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ABSTRACT

Pair programming is a model of collaborative learning. It has become a
well-known pedagogical practice in teaching introductory programming
courses because of its potential benefits to students. This study aims
to investigate pair patterns in the context of pair program tracing and
debugging to determine what characterizes collaboration and how these
patterns relate to success, where success is measured in terms of perfor-
mance task scores. This research used eye-tracking methodologies and
techniques such as cross-recurrence quantification analysis. The potential
indicators for pair success were used to create a model for predicting pair
success. Findings suggest that it is possible to create a model capable
of predicting pair success in the context of pair programming. The pre-
dictors for the pair success model that can obtain the best performance
are the pairs’ proficiency level and degree of acquaintanceship. This was
achieved using an ensemble algorithm such as Gradient Boosted Trees.
The performance of the pairs is largely determined by the proficiency
level of the individuals in the pairs; hence, it is recommended that the
struggling students be paired with someone who is considered proficient
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in programming and with whom the struggling student is comfortable
working with.

1 Introduction

Pair programming (PP) transpires when two programmers interact and execute
programming activities together, either co-located or remotely separated, to
build a shared understanding [1, 21]. It is an ideal example of a collaboration
paradigm because it embodies all the essential elements of collaborative learning.
Therefore, it is frequently used to teach introductory programming courses to
investigate how students benefit from it in terms of learning and self-esteem
[6, 14].

Chong and Hurlbutt [4] suggest that the gaps in expertise between two indi-
viduals have influence on the PP interactions. It means that two programmers
jointly engage in the task when they have the same level of expertise, but when
the pairs have mixed levels of expertise the programmer with more expertise
dominated the interaction. They debunked the driver-navigator myth implying
that there is really no consistent division of labor between “driver (i.e., does
the typing and writes down a design)” and the “navigator (i.e., performs the
strategic planning and monitoring).”

Prior studies have tried to gauge how the quality of social interaction
between friends as opposed to non-friends influenced collaborative success.
Results have shown that groups consisting of friends may perform better since
they already have a history of having collaborated together [18]. The study of
Jehn and Shah [8] likewise suggests that being friends may increase commitment
to the goals of the group, resulting in more successful collaboration. On the
other hand, other studies claim that friendships could reduce performance
because friends have an inclination to focus more on socialization rather
than the group task [22]. Friendship may not even be necessary for effective
collaboration suggesting further that skilled strangers grouped together will
perform best because their skills, experience, and being adaptable to the
actions of their group mates have equipped them how to work well with other
highly skilled individuals [22].

In recent years, dual eye tracking in the context of PP has been explored
to study joint attention in collaborative learning situations [9, 15, 16, 20]. For
instance, a pair of eye trackers are utilized to study the gaze of two individuals
collaborating as they solve a problem and to understand how gaze and speech
are coupled [16]. The eye tracking studies that use joint attention to assess
collaboration in PP often employ the use of gaze coupling [17], which refers to
moments when the partners are looking at the same target.
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The concept of joint attention and gaze coupling can be manifested dur-
ing convergent and divergent phases [23]. The pair is said to be converging
in their interaction when the collaborating partners jointly work to under-
stand the code. In this phase, the participants in a pair are focused at the
same part of the program in what is considered a “stable” manner, which
involves looking at a program by fixations less than a given threshold. On
the other hand, a divergent episode of interaction is when the participants
are looking at different parts of the program as they try to build their own
understanding. During convergent episodes, the pair is said to be “looking
together.”

Collaborative eye-tracking studies have shown the effectiveness of eye track-
ing as a tool to predict comprehension and gauge the quality of collaboration
through the degree of the pairs’ gaze coupling [9, 16, 17]. To some extent, these
studies have also explored the pair dynamics that take place in a collaborative
task. However, open questions still abound as to the potential factors that
may influence the success of the collaboration in the pairs in the context of
PP.

The success of the collaboration in programming pairs may be influenced
by several factors. Although previous work has already identified the types
of interactions that may possibly occur in PP (i.e., leader-follower/driver-
navigator, convergence-divergence/engagement-disengagement), none of these
studies so far have gone deeper to investigate as to the influence of these pair
dynamics to the success of the programming pairs. This research is interested,
therefore, in exploring pair gaze patterns in PP to determine the impact of
these patterns on pair success. The main method that will be used to assess
the degree of collaboration in programming pairs in an eye-tracking setup is
called Cross-Recurrence Quantification Analysis (CRQA) [33].

CRQA can be used to analyze collaborative eye-tracking. It takes two
disparate trajectories of the same information (e.g., two fixation sequences
from different collaborators in a PP setup) as input and performs a test of
“closeness” between all pairs of points of the two trajectories. This process is
visualized using a cross-recurrence plot (CRP), which is essentially just an
N ×N matrix that shows and compares if the two trajectories visit identical
sections in the phase space. A gaze cross-recurrence happens, for instance,
when two fixations from different sequences fall within a provided threshold of
each other using some distance metric.

CRQA and CRPs are not entirely new concepts. These have been used in
previous works by Cherubini et al. [3] and Zheng et al. [34] whose findings
revealed that cross-recurrence is positively related to team performance. In a
study about solving Tangram puzzles by pair, Kuriyama et al. [11] showed
that cross-recurrence is higher in successful pairs than in unsuccessful pairs.
Jermann et al. [9] used CRPs to distinguish between a “good” and a “bad” pair,
which correlated to a good and bad collaboration quality. Nüssli [14] detected
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that there is a decreased level of gaze coupling for a pair with a bad collaboration
flow. In prior studies conducted by Villamor and Rodrigo, they used CRQA
to characterize collaboration patterns based on prior knowledge [24], degree
of acquaintanceship [25], both prior knowledge and acquaintanceship [27]; as
well as determine leader-follower patterns [26].

In the larger context, the main objective of this research is to determine the
characteristics that are indicative of a successful collaboration in the context
of pair program tracing and debugging, as assessed through the pairs’ eye
tracking data. It began with the investigation of the individual behaviors in
the pairs to discern who between these individuals contributed mostly to the
success of the pairs and what practices these individuals exercised that led
them to be more successful. The work then expanded to the analysis of the
pairs to distinguish what separated successful pairs from unsuccessful pairs,
where success was measured in terms of debugging scores. These individual and
pair patterns were then related to the success of the pairs. Finally, attempts
were made to create a model capable of predicting individual success in the
pairs as well as pair success.

Specifically, the entirety of this research sought answers to the following
questions: (1) What are the characteristics of the eye gaze patterns of the
individuals in the pairs? (2) What are the characteristics of the eye gaze
patterns of the pairs of programmers? (3) How do these individual and pair
gaze patterns relate with pair success? (4) Can a model be created that can
predict individual success in the pairs and pair success? The results of this study
could enlighten us as to the predictors of a successful collaboration. The results
could aid educators to determine the best pairing methods in their classes to
help their students persevere and succeed in their introductory programming
courses by encouraging them to adopt the best practices employed by the more
successful individuals in the pairs.

The first two questions have already been answered, which can be found
in these papers: [29–31]. Hence, this paper will cover only part of the third
question, specifically the relationship of pair gaze patterns to success. The
relationship of individual gaze patterns to pair success was already previously
answered in [29]. This paper will also provide answers to the fourth question
uncovering the results obtained that led to the creation of the model that will
determine the potential predictors for PP success as a follow-up on the previous
work conducted [28], where an attempt was made to create an initial model
using CRQA metrics to predict success in PP. The initial findings revealed that
using CRQA metrics alone as model input features is not sufficient. The model
improved with the addition of the pairs’ prior knowledge as input. However,
the prediction accuracy is still not acceptable using Logistic Regression, which
turned out to be a better model than Naïve Bayes. In this study, feature
selection was applied using different filter and wrapper approaches, which
were not used previously. Hence, this study endeavors to determine whether
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Figure 1: An example of a cross-recurrence plot.

there would be an improvement in the model in predicting success in a PP
eye-tracking setup.

2 Literature Review

2.1 Gaze Cross-Recurrence Plot

Figure 1 shows an example of a CRP. If two fixations from different collab-
orators are deemed to be recurrent according to some threshold, these are
represented as a black point or pixel, which is plotted against the horizon-
tal and vertical dimensions of the CRP. The CRP’s horizontal and vertical
axes signify the time intervals in seconds. In Figure 1, for example, both
collaborators commenced at about 2250 seconds past the starting time of the
experiment, and at about 2467 seconds (horizontal: collaborator A) and 2440
seconds (vertical: collaborator B), both of them happen to look at the same
areas on the screen. This is indicated by the pixelated portions inside the
red-bordered circle in the figure.

Different textures, each with corresponding interpretations, may be iden-
tified on a CRP. For example, rectangular clusters consisting of horizontal
and vertical lines reflect that some states either do not change or change very



6 Villamor and Rodrigo

Table 1: CRQA metrics and brief definition related to eye-tracking.

CRQA metric Definition

Recurrence rate (RR) Represents the percentage of cross-
recurrent fixations

Determinism (DET) Refers to the percentage of identical scan-
path segments of a given minimal length
in the two scanpaths

Average diagonal length (L) Duration that both systems stay attuned
Longest diagonal length (LMAX) Gives the longest time where both scan-

paths of the two collaborators are synchro-
nized

Entropy (ENTR) Represents the complexity of the relation
between scanpaths of the two eye move-
ment data

Laminarity (LAM) An indication of prolonged duration of
focusing on the same area on screen

Trapping time (TT) Represents the average time two trajecto-
ries stay in the same region

slowly. These are called laminar or “trapped” states. More of these small-scale
structures and their interpretations can be found in [13, 33].

Here are some of the textures that may be found on CRPs:

1. Fading portions to the upper left and lower right corner

2. Single and isolated recurrence points

3. Horizontal/vertical lines and rectangular clusters

4. Bands of white space

5. Empty regions

6. Diagonal lines parallel to the main diagonal

CRQA metrics, such as recurrence rate (RR), determinism (DET), average
(L) and longest diagonal (LMAX) lengths, entropy (ENTR), laminarity (LAM),
and trapping time (TT) can be extracted from the diagonal and vertical
dimensions of the CRP. Table 1 outlines the different CRQA metrics relative
to eye-tracking. A more comprehensive discussion of these metrics is found in
[13, 33].
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Figure 2: Snapshots showing the location of the fixation points of the two collaborators.

2.2 CRP and Collaborative Eye-Tracking

The relationship of a CRP and collaborative eye tracking is demonstrated using
one of the case scenarios in this study. Figure 2 shows snapshots of a program
used as one of the actual stimuli in this experiment overlaid with colored
circles representing the fixation points of the two collaborators in this pair.
The snapshot on the left with aqua-colored circles is from collaborator A, and
on the right with purple-colored circles is from collaborator B. Above these
snapshots are the times (in seconds) past the starting time of the experiment
when these fixations occurred.

At these precise moments, the fixation points are positioned at about the
same location on the stimulus making these fixations (from A and B) recurrent
according to a defined threshold. In Figure 1, part of the pixelated regions on
the CRP enclosed in a red circle informs us that the fixations points of the
two collaborators under these times are recurrent.

Figure 3 is the corresponding scan pattern using a line graph of the CRP
in Figure 1. The two subplots illustrate the side-by-side comparison of the
fixation x-coordinates (upper subplot) and the fixation y-coordinates (lower
subplot) of the two collaborators. The aqua and purple line graphs refer to
A and B, respectively. The x-axes on the subplots represent the combined
timeline of the two collaborators, and the y-axes represent the range of possible
values of the fixation x and y coordinates. The sections of the scan patterns
enclosed in circles in Figure 3 show the positions in the timeline when these
fixations occurred. It can be noted that the fixation x and y coordinates
are situated at about 0.5, signifying that these fixation points from the two
collaborators are indeed recurrent.
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Figure 3: Scan pattern of the two collaborators (upper subplot: fixation x coordinates, lower
subplot: fixation y coordinates).

2.3 Some PP Eye-Tracking Studies Using Gaze Cross-Recurrence

Pietinen et al. [16] proposed as a metric the number of overlapping fixations
to tell how much collaboration is actually done. High fixation duration on
the overlapping fixations could inform us if there are problems in understand-
ing. High rate of overlapping fixation could possibly be a sign of efficient
collaboration.

Jermann et al. [9] used synchronized eye-trackers to assess how program-
mers collaboratively worked on a segment of code, and they also contrasted
a “good” and a “bad” dyad. The analysis that they employed was two-fold:
(1) they rated the collaboration quality using a certain rating scheme; and
(2) compared the dyad’s eye gaze during various moments of the interaction
to identify whether gaze indicators are sensitive to contrasts in the rating
dimensions. Results showed that high gaze recurrence seems to be typical of
a “good” dyad where the flow of interaction is smooth and where partners
sustain each other’s understanding.

A dual eye-tracking study was also conducted that demonstrated the effect
of sharing selection among collaborators in a remote pair-programming scenario
[10]. They used gaze cross-recurrence analysis to measure the coupling of
the programmers’ focus of attention. Their findings showed that pairs who
used text selection to perform collaborative references have high levels of
gaze cross-recurrence. Gaze cross-recurrence was also highest when selectors
accompanied their selections with speech to produce a multimodal reference.

Nüssli [14] analyzed divergence and cross-recurrence and looked at how they
are related to the collaboration process. Results showed that collaborators have



Predicting Pair Success in a Pair Programming Eye Tracking Experiment 9

a tendency to perform deeper processing when they are working together (i.e.,
have low divergence), than when they are working alone. It was also found that
gaze coupling level is lower for pair with a bad collaboration flow. What was
interesting in their results is that gaze coupling does not correlate well with the
collaboration flow as there could be bad collaborating pairs that communicate
more than a well collaborating one, thus having a higher recurrence level.

3 Methodology

3.1 Participants

The dataset in this study was from the 84 volunteers (56 males and 28 females)
that formed a total of 42 pairs. These participants aged 18–23 years old had
already taken their college-level fundamental programming courses and were
randomly paired with no regard for gender, degree of acquaintanceship, and
prior knowledge in programming.

A screening questionnaire was distributed to student volunteers to de-
termine their eligibility to take part in this study. The following were the
exclusion criteria: (1) wearing bifocals, trifocals, layered or regression lenses;
(2) have difficulty reading a computer screen with contacts and/or eyeglass
on; (3) have cataracts; (4) have eye implants; (5) have glaucoma; (6) using a
screen reader or magnifier or other assistive technology to use the computer;
and (7) if either of the pupils are permanently dilated.

3.2 Procedures

Students who passed the initial screening were asked to take a written program
comprehension test and self-efficacy survey to determine the participants’
proficiency level and confidence level in programming. The participants were
required first to undergo a nine-point eye tracking calibration test prior to
the experiment proper. Two Gazepoint eye trackers were used to collect the
pairs’ eye movement data. The pairs were shown 12 programs with bugs as
the stimuli and were asked to mark the location of the bugs. There was no
need to correct the errors.

A slide sorter program with “Previous,” “Reset,” “Finish,” and “Next”
buttons was created to display the 12 programs, each preceded by a program
specification. When a bug is found, the participant clicks on the location of the
bug using a mouse, and the software then draws an oval to mark it. The parti-
cipants are free to click any of the buttons and navigate to the next or previous
slide at their own pace. The number of bugs in each program is also shown.

Though the pairs were encouraged to work with their partner and use the
chat program, they were not informed that this research was primarily about
collaboration. No further instructions were given as to how to proceed with
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Figure 4: The analysis pipeline.

the task and which problems to solve first. After the experiment, the pair
participants were asked to privately and individually fill out a questionnaire
to assess the pairs’ degree of acquaintanceship. A detailed discussion on data
collection, data cleaning, and segmentation can be found in [30].

3.3 Analysis

The analysis pipeline for the pair analysis is shown in Figure 4. Some steps that
will not be discussed in this paper (e.g., leader-follower patterns, convergence
patterns, pair profiles) are omitted.

Pair success was measured in terms of debugging scores. The pair debugging
score was computed by getting the average of the debugging scores of the
individuals in the pairs. Two levels of granularity were used in the analysis:
pair-level (average of all 12 programs) and case-level (a program under each
pair). For pair-level, a pair is successful if the average debugging score for the
12 programs is greater than or equal to the mean score; otherwise, the pair
is unsuccessful. For case-level, a case is successful when both participants in
the pairs marked correctly at least 50% of the bugs in each program. A case
is unsuccessful if both failed to mark all the bugs or if only one participant
marked correctly at least 50% of the bugs. One pair was discarded because
of the huge fixation count discrepancies between participants, i.e., one had
very high fixation counts and the other had very low fixation counts in all 12
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programs. Other fixation sequences with very low fixation counts were not
good candidates for CRQA and, thus, were not included.

3.3.1 CRP and CRQA

To assess and quantify gaze patterns between participants in a pair, a CRP
was constructed for every program for each pair, and CRQA was performed to
get the recurrence rate (RR), determinism (DET ), average diagonal length
(L), longest diagonal length (LMAX ), entropy (ENTR), laminarity (LAM ),
and trapping time (TT ) for each of the 12 programs in each pair. This was
done using the CRP toolbox for MATLAB [13].

Using CRQA entails the use of the following parameters: delay, embed, and
radius [12, 33]. For this study, no further embedding was done [7] because it
involved only two dimensions, which were the fixation x and y coordinates in
addition to the timestamps. With an embedding dimension of one, delay was
also set equal to one since no points were time delayed [32]. The radius, which
was the threshold that determines if two fixation points are recurrent, was set
to a default of 10% of the maximal phase space diameter [19].

Threshold adjustments were performed as needed, however, due to varying
lengths of the fixation sequences. This was to ensure that the threshold was
neither too small nor too large. It is because if the threshold is too small,
the recurrence structure of the underlying trajectory may not provide enough
information; and if the threshold is too large, almost every point is a neighbor
of every other point, which could cause thicker and longer diagonal structures
in the CRP as they actually are.

3.3.2 Correlation Analysis

The pair overall debugging scores, and pair per program debugging scores were
recorded. The significant metrics identified in the pair analysis were correlated
with the pair overall debugging scores and pair per program debugging scores
using Pearson’s r. These were done to determine the impact of the pair features
to the success of the pairs.

3.3.3 Model Construction

All the significant features identified in the pair analysis were first used as
inputs to the models to benchmark how well the models work on a com-
plete data set. Pre-processing operations were performed, such as removing
dependent variables that significantly correlated with each other to address
multicollinearity.

Feature selection or variable elimination was done to make sure that
only the relevant features are fed into the models. Filter methods, such as



12 Villamor and Rodrigo

correlation attribute evaluation and gain ratio evaluation methods from Weka,
and wrapper methods such as wrapper subset evaluation method using best-
first search from Weka, and Optimize Selection (Evolutionary) operator from
RapidMiner were used to generate these relevant features. The selection scheme
parameter of the Optimize Selection (Evolutionary) operator was changed from
the default “tournament selection” to “non-dominated sorting” while adding
the “number of features” as a second performance criterion besides accuracy
in order to get the minimum number of features and the maximum predictive
accuracy.

The wrapper approaches were trained on two popular machine learning
algorithms, Decision Tree and Support Vector Machines. The reason for
this choice, aside from being among the commonly used machine learning
schemes trained using wrapper approaches, was to use one machine learning
classification that will not be used to create the models and another one that
will be used to create the models. This was to determine which of these two
classification algorithms can produce the most relevant features that will be
used to construct the models that can give the best performance.

Since there is no perfect model for all datasets, a model should be chosen
that would work best for this particular problem. Three supervised classi-
fication algorithms were used. In a study previously conducted [28], Naïve
Bayes and Logistic Regression algorithms were used and compared to create a
model capable of predicting pair success using the complete data. Between
the two, Logistic Regression performed better. Hence, for this study Logistic
Regression was used as the baseline algorithm for creating the pair success
model on a reduced dataset. A standard or linear Support Vector Machines
classifier known to generalize very well, and an ensemble nonlinear method
Gradient Boosted Trees known to give better results generally were compared
against the baseline algorithm.

The model for predicting pair success used 20-fold cross-validation since it
has a small dataset. This was to ensure that each case was used for training and
testing an equal number of times. The performance measures used to compare
and evaluate the three algorithms were: (1) classification accuracy – the number
of correct predictions from all predictions made; (2) Area Under Curve (AUC) –
the probability that the classifier ranks a randomly chosen positive example
higher than a randomly chosen negative example, (3) precision – the exactness
of the model as seen from the confusion matrix; (4) recall – the completeness
of the model as seen from the confusion matrix; (5) F Measure – conveys
the balance between the precision and recall, and (6) Matthews Correlation
Coefficient (MCC) – measures and maximizes the overall accuracy of the
classification model and, hence, describes the confusion matrix regardless of
the class sizes [2]. However, for the purpose of presentation of the results,
the focus will be on the classification accuracy, which will be the basis of the
performance comparison of the three algorithms.
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Table 2: Relationship between the pair features and debugging scores of the successful and
unsuccessful pairs.

Pair features Pair overall Pair per program
debugging score debugging score

r-value p-value r-value p-value

RR −0.237∗∗ 0.000 −0.217∗∗ 0.001
DET −0.200∗∗ 0.002 −0.210∗∗ 0.001
L −0.190∗∗ 0.003 −0.162∗∗ 0.013
ENTR −0.181∗∗ 0.005 −0.169∗∗ 0.009
LAM −0.182∗∗ 0.005 −0.198∗∗ 0.002
No. of Convergence via Chat 0.248∗∗ 0.000
Prior Knowledge 0.730∗∗ 0.000 0.541∗∗ 0.000
Degree of Acquaintanceship 0.146∗ 0.024
Note: ∗∗0.01 level of significance.
∗0.05 level of significance.
■Empty cells signify no correlation.

4 Results

4.1 Pair Features vs. Success

The identified features considered as pair features are the following: RR, DET
L, ENTR, LAM, frequency of convergence via chat, prior knowledge, and degree
of acquaintanceship [21]. The frequency of chat convergence was included since
the successful pairs were found to significantly chat more than the unsuc-
cessful pairs (MSP = 1.38/SDSP = 1.36,MUP = 0.93/SDUP = 1.26) at (t =
−3.346, p = 0.001). Prior knowledge or the proficiency level of the pairs and
their degree of acquaintanceship were also included as features since these pro-
files could influence performance of the pairs. The difference in prior knowledge
(PK) and degree of acquaintanceship (DA) between successful and unsuccess-
ful pairs were significant at (MSUCCESSFUL_PK = 8.26, SDSUCCESSFUL_PK =
1.89; MUNSUCCESSFUL_PK = 5.43, SDUNSUCCESSFUL_PK = 1.77;
t_PK = −11.857, p_PK = 0.000) and (MSUCCESSFUL_DA = 3.83,
SDSUCCESSFUL_DA = 0.10; MUNSUCCESSFUL_DA = 3.55,
SDUNSUCCESSFUL_DA = 1.05; t_DA = −2.111, p_DA = 0.036).

Table 2 shows the relationships of these features to the pair overall and
per program debugging scores of all the pairs. Tables 3 and 4 show which
of these features correlated with the successful pairs and unsuccessful pairs,
respectively. The empty cells signify that the respective pair features have no
correlation with either the pair overall debugging score or pair per program
debugging score.
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Table 3: Relationship between the pair features and debugging scores of the successful pairs.

Pair features Pair overall Pair per program
debugging score debugging score

r-value p-value r-value p-value

RR
DET
L
ENTR
LAM
No. of Convergence via Chat 0.186∗ 0.037
Prior Knowledge 0.483∗∗ 0.000 0.237∗∗ 0.008
Degree of Acquaintanceship
Note: ∗∗0.01 level of significance.
∗0.05 level of significance.
■Empty cells signify no correlation.

Table 4: Relationship between the pair features and debugging scores of the unsuccessful
pairs.

Pair features Pair overall Pair per program
debugging score debugging score

r-value p-value r-value p-value

RR
DET
L
ENTR
LAM
No. of Convergence via Chat
Prior Knowledge 0.552∗∗ 0.000
Degree of Acquaintanceship 0.230∗ 0.015
Note: ∗∗0.01 level of significance.
∗0.05 level of significance.
■Empty cells signify no correlation.

4.2 Predicting Pair Success

The potential predictors for this model are the following: RR, DET, L, ENTR,
LAM, prior knowledge, degree of acquaintanceship, and frequency of convergence
[21]. ENTR and DET were removed after addressing multicollinearity.
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Table 5: Performance of the classifiers before pair feature selection.

Feature Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.48 0.884 79.52 80.83 79.12 0.568
Support Vector Machine 78.07 0.876 80.71 77.14 77.98 0.561
Gradient Boosted Trees 90.64 0.945 92.25 90.95 90.72 0.814

Table 6: Logistic regression confusion matrix using all the pair features.

True UNSUCCESSFUL True SUCCESSFUL

Predicted UNSUCCESSFUL 85 24
Predicted SUCCESSFUL 27 101

Table 7: SVM confusion matrix using all the pair features.

True UNSUCCESSFUL True SUCCESSFUL

Predicted UNSUCCESSFUL 88 28
Predicted SUCCESSFUL 24 97

Table 8: GBT confusion matrix using all the pair features.

True UNSUCCESSFUL True SUCCESSFUL

Predicted UNSUCCESSFUL 101 11
Predicted SUCCESSFUL 11 114

4.2.1 Performance of the Three Classification Models Using All Pair Features

Table 5 shows the performance of the three classification algorithms when
all the features are fed into the model using 20-fold cross validation with
“successful” as the positive class. Tables 6–8 show the confusion matrices of
each classification algorithm.

4.2.2 Performance of the Three Classification Models Using CRQA Features Only

Since the number of pair features is smaller than the individual features, a
brute force feature selection method was applied to obtain only the most
relevant features that would give the best performance. The first set of inputs
are the CRQA metrics, which were fed one by one to see the impact of each
metric on the model. The subsequent set of inputs were done in CRQA pairs.
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Table 9: Accuracy table (percentage) using the CRQA metrics as input.

CRQA metrics Logistic Support Gradient
regression vector boosted

machine trees

Using only RR as input 60.80 61.10 59.05
Using only L as input 56.74 57.77 54.70
Using only LAM as input 62.54 61.93 56.44
Using only RR and L as input 62.23 62.73 61.52
Using only RR and LAM as input 60.80 60.68 53.90
Using only L and LAM as input 62.95 60.68 53.48

Table 10: Accuracy table (percentage) using the Non-CRQA metrics as input.

Non-CRQA metrics Logistic Support Gradient
regression vector boosted

machine trees

Using only prior knowledge as input 76.29 76.06 76.44
Using only degree of acquaintanceship as
input

53.90 47.90 81.89

Using only frequency of convergence as
input

64.02 51.97 55.75

Using only prior knowledge and degree of
acquaintanceship as input

76.29 76.44 95.80

Using only prior knowledge and frequency
of convergence as input

77.92 76.10 78.11

Using only degree of acquaintanceship and
frequency of convergence as input

62.73 56.89 83.90

Using all non-CRQA metrics as input 77.92 76.89 94.13

Table 9 shows the accuracy table as a result of feeding the CRQA metrics into
the models.

4.2.3 Performance of the Three Classification Models Using Non-CRQA Metrics

The next set of features that were fed into the model are the non-CRQA
metrics, such as the pairs’ prior knowledge, degree of acquaintanceship, and
frequency of convergence. The performance results are shown in Table 10.

The performances of the classifiers using other feature combinations and
other performance measures are found in the Appendix.
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Table 11: Results of the filter methods for pair feature selection.

Feature Correlation Gain Ratio

RR 2 4
L 4 3
LAM 3 6
Prior knowledge 1 1
Degree of Acquaintanceship 6 2
Frequency of Convergence 5 5

Table 12: Results of the wrapper subset evaluation method for pair feature selection.

Feature Decision tree Support vector machine
Number of folds (%) Number of folds (%)

RR 0 (0%) 0 (0%)
L 0 (0%) 3 (30%)
LAM 0 (0%) 10 (100%)
Prior knowledge 10 (100%) 10 (100%)
Degree of Acquaintanceship 10 (100%) 4 (40%)
Frequency of Convergence 0 (0%) 2 (20%)

4.2.4 Performance of the Models with Filter and Wrapper Methods Applied

The feature subsets were compared against the results of the filter and wrapper
methods. Table 11 shows the results of the two filter methods, and Table 12
shows the results of the wrapper subset evaluation method using best first
search trained on Decision Tree and SVM classifiers.

Figure 5 shows the deviation chart using the pair features. The highest
deviations between successful and unsuccessful pairs come from prior knowledge,
followed by RR and degree of acquaintanceship. The result of the optimize
selection (evolutionary) operator on a Decision Tree and SVM learner are
shown in Figures 6 and 7, respectively.

5 Discussion

5.1 Pair Features vs. Success

Regardless of the pair success category, all the CRQA metrics have weak
negative correlations with the pairs’ overall and per program debugging scores
as shown in Table 2. However, considering the pair success category, none of
the CRQA metrics correlated with the successful (Table 3) and unsuccessful
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Figure 5: Deviation chart of the complete pair feature set.

Figure 6: Result of optimize selection (evolutionary) on decision tree.

pairs (Table 4). Hence, the CRQA metrics may not be indicators of success,
where success is measured in terms of debugging scores.

This confirms previous findings that CRQA might not necessarily correlate
with performance since many forms of coordination, including complementarity,
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Figure 7: Result of optimize selection (evolutionary) on SVM.

roles, and routines, could possibly cause a decrease in recurrence diagonal
structures [5]. This means that CRQA is sensitive in terms of grasping
the dynamics of human interactions. Hence, any shift or changes in the
coordination and other dynamics can affect its results significantly.

The negative correlations between the CRQA metrics and debugging scores
also corroborate with previous findings, where the negative correlations may
be interpreted as an effect of task constraint, that is, doing similar things
repeatedly may have the opposite of the desired effect [5]. In this case, the
pairs were given 12 programs where they had to repeatedly check for errors,
which had to be done within one hour. Due to the artificial time constraint
imposed during the experiment, the pairs may have the tendency to perform
more shotgun debugging all throughout the experiment instead of strategically
checking for errors so that they can finish within the time allotted. This may
have led to lower debugging scores but higher CRQA metric results.

However, it is also possible that the negative correlations may be a result
of the pairs’ chatting patterns. It was found that the CRQA metrics have
positive correlations with the fixation count (RR: r = 0.478∗∗/p = 0.000,
L: r = 0.527∗∗/p = 0.000, LAM: r = 0.543∗∗/p = 0.000) and total fixation
time in chat (RR: r = 0.246∗∗/p = 0.000, L: r = 0.243∗∗/p = 0.000, LAM:
r = 0.288∗∗/p = 0.000); hence, CRQA metrics may increase when the pairs are
chatting. The CRQA of those pairs who chatted have negative relationships
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with the pairs’ overall and per program debugging scores. Therefore, it is
possible that the more the pairs chat, the less remaining time they may have
to look for other errors causing a decrease in the debugging scores of the pairs.

In Table 3, prior knowledge of successful pairs has moderate and weak
positive relationships with their pair overall and per program debugging score,
respectively. In Table 4, prior knowledge has a strong positive relationship
in unsuccessful pairs but only with their pair overall debugging score. This
confirms that the performance of the pairs may largely depend on their
proficiency level. The higher the proficiency level, the more successful the
pairs may become.

The frequency of chat convergence correlated only with the successful
pairs’ pair overall debugging score (Table 3). In contrast, the degree of
acquaintanceship correlated only with the unsuccessful pairs’ pair overall
debugging score (Table 4). The former may suggest that if successful pairs
engage more in a productive chat, they may achieve much better performance.
The latter may also imply that unsuccessful pairs may benefit from being
friends with their partners to collaborate more and have better chances of
finding more errors together.

To sum it up, though the CRQA metrics can be used to distinguish the
collaboration patterns between successful and unsuccessful pairs [30], these
measures had no bearing on whether the pairs would be successful or not,
where success is measured in terms of debugging scores. Evidence suggests
that not all highly gaze coordinated pairs were successful in finding bugs
[14]. Conversely, those with more “low CRQA” but had more incidences of
convergence turned out to be successful.

Convergence or chatting patterns may play a factor in the pairs’ success, but
chatting must be done in a productive manner because chatting may impact the
performance of the pairs positively or negatively. Lastly, the pairs’ proficiency
level or prior knowledge in programming may greatly impact the pairs’ success.

5.2 Predicting Pair Success

In Table 5, the performance of the Logistic Regression and SVM classifiers are
comparable, and the GBT classifier performed way better. The performance
of the three classifiers when using only the CRQA metrics was just slightly
beyond random guessing as shown in Table 9. Hence, the CRQA metrics alone
are incapable of predicting pair success, proving that CRQA metrics are not
indicators of pair success.

As for the non-CRQA features, using only prior knowledge as input in Ta-
ble 10, the performances of the three classifiers are almost the same. With only
degree of acquaintanceship as input, the performances of Logistic Regression
and SVM classifiers are either more or less due to chance. The GBT classifier,
however, performed satisfactorily with 81.89% accuracy in classifying the obser-
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vations according to its correct class. Using only the frequency of convergence
as input resulted in the classifiers performing only slightly better than chance.

The best performance is achieved using the GBT classifier with prior
knowledge and degree of acquaintanceship as input with an accuracy rating of
95.80%. However, the performance of the GBT classifier using all non-CRQA
metrics is not far behind at 94.13% accuracy rating.

The Logistic Regression classifier obtained its best performance at 81.44%
accuracy rating with prior knowledge, degree of acquaintanceship, and LAM
as the minimum features as shown in Table A38 in the Appendix. The SVM
classifier achieved its best performance at 80.95% accuracy rating also using
this feature subset. However, the same performance is obtained using only
prior knowledge and LAM as input, as shown in Table A16 in the Appendix.

In Table 11, prior knowledge ranked first in both the correlation and gain
ratio filter methods. Prior knowledge was likewise considered as the most
relevant pair feature using the wrapper subset evaluation methods trained on
both Decision Tree and SVM as shown in Table 12.

Figure 5 shows the deviation chart using the pair features. The chart shows
the mean values for each feature of both classes. The transparent regions
represent the standard deviations of the features for each class. There are
three areas where the classes “successful” and “unsuccessful” widely differ but
the widest difference comes from prior knowledge.

The results of the optimize selection (evolutionary) operator on a Decision
Tree and SVM learner are shown in Figures 6 and 7. For the Decision Tree
classifier (Figure 6), only two features are needed to obtain its maximum
predictive accuracy of 88.1%. These features are prior knowledge and degree
of acquaintanceship. For the Support Vector Machine classifier (Figure 7), two
features are needed for the highest accuracy rating of 81.4% to be achieved.
These features are LAM and prior knowledge.

Comparing the results of the brute force method and using the filter and
wrapper approaches, the gain ratio filter evaluation method, the wrapper
subset evaluation method and the optimize selection (evolutionary) operator
trained on a Decision Tree classifier were able to capture the minimum number
of predictors, namely, prior knowledge and acquaintanceship, as produced by
the brute force approach. These two predictors gave the best performance
using a GBT classifier for predicting pair success.

In summary, an ensemble method such as GBT can create a model capable
of predicting pair success with an outstanding performance. The overall per-
formance of this model is: Accuracy: 95.80%, AUC: 0.973, Precision: 94.64%,
Recall: 98.54%, F Measure: 96.19%, and MCC: 0.916. The relevant predictors
for this model are the pairs’ proficiency level and degree of acquaintanceship,
whose feature importance are 155.98 (0.70) and 88.75 (−0.70), respectively.

The results confirm the findings in a prior work conducted stating that the
performance of the pairs is highly dependent on the proficiency level of the
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individuals in pairs [28]. In addition, the degree of acquaintanceship could also
be a factor in the pairs’ success since how often pairs communicate depends
on whether the individuals in pairs are highly or poorly acquainted.

As per the machine learning algorithm used, GBT outperformed LR and
SVM in the two models because of the nature of GBT, which “boosts” a weak
learner to become better. It got its name “gradient boosting” because the
desired outcomes for each observation are set based on the gradient of the
error with respect to the prediction.

Basically, it is an additive model whose primary goal is to minimize the
overall prediction error by combining a new model with the previous models. It
does this by weighing observations and assigning larger weights to observations
that are difficult to classify. It then creates and adds new weak learners to
the existing ones focusing their training on these hard to classify observations.
This is done sequentially until a model is obtained that correctly classifies
these observations.

6 Conclusion

The findings reveal that CRQA metrics do not influence the success of the
pairs. It contradicts previous studies claiming that pairs who have a higher
degree of gaze overlaps reflect better collaboration. The successful pairs in
this study, which proved to have collaborated better, as evidenced by their
higher debugging scores and better convergence patterns, have lower gaze
cross-recurrence rates. On the other hand, unsuccessful pairs who had more
incidences where they did not converge have a higher degree of coupled gazes.

Communicating with partners plays a factor in the success of the pairs.
However, conversing with partners must be done consistently to work in
partnership and be aligned with the performance task goals. The pairs’
proficiency level in programming proved to have a considerable impact on the
success of the pairs.

The pair success model’s predictors that can obtain the best performance
are the pairs’ proficiency level and degree of acquaintanceship. This can also
be achieved using an ensemble algorithm such as Gradient Boosted Trees.

If we think about collaboration in the CS education classroom, one of
the strategies that come to mind is to engage students in PP sessions. Prior
research shows that PP has been beneficial to students’ learning and self-
esteem. However, despite these benefits, studies have shown that PP may
not be for everybody. Moreover, it could do more harm than good, as in the
more struggling students in programming, which typically happens when PP
is not implemented effectively. Hence, to reap these benefits, PP needs to be
appropriately implemented.

If the primary goal is to help students who find programming more
difficult, it is recommended to look first at the students’ profiles being
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paired together and not just randomly pair students. Whether they be-
come productive or obtain better performance task scores, the success of
the pairs also depends on the individuals being paired. Once pair matching
is accomplished, working in partnership and connecting in more conversa-
tional processes geared towards the performance task goals must be strongly
encouraged.

For PP to be implemented effectively to help students who find program-
ming difficult, CS educators should not pair struggling students together,
particularly if these low proficiency students are not well acquainted or do not
have any history of working together. On the other side of the spectrum, it is
also not wise to pair low proficiency students who are best friends because it may
negatively impact their performance [27]. Since the pairs’ performance is largely
determined by the proficiency level of the individuals in pairs, it is recommended
that the struggling students be paired with someone considered proficient in
programming and with whom the struggling student is comfortable working.

Although it is not surprising that the proficiency level and degree of
acquaintanceship between individuals in the pairs may be critical to the
success of the pairs, this study provided empirical validation that these two
features are indeed considered the most relevant features to pair success.

It is highly recommended that the results of this study would be validated
on students to substantiate the findings. It is also recommended to gather
more data. The use of image processing on the CRPs is also recommended to
capture important phenomena or meaningful information that relate to specific
collaboration patterns. This method was attempted in this study, however,
due to the experimental design using 12 different programs with different levels
of complexity, this resulted in varying lengths of the fixation sequences of
the individuals in the pairs. This in turn required different thresholds, which
generated CRPs with mostly unique structures and, thus, made the clustering
seem impossible.

It is also recommended that a control and experiment group be used where
the joint attention in the experiment group can be manipulated to determine
and properly measure its effects on the collaboration of the pairs, and so that
the resulting CRPs can be better interpreted. The artificial time limit should
be removed and instead of using a chat program where the participants will
have to type everything they want to say, a better option would be to use
voice chat so that they can communicate more naturally. Freedom from these
constraints will likely result in a more valid collaboration.
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Appendix

Result of the Brute Force Pair Feature Selection

Table A1: Performance of the classifiers using only RR as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 60.80 0.667 62.75 68.81 64.41 0.209
Support Vector Machine 61.10 0.668 61.66 71.07 65.56 0.217
Gradient Boosted Trees 59.05 0.653 58.46 75.12 65.18 0.173

Table A2: Performance of the classifiers using only L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 56.74 0.618 57.09 70.48 62.47 0.120
Support Vector Machine 57.77 0.615 58.72 80.95 66.91 0.149
Gradient Boosted Trees 54.70 0.524 54.78 72.14 61.74 0.082
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Table A3: Performance of the classifiers using only LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 62.54 0.658 66.86 57.38 60.69 0.255
Support Vector Machine 61.93 0.659 69.00 52.98 59.46 0.255
Gradient Boosted Trees 56.44 0.572 56.43 76.67 64.37 0.119

Table A4: Performance of the classifiers using only RR and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 62.23 0.695 63.07 67.86 64.31 0.236
Support Vector Machine 62.73 0.681 63.53 73.10 67.03 0.252
Gradient Boosted Trees 61.52 0.607 61.56 71.19 65.16 0.226

Table A5: Performance of the classifiers using only RR and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 60.80 0.664 62.75 68.81 64.41 0.209
Support Vector Machine 60.68 0.657 61.17 72.02 65.57 0.208
Gradient Boosted Trees 53.90 0.589 55.90 63.33 58.80 0.071

Table A6: Performance of the classifiers using only L and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 62.95 0.649 66.70 59.05 61.73 0.262
Support Vector Machine 60.68 0.659 66.62 52.98 58.67 0.227
Gradient Boosted Trees 53.48 0.567 54.66 66.90 59.60 0.058

Table A7: Performance of the classifiers using prior knowledge as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 76.29 0.850 77.24 80.12 78.17 0.525
Support Vector Machine 76.06 0.862 80.76 75.48 76.02 0.519
Gradient Boosted Trees 76.44 0.856 74.45 87.86 79.58 0.534
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Table A8: Performance of the classifiers using degree of acquaintanceship as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 53.90 0.576 54.41 75.36 62.70 0.062
Support Vector Machine 47.90 0.588 50.07 76.67 60.30 −0.089
Gradient Boosted Trees 81.89 0.919 81.46 87.26 83.24 0.637

Table A9: Performance of the classifiers using frequency of convergence as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 64.02 0.625 67.93 66.07 65.49 0.281
Support Vector Machine 51.97 0.535 54.70 84.17 63.32 0.002
Gradient Boosted Trees 55.75 0.645 59.06 82.26 65.65 0.100

Table A10: Performance of the classifiers using prior knowledge and degree of acquaintance-
ship as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 76.29 0.849 77.24 80.12 78.17 0.525
Support Vector Machine 76.44 0.861 85.44 68.10 73.93 0.542
Gradient Boosted Trees 95.80 0.973 94.64 98.54 96.19 0.916

Table A11: Performance of the classifiers using prior knowledge and frequency of convergence
as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 77.92 0.851 81.15 78.69 78.87 0.560
Support Vector Machine 76.10 0.856 80.91 72.98 75.84 0.522
Gradient Boosted Trees 78.11 0.869 74.79 90.95 81.49 0.573
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Table A12: Performance of the classifiers using degree of acquaintanceship and frequency of
convergence as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 62.73 0.600 66.57 63.57 63.55 0.257
Support Vector Machine 56.89 0.599 56.55 77.38 65.01 0.128
Gradient Boosted Trees 83.90 0.933 86.39 83.93 84.52 0.679

Table A13: Performance of the classifiers using the non-CRQA metrics as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 77.92 0.847 81.15 78.69 78.87 0.560
Support Vector Machine 76.89 0.859 83.11 72.38 76.27 0.542
Gradient Boosted Trees 94.13 0.967 91.90 98.33 94.75 0.884

Table A14: Performance of the classifiers using prior knowledge and RR as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 79.28 0.859 81.01 81.79 80.64 0.585
Support Vector Machine 79.32 0.887 82.27 81.01 80.23 0.583
Gradient Boosted Trees 81.74 0.878 83.70 84.17 82.78 0.636

Table A15: Performance of the classifiers using prior knowledge and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 80.98 0.898 83.83 83.81 82.17 0.619
Support Vector Machine 78.90 0.868 83.88 76.90 79.02 0.580
Gradient Boosted Trees 82.23 0.881 84.48 82.38 82.89 0.645
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Table A16: Performance of the classifiers using prior knowledge and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 80.15 0.881 83.51 80.95 80.91 0.602
Support Vector Machine 80.95 0.872 84.76 80.48 81.66 0.620
Gradient Boosted Trees 79.66 0.880 81.56 81.55 80.29 0.593

Table A17: Performance of the classifiers using prior knowledge, RR and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 77.23 0.886 77.79 80.12 78.14 0.542
Support Vector Machine 77.20 0.877 79.39 78.81 78.44 0.543
Gradient Boosted Trees 80.57 0.881 82.44 82.98 81.77 0.610

Table A18: Performance of the classifiers using prior knowledge, RR and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 79.73 0.875 83.07 80.95 80.63 0.594
Support Vector Machine 80.95 0.869 84.76 80.48 81.66 0.620
Gradient Boosted Trees 83.86 0.887 85.38 86.90 84.99 0.678

Table A19: Performance of the classifiers using prior knowledge, Land LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 80.15 0.878 84.05 80.24 80.67 0.603
Support Vector Machine 80.53 0.872 84.68 78.81 80.57 0.612
Gradient Boosted Trees 85.11 0.903 88.70 85.71 85.78 0.704
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Table A20: Performance of the classifiers using prior knowledge, RR, L, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.52 0.881 80.95 79.40 79.17 0.569
Support Vector Machine 79.28 0.876 82.33 79.52 79.92 0.586
Gradient Boosted Trees 83.90 0.897 87.29 83.21 84.54 0.679

Table A21: Performance of the classifiers using degree of acquaintanceship and RR as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 62.35 0.654 63.97 69.52 65.76 0.245
Support Vector Machine 61.44 0.662 61.32 73.57 65.89 0.226
Gradient Boosted Trees 76.82 0.844 77.09 83.33 79.30 0.535

Table A22: Performance of the classifiers using degree of acquaintanceship and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 57.73 0.620 59.59 70.48 63.02 0.147
Support Vector Machine 53.86 0.636 54.52 72.02 60.89 0.064
Gradient Boosted Trees 76.86 0.850 77.98 80.00 78.03 0.534

Table A23: Performance of the classifiers using degree of acquaintanceship and LAM as
input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 59.02 0.648 62.68 60.83 59.94 0.179
Support Vector Machine 59.66 0.660 62.15 51.90 57.78 0..210
Gradient Boosted Trees 82.31 0.883 83.73 82.86 82.63 0.644
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Table A24: Performance of the classifiers using degree of acquaintanceship RR, and L as
input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 60.72 0.659 62.27 66.67 63.12 0.210
Support Vector Machine 61.97 0.665 64.15 73.81 66.61 0.235
Gradient Boosted Trees 74.66 0.818 74.68 81.55 77.12 0.492

Table A25: Performance of the classifiers using degree of acquaintanceship RR, and LAM
as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 61.52 0.645 63.46 67.98 64.66 0.227
Support Vector Machine 60.19 0.664 60.79 72.86 65.25 0.200
Gradient Boosted Trees 76.82 0.835 76.03 82.38 78.55 0.534

Table A26: Performance of the classifiers using degree of acquaintanceship L, and LAM as
input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 59.43 0.641 62.38 62.550 60.37 0.189
Support Vector Machine 58.03 0.653 59.15 60.12 57.99 0.162
Gradient Boosted Trees 75.00 0.861 75.66 77.38 75.93 0.500

Table A27: Performance of the classifiers using degree of acquaintanceship RR, L, and LAM
as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 60.30 0.662 61.97 65.95 62.65 0.202
Support Vector Machine 59.85 0.666 61.58 70.71 64.29 0.191
Gradient Boosted Trees 75.08 0.820 75.83 78.21 76.61 0.290
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Table A28: Performance of the classifiers using frequency of convergence and RR as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 65.34 0.687 66.77 72.98 68.92 0.304
Support Vector Machine 65.34 0.685 66.77 66.55 66.94 0.307
Gradient Boosted Trees 58.22 0.633 58.19 70.36 62.72 0.156

Table A29: Performance of the classifiers using frequency of convergence and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 61.97 0.665 63.30 70.48 65.80 0.235
Support Vector Machine 60.19 0.655 58.82 76.07 66.90 0.200
Gradient Boosted Trees 55.38 0.582 57.85 66.90 61.06 0.095

Table A30: Performance of the classifiers using frequency of convergenceand LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 63.33 0.697 65.97 63.57 63.08 0.266
Support Vector Machine 59.36 0.680 67.90 44.17 53.40 0.219
Gradient Boosted Trees 56.63 0.643 57.18 66.55 61.71 0.122

Table A31: Performance of the classifiers using frequency of convergence RR, and L as
input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 65.38 0.689 66.75 72.98 68.99 0.304
Support Vector Machine 65.42 0.689 66.25 69.05 67.72 0.305
Gradient Boosted Trees 56.59 0.605 57.34 64.64 59.95 0.123
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Table A32: Performance of the classifiers using frequency of convergence RR, and LAM as
input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 65.38 0.688 66.76 70.71 67.91 0.304
Support Vector Machine 64.51 0.680 66.02 64.88 65.85 0.290
Gradient Boosted Trees 57.73 0.635 58.95 63.81 60.78 0.150

Table A33: Performance of the classifiers using frequency of convergence L, and LAM as
input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 62.08 0.678 63.93 64.29 62.94 0.238
Support Vector Machine 59.36 0.675 67.90 44.17 53.40 0.219
Gradient Boosted Trees 53.14 0.607 54.51 59.88 57.47 0.056

Table A34: Performance of the classifiers using frequency of convergence RR, L, and LAM
as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 66.25 0.696 67.92 70.71 68.44 0.321
Support Vector Machine 59.47 0.692 63.26 56.19 59.32 0.194
Gradient Boosted Trees 57.35 0.626 58.20 58.81 57.98 0.146

Table A35: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
and RR as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 77.61 0.886 79.03 80.95 78.84 0.551
Support Vector Machine 78.45 0.866 80.39 79.64 79.45 0.568
Gradient Boosted Trees 90.23 0.959 91.06 91.90 90.57 0.805
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Table A36: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.94 0.869 80.60 81.79 80.29 0.576
Support Vector Machine 77.99 0.864 81.20 77.38 78.73 0.561
Gradient Boosted Trees 88.98 0.957 88.59 91.79 89.53 0.780

Table A37: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 81.44 0.878 83.75 83.45 82.47 0.627
Support Vector Machine 80.95 0.863 84.76 80.48 81.66 0.620
Gradient Boosted Trees 90.64 0.966 90.33 93.45 91.04 0.814

Table A38: Performance of the classifiers using prior knowledge, frequency of convergence,
and RR as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 77.61 0.885 78.37 81.43 78.80 0.551
Support Vector Machine 78.94 0.877 80.82 79.64 79.54 0.577
Gradient Boosted Trees 76.79 0.870 80.54 78.81 78.03 0.560

Table A39: Performance of the classifiers using prior knowledge, frequency of convergence,
and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.86 0.880 80.32 82.26 79.96 0.576
Support Vector Machine 78.48 0.869 82.86 75.00 77.88 0.573
Gradient Boosted Trees 81.44 0.887 84.77 82.14 82.37 0.628
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Table A40: Performance of the classifiers using prior knowledge, frequency of convergence,
and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 80.57 0.890 81.09 84.05 81.46 0.610
Support Vector Machine 79.32 0.876 83.27 76.43 78.79 0.589
Gradient Boosted Trees 77.99 0.872 80.48 82.14 79.42 0.560

Table A41: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
RR, and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 77.31 0.885 77.79 80.95 78.47 0.542
Support Vector Machine 76.36 0.873 78.46 77.98 77.52 0.526
Gradient Boosted Trees 88.56 0.958 88.10 91.90 89.18 0.772

Table A42: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
RR, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.90 0.878 82.18 80.12 79.72 0.577
Support Vector Machine 80.11 0.866 83.26 79.64 80.69 0.603
Gradient Boosted Trees 89.81 0.954 90.64 90.95 90.13 0.797

Table A43: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
L, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 80.61 0.875 82.38 82.62 81.69 0.610
Support Vector Machine 80.11 0.866 83.97 78.81 80.18 0.604
Gradient Boosted Trees 91.06 0.958 91.81 93.45 91.56 0.823
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Table A44: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
RR, L, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.14 0.881 79.58 80.24 79.17 0.560
Support Vector Machine 79.28 0.875 82.08 79.52 79.95 0.585
Gradient Boosted Trees 89.81 0.948 90.91 90.95 90.00 0.797

Table A45: Performance of the classifiers using prior knowledge, frequency of convergence,
RR, and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 76.82 0.886 77.78 80.83 78.16 0.534
Support Vector Machine 78.48 0.875 79.87 80.36 79.31 0.568
Gradient Boosted Trees 79.28 0.879 81.16 81.43 80.33 0.585

Table A46: Performance of the classifiers using prior knowledge, frequency of convergence,
RR, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 79.28 0.887 80.32 82.38 80.23 0.585
Support Vector Machine 79.77 0.882 82.78 78.10 79.47 0.596
Gradient Boosted Trees 79.24 0.878 81.27 81.19 79.85 0.585

Table A47: Performance of the classifiers using prior knowledge, frequency of convergence,
L, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 80.61 0.889 82.08 82.50 81.31 0.610
Support Vector Machine 78.86 0.875 83.37 76.43 78.65 0.580
Gradient Boosted Trees 80.95 0.897 84.95 80.83 81.45 0.620
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Table A48: Performance of the classifiers using prior knowledge, frequency of convergence,
RR, L, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.48 0.886 79.32 81.55 79.43 0.568
Support Vector Machine 79.73 0.874 82.30 78.69 79.59 0.595
Gradient Boosted Trees 82.16 0.892 85.65 79.76 81.81 0.647

Table A49: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
RR, L, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.14 0.881 79.58 80.24 79.17 0.560
Support Vector Machine 79.28 0.875 82.08 79.52 79.95 0.585
Gradient Boosted Trees 89.81 0.948 90.91 90.95 90.00 0.797

Table A50: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
RR, and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 65.00 0.683 66.04 72.14 68.34 0.295
Support Vector Machine 63.30 0.686 65.24 68.33 66.15 0.262
Gradient Boosted Trees 75.11 0.815 74.59 82.38 77.64 0.501

Table A51: Performance of the classifiers using degree of acquaintanceship, frequency of
convergence, RR, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 65.38 0.676 66.69 70.60 67.87 0.304
Support Vector Machine 63.22 0.678 65.68 65.60 65.34 0.263
Gradient Boosted Trees 75.87 0.845 75.33 82.50 78.27 0.518
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Table A52: Performance of the classifiers using degree of acquaintanceship, frequency of
convergence, L, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 60.42 0.674 62.40 61.19 60.51 0.206
Support Vector Machine 59.36 0.678 67.06 45.83 54.29 0.214
Gradient Boosted Trees 77.95 0.866 79.11 81.43 79.12 0.559

Table A53: Performance of the classifiers using degree of acquaintanceship, frequency of
convergence, RR, L, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 64.13 0.695 64.31 67.74 66.40 0.280
Support Vector Machine 61.14 0.687 64.10 64.17 63.49 0.221
Gradient Boosted Trees 74.58 0.835 74.80 78.93 76.18 0.491

Table A54: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
and RR as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.45 0.886 78.95 82.26 79.62 0.568
Support Vector Machine 78.07 0.873 80.64 78.10 78.66 0.560
Gradient Boosted Trees 88.94 0.968 88.50 91.90 89.69 0.780

Table A55: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
frequency of convergence, andL as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.86 0.879 80.32 82.26 79.96 0.576
Support Vector Machine 78.07 0.869 81.86 75.00 77.36 0.564
Gradient Boosted Trees 88.18 0.958 88.93 90.36 88.77 0.763
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Table A56: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
frequency of convergence, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 78.90 0.884 80.12 81.67 79.87 0.576
Support Vector Machine 78.90 0.871 83.10 75.60 78.26 0.581
Gradient Boosted Trees 92.73 0.963 93.09 94.29 93.01 0.856

Table A57: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
frequency of convergence, RR, and L as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 77.23 0.887 78.20 80.83 78.45 0.542
Support Vector Machine 78.52 0.876 80.65 78.81 79.02 0.569
Gradient Boosted Trees 89.81 0.951 91.10 91.07 90.25 0.797

Table A58: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
frequency of convergence, RR, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 79.28 0.885 80.32 82.38 80.23 0.585
Support Vector Machine 78.94 0.883 82.61 76.43 78.40 0.580
Gradient Boosted Trees 90.23 0.945 91.30 90.95 90.44 0.805

Table A59: Performance of the classifiers using prior knowledge, degree of acquaintanceship,
frequency of convergence, L, and LAM as input.

Classifier Acc AUC Prec Recall F Msr MCC
(%) (%) (%) (%)

Logistic Regression 79.77 0.883 81.85 80.83 80.41 0.594
Support Vector Machine 78.45 0.873 83.21 75.60 78.12 0.572
Gradient Boosted Trees 90.23 0.965 91.39 91.79 90.56 0.805
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