 Macro Models: BRNN, Seq2Seq and Deep RNN

A single RNN cell model is rarely used in practice due to its limited expres-
siveness in real-world problem modeling. Instead, more powerful RNN models
are built upon these cells and used with different probabilistic models. One
problem of interest is the sequence-in-sequence-out (SISO) problem or the
sequence-to-sequence problem. That is, the RNN model predicts an output
sequence, {Y t}T

′

t=1, with Y t ∈ RN , based on the input sequence, {Xt}Tt=1,
with Xt ∈ RM , where T and T ′ are lengths of the input and the output
sequences, respectively.

One of the popular macro RNN models in solving the SISO problem is the
bidirectional RNN (BRNN), which was first studied in [44]. As the name in-
dicates, a BRNN takes inputs in both forward and backward directions as shown
in Figure 14. It has two RNN cells to take in the input. One takes the input in
the forward direction while the other takes the input in the backward direction.

Figure 14: The diagram of a bidirectional RNN (BRNN).

The BRNN design is motivated by utilizing the input sequence fully if
the future information ({Xi}Ti=t+1) is accessible. This is especially helpful if
the current output, Y t, is also a function of future inputs. The conditional
probability density function of a BRNN is in form of

P (Y t|{Xt}Tt=1) =W fpf
t
+W bpb

t
, (19)

Ŷ t =argmaxY t
P (Y t|{Xt}Tt=1), (20)



16 X. Liu et al.

where

pf
t

= P (Y t|{Xi}ti=1), (21)

pb
t

= P (Y t|{Xi}Ti=t), (22)

and W f and W b are trainable weights, Ŷ t is the predicted output element at
time step t. Thus, the output is a combination of the density estimation of a
forward RNN and the output of a backward RNN. Due to the bidirectional
design, a BRNN can utilize the information of the entire input sequence to
predict each individual output element. To show such treatment is helpful, one
example is generating a sentence like “this is an apple” in language modeling.
The word “an” is associated with its following word “apple.” It would be
difficult in generating “an” before “apple” in a forward directional RNN model.

The sequence-to-sequence (Seq2Seq) model was first proposed for
machine translation (MT) with GRU in [11]. Although it was referred to as
the encoder-decoder model in [11], the encoder-decoder model encompasses
more than the Seq2Seq model. It was developed to handle the situation when
T ′ ̸= T . It consists of two RNN cells. One is called the encoder while the other
is called the decoder. We will have more discussion on the encoder-decoder
model in Section 4.3.

One of early Seq2Seq RNN models in [61] is illustrated in Figure 15. As
shown in Figure 15, the encoder (denoted by Enc) takes the input sequence
of length T and generates its output hEnc

t and hidden state cEnc
t , where

t ∈ {1, . . . , T}. In the Seq2Seq model, encoder’s hidden state at time step
T is used as the representation of the input sequence. The decoder utilizes
the hidden state information to generate the output sequence of length T ′ by
initializing its hidden state cDec

1 with cEnc
T . Thus, the decoding process starts

after the encoder has processed the entire input sequence. In practice, the
input to the decoder at time step 1 is a pre-defined start decoding symbol. At
the remaining time steps, the previous output Y t−1 is used as the input. The
decoder will stop the decoding process if a special pre-defined stopping symbol
is generated.

As compared with the BRNN, the Seq2Seq model is not only advantageous
in its capability of handling input/output sequences of different lengths but also
more capable in generating aligned output sequences by feeding the previous
predicted outputs back to its decoder explicitly so that the prediction of Y t can
have more context, which allows the model to estimate the density function as

p
t

= P (Y t|{Ŷ i}t−1
i=1, {Xt}Tt=1), (23)

Ŷ t = argmaxY t
p
t
∀t ∈ {1, . . . , T ′}. (24)

One example is the translation from a sentence in Chinese “你来自哪里”
to English “where are you from” where “你” corresponds to “you,” “来自”
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Figure 15: The diagram of the sequence-to-sequence model.

corresponds to “from,” “哪里” corresponds to “where,” and the word “are” has
no corresponding Chinese alignment. So the word “are” is more pertinent to
the word of “where” and “you” in the translated English sentence than to the
source sentence in Chinese. Since the decoder of Seq2Seq has no bidirectional
design, “are” cannot context on “you,” but nevertheless, “where” should give
strong hint as to what word should be generated next.

To facilitate alignment, various attention mechanisms have been proposed
for the Seq2Seq model. In [2, 66], additional weighted connections are intro-
duced to connect the decoder to the hidden state of the encoder.

Although the Seq2Seq model (or an RNN in general) can take variable
lengthed input sequences during inference. To train the RNN model, a fixed
input/output length is used in practice since the BPTT is applied to an
unrolled RNN model. Any sequence that is longer than the fixed length will be
truncated and any shorter ones will be padded by pre-defined special symbol
or a numericalized vector.

A deep RNN is an RNN model with a stack of multiple RNN cells. An
example is shown in Figure 16. As discussed in Section 3, an RNN is itself
a deep model over time. The deep RNN extends the model depth, making
it a deep feed-forward model at each time step. The design of deep RNN
models is still an ongoing topic. At present, there is no mature prototype. In
[61], a Seq2Seq model with 4 layers of LSTM cells was reported to deliver the
best performance for machine translation. In [71], the residue connection as
described in [25] is employed in the deep design, which offers a deep Seq2Seq
model with 9 layers of encoders and 8 layers of decoders. Four different models
were proposed in [41] and shown in Figure 17. Yet, there is no conclusion
about which model gives the best performance.
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Figure 16: The diagram of a deep RNN by [41].

Figure 17: Illustration of four deep RNN proposals.
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4.3 Recurrent Auto-encoder for Video Compression: A Case Study of
Using RNNs for Neural-based Architectural Design

We have so far introduced the most popular RNN cells and macro models.
Yet, the list is far from complete. As a matter of fact, there could be an
infinite number of RNN models since one can come up with his/her own
design. To pursue this goal, it is helpful to revisit the early SRN design in
Section for inspiration – how the recurrence can help achieve the specific
learning task (which is the sequence learning in the SRN case)? Then, as
mentioned in Section 3, we can design a feed-forward cell model to meet the
goal and use time unrolling and BPTT in the training to complete an RNN
model. The pipelining of design and deployment of RNN models is shown
in Figure 18.

Figure 18: The process of designing and deploying an RNN model.

To further illustrate the abovementioned procedure, we use video com-
pression as an example. Although video compression is still dominated by
traditional hand-crafted codecs like H.264 or HEVC whose standards are
described in [60, 70] respectively, the learning based approach has been an
active research topic for work such as [9, 34–36, 39] in recent years. In this
example, we would limit ourselves to the illustration of how an innovative way
of using an RNN can contribute to this emerging application and how to come
up with a new design if existing RNN models are not applicable without going
into exhaustive details or debating the merits of the proposal.

For video data, the input to the system is a sequence of frames. The
temporal nature makes RNN an ideal modeling candidate. A feed-forward RNN
cell model should reflect the input structure and bear the task in mind. Video
compression has two tasks: 1) the system should compress the voluminous raw
video data (usually millions of consecutive high resolution frames) as much
as possible so that it can be readily stored or streamed for distribution; 2)
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it should be able to recover the frames from heavily compressed data with
acceptable visual quality. The former task is concerned with information
compression that controls the bit-rate while the latter task is concerned with
information reconstruction that aims to minimize the distortion between the
reconstructed frame for display and the original frame before compression.
They are called the rate-distortion problem jointly. The reconstruction task
is trivial if the compression is lossless. However, this is rarely the case since
lossless compression such as the Huffman or the arithmetic coder alone cannot
deliver the desired compression ratio. For lossy compression where a certain
amount of information is discarded in the compression process, the distortion
minimization task is very challenging.

Without going into further details, we provide a scope of the underlying
problem. The spatial-temporal data structure makes the ConvLSTM a good
candidate. Yet, the ConvLSTM is not well suited for the rate-distortion
problem. A better candidate is called the auto-encoder that is popularized by
[26]. The diagram of an auto-encoder is shown in Figure 19.

Figure 19: The diagram of an auto-encoder.

Although being seemingly similar to the Seq2Seq RNN, an auto-encoder re-
quires the decoder to recover unperturbed encoder’s input that is error injected
(e.g., adding random noise or lossy compressed input in video compression).
Since the output of the encoder is a dimensionally reduced representation of
the input, the encoder can serve as the compression module while the decoder
can serve as the reconstruction module. They offer a candidate to the solution
of the rate-distortion problem. Recently, the auto-encoder has been adopted
for learning-based image compression in [3, 62, 63].

Since the auto-encoder is a high-level macro model, we have the freedom
in choosing popular image processing architectures such as CNNs (e.g., VGG
in [46], ResNet in [25], etc.) to deal with the spatial input and generate the
reconstructed output. Then, we can feed the output recurrently back to the
encoder or the decoder at the next time step by time unrolling. The unrolled
graph of the resulting design is shown in Figure 20. This can serve as the
guidance for BPTT. The detailed model architectures and hyperparameter
settings can be worked out with further experimentation.
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Figure 20: The auto-encoder-based RNN for video compression.

5 Theory of Memory Decay and Enhancement

LSTM and GRU cells were designed to enhance the memory length of RNNs and
address the gradient vanishing/exploding issue. However, thorough analysis
on their memory decay property has been lacking. In this section, we attempt
to fill in the void. We will analyze the memory length of three RNN cells –
SRN, LSTM and GRU. Our analysis is different from the investigation of the
gradient vanishing/exploding problem in the following sense. The gradient
vanishing/exploding problem occurs in the training process while our memory
analysis is conducted on a trained RNN model. Based on the analysis, we will
discuss how to extend the memory. Along this direction, we will focus on a
new cell model called the extended LSTM (ELSTM) that does not suffer from
memory decay and delivers better results than existing models. Hopefully, our
discussion can serve as food for thought and provoke further research interests
in this field.1

1The source code for ELSTM can be found at https://github.com/yuanhangsu/
ELSTM-DBRNN.

https://github.com/yuanhangsu/ELSTM-DBRNN
https://github.com/yuanhangsu/ELSTM-DBRNN
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5.1 Memory of SRN, LSTM and GRU

For a large number of NLP tasks, we are concerned with finding semantic
patterns from input sequences. The memory of a cell characterizes its ability
to map input sequences of a certain length into such a representation. Here, we
define the memory as a function that maps elements of the input sequence to
the current output. Thus, the memory of an RNN is not only about whether
an element can be mapped into the current output but also how this mapping
takes place. It was reported by [20] that an SRN only memorizes sequences of
length between 3 and 5 units while an LSTM could memorize sequences of
length longer than 1000 units.

5.1.1 Memory of SRN

For ease of analysis, we begin with Elman’s SRN model with a linear hidden-
state activation function and a non-linear output activation function since such
a cell model is mathematically tractable while its performance is equivalent
to Jordan’s model. The SRN model can be described by the following two
equations:

ct = W cct−1 +W inXt, (25)
ht = f(ct), (26)

By induction, ct can be written as

ct = W t
cc0 +

t∑
k=1

W t−k
c W inXk, (27)

where c0 is the initial internal state of the SRN. Typically, we set c0 = 0.
Then, Equation (27) becomes

ct =

t∑
k=1

W t−k
c W inXk. (28)

As shown in Equation (28), SRN’s output is a function of all proceeding
elements in the input sequence. The dependency between the output and
the input allows the SRN to retain the semantic sequential patterns from the
input. For the rest of this survey, we call a system whose function introduces
dependency between the output and its proceeding elements in the input as a
system with memory.

Athough the SRN is a system with memory, its memory length is limited.
Let σmax(·) denotes the largest singular value (to be differed from the sigmoid
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function denoted as σ without subscription). Then, we have

|W t−k
c W inXk| ≤ ||W c||t−k|W inXk|
= σmax(W c)

t−k|W inXk|, k ≤ t, (29)

where || · || denotes the matrix norm and | · | denotes the vector norm. Both
are of the l2 norm. The inequality is derived by the definition of the matrix
norm. The equality is derived by the fact that the spectral norm (i.e., the l2

norm of a matrix) of a square matrix is equal to its largest singular value.
Here, we are only interested in the memory decay case when σmax(W c)

< 1. Since the contribution of Xk, k < t, to output ht decays at least in
form of σmax(W c)

t−k, we conclude that SRN’s memory decays at least
exponentially with its memory length t− k.

5.1.2 Memory of LSTM

Under the assumption c0 = 0, the hidden-state vector of the LSTM can be
derived by induction from Equations (9) to (10) as

ct =

t∑
k=1

[ t∏
j=k+1

σ(W fIj)

]
︸ ︷︷ ︸

forget gate

σ(W iIk)ϕ(W inIk). (30)

By setting f(·) in Equation (26) to the hyperbolic-tangent function, we can
compare outputs of the SRN and the LSTM below:

hSRN
t = ϕ

( t∑
k=1

W t−k
c W inXk

)
, (31)

hLSTM
t =

σ(W oIt)ϕ

( t∑
k=1

[ t∏
j=k+1

σ(W fIj)

]
︸ ︷︷ ︸

forget gate

σ(W iIk)ϕ(W inIk)

)
. (32)

We see from above that W t−k
c and

∏t
j=k+1 σ(W fIj) play the same memory

role for the SRN and the LSTM, respectively.
We can find many special cases where LSTM’s memory length exceeds

SRN’s regardless of the choice of SRN’s model parameters (W c, W in). For
example,

∃W f s.t. min |σ(W fIj)| ≥ σmax(W c),

∀σmax(W c) ∈ [0, 1).
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Then, we have ∣∣∣∣∣
t∏

j=k+1

σ(W fIj)

∣∣∣∣∣ ≥ σmax(W c)
t−k, t ≥ k. (33)

As given in Equations (29) and (33), the impact of input Ik on the output of
the LSTM lasts longer than that of the SRN. This means that there always
exists an LSTM whose memory length is longer than SRN for all
possible choices of SRN.

Conversely, to find an SRN with an advantage similar to LSTM, we need
to ensure that

||W t−k
c || ≥ 1 ≥

∣∣∣∣∣
t∏

j=k+1

σ(W fIj)

∣∣∣∣∣.
Although such W c exists, this condition would easily leads to memory explosion.
For example, one close lower bound for ||W t−k

c || is σmin(W c)
t−k, where

σmin(W c) is the smallest singular value of W c. This comes from the fact of

||AB|| ≥ σmin(A)||B|| and ||B|| = σmax(B) ≥ σmin(B),

plus analysis with induction. We need σmin(W c) ≥ 1. Since

||W t−k
c || ≥ σmin(W c)

t−k,

SRN’s memory will grow exponentially and end up with memory explosion.
This memory explosion condition does not exist in the LSTM.

5.1.3 Memory of GRU

By setting Uz, U r and U to zero matrices, we can obtain the following
simplified GRU system from Equations (15) to (18):

zt = σ(W zXt), (34)
h̃t = ϕ(WXt), (35)
ht = ztht−1 + (1− zt)h̃t. (36)

For the simplified GRU with the initial rest condition, we can derive the
following by induction:

ht =

t∑
k=1

[ t∏
j=k+1

σ(W zXj)︸ ︷︷ ︸
update gate

]
(1− σ(W zXk))ϕ(WXk). (37)
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Figure 21: The diagrams of the ELSTM cell.

By comparing Equations (30) and (37), we see that the update gate of the
simplified GRU and the forget gate of the LSTM play the same role. In other
words, there is no fundamental difference between GRU and LSTM.
Such finding is substantiated by the non-conclusive performance comparison
between GRU and LSTM conducted in [13, 23, 30].

Because of the presence of the multiplication term introduced by the forget
gate and the update gate in Equations (30) and (37), respectively, the longer
the distance of t− k, the smaller these terms. Thus, the memory responses
of LSTM and GRU to Ik diminish inevitably as t− k becomes larger. This
phenomenon occurs regardless of the choice of model parameters. For complex
language tasks that require long memory responses such as sentence parsing,
LSTM’s and GRU’s memory decay may have a significant impact on their
performance.

5.2 Extended LSTM

To address this design limitation, we introduce a scaling factor to compensate
the fast decay of the input response. This leads to a new solution called the
extended LSTM (ELSTM) which is introduced in [55, 56]. The ELSTM cell is
depicted in Figure 21, where st ∈ RN , is the trainable input scaling vectors

The ELSTM cell can be described by

ct =σ(W fIt)ct−1 + stσ(W iIt)ϕ(W inIt), (38)
ht =σ(W oIt)ϕ(ct). (39)

a bias term b ∈ RN for ct is omitted in Equation (39). As shown above, we
introduce scaling factor, si, i = 1, · · · , t − 1, to the ELSTM to increase or
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decrease the impact of input Ii in the sequence.
To show that the ELSTM has longer memory than the LSTM, we first

derive a closed form expression of ht as

ht = σ(W oIt)ϕ

( t∑
k=1

sk

[ t∏
j=k+1

σ(W fIj)

]
σ(W iIk)ϕ(W inIk)

)
. (40)

Then, we can find the following special case:

∃sk s.t.∣∣∣∣∣sk
t∏

j=k+1

σ(W fIj)

∣∣∣∣∣ ≥
∣∣∣∣∣

t∏
j=k+1

σ(W fIj)

∣∣∣∣∣ ∀W f . (41)

By comparing Equation (41) with Equation (33), we conclude that there
always exists an ELSTM whose memory is longer than LSTM for all
choices of LSTM. Conversely, we cannot find such an LSTM with similar
advantage to the ELSTM. This demonstrates ELSTM’s system advantage over
the LSTM by design.

The numbers of parameters used by various RNN cells are compared in
Table 2, where Xt ∈ RM , ht ∈ RN and t = 1, · · · , T . As shown in Table 2,
the number of parameters of the ELSTM cell depends on the maximum length,
T , of the input sequences, which makes the model size uncontrollable. To
address this problem, we choose a fixed Ts (with Ts < T ) as the upper bound
on the number of scaling factors, and set st = s(t−1) mod Ts+1 if t > Ts and t

starts from 1, where mod denotes the modulo operator. In other words, the
sequence of scaling factors is a periodic one with period Ts, so the elements in
a sequence that are distanced by the length of Ts will share the same scaling
factor.

Table 2: Comparison of parameter numbers.

Cell Number of parameters

LSTM 4N(M +N + 1)
GRU 3N(M +N + 1)
ELSTM 4N(M +N + 1) +N(T + 1)

The ELSTM cell with periodic scaling factors can be described by

ct =σ(W fIt)ct−1 + stsσ(W iIt)ϕ(W inIt), (42)
ht =σ(W oIt)ϕ(ct), (43)

where ts = (t− 1) mod Ts + 1. We observe that the choice of Ts affects the
network performance. Generally speaking, a small Ts value is suitable for
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Figure 22: A toy experiment of estimating the presence of “A.”

simple language tasks that demand shorter memory while a larger Ts value
is desired for complex ones that demand longer memory. For Seq2Seq RNN
model, a larger Ts value is always preferred.

5.2.1 Study of Scaling Factor

To examine the memory capability of the scaling factor, we carry out the
following experiment. The RNN cell is asked to tell whether a special element
“A” exists in the sequence of a single “A” and multiple “B”s of length T . The
training data contain T positive samples where “A” locates from position 1
to T , and one negative sample where there is no “A” exists. The cell takes
in the whole sequence and generates the output at time step T as shown in
Figure 22.

We would like to see the memory response of the LSTM and the ELSTM
to “A.” If “A” lies at the beginning of the sequence, the LSTM’s memory
decay may lead to the loss of the information of “A” ’s presence. The memory
responses of the LSTM and the ELSTM to input It are calculated as

mrLSTM
t =

[ T∏
j=t+1

σ(W fIj)

]
σ(W iIt)ϕ(W inIt), (44)

mrELSTM
t =st

[ T∏
j=t+1

σ(W fIj)

]
σ(W iIt)ϕ(W inIt), (45)

The detailed model settings can be found in Table 3.

Table 3: Network parameters for a toy experiment.

Number of RNN layers 1
Embedding layer vector size 2
Number of RNN cells 1
Batch size 5

We conduct multiple experiments by increasing the sample length T one
at a time and see when the LSTM cannot keep up with the ELSTM. We train
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Figure 23: Comparison of LSTM’s and ELSTM’s memory responses.

the LSTM and the ELSTM models with an equal number of epochs until both
report no further change in training loss. It is observed that, when T = 60,
LSTM’s training loss starts to reach a plateau while ELSTM’s loss can further
decrease to zero. As a result, the LSTM starts to “forget” when T ≥ 60. The
plot of memory responses for two cases are shown in Figure 23.

Figure 23(a) shows the memory response of the trained LSTM and the
trained ELSTM on a sample with T = 10 with “A” at position 9. It can be
seen that although both the LSTM and the ELSTM have stronger memory
responses at “A,” the ELSTM attends better than the LSTM since its response
at position 10 is smaller than LSTM’s. We also observe that the scaling factor
has a larger value in the beginning and then slowly decreases as the location
comes closer to the end. Then, it spikes at position 9. It appears that the
scaling factor is doing its compensating job at both ends of the sequence.

Figure 23(b) shows the memory response of the trained LSTM and the
trained ELSTM on a sample with T = 60 with “A” at position 30. In this
case, the LSTM is not able to “remember” the presence of “A” and it does
not have a strong response with respect to it. The scaling factor is doing
its compensating job at the first half of the sequence and especially in the
middle. This causes strong ELSTM’s response to “A.” Although the scaling
factor cannot change its value adaptively once its training is completed, it can
still learn the model’s memory decay rate and the averaged importance of that
position in the training set. It is important to point out that the scaling factor
needs to be initialized at 1 for each cell.

5.2.2 Comparison with Existing Models

We compare the performance of four RNN macro-models:

1. cell RNN models;
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2. BRNN;

3. Seq2Seq;

4. Seq2Seq with attention by [66].

For each RNN model, we compare three cell designs: LSTM, GRU, and
ELSTM. We conduct experiments on language modeling and report the testing
perplexity (i.e., the natural exponential of the model’s cross-entropy loss).
For a more thorough experiment on sentence parsing and part of speech
tagging (POS), please refer to [56] for more details. We set Ts = 3 in all
models. The training, the validation and the testing datasets used are from the
Penn Treebank (PTB) by [38]. The PTB has 42,068, 3370 and 3761 training,
validation and testing sentences, respectively. It has 10,000 tokens in total.

The input is first fed into a trainable embedding layer as described in [8,
69] before it is sent to the actual network. Table 4 shows the detailed network
and training specifications. We do not finetune network hyper-parameters
or apply any engineering trick (e.g., feeding additional inputs other than the
raw embedded input sequences) for the best possible performance since our
main goal is to compare the performance of LSTM, GRU, ELSTM cells under
various macro-models. As shown in Table 5 and Figure 24, the ELSTM cell
gives the best performance for all four RNN macro-models.

Table 4: Network parameters and training details.

Embedding layer vector size 5

Number of RNN cells 5

Batch size 50

Number of RNN layers 1

Training steps 11 epochs

Learning rate 0.5

Optimizer AdaGrad by [17]

Table 5: LM test perplexity.

LSTM GRU ELSTM

CELL RNN 267.47 262.39 248.60
BRNN 78.56 82.83 71.65
Seq2seq 296.92 293.99 266.98
Seq2seq with Att 17.86 232.20 11.43
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Figure 24: The training perplexity vs. the number of training steps with different cells.

6 Conclusion and Future Work

“A search space Odyssey,” Jürgen Schmidhuber once used it in the title of
his paper about LSTM’s learning behavior. The same can be said about the
journey people had gone through and probably will continue to take on for
the development of RNNs. The unconquered land of understanding these
sequence learning systems is full of surprises and serendipities. There are many
directionals while each direction is awaiting exploration; thus, each direction
is an Odyssey itself.

In this Odyssey, we try to offer perspectives and lay the foundation in
addressing the following questions: what are RNNs and where do they come
from? How are they trained and what are their usages? Are there any variants
of RNNs and how to use them for real world problems? Finally, what is memory
and how to build an RNN that can learn efficiently by remembering? We spent
great length in answering each of those questions: RNNs are a particular type
of neural network that has at least one cyclic connection that builds a path
from a network node back to itself. They emerge from SRN and were further
refined all the way to LSTM and GRU, etc. They are trained using BPTT by
time unrolling and their usages are omnipresent in our daily lives. Cell models
like SRN, LSTM and GRU or macro models including BRNN, Seq2Seq, and
Deep RNNs are just a few variants of RNNs. One can create more by designing
a feedforward model and, then, unrolling it. To answer the last question, we
define memory as a system function. From this perspective, we conducted
detailed analysis on RNN cell models, demystified their memory properties, and
found the downside of their memory decay. Our new proposal of ELSTM can
tackle the problem using a trainable scaling factor to extend the memory length.
The ELSTM offers outstanding performance for complex language tasks.

Finally, there are many interesting issues to be explored further. Here, we
would like to point out two of them as future research directions.
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6.1 Acceleration of RNN’s Computational Speed

One of the downsides that prevents the wider adoption of RNNs is their lack
of capability for parallel computing since the elements in RNNs’ output are
inherently temporally dependent to each other, as we discussed in Sections
4.3 and 5. It is well known that the recent wave of deep learning-based
techniques for artificial intelligence tasks is made possible by accelerating their
computation on modern computer chips such as graphic processing unit (GPU)
which is designed specifically for parallel computing. In [1], the computation
of a deep neural network with 5 CNN layers and 3 fully connected layers are
separated onto two GPUs. This configuration has achieved significant speed
up of the system as compared with the conventional non-parallelized ones.

Parallelization of a deep learning-based system usually happens on either
the input level or on the architectural level. For the former scenario, each
independent input sample in a batch can be processed at the same time.
For the latter, independent computations are highly optimized onto separate
computing threads. The independent nature of the convolution operation that
its output at different positions does not interfere with each other makes CNN
parallelization friendly. For RNNs, however, architectural level parallelization
is still very limited. This has given rise to another sequence processing neural
architecture called the transformer which is described in [14, 15, 65], which
only has fully connection layers and is thus highly parallelizable.

6.2 RNNs for Multi-modal Systems

One emerging topic in the field of deep learning is multi-modal systems for
utilizing the data in diverse forms on the Internet. A multi-modal system
is a system that handles data (input and/or output) of multiple modalities.
An image caption generation system such as those described in [37, 51, 67,
72] is one such example, where it takes its input in the form of images and
generates its output in form of sentences. Architectures for multi-modal
systems usually have multiple submodules, where each is tasked to handle
different input/output data. With the image caption generation problem as an
example, a typical neural architecture is shown in Figure 25. In the system, a

Figure 25: Image caption generation neural architecture.
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CNN submodule is tasked to process the input image into a multi-dimensional
(usually three-dimensional of height×width× channel) tensor. The tensor is
then used as the representative feature of the input image and fed into an
RNN to generate the descriptive sentence.

Figure 26: The multi-model machine translation neural architecture.

Another example is the multi-modal machine translation as shown in
Figure 26, where the input to the system is already of multiple modalities
in form of images and sentences. The proposers of multi-modal machine
translation such as Haralampieva et al. [24], Nakayama and Nishida [40],
Specia [49], Su et al. [52], and Toyama et al. [64] believe that, by feeding the
system with the imagery information, it can produce better translation of
words in different languages with similar visual appearances. Similar to image
caption generation architectures, images are handled by CNNs. There are
many candidate architectures for the sentence submodule, for which the RNN
is a promising one to be further investigated.
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