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ABSTRACT

This paper presents a new sequential learning via a planning strategy
where the future samples are predicted by reflecting the past experiences.
Such a strategy is appealing to implement an intelligent machine which
foresees multiple time steps instead of predicting step by step. In partic-
ular, a flexible sequential learning is developed to directly predict future
states without visiting all intermediate states. A Bayesian approach
to multi-temporal-difference neural network is accordingly proposed to
calculate the stochastic belief state for an abstract state machine so
as to capture large-span context as well as make high-level prediction.
Importantly, the sequence data are represented by multiple jumpy states
with varying temporal differences. A Bayesian state machine is trained
by maximizing the variational lower bound of log likelihood of sequence
data. A generalized sequence model with various number of Markov
states is derived with the simplified realization to the previous temporal-
difference variational autoencoder. The predictive states are learned
to roll forward with jumps. Experiments show that this approach is
substantially trained to predict jumpy states in various types of sequence
data.
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1 Introduction

Machine learning is generally categorized into supervised learning, unsupervised
learning and reinforcement learning. Traditional machine learning works
extensively on supervised learning while modern learning strategies involve
a lot of unsupervised learning and reinforcement learning (RL) [13] due to
the numerous applications in the real world. Merging the concept of RL into
unsupervised learning is a new research trend. A meaningful learning approach
can be implemented by introducing a simulator for the world which is learned
in an unsupervised manner. Typically, unsupervised learning based on the
generative model is to approximate the data distribution by the simulator
for the environment that generates or mimics a class of samples which are
close to the observation data. Generative models are feasible to build various
applications including image generation [20], text generation [14], acoustic
modeling [17], data augmentation and environment simulation [23], to name a
few. This study adopts the aspect of RL and develops a new type of generative
model for multi-step planning in a framework of Bayesian sequential learning.

1.1 Related Work

Generative model can be trained to generate observation samples or latent
variables which are feasible to implement individual or combined learning
strategies for real-world applications. The emerging approaches to deep genera-
tive models, for example, variational autoencoder (VAE), generative adversarial
network [16] and autoregressive neural network [39], have been successfully
developed according to different learning aspects. One of the most important
solutions is based on the latent variable model which is constructed as a prob-
abilistic generative model. This model is driven by a top-down generation
from latent variables to observations through Bayesian learning based on the
prior and posterior distributions [5]. VAE is recognized as a latent variable
model consisting of an inference model or encoder and a generative model or
decoder. The encoder compresses high-dimensional input sample xn into a
low-dimensional random variable zn while the decoder generates the sample
x̂n from random samples of zn. The encoder and decoder are jointly learned
by maximizing the variational lower bound of log likelihood of observations
x = {xn}Nn=1. However, VAE could not directly represent the temporal infor-
mation in sequence data x = {xt}Tt=1. In [21, 23], the autoregressive neural
network with sequential latent variables {zt}Tt=1 was constructed and trained
to predict long-term future.

In [11, 12], the stochastic recurrent neural network was proposed to explore
the randomness in structured data for sequential learning. In [1], the stochastic
temporal convolutional network was presented to implement the Bayesian
learning for sequence data. In [17], the variational bidirectional recurrent
network was developed as a latent variable model. This model employed
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the Bayesian treatment based on the Z-forcing which combined the latent
codes zt from forward and backward paths and fused the information of
history and future at each time step t. Future information was adopted as a
regularizer [35]. In [44], VAE was incorporated in a neural ordinary differential
equations for sequential learning where the continuous-time state dynamics [8]
were represented for future prediction. In [28], the variational RL based on
the Stein variational gradient descent algorithm was proposed to implement
Bayesian inference for maximum entropy policy optimization which balanced
the tradeoff between exploration and exploitation in RL.

In [33], a self-consistent trajectory autoencoder was implemented for hierar-
chical RL based on the trajectory-level generative model. A state decoder and
a policy decoder were trained to generate consistent trajectories as a constraint
in variational inference. Nevertheless, in real circumstances, humans think
and plan across multiple jumpy time steps instead of acting in a step-by-step
manner. In [18], the pairs of temporally separated time samples were repre-
sented. The variational lower bound was optimized to fulfill temporal-difference
learning [2, 27] which was popularly employed in a model-based RL. Such a
learning algorithm was used to build a generative model to predict adjacent
latent states which conveyed the pairwise information.

1.2 Main Idea of this Work

This study presents a new sequential learning machine where the aspects of
supervised learning, unsupervised learning and reinforcement learning are
integrated in a probabilistic generative model. A stochastic temporal-difference
learning [9] is proposed to simulate the experience of a RL agent which holds
three properties. First, the latent states {zt} are inferred from input obser-
vations {xt} and then employed to make predictions in latent variable space
rather than observation space. These latent states contain temporal informa-
tion from the association patterns [4] at multiple jumpy steps {t1, . . . , tK} in
random distance which are generalized from the association information in mul-
tiple latent states {ztk}Kk=1 at the corresponding time steps {tk}Kk=1. Second,
these random states are inferred from a sequence of deterministic belief states
{bt}Tt=1, which are updated by using the observations to represent the features
in environment or low-level information in the world. The belief states act as the
prior information to encourage state transition and penalize state smoothing.
A hierarchical state machine is constructed to fulfill a new temporal-difference
learning. Both the deterministic and stochastic states in this sophisticated
latent variable model are learned according to a variational lower bound of
log likelihood which is optimized to allow multi-step prediction [32].

Finally, this model learns a temporal abstraction [24] which is feasible to pre-
dict with jumpy distant states. We develop a Bayesian multi-temporal-difference
neural network consisting of four network modules including belief network,
inference network, transition network and generation network. The whole



4 Chien and Chiu

framework is learned from input observations x = {xt} in an unsupervised
manner. Such an unsupervised model can be extended as a supervised network
by connecting hidden states z = {zt} to output targets y = {yt} to build
classification model. Practically, Markov constraint and padding scheme are
employed to reduce the model size as well as stabilize the training procedure
with the increased number of jumpy states. Experiments are conducted to
illustrate how this framework works for the prediction of moving objects and
directions as well as preservation of continuing scenario in game environment
[3]. Language modeling for word prediction and sentiment classification are
investigated.

2 Bayesian Sequential Learning

Variational autoencoder (VAE) acts as the theoretical foundation to build
various Bayesian recurrent networks [6, 7].

2.1 Variational Autoencoder

VAE [26, 38, 41] was proposed to estimate the distribution of latent variable
z. This distribution is adopted to generate random samples for stochastic
reconstruction of input data x. VAE is seen as a generative model which can
synthesize new samples to simulate the statistical behavior of latent variable
in neural network. VAE consists of an inference model as encoder and a
generative model as decoder. The encoder in a form of variational distribution
qϕ(z|x) with parameter ϕ and the decoder with a generative distribution
pθ(x|z) using parameter θ are jointly learned by maximizing the evidence lower
bound (ELBO) L(x; θ, ϕ) which is obtained by

log p(x) = log

∫
qϕ(z|x)

pθ(x, z)
qϕ(z|x)

dz = logEqϕ(z|x)

[
pθ(x, z)
qϕ(z|x)

]
≥ Eqϕ(z|x)

[
log

(
pθ(x|z)p(z)
qϕ(z|x)

)]
= Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z))
≜ L(x; θ, ϕ).

(1)

The first term in ELBO reflects the log likelihood pθ(x|z) or the negative
reconstruction error due to decoder by using those samples z ∈ RM from
encoder qϕ(z|x). The second term is a Kullback-Leibler (KL) divergence
which regularizes the variational posterior of encoder qϕ(z|x) to get close to
a standard Gaussian prior p(z) = N (0, I) where I is an identity matrix. A
re-parameterization trick [26] was applied to compute the stochastic gradients
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in backpropagation algorithm with three steps. First, a standard Gaussian
distribution is sampled to find ϵ(l) ∼ N (0, I) where l is the sample index.
Second, the posterior sample is drawn by

z(l) ∼ qϕ(z|x) = N (µz, diag(σ2
z)), (2)

using z(l) = µz + σz ⊙ ϵ(l) where Gaussian parameters are obtained by an
encoder or inference network [µz,σ

2
z] = [{µzi}, {σ2

zi}] = f
(q)
ϕ (x). Third, the

stochastic gradients are calculated over ELBO L(x; θ, ϕ) by using a set of
latent variables {z(l)}Ll=1

1

L

L∑
l=1

log pθ(x|z(l)) +
1

2

M∑
i=1

(
1 + log(σ2

zi)− µ2
zi − σ2

zi

)
. (3)

Parameters {θ, ϕ} are updated by a stochastic backpropagation according to
autoencoding variational Bayesian [26]. VAE represents a bag of N samples
x = {xn} where temporal dependency in individual samples xn is disregarded.

2.2 Variational Recurrent Neural Network

VAE aims to characterize a set of random inputs x = {xn} based on latent
variable model where a probabilistic model is trained via variational inference.
Model uncertainty is represented to improve the prediction performance [42,
43]. Considering a set of T sequence samples x = {xt}Tt=1 and latent variables
z = {zt}Tt=1, it is crucial to develop the variational recurrent neural network
(VRNN) [12] for Bayesian sequential learning by maximizing the likelihood

p(x) =
T∏

t=1

p(xt|x<t) =

T∏
t=1

∫
zt

pθ(xt, zt|x<t, z<t)dzt

=

T∏
t=1

∫
zt

pθ(xt|x<t, z≤t)pθ(zt|x<t, z<t)dzt.

(4)

x<t = {x1, . . . ,xt−1} denotes the history of current time sample xt in a causal
system. The random latent variable zt in VRNN is comparable with the
deterministic hidden state ht in standard recurrent neural network (RNN).
State ht is continuously updated by using current sample xt and previous
state ht−1 which depends on the histories of data x<t and states h<t. VRNN
is superior to RNN because of uncertainty modeling which is crucial in adverse
condition with heterogeneous data. From Equations (1) and (4), VRNN is
derived by maximizing the ELBO due to sequence data

log p(x) ≥
T∑

t=1

Eqϕ(zt|x<t,z<t)[log pθ(xt|x<t, z≤t)]

−DKL(qϕ(zt|x<t, z<t)∥pθ(zt|x<t, z<t)),

(5)
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where KL divergence between variational posterior qϕ(zt|x<t, z<t) and history
posterior pθ(zt|x<t, z<t) is measured with parameters ϕ and θ, respectively.
VRNN is seen as an extended VAE for sequential learning. VRNN runs VAE at
each time t by using causal data x≤t = {x<t,xt} based on the stochastic latent
codes z≤t with condition on the hidden state ht−1 of RNN at previous time
t− 1. Figure 1 depicts the graphical representation of VRNN at neighboring
time steps t− 1 and t. The generated sample is denoted by x̂t. VRNN consists
of an inference network and a generation or output network at each time
t, which are used to calculate the Gaussian distributions qϕ(zt|x<t, z<t) =
N (µz,t,diag(σ2

z,t)) and pθ(xt|x<t, z≤t) = N (µx,t, diag(σ2
x,t)) with parameters

[µz,t,σ
2
z,t] = f

(q)
ϕ (xt−1,ht−1) and [µx,t,σ

2
x,t] = f

(o)
θ (zt,ht−1), respectively. A

recurrent network ht = f
(r)
θ (xt, zt,ht−1) and a prior network pθ(zt|x<t, z<t) =

N (µp,t, diag(σ2
p,t)) are also merged with [µp,t,σ

2
p,t] = f

(p)
θ (ht−1). The infer-

ence network f
(q)
ϕ , prior network f

(p)
θ , recurrent network f

(r)
θ and generation

network f
(o)
θ are jointly trained by maximizing the ELBO [17].

Figure 1: Graphical model for variational recurrent neural network consisting of recurrent
network, prior network, inference network and generation (or decoder) network. Here,
pθ denotes the posterior pθ(zt|x<t, z<t) which is approximated by variational posterior
qϕ(zt|x<t, z<t).

3 Bayesian Temporal-Difference Learning

Bayesian sequential learning can be extended by considering the aspect of
temporal-difference learning from reinforcement learning based on the belief
state representation.

3.1 Belief State-Space Model

A simple way to sequential learning is based on an autoregressive model using
Equation (4). RNN is able to aggregate the temporal information from the
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past x<t based on a recurrent machine where the hidden state ht = f(xt,ht−1)
is continuously updated at each time t. The previous hidden state ht−1 and
the current observation xt are used as inputs to RNN. One potential weakness
using the autoregressive model is that the learning process is only run over the
observation space without compressed representation. This process becomes
challenging in presence of high-dimensional data. An alternative solution is to
learn a high-level abstraction for state transitions in sequence data based on a
latent variable model. The resulting state-space model is more computationally
efficient than the autoregressive model. VRNN builds a latent variable model,
but the high-level abstraction is missing. To tackle this weakness, the online
belief state bt [18] was merged to characterize the conditional distribution for
the future given the past

p(xt+1, . . . ,xT |x1, . . . ,xt) ≈ p(xt+1, . . . ,xT |bt)

=

∫
p(xt+1, . . . ,xT |zt)p(zt|bt)dzt. (6)

bt contains all the information about the state in an environment where the
agent interacts with. A neural belief state is updated by bt = f(xt,bt−1)
using RNN. From the perspective of RL, the agent usually handles a partially
observed environment which is modeled by a partially observed Markov decision
process. Representing such a process is comparable of finding an optimal
behavior policy that maps the agent’s available knowledge of environment, i.e.
its belief state, to the corresponding actions [10, 34]. Therefore, the hidden
state ht is treated as sufficient statistics bt = bt(x1, . . . ,xt) to formulate the
belief state. Considering this abstraction information, the belief-state-based
evidence lower bound of conditional log likelihood log p(xt|x<t) is derived by
referring Equations (1) and (5) so as to obtain

E(zt−1,zt)∼q(zt−1,zt|x≤t)

×

log p(xt|zt−1, zt,x<t)︸ ︷︷ ︸
=p(xt|zt)

p(zt−1, zt|x<t)︸ ︷︷ ︸
=p(zt|zt−1)p(zt−1|x<t)

− log q(zt−1, zt|x≤t)︸ ︷︷ ︸
=q(zt−1|zt,x≤t)q(zt|x≤t)


(7)

which is calculated at each time t and summed up to accumulate ELBO for log
likelihood of all observations log p(x) =

∑
t log p(xt|x<t). Notably, this ELBO

is obtained by inferring over two neighboring latent states zt−1 and zt in a RL
manner by applying the probability chain rule. In particular, q(zt−1, zt|x≤t)
is decomposed as a belief over zt and a one-step smoothing distribution over
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zt−1 based on future sample zt. A direct representation of future states is
performed. Equation (7) is finally rewritten as

Lt−1,t = E(zt−1,zt)∼q(zt−1,zt|bt−1,bt) [log p(xt|zt)
+ log p(zt|zt−1) + log pB(zt−1|bt−1)

− log q(zt−1|zt,bt−1,bt)− log pB(zt|bt)] .

(8)

Notably, the prior belief probabilities pB(zt−1|bt−1) and pB(zt|bt) are defined
for p(zt−1|x<t) and q(zt|x≤t) where the histories x<t and x≤t in the conditions
are expressed by belief states bt−1 and bt, respectively.

3.2 Temporal-difference Variational Autoencoder

In [18], the temporal-difference variational autoencoder (TD-VAE) was pro-
posed to extend the sequential learning with two jumpy states. Using TD-VAE,
the latent states were calculated from sequence data by aggregating two time
samples t1 and t2 separated by a random interval rather than integrating two
neighboring samples in consecutive times t − 1 and t. The latent states in
TD-VAE characterize the future explicitly. In the optimization, the objective
in Equation (8) is modified to construct the ELBO Lt1,t2 by using the time
pairs {t1, t2} with temporally separated samples {xt1 ,xt2}. The lower bound
Lt1,t2 from t1 to t2 is then expressed by

Lt1,t2 = Ezt2∼q(zt2 |bt2 )

[
log pt2D(xt2)

]
+DKL(p

t2
T (zt2)∥p

t2
B (zt2))−DKL(q

t1|t2
S ∥pt1B )

(9)

where pD denotes the decoder distribution, pT denotes the transition distribu-
tion and qS denotes the smoothing distribution. Figure 2 shows the graphical
model for TD-VAE with two jumpy states in randomly-separated times t1
and t2. TD-VAE is composed of belief network, inference network, transition
network and generation network. Belief network is applied to find the prior
belief probability pB(zt|bt) or ptB , similar to the recurrent and prior networks
in VRNN, for belief states bt at each time t = t1 or t2 which are updated
by an RNN. Inference network is used to infer the variational distribution
q(zt1 |zt2 ,bt1 ,bt2) or q

t1|t2
S as a smoothing factor for t1 using future t2. Tran-

sition network is introduced to calculate the transition likelihood p(zt2 |zt1) or
pt2T from t1 to t2. Generation network is estimated as a decoder network to
determine the likelihood p(xt2 |zt2) or pt2D to generate the sample x̂t2 at time
t2. Belief distribution at t2 acts as a penalty in the ELBO of TD-VAE while
belief distribution at t1 acts as a prior to regularize the smoothing function
q
t1|t2
S for inferring sample zt1 from zt2 .
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Figure 2: Graphical model for temporal-difference variational autoencoder consisting of
belief network, inference network, transition network and generation network.

4 Bayesian Multi-temporal-difference Learning

TD-VAE carries out the Bayesian sequential learning where the aspect of
reinforcement learning based on temporal-difference (TD) learning [37] is
implemented. The temporal difference from the pairs of states zt1 and zt2 in
two randomly-separated times t1 and t2 is characterized. Such a RL method
is constrained since only two distant states and actions are modeled. To relax
this constraint, TD learning is extended to characterize a trajectory with more
than two states and actions. There are twofold novelties in comparison with
RL algorithm based on the pairwise TD learning. First, this study focuses on
sequential learning without the action inputs. A new type of recurrent state
machine is proposed. Second, the previous TD learning is deterministic without
involving latent variable model. This paper presents a new Bayesian learning,
which is called the stochastic temporal-difference learning. In particular, this
study develops the stochastic temporal-difference neural network (STDNN)
which is recognized as a generalization of TD-VAE for multi-temporal-difference
learning. This multi-temporal-difference learning characterizes the regularity
in a set of K jumpy time samples or association patterns {xt1 , . . . ,xtK} [4]
from a collection of sequence data. Typically, t1 is chosen randomly. tk − tk−1

is selected from a uniform distribution in a period between 1 and D where D
is a bound of planning window.

4.1 Stochastic Temporal-difference Neural Network

Bayesian sequential learning is accordingly developed to represent the sequential
patterns in multiple time samples with random temporal differences. Again,
we extend from the sequence modeling with K latent states {zt−(K−1), . . . , zt}
in consecutive times to that with K distant latent states {zt1 , . . . , ztK} where
t1 and tK denote the beginning and ending times in K separated time stamps
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along the sequence data x = {xt}Tt=1, respectively. Number of samples K is
general. The belief state-space representation based on TD-VAE in Sections
3.1 and 3.2 is seen as a special realization of the proposed STDNN with K = 2.
By adopting three latent states zt−2, zt−1 and zt in STDNN, the ELBO of the
conditional log likelihood at a given t based on the belief state representation,
denoted by Lt−2,t−1,t, is manipulated by

log p(xt|x<t)

= log

∫ (
p(xt|zt−2, zt−1, zt,x<t)p(zt−2, zt−1, zt|x<t)

q(zt−2, zt−1, zt|x≤t)

)
× q(zt−2, zt−1, zt|x≤t)dzt−2dzt−1dzt

≥
∫

log

(
p(xt|zt−2, zt−1, zt,x<t)p(zt−2, zt−1, zt|x<t)

q(zt−2, zt−1, zt|x≤t)

)
× q(zt−2, zt−1, zt|x≤t)dzt−2dzt−1dzt

= E(zt−2,zt−1,zt)∼q(zt−2,zt−1,zt|x≤t) [log p(xt|zt−2, zt−1, zt,x<t)

+ log p(zt−2, zt−1, zt|x<t)− log q(zt−2, zt−1, zt|x≤t)]

= E(zt−2,zt−1,zt)∼q(zt−2,zt−1,zt|bt−2,bt−1,bt) [log p(xt|zt)
+ log p(zt|zt−1, zt−2) + log p(zt−1|zt−2)

+ log pB(zt−2|bt−2)− log q(zt−2|zt−1, zt,bt−1,bt)

− log q(zt−1|zt,bt−1,bt)− log pB(zt|bt)] ≜ Lt−2,t−1,t.

(10)

which is an extension of Equation (8) from K = 2 to K = 3. Considering K
latent variables {zt−k}K−1

k=0 , the ELBO Lt−(K−1),...,t of log p(xt|x<t) can be
extended in a form of

Ezt−(K−1),...,zt

[
log p(xt|zt−(K−1), . . . , zt,x<t)+

log p(zt−(K−1), . . . , zt|x<t)− log q(zt−(K−1), . . . , zt|x≤t)
]
.

(11)

Similar to Equation (7), we consider the properties

p(xt|zt−(K−1), . . . , zt,x<t) = p(xt|zt)
p(zt−(K−1), . . . , zt|x<t) = p(zt|zt−1, . . . , zt−(K−1))

× p(zt−1|zt−2, . . . , zt−(K−1)) · · · p(zt−(K−1)|x<t)

q(zt−(K−1), . . . , zt|x≤t) = q(zt−(K−1)|zt−(K−2), . . . , zt,x≤t)

× q(zt−(K−2)|zt−(K−3), . . . , zt,x≤t) · · · q(zt|x≤t).

(12)

By following the belief state-space model, the same expression pB(z|b) with
belief state b is used to approximate the belief distributions for p(zt−(K−1)|x<t)
and q(zt|x≤t), which are characterized by the belief states at times t −
(K − 1) and t, respectively. Meanwhile, the variational posteriors over



Bayesian Multi-Temporal-Difference Learning 11

{zt−(K−1), . . . , zt−1} can be calculated via belief states in smoothing distribu-
tions q(zt−(K−1)|zt−(K−2), . . . , zt,bt−(K−1), . . . ,bt) until q(zt−1|zt,bt−1,bt).
The ELBO of STDNN in Equation (11) with K time steps under these prop-
erties is therefore rewritten as

log p(xt|x<t) ≥ Ezt−(K−1),...,zt [log p(xt|zt)
+ log p(zt|zt−1, . . . , zt−(K−1))

+ · · ·+ log pB(zt−(K−1)|bt−(K−1))

− log q(zt−(K−1)|zt−(K−2), . . . ,bt)− · · · − log pB(zt|bt)
]
.

(13)

Instead of predicting the latent states {zt} at each time t in VRNN and
the paired states {zt1 , zt2} at the connected times {t1, t2} in TD-VAE, the
proposed STDNN aims to learn the multiple latent states {zt−k}K−1

k=0 from
sequence data {xt}Tt=1 based on the belief state representation. In addition
to capture the neighboring information from t − (k − 1) to t, 1 ≤ k ≤ K,
an alternative realization of STDNN is designed to learn time abstraction by
associating K remote times through their corresponding states {zt1 , . . . , ztK}.
Following the multi-temporal-difference learning, the ELBO using STDNN
with K jumpy states or association patterns is derived by generalizing Lt1,t2

in Equation (9) for TD-VAE to Lt1,...,tK in Equation (17) which is detailed in
the Appendix.

4.2 Generalization and Interpretation

We develop a general solution to STDNN for multi-temporal-difference learn-
ing. TD-VAE implements the STDNN with K = 2 where the conditional log
likelihood log p(xt2 |x<t2) is calculated over two latent states {zt1 , zt2}. The
current variable zt1 is regularized by future variable zt2 based on a smoothing
distribution q(zt1 |zt2 ,bt1 ,bt2) or q

t1|t2
S . For the general case of STDNN with

K steps {ztk}Kk=1, each current variable ztk is smoothed by using the varia-
tional distribution q

tk|tk+1,...,tK
S from future variables {ztk+1, . . . , ztK}. This

smoothing distribution is used to sequentially predict next state ztk+1
from ztk ,

and eventually generate the sample xtK at time tK . The learning objective of
STDNN is generalized from Equations (8) to (9) with K = 2, to Equation (10)
with K = 3 and Equations (13)–(17) with a general K. The intuition behind
the derived ELBO can be interpreted. In particular, in Equation (17), the
first term is the decoder or generative likelihood pD to be maximized. The
resolution in observation space is preserved. The second term is a sum of KL
terms which is maximized to promote or encourage a jumpy state-to-state
transition from ztk+1

to ztk+2
via pT for predictive rollout. The third term is a

sum of KL terms to be minimized to prevent or penalize too much information
from future states {ztj}Kj=k+2 via smoothing posterior qS as a variational
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bottleneck penalty [18]. Prior belief pB is used to regularize pT and qS at
ztk+2

and ztk+1
, respectively. The summations in Equation (17) contain K − 1

differences of KL values which implement individual jumpy states at different
distant times {tk}Kk=1 for state transition as well as future planning.

STDNN can be further illustrated by interpreting its connection with VAE
and VRNN which maximizes the ELBO consisting of a log likelihood (or a
negative reconstruction error) given by latent samples and a KL divergence
between variational posterior and belief prior. Reconstruction term aims
to decode the observations from latent variables while KL term forces the
latent samples constrained by a prior distribution. An alternative view of
STDNN with parameter Θ is to maximize an ELBO similar to VAE or VRNN,
but K jumpy states are considered in a belief state representation where KL
divergence DKL(p

tk+2

T ∥ptk+2

B ) is viewed as a constraint which is larger than γ
in a form of

max
Θ

EztK
[log ptKD (xtK )]−

K−2∑
k=0

DKL(q
tk+1|tk+2,...,tK
S ∥ptk+1

B )

subject to

K−2∑
k=0

DKL(p
tk+2

T ∥ptk+2

B ) ≥ γ.

(14)

By introducing a Lagrange multiplier α in this constrained optimization
problem, the learning objective Lt1,...,tK turns out as EztK

[log ptKD (xtK )] −∑K−2
k=0 DKL(q

tk+1|tk+2,...,tK
S ∥ptk+1

B ) + α
∑K−2

k=0 DKL(p
tk+2

T ∥ptk+2

B ) where a hyper-
parameter α is applied. Figure 3 displays the graphical model for STDNN,
which is generalized from TD-VAE in Figure 2 by fulfilling the proposed
multi-temporal-difference learning. There are four networks in STDNN. Belief
network is used to update the belief states bt via RNN to calculate the distribu-
tions ptkB (ztk) ≜ pB(ztk |btk) at each time stamp tk. Inference network is used
to infer the smoothing distribution qtkS at current time tk which is calculated
from the belief state btk at current time tk as well as the latent variables zt
at future times t = {tj}Kj=k+1 . This distribution is used to sample current
state ztk . Transition network is used to calculate the transition distribution
pT from tk−1 to tk. Finally, the generation network is used to generate the
observation sample x̂tK at time tK .

In addition, STDNN can be seen as a horizontally extension of TD-VAE
where the modeling of belief states at two temporally-separated time points is
extended to that at multiple temporally-separated time points. By referring
to the variant of TD-VAE in [18], STDNN can be also vertically extended as
a hierarchical state machine where higher-level states predict the lower-level
states, and ideally represent more abstract information. A deep version of
STDNN is accordingly constructed. The belief states in higher layers affect
those in lower ones through a recurrent neural network.
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Figure 3: Graphical model for stochastic temporal-difference neural network consisting
of belief network, inference network, transition network and generation network for p

tk
B ,

q
tk
S , ptkT and p

tk
D , respectively, marked with different colors. Eight implementation steps

are numbered. Purple lines connecting two boxes denote the KL divergence between two
distributions.

4.3 Implementation Issues

In this study, Markov property and padding mechanism are applied to reduce
the model size and stabilize the training procedure when increasing the number
of jumpy states. In derivation of Equation (17), the Markov chain for hidden
states

p(ztk |ztk−1
, . . . , zt1) ≈ p(ztk |ztk−1

), (15)

for 3 ≤ k ≤ K has been assumed so as to reduce the input dimensions for
transition networks since the state conditional distribution of tk only depends
on tk−1. In addition, the smoothing distributions in inference network were
calculated with different input dimensions, but now zero padding is enforced
to fix the input dimensions by

q(ztK−1
|ztK ,btK−1

,btK )

≈ q(ztK−1
|0, . . . ,0, ztK ,0, . . . ,0,btK−1

,btK ),
(16)

which accordingly turns out to share the inference networks qtkS . Overall, the
stochastic temporal-difference neural network is implemented by fulfilling the
following eight steps:

1. Calculate the belief states bt from observations xt using RNN to construct
a deterministic path.

2. Choose a trajectory {tk}Kk=1, separated by random intervals, and form
the corresponding states {ztk}.

3. Compute the belief prior ptkB for states ztk .
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4. Sample the latent states zbtk from belief distribution.

5. Given those states from future, the smoothing distribution is inferred as
q
tk|tk+1,...,tK
S and used to find samples ztk .

6. Use these state samples ztk to sample next state ztk+1
via transition

distribution p
tk+1

T .

7. Maximize the decoder distribution ptKD for reconstructed observation x̂tK

using the last state ztK .

8. Accumulate L and maximize it by gradient ascent.

Notably, pB(ztk |btk) ≜ q(ztk |btk) is the marginal distribution acting as the
prior to calculate the smoothing posterior q(ztk |ztk+1

, . . . , ztK ). When realizing
(zt1 , . . . , ztK ) ∼ q(zt1 , . . . , ztK |bt1 , . . . ,btK ) in Equation (17), we first individ-
ually draw samples zbtk via the belief prior pB(ztk |btk) given by belief state
btk . The samples ztk of the smoothing posterior q(ztk |ztk+1

, . . . , ztK ) are then
sequentially drawn in the factorized sampling procedure in a backward manner.
Samples of zbtk and ztk are different. STDNN is seen as the belief-state-based
model.

STDNN is seen as an unsupervised learning, but is definitely feasible
to supervised learning by incorporating the one-hot output label ytk

with
M classes for input data x<tk at a target time tk. Algorithm 1 illustrates
the supervised learning procedure of STDNN with six parameters where an
additional classification network is merged. First, belief network is implemented
to continuously update the belief state btk by using RNN based on long short-
term memory (LSTM) [22] with parameter θB. Second, the belief network
with sampling parameter θS is used to find the Gaussian parameters in belief
distribution ptkB = fθS (btk). Latent variables ztk are then sampled by the prior
ptkB . Similar to {f (r)

θ , f
(p)
θ } in VRNN, belief network in STDNN contains the

recurrent and prior parameters {θB , θS}. Third, the inference network with
variational parameter ϕI is implemented to find the smoothing distribution
via q

tk|tk+1,...,tK
S = fϕI

({ztj}Kj=k+1, {btj}Kj=k). Latent variables ztk are again
sampled by variational posterior qS . Four, the state prediction network with
parameter θT is used to find transition distribution p

tk+1

T = fθT (ztk).
Five, the generation network with parameter θD is applied to decode the

sample x̂tK via ptKD = fθD(ztK ). Six, the classification network with softmax
parameter θC is used to estimate target output ŷtK = fθC (x̂tK ). The ELBOs of
generative likelihood p(x) and conditional likelihood p(y|x) of input sequence
x and target sequence y can be expressed by L(x; θB , θS , ϕI , θT , θD) = log p(x)
via x̂t and L(x,y; θB , θS , ϕI , θT , θD, θC) via ŷt as the negative cross entropy
error between estimated ŷ and true targets y, log p(y|x) =

∑T
t=1

∑M
m=1 ytm
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Algorithm 1: Supervised learning procedure for stochastic temporal-
difference neural network.

Input training mini-batches x = {xi} & y = {yi}
Initialize θB , θS , ϕI , θT , θD, θC for belief, inference, transition, decoder
and classification networks

while θB , θS , ϕI , θT , θD not converged do
for each mini-batch xi and yi do

Belief network:
bt ← LSTM(bt−1,xi

t, θB)
choose K random time steps t1, . . . , tK
for k = 1, . . . ,K do

calculate the belief distribution ptkB = fθS (btk)
sample zbtk from belief prior ptkB

end
for k = 1, . . . ,K − 1 do

Inference network:
calculate the inferred posterior
q
tk|tk+1,...,tK
S = fϕI ({z

b
tj}

K
j=k+1, {btj}Kj=k)

sample ztk from q
tk|tk+1,...,tK
S

Transition network:
calculate the transition distribution p

tk+1

T = fθT (ztk ) to sample
ztk+1

end
Decoder network:
calculate the generation distribution ptKD = fθD (ztK ) to decode
x̂tK

Classification network:
calculate the class output ŷtK = fθC (x̂tK )
accumulate the ELBO of p(y|x) as
L(xi,yi; θB , θS , ϕI , θT , θD, θC)
update the parameters by gradients

∂L
∂θB

, ∂L
∂θS

, ∂L
∂ϕI

, ∂L
∂θT

, ∂L
∂θD

, ∂L
∂θC

end
end

log ŷtm, which are calculated by Equation (17) and maximized to fulfill
unsupervised learning and supervised learning, respectively. Parameters
Θ = {θB , θS , ϕI , θT , θD, θC} are then updated by stochastic gradient ascent
algorithm. When comparing TD-VAE in Figure 2 and STDNN in Figure 3 with
VRNN in Figure 1, we find that the agents in TD-VAE and STDNN are able
to adopt the future features at {tk+1, . . . , tK} to smooth the current feature at
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tk, as shown in red lines and nodes. The strategy of planning is implemented
in this Bayesian multi-temporal-difference learning with the perspective from
RL. Nevertheless, in inference or test time, the prediction of an observation
xt at time t is only based on the history x<t by using latent variables {zt}
or {ztk} obtained from belief network pB , transition network pT and decoder
network pD. The inference network qS is not required in inference time.

In the implementation, the latent samples ztk at each target time tk
are drawn from the inference network qS as ztk|tk as well as the transition
network pT as ztk|tk−1

which is transited from time tk−1. The overshooting
regularization [21] is feasible to enhance the robustness in multi-step prediction.
Figure 4 compares the state transitions based on VRNN and STDNN. VRNN
is seen as a causal learner via {ht} which performs step-by-step learning
where the overshooting is not valid as shown in Figures 1 and 4(a). Figures 3

Figure 4: State transitions in VRNN and STDNN without/with overshooting. Red lines
denote the inference network, green lines denote the transition network and orange lines
denote the generation network. Deterministic and random variables are shown by diamond
and circle nodes, respectively.
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and 4(b,c) illustrate how STDNN is implemented for multi-step prediction with
{btk} where ztk|tk is inferred or smoothed in a backward manner. Figure 4(c)
shows how the observation overshooting is employed to perform the augmented
reconstruction. STDNN optimizes the generative model of sample x̂tk based
on the inferred state ztk . By applying the observation overshooting, the sample
x̂tk depends on the multiple state variables ztk at time tk which are estimated
from different paths including the state ztk|tk inferred from tk via qS , the
state ztk|tk−1

inferred from tk−1 and then transited to tk via pT , and the state
ztk|tk−2

inferred from trajectory {tk−2, tk−1, tk} via pT . Owing to the multiple
variables ztk , it is meaningful to augment the learning objective by merging the
additional reconstruction errors (or log likelihoods p(xtk |ztk) or ptkD (xk)) as the
regularization terms. However, the computational overhead due to overshooting
from multiple paths is required. This paper is considerably extended from
the previous work [9] by enriching the survey of literature, illustrating the
evolution of related works, detailing the derivation of learning objectives, and
enhancing the comparison of results as illustrated in what follows.

5 Experiments

This study conducted unsupervised and supervised learning for sequence
prediction, language modeling and sentiment classification.

5.1 Experimental Setup

Different tasks were conducted in the evaluation. The task on sequence
prediction aims to predict or rollout a number of future frames in video
simulation based on the partially observed sequence data. As shown in Figure 5,
there were two datasets evaluated for sequence prediction in multiple time steps
via unsupervised learning. The first dataset was the moving MNIST. This
dataset consisted of 60K video simulations. Each simulation was a sequence
of 20 frames. For each sequence, a random digit and a random direction of
right or left were chosen. At each frame, a digit of 28× 28 pixels was moved
by one pixel in a chosen direction. The second dataset was the CarRacing-v0
video frames collected from RL environment in OpenAI Gym [3]. This was a
continuous control task to learn from pixels. We collected 27 videos where each
video had the length of 732 frames. In each video, a red car was driving along
gray road surrounded by green ground. Sequential learning was performed
to predict car direction and road scenario. In this task, the first two-third of
the sequences were arranged for training and validation, and the rest of the
sequences were used for testing. Validation data were used for hyperparameter
tuning. Bayesian multi-temporal-difference learning was applied to capture
the temporal as well spatial information in a video clip.



18 Chien and Chiu

Figure 5: Examples in the experiments on video prediction.

In addition, the Bayesian modeling of sequence data was also evaluated for
two supervised classification tasks where the target outputs y corresponding to
sequence inputs x were provided. The first task was to evaluate the performance
of language model of text sequence x = {xt}Tt=1 where the conditional likelihood
was maximized to predict word xt at time t as the target word yt given its
history words x<t [5]. Sequential learning based on STDNN was to produce
the softmax outputs ŷt with classification parameters θC to match the one-
hot classification outputs of predicted words yt by maximizing the ELBO of
conditional log likelihood or negative cross entropy error. Language model
was examined in terms of negative log likelihood (NLL) and perplexity (PPL)
of test sentences where the lower the better. The second task was to train
a STDNN to find classification output yT corresponding to a text document
{xt}Tt=1 for sentiment classification. There were two datasets in this evaluation.
Penn Treebank (PTB) [31] was collected as a benchmark dataset for language
modeling. PTB consisted of news documents containing 929K training words,
73K validation words and 82K test words with a vocabulary of 10K words.
Stop words were excluded.

The other database was the Internet Movie Database (IMDB) [29]. IMDB
consisted of 50K movie reviews. The original setting of training, validation
and test data was referred. A dictionary with 20K words was used. IMDB
was adopted to investigate the performance of language modeling as well as
sentiment classification. The averaged length in a document in PTB and IMDB
was 21 and 78 words, respectively. For a comparative study, different sequential
learning methods were evaluated. We implemented the classification models
based on RNN [31], Bayesian RNN (BRNN) [5], VRNN [12], Z-forcing [17],
TD-VAE [18] (STDNN with K = 2) and STDNN with different K. Z-forcing
was seen as a kind of bidirectional VRNN (simply denoted as Bi-VRNN) where
the stochastic state zt was simultaneously inferred from forward as well as
backward RNNs at each time t. The recent methods based on dropoutRNN
[15], skip-RNN [19] and transformer [40] were included in the comparison.
LSTM [22] was consistently adopted in RNN-based solutions.
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5.2 Detailed Implementation

In the implementation, Markov assumption and zero padding in Equations (15)
and (16) were consistently applied to simplify STDNN with a single transition
network and a single inference network, respectively. These two tricks were
required to obtain desirable results. The mini-batch size was fixed as 32.
Batch normalization was applied in different layers. Adam optimization [25]
was used with the annealed learning rate which was decreased by a factor
when NLL of validation data was higher than previous NLL. This factor was
tuned in different tasks. Pytorch was used in the implementation. Training
time relative to RNN was measured. Number of parameters using different
sequential learning was compared.

For sequence prediction, the dimensions of belief states btk (or hidden
states ht) and random states ztk were 50 and 20, respectively. The random
distance tk− tk−1 between two associated states {ztk−1

, ztk} in multi-temporal-
difference learning was sampled from a discrete uniform distribution in a
range [1, 4]. Rollout prediction was based on the final time step T of an
input sequence. Belief network consisted of one layer of LSTM and one fully-
connected layer of prior network. Inference network and transition network
were both implemented by two fully connected layers. In moving MNIST task,
the generation network was fully connected with three hidden layers. The
activation functions using the hyperbolic tangent in the first two layers and the
sigmoid in the last layer were specified. In CarRacing-v0 task, the generation
network was composed of four de-convolutional layers. There was an additional
pre-processing network to receive video frames by using two convolutional
layers combined with max pooling. In both tasks, 9K learning epochs were run.

In the tasks of PTB and IMDB, the interval of jumpy states was fixed to
one. The step-by-step prediction was performed. The decoding likelihood due
to the reconstructed sample x̂tk was affected by {ztk ,btk}. STDNN fused the
information of the deterministic states btk with past step-by-step patterns
and the stochastic states ztk with future jumpy clues at each prediction time
tk. In addition to this STDNN cost, we imposed NLL as an auxiliary cost
which directly benefited the evaluation of NLL and PPL. In learning procedure
with each mini-batch, NLL cost was minimized one time before minimizing
STDNN cost five times. The settings in PTB and IMDB were similar to those
in sequence prediction except that the word embedding size, the hidden state
size (ht or bt), the latent variable size (zt) were 400, 1150 and 40, respectively,
and the number of training epochs was 30. Similar to [12], the deterministic
recurrent states ht (or bt) and the stochastic states zt were both treated as
inputs to generation network to strengthen language modeling. Number of
states K was varied from 2 to 3, 4, 5, 8, 12 and 16 for comparison in different
tasks. There were six layers in encoder/decoder of transformer. BRNN [5] had
similar structure as RNN [31]. VRNN [12] and Bi-VRNN [17] used similar



20 Chien and Chiu

structure of inference and generation networks as TD-VAE and STDNN. This
work ignored the implementation of deep STDNN.

5.3 Evaluation on Sequence Prediction

First of all, the unsupervised learning based on TD-VAE and STDNN with
different K was evaluated for sequence prediction. Figure 6 shows the input
sequences on the left-hand-side and the rollout sequences on the right-hand-side
where the effects of K and the observation overshooting in Figure 4(c) are
examined. Five frames in a rollout sequence are generated by the latent variable
ztk inferred at the last frame of the corresponding input sequence. TD-VAE and
STDNN are learned to predict not only the spatial images but also the moving
directions. The prediction of frames and directions for several time steps is
achieved. Prediction capability is preserved through the temporal-difference
learning. Notably, these rollout results are obtained by jumpy predictions
rather than step-by-step predictions by one pixel motion. Nevertheless, using
TD-VAE, the digits in the third and fifth input sequences are varied to the
other digits in their rollout sequences. This situation is less likely to happen for
those sequences using STDNN. When comparing Figure 6(b) and (c), we can
see that the observation overshooting does enhance the resolution in sequence
generation. Hereafter, overshooting is consistently applied. In addition, the
rollouts are improved by increasing K. For example, the digit ‘4’ in the third
input sequence with K = 3 is changed to digit ‘9’ in rollout sequence. Such
a variation is unseen in the results of STDNN with K = 4 and K = 5.

Figure 7 compares two-dimensional (2-D) visualizations [30] for the inferred
samples of latent variables ztk by using TD-VAE and STDNN with K = 3.
MNIST is evaluated. Different digits are reflected by various colors. Markers
× show the rollout samples of a video of the moving digit ‘5’. It is obvious that
the clustering of latent samples of different digits using STDNN is more visible
than that using TD-VAE. When evaluating the jumpy process for prediction,
the rollouts using these two methods are well behaved under the same digit ‘5’.
The rollout samples using STDNN are closer to each other than those samples
using TD-VAE. Sequential learning via STDNN works not only for clustering
of latent variables but also for jumping to future states.

Figure 8 displays three examples of rollouts by using STDNN with K = 4
where car-racing environment under different road conditions is investigated.
The video frames on the left-hand-side are the input sequences and those
on the right-hand-side are the rollout frames based on latent variable in the
final input frame inferred from input sequence. Again, STDNN can predict
future frames correctly without step-by-step prediction under different road
conditions. STDNN is able to predict possible scenarios through planning
the future states based on jumpy rollouts. Figure 8(a) shows simple road
conditions where the car drives along straight roads. Figure 8(b) and (c) are
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Figure 6: Rollout results of moving MNIST by using TD-VAE and STDNN where different
K without/with overshooting is evaluated. Left: input sequences. Right: jumpy rollouts.
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Figure 7: 2-D latent visualization using TD-VAE and STDNN. Different colors show the
samples ztk for different MNIST digits. Markers × denote the rollout samples of a video.

seen as complex scenarios with changing roads. STDNN predicts successfully
for different conditions including the circumstances that the car drives along
the road in a slowly-changing scenario as well as outside the road in a rapidly-
changing scenario, e.g. fourth sequence in Figure 8(b) and fifth sequence in
8(c). Table 1 reports the values of negative ELBO and the estimated negative
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Figure 8: Rollout results of racing car by using STDNN with K = 4 under different car
directions and road scenarios. Left: input sequences. Right: jumpy rollouts.

log probability [18] using a test set of 10 videos where rollout frames of test
sequences are evaluated. The lower the better. The range of values with one
standard deviation is shown. STDNN with different K obtains lower values
than TD-VAE in prediction of future frames. The best result (shown in bold)
is obtained by using STDNN at K = 4 with the desirable confidence.
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Table 1: Comparison of negative ELBO and estimated negative log probability on a test set
of car-racing sequences.

Model - ELBO − log p(x)

TD-VAE 0.1534±0.0021 0.0997±0.0037
STDNN (K = 3) 0.1358±0.0013 0.0823±0.0021
STDNN (K = 4) 0.1032±0.0008 0.0439±0.0015
STDNN (K = 5) 0.1211±0.0015 0.0527±0.0013

5.4 Evaluation on Language Modeling

Sequential learning is further evaluated for language modeling where PTB
dataset is used. Using STDNN, language model (LM) is trained to act in a way
that future neighboring words are planned and characterized in combination
with the latent features from history words for prediction of next word at each
time step. Table 2 compares NLL, PPL, model size and training time of LMs
using different methods. The previous results on PPL and number of param-
eters using RNN [31], dropoutRNN [15] and skip-RNN [19] are included. The
training time relative to RNN is reported. The unity time corresponds to the
computation for RNN. For a comparative study, we also implemented the RNN-
large by increasing the width and depth of RNN [31] with a comparable model
size as that of STDNN. It is found find that TD-VAE and STDNN perform
better than the other variational methods based on VRNN and Bi-VRNN as
well as the attention-based method using transformer [40] in terms of NLL and

Table 2: Comparison of NLL, PPL, number of parameters (#Par) and computation time
for language modeling over different methods. PTB is evaluated.

Model NLL PPL #Par Time

RNN [31] – 124.7 6M 1x
RNN-large 93.0 101.6 22M 3.2x
DropoutRNN [15] – 78.6 20M –
Skip-RNN [19] – 76.5 19M –
BRNN [5] 95.3 116.3 7M 1.4x
VRNN [12] 83.7 97.2 15M 1.9x
Bi-VRNN [17] 71.1 83.5 23M 2.5x
Transformer [40] 70.5 81.6 23M 3.0x
TD-VAE 65.4 78.9 20M 2.7x
STDNN (K = 4) 63.1 76.9 22M 3.0x
STDNN (K = 8) 61.1 72.1 23M 3.3x
STDNN (K = 12) 61.6 70.8 23M 3.6x
STDNN (K = 16) 61.8 71.9 24M 3.9x
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PPL. This is partially because the trained TD-VAE and STDNN are embedded
with future information which is helpful for prediction in language modeling.

The lowest NLL and PPL are achieved by using STDNN in this comparison.
The results with K = 8, 12 and 16 are comparable but are much better than
those of K = 2 (namely TD-VAE) and K = 4. STDNN performs better than
the existing methods [15, 19, 31], [40] in NLL and PPL although STDNN
adopts a larger number of parameters. The costs of memory and computation
using STDNN are higher than those of the other methods. Nevertheless,
the scale of the increase of these two costs using STDNN due to large K is
limited. This is because the tricks of Markov assumption and zero padding
are employed. Under similar model size, STDNN significantly reduces NLL
and PPL in comparison of RNN-large.

5.5 Evaluation on Sentiment Classification

In addition to PTB dataset, language models using different recurrent machines
are evaluated in the task of IMDB. The results on NLL and PPL are illustrated
in Table 3. The accuracy of sentiment classification is also included. Similar
to the results in PTB, STDNN with different K obtains lower NLL and PPL
than the related methods using RNN, BRNN, VRNN, Bi-VRNN, transformer
and TD-VAE. The lowest NLL and PPL were achieved by using STDNN at
K = 12. STDNN at K = 16 is over-parameterized. The resulting performance
is degraded in terms of NLL and PPL. Basically, value K is domain dependent
and is related to the characteristics of sequence data. Selection of K is known
as a model selection problem which can be handled by Bayesian learning [42],
but is disregarded in this study. In addition to the evaluation of language

Table 3: Comparison of NLL, PPL and classification accuracy for sentiment classification
over different methods. IMDB is evaluated.

Model NLL PPL Acc (%)

RNN [31] 180.1 71.3 85.3
Skip-RNN [19] – – 89.1
BRNN [5] 176.3 68.5 87.4
VRNN [12] 169.1 62.1 88.4
Bi-VRNN [17] 162.3 59.7 89.3
Transformer [40] 160.1 58.6 89.1
TD-VAE 157.8 57.4 90.5
STDNN (K = 4) 154.3 56.1 92.1
STDNN (K = 8) 149.8 54.9 91.8
STDNN (K = 12) 146.8 53.8 91.7
STDNN (K = 16) 150.1 56.0 91.3
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modeling, IMDB dataset is also applied to assess the performance of sentiment
classification. The classification accuracy for positive and negative reviews
is reported and compared over different methods. In this comparison, the
accuracy of skip-RNN in [15] is referred. Using STDNN with K = 4, the
accuracy is increased as high as 92.1% which is better than 89.1% by using skip-
RNN. From a series of comparisons on different methods in different tasks, it is
expected to obtain desirable performance in sequential learning via probabilistic
modeling, future planning and multi-temporal-difference learning. Source codes
are accessible at https://github.com/NCTUMLlab/Yi-Chung-Chiu.

6 Conclusions

This paper presented a new sequential learning where the perspective of rein-
forcement learning was implemented and merged in unsupervised learning for
sequence prediction as well as in supervised learning for language modeling
and sentiment classification. The multi-temporal-difference learning was gener-
alized as the multi-step variant of temporal-difference variational autoencoder
where twofold novelties were pursued for sequential learning. First, Bayesian
modeling was carried out for temporal-difference learning via variational in-
ference. Latent variables were learned from the past as well as the future.
Second, multiple-temporal-difference learning was developed to capture the
characteristics of a trajectory of association patterns in sequence data at mul-
tiple time steps which significantly differed from traditional sequential learning
based on step-by-step prediction without planning. A general formulation for
stochastic temporal-difference neural network was proposed. Time abstraction
was represented. A training algorithm of belief network, inference network,
transition network, generation network and classification network was derived.
The tricks of Markov assumption, zero padding and observation overshooting
were addressed. Experiments showed that rollout sequences using this method
could preserve the temporal dynamics in input sequences. Perplexity of the
resulting language model was decreased. Accuracy in sentiment classification
was increased. Implementation costs were increased. Future work will be
extended to build a multi-step search agent which acts as a flexible solution to
Bayesian optimization [36] for hyperparameter tuning.
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Appendix: Derivation for the ELBO of STDNN

The detailed derivation of ELBO of STDNN is shown in Equation (17) where
the paired terms for each individual KL divergence are shown. This derivation
is manipulated by adding and substituting the sequence of terms pB, which
are arranged and merged in the summation for the difference between two KL
terms similar to that of TD-VAE in Equation (9). The property of Markov
chain is applied in the derivation.

Lt1,...,tK = E(zt1 ,...,ztK)∼q(zt1 ,...,ztK |bt1
,...,btK

) ×
[
log p(xtK |zt1 , . . . , ztK ,bt1 , . . . ,btK−1 )

+ log p(zt1 , . . . , ztK |bt1 , . . . ,btK−1 )− log q(zt1 , . . . , ztK |bt1 , . . . ,btK )
]

= E(zt1 ,...,ztK )∼q(zt1 ,...,ztK |bt1
,...,btK

) [log p(xtK |ztK )

+ log p(ztK |ztK−1 , . . . , zt1 ) + log p(ztK−1 |ztK−2 , . . . , zt1 ) + · · ·

+ log p(zt2 |zt1 ) + log pB(zt1 |bt1 )− log q(zt1 |zt2 , . . . , ztK ,bt1 , . . . ,btK )

− log q(zt2 |zt3 , . . . , ztK ,bt2 , . . . ,btK )− · · · − log q(ztK−1 |ztK ,btK−1 ,btK )

− log pB(ztK |btK )]

= E(zt1 ,...,ztK )∼q(zt1 ,...,ztK |bt1
,...,btK

)

log p(xtK |ztK )︸ ︷︷ ︸
log p

tK
D

+ log p(ztK |ztK−1 )︸ ︷︷ ︸
DKL(p

tK
T

∥ptK
B

)

+ log p(ztK−1|ztK−2 )︸ ︷︷ ︸
DKL(p

tK−1
T

∥p
tK−1
B

)

+ . . .+ log p(zt2 |zt1 )︸ ︷︷ ︸
DKL(p

t2
T

∥pt2
B

)

(((((((
+ log pB(zt1 |bt1 )(((((((− log pB(zt1 |bt1 )− log pB(zt2 |bt2 )︸ ︷︷ ︸

DKL(p
t2
T

∥pt2
B

)

− · · ·

− log pB(ztK−1 |btK−1 )︸ ︷︷ ︸
DKL(p

tK−1
T

∥p
tK−1
B

)

− log pB(ztK |btK )︸ ︷︷ ︸
DKL(p

tK
T

∥ptK
B

)

+ log pB(zt1 |bt1 )︸ ︷︷ ︸
−DKL(q

t1
S

∥pt1
B

)

+ log pB(zt2 |bt2 )︸ ︷︷ ︸
−DKL(q

t2
S

∥pt2
B

)

+ · · ·+ log pB(ztK−1 |btK−1 )︸ ︷︷ ︸
−DKL(q

tK−1
S

∥p
tK−1
B

)

hhhhhhhh+ log pB(ztK |btK )

− log q(zt1 |zt2 , . . . , ztK ,bt1 , . . . ,btK )︸ ︷︷ ︸
−DKL(q

t1
S

∥pt1
B

)

− log q(zt2 |zt3 , . . . , ztK ,bt2 , . . . ,btK )︸ ︷︷ ︸
−DKL(q

t2
S

∥pt2
B

)

− · · ·− log q(ztK−1 |ztK ,btK−1 ,btK )︸ ︷︷ ︸
−DKL(q

tK−1
S

∥p
tK−1
B

)

hhhhhhhh− log pB(ztK |btK )


= EztK∼q(ztK |btK

)

[
log p

tK
D (xtK )

]
+

K−2∑
k=0

[
DKL(p

tk+2

T ∥ptk+2

B )−DKL(q
tk+1|tk+2,...,tK
S ∥ptk+1

B )
]

(17)
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